JP2010176989A - Method of manufacturing battery, and battery - Google Patents

Method of manufacturing battery, and battery Download PDF

Info

Publication number
JP2010176989A
JP2010176989A JP2009017202A JP2009017202A JP2010176989A JP 2010176989 A JP2010176989 A JP 2010176989A JP 2009017202 A JP2009017202 A JP 2009017202A JP 2009017202 A JP2009017202 A JP 2009017202A JP 2010176989 A JP2010176989 A JP 2010176989A
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
battery
composite material
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009017202A
Other languages
Japanese (ja)
Inventor
Kazuo Ikuta
和雄 生田
Norihiro Chikuri
紀博 地久里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009017202A priority Critical patent/JP2010176989A/en
Publication of JP2010176989A publication Critical patent/JP2010176989A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Filling, Topping-Up Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a battery and the battery, capable of restraining short-circuit failure caused by metal foreign substances mixing into a battery container, while securing liquid injection efficiency into the battery container. <P>SOLUTION: The battery manufacturing process S1 for manufacturing a battery 1 includes a housing process S10 of housing an electrode body 10 inside a battery container 20, and a liquid injection process S20 of injecting electrolyte solution from a cathode non-carried part 15 side (a cathode terminal 17 side). In the liquid injection process S20, the electrolyte solution is guided from a liquid injection part 25 of the battery container 20 and injected into the cathode non-carried part 15 side through a guide member 26. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電池の製造方法及び電池に関し、より詳細には、電解液を電池容器内に注液するための技術に関する。   The present invention relates to a battery manufacturing method and a battery, and more particularly to a technique for injecting an electrolytic solution into a battery container.

リチウムイオン二次電池、ニッケル水素電池等の二次電池を製造する製造工程では、電池容器内に充放電要素(正極、負極、セパレータ等)を収容した後、電池容器内に電解液を注液する工程が含まれる。
従来、電解液の注液工程において、電池容器に設けられる注液孔から電解液を注液し、注液後に当該注液孔を塞ぐことにより、容器内を密閉空間とする技術が用いられていた。
In a manufacturing process for manufacturing a secondary battery such as a lithium ion secondary battery or a nickel metal hydride battery, after charging / discharging elements (a positive electrode, a negative electrode, a separator, etc.) are contained in the battery container, an electrolytic solution is injected into the battery container. The process of carrying out is included.
Conventionally, in an electrolyte injection process, a technique has been used in which an electrolyte is injected from an injection hole provided in a battery container, and the injection hole is closed after the injection to make the inside of the container a sealed space. It was.

このような注液工程では、注液効率を向上させて製造工程の時間短縮するため、及び二次電池の性能を向上するために、電解液の注液の際に、短時間で注液する(充放電要素に浸透させる)技術、及び電解液を充放電要素内に均一に分布させる技術が求められている。
例えば、特許文献1には、電池容器の充放電要素の注液端面に対向する部分の内面を曲面状に形成し、当該電池容器の対向部分と充放電要素の注液端面との間に空間を設け、注液孔をその対向部分に設ける技術が開示されている。これによれば、前記注液孔から注液される電解液は前記空間内に滞留し、係る電解液の液圧によって、充放電要素の注液端面から内部に効率良く浸透させることができる。
In such a liquid injection process, in order to improve the liquid injection efficiency and shorten the time of the manufacturing process, and to improve the performance of the secondary battery, the liquid injection is performed in a short time when the electrolytic solution is injected. There is a need for a technique (permeating the charge / discharge element) and a technique for uniformly distributing the electrolytic solution in the charge / discharge element.
For example, in Patent Document 1, an inner surface of a portion facing a liquid injection end surface of a charge / discharge element of a battery container is formed in a curved surface, and a space is formed between the facing portion of the battery container and the liquid injection end surface of the charge / discharge element. And a technique for providing a liquid injection hole in the opposite portion is disclosed. According to this, the electrolytic solution injected from the liquid injection hole stays in the space, and can be efficiently permeated into the inside from the liquid injection end surface of the charge / discharge element by the liquid pressure of the electrolytic solution.

しかしながら、特許文献1に開示される技術では、電解液の液圧によって、電池容器内に残留する金属異物が充放電要素内に混入してしまう可能性がある。このような金属異物としては、電池容器内壁に付着する金属片、又は充放電要素と電極端子との溶接時に発生する溶接スパッタ等が挙げられ、前記電極端子溶接後には充放電要素を洗浄できないため、これらの金属異物を電池容器内から完全に取り除くことは困難である。
特に、図14に示すように、充放電要素100内の正極110の合材担持部端部とセパレータ130との隙間(充放電要素100と接続されている負極120の合材未担持部側の隙間)に金属異物140が混入したときに、(1)金属異物140が正極110と接点を持つ場合は、金属異物140が溶出し正極110と負極120とが当該溶出した金属異物140により短絡して自己放電検査時に不良品となる(図14(b)参照)が、(2)金属異物140が正極110と接点を持たない場合は、自己放電検査時に不良品と判定されずに出荷され、出荷後に電池への振動付与等により、任意のタイミングで金属異物140と正極110とが接点を持ち、これにより金属異物140が析出して突然短絡不良が生ずる可能性がある点で不利である。
また、特許文献1に記載の技術を一般的な電池に適用するには、電池容器に対して別途の加工が必要、又は封止工程等で複雑になるため汎用性に劣る点でも不利である。
However, in the technique disclosed in Patent Document 1, metal foreign matters remaining in the battery container may be mixed in the charge / discharge element due to the hydraulic pressure of the electrolytic solution. Examples of such metal foreign matter include metal pieces adhering to the inner wall of the battery container, welding spatter generated during welding of the charge / discharge element and the electrode terminal, and the charge / discharge element cannot be cleaned after the electrode terminal welding. It is difficult to completely remove these metallic foreign matters from the battery container.
In particular, as shown in FIG. 14, the gap between the end of the composite material carrying portion of the positive electrode 110 and the separator 130 in the charge / discharge element 100 (on the unsupported portion side of the negative electrode 120 connected to the charge / discharge element 100). (1) If the metal foreign object 140 has a contact with the positive electrode 110 when the metal foreign object 140 is mixed into the gap), the metal foreign object 140 is eluted and the positive electrode 110 and the negative electrode 120 are short-circuited by the eluted metal foreign object 140. (2) When the metal foreign object 140 does not have a contact with the positive electrode 110, it is shipped without being determined as a defective product during the self-discharge inspection. It is disadvantageous in that the metallic foreign object 140 and the positive electrode 110 may have a contact at an arbitrary timing due to vibration applied to the battery after shipment, which may cause the metallic foreign object 140 to precipitate and cause a short circuit failure suddenly. .
In addition, in order to apply the technique described in Patent Document 1 to a general battery, it is also disadvantageous in that it is inferior in versatility because a separate processing is required for the battery container or it is complicated by a sealing process or the like. .

特開2005−251422号公報JP 2005-251422 A

本発明は、電池容器内への注液効率を担保しつつ、電池容器内に混入する金属異物による短絡不良を抑制することが可能な電池の製造方法及び電池を提供することを課題とする。   An object of the present invention is to provide a battery manufacturing method and a battery that can suppress short circuit failure due to metal foreign matter mixed in the battery container while ensuring the efficiency of liquid injection into the battery container.

請求項1に記載の電池の製造方法は、活物質を含む合材が担持される合材担持部、及び前記合材が担持されない合材未担持部とを表面に有する正極板、及び、活物質を含む合材が担持される合材担持部、及び前記合材が担持されない合材未担持部とを表面に有する負極板を含み、前記正極板及び負極板の合材担持部を多孔質体からなるセパレータを介して積層してなる充放電要素と、前記充放電要素を内部に収容する電池容器と、を具備し、前記正極板の合材未担持部を、前記正極板及び負極板の合材担持部の積層部分における一側に配置するとともに、前記負極板の合材未担持部を、前記正極板及び負極板の合材担持部の積層部分における他側に配置した電池の製造方法であって、前記電池容器内に前記充放電要素を収容した状態で、前記正極板又は負極板の合材未担持部側から電解液を注液する注液工程を含む。   The method for producing a battery according to claim 1 includes a positive electrode plate having a composite material supporting part on which a composite material containing an active material is supported, a non-composite material supporting part on which the composite material is not supported, and an active material. A positive electrode plate and a negative electrode plate having a negative electrode plate having a mixture unsupported part on which the composite material is not supported, and a positive electrode plate and a negative electrode plate. A charge / discharge element laminated via a separator made of a body, and a battery container that accommodates the charge / discharge element therein, wherein the unsupported portion of the positive electrode plate is connected to the positive electrode plate and the negative electrode plate. The battery is disposed on one side of the laminated portion of the composite material carrying portion, and the unsupported portion of the negative electrode plate is disposed on the other side of the laminated portion of the composite material carrying portion of the positive electrode plate and the negative electrode plate. In the state in which the charge / discharge element is accommodated in the battery container, From mixture material unsupported portion of the electrode plate or negative electrode plate includes a liquid injection step of pouring the electrolyte solution.

請求項2に記載のように、前記電池の製造方法においては、前記注液工程にて電解液を注液する際に用いられる注液口から前記電解液が注液される側の合材未担持部側に案内するガイド部材を、前記注液口に連続的に設け、前記注液工程において、前記電解液を、前記ガイド部材を介して前記注液口から、前記電解液が注液される側の合材未担持部側に案内することが好ましい。   As described in claim 2, in the battery manufacturing method, the unmixed material on the side where the electrolytic solution is injected from the injection port used when the electrolytic solution is injected in the injection step. A guide member that guides to the support portion side is continuously provided in the liquid injection port, and in the liquid injection step, the electrolytic solution is injected from the liquid injection port through the guide member. It is preferable to guide to the uncarried portion side of the composite material.

請求項3に記載のように、前記電池の製造方法においては、前記電解液が注液される側の合材未担持部は、前記正極板の合材未担持部であることが好ましい。   According to a third aspect of the present invention, in the battery manufacturing method, it is preferable that the mixture unsupported portion on the side where the electrolytic solution is injected is a mixture unsupported portion of the positive electrode plate.

請求項4に記載のように、前記電池の製造方法においては、前記注液工程前に、前記セパレータの正極側端部と、前記正極板の合材未担持部とを接着する工程を含むことが好ましい。   According to a fourth aspect of the present invention, the battery manufacturing method includes a step of adhering the positive electrode side end portion of the separator and the unsupported portion of the positive electrode plate before the liquid injection step. Is preferred.

請求項5に記載の電池は、活物質を含む合材が担持される合材担持部、及び前記合材が担持されない合材未担持部とを表面に有する正極板、及び、活物質を含む合材が担持される合材担持部、及び前記合材が担持されない合材未担持部とを表面に有する負極板を含み、前記正極板及び負極板の合材担持部を多孔質体からなるセパレータを介して積層し、前記正極板の合材未担持部を、前記正極板及び負極板の合材担持部の積層部分における一側に配置するとともに、前記負極板の合材未担持部を、前記正極板及び負極板の合材担持部の積層部分における他側に配置してなる充放電要素と、前記充放電要素を内部に収容する電池容器と、前記電池容器の表面に設けられ、当該電池容器内に電解液を注液する際に用いられる注液口と、前記電解液を、前記注液口から前記充放電要素の正極板又は負極板の合材未担持部側に案内するガイド部材とを具備する。   The battery according to claim 5 includes a positive electrode plate having on its surface a composite material supporting portion on which a composite material containing an active material is supported, and an unsupported portion on which the composite material is not supported, and an active material. A negative electrode plate having on its surface a composite material supporting part on which a composite material is supported and an unsupported part on which the composite material is not supported, the composite material supporting part of the positive electrode plate and the negative electrode plate being made of a porous body Laminating via a separator, the unsupported portion of the positive electrode plate is disposed on one side of the laminated portion of the positive electrode plate and the negative electrode plate, and the unsupported portion of the negative electrode plate A charge / discharge element disposed on the other side of the laminated portion of the composite material carrying part of the positive electrode plate and the negative electrode plate, a battery container containing the charge / discharge element therein, and a surface of the battery container, An injection port used when pouring the electrolyte into the battery container; and the electrolyte Comprises a guide member for guiding the engagement member unsupported portion of the positive electrode plate or negative electrode plate of the charging and discharging elements from the pouring hole.

請求項6に記載のように、前記電池においては、前記電解液が注液される側の合材未担持部は、前記電池容器内から外側へ向けて突出して設けられる電極端子と接続され、前記電解液は、前記電極端子、及び前記ガイド部材を介して案内されることが好ましい。   As described in claim 6, in the battery, the unsupported portion of the mixture on the side where the electrolytic solution is injected is connected to an electrode terminal provided to protrude outward from the inside of the battery container, The electrolytic solution is preferably guided through the electrode terminal and the guide member.

請求項7に記載のように、前記電池においては、前記電解液が注液される側の合材未担持部は、前記正極板の合材未担持部であることが好ましい。   According to a seventh aspect of the present invention, in the battery, it is preferable that the mixture unsupported portion on the side where the electrolyte solution is injected is a mixture unsupported portion of the positive electrode plate.

請求項8に記載のように、前記電池においては、前記セパレータの正極側端部と、前記正極板の合材未担持部とが接着されることが好ましい。   As described in claim 8, in the battery, it is preferable that a positive electrode side end portion of the separator and an unsupported portion of the positive electrode plate are bonded.

本発明によれば、電池容器内への注液効率を担保しつつ、電池容器内に混入する金属異物による短絡不良を抑制することが可能な電池の製造方法及び電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method and battery of a battery which can suppress the short circuit defect by the metal foreign material mixed in a battery container can be provided, ensuring the liquid injection efficiency in a battery container.

電池を示す模式断面図である。It is a schematic cross section which shows a battery. 電池の充放電要素を示す斜視図である。It is a perspective view which shows the charging / discharging element of a battery. 電池の充放電要素の一部を示す拡大図である。It is an enlarged view which shows a part of charging / discharging element of a battery. ガイド部材を示す斜視図である。It is a perspective view which shows a guide member. 電池の製造工程を示すフローである。It is a flow which shows the manufacturing process of a battery. 収容工程を示す図である。It is a figure which shows an accommodation process. 注液工程を示す図である。It is a figure which shows an injection process. 注液口の仮封止を示す図である。It is a figure which shows temporary sealing of the liquid injection port. 拘束工程を示す図である。It is a figure which shows a restraint process. 本封止工程を示す図である。It is a figure which shows this sealing process. 電池の別実施形態を示す図であり、(a)は模式断面図、(b)はガイド部材を示す斜視図である。It is a figure which shows another embodiment of a battery, (a) is a schematic cross section, (b) is a perspective view which shows a guide member. 電池の比較例を示す図である。It is a figure which shows the comparative example of a battery. 比較例を用いた比較実験の実験結果を示す図である。It is a figure which shows the experimental result of the comparative experiment using a comparative example. 電池の従来例を示す図である。It is a figure which shows the prior art example of a battery.

以下では、図1〜図4を参照して、本発明に係る電池の一実施形態である電池1について説明する。
電池1は、図1に示すように、充放電要素である電極体10、及び電極体10を内部に収容する電池容器20を具備し、充放電可能に構成される電池(例えばリチウムイオン二次電池)である。
Below, with reference to FIGS. 1-4, the battery 1 which is one Embodiment of the battery which concerns on this invention is demonstrated.
As shown in FIG. 1, the battery 1 includes an electrode body 10 that is a charge / discharge element, and a battery container 20 that houses the electrode body 10 therein, and is configured to be chargeable / dischargeable (for example, a lithium ion secondary battery). Battery).

図2に示すように、電極体10は、正極板11と負極板12とを多孔質体からなるセパレータ13を介して積層し、複数回捲回されてなる捲回体である。正極板11と負極板12とは、セパレータ13を介して積層されており、係る正極板11及び負極板12の積層部分14には、それぞれ正極活物質又は負極活物質を含む合材が担持されている。言い換えれば、電極体10では、正極板11の合材担持部と負極板12の合材担持部とがセパレータ13を介して積層されており、係る積層部分14における正極・負極間の化学反応により充放電する構成である。
なお、正極板11は、電子伝導性の集電箔(例えばアルミニウム等の金属箔)の表面の一部に正極活物質を含む合材を塗布したものであり、負極板12は、電子伝導性の集電箔(例えば銅等の金属箔)の表面の一部に負極活物質を含む合材を塗布したものである。
As shown in FIG. 2, the electrode body 10 is a wound body in which a positive electrode plate 11 and a negative electrode plate 12 are stacked via a separator 13 made of a porous body and wound a plurality of times. The positive electrode plate 11 and the negative electrode plate 12 are stacked via a separator 13, and the positive electrode active material or a mixture containing a negative electrode active material is supported on each of the stacked portions 14 of the positive electrode plate 11 and the negative electrode plate 12. ing. In other words, in the electrode body 10, the composite material carrying portion of the positive electrode plate 11 and the composite material carrying portion of the negative electrode plate 12 are laminated via the separator 13, and the chemical reaction between the positive electrode and the negative electrode in the laminated portion 14 is performed. It is the structure which charges / discharges.
The positive electrode plate 11 is obtained by applying a mixture containing a positive electrode active material to a part of the surface of an electron conductive current collector foil (for example, a metal foil such as aluminum). The negative electrode plate 12 is an electron conductive material. A mixture containing a negative electrode active material is applied to a part of the surface of the current collector foil (for example, a metal foil such as copper).

また、図1に示すように、正極板11及び負極板12における前記合材が担持されていない各未担持部15・16が積層部分14からそれぞれ反対方向(電極体10の捲回軸方向の両方向)に突出している。つまり、正極板11の正極未担持部15が積層部分14における一側に配置されており、負極板12の負極未担持部16が積層部分14における他側に配置されている。
積層部分14からの前記突出部分においては、正極板11の正極未担持部15は正極端子17と、負極板12の負極未担持部16は負極端子18と、それぞれ溶接により接続されている。
正極端子17及び負極端子18は、電池1の外部との電気的なエネルギー交換のための接続経路となる電極端子であり、電池容器20から外側(図示において上側)へ向けて突出されている。
In addition, as shown in FIG. 1, the unsupported portions 15 and 16 on the positive electrode plate 11 and the negative electrode plate 12 on which the composite material is not supported are respectively in opposite directions (in the winding axis direction of the electrode body 10) from the laminated portion 14. Projects in both directions. That is, the positive electrode unsupported portion 15 of the positive electrode plate 11 is disposed on one side of the laminated portion 14, and the negative electrode unsupported portion 16 of the negative electrode plate 12 is disposed on the other side of the laminated portion 14.
In the protruding portion from the laminated portion 14, the positive electrode unsupported portion 15 of the positive electrode plate 11 is connected to the positive electrode terminal 17, and the negative electrode unsupported portion 16 of the negative electrode plate 12 is connected to the negative electrode terminal 18 by welding.
The positive electrode terminal 17 and the negative electrode terminal 18 are electrode terminals serving as connection paths for electrical energy exchange with the outside of the battery 1, and project outward from the battery container 20 (upper side in the drawing).

図3に示すように、セパレータ13と正極未担持部15との境界部分(つまり、セパレータ13の正極側端部と正極未担持部15の負極側端部とが重なる部分)19は、互いに接着されており、係る境界部分においてセパレータ13と正極未担持部15との間には隙間がない状態とされている。
このセパレータ13と正極未担持部15との境界部分19の接着は、例えば電極体10を捲回する際に変性ポリフェニレンエーテル樹脂を用いて実施できる。その他熱可塑性樹脂を用いても適宜実施可能である。
As shown in FIG. 3, the boundary portion 19 between the separator 13 and the positive electrode unsupported portion 15 (that is, the portion where the positive electrode side end portion of the separator 13 and the negative electrode side end portion of the positive electrode unsupported portion 15 overlap) 19 is adhered to each other. In such a boundary portion, there is no gap between the separator 13 and the positive electrode unsupported portion 15.
The adhesion of the boundary portion 19 between the separator 13 and the positive electrode unsupported portion 15 can be performed using, for example, a modified polyphenylene ether resin when the electrode body 10 is wound. Other thermoplastic resins can be used as appropriate.

図1に示すように、電池容器20は、電極体10を内部に収容する収容部材であり、外装21及び蓋体22等により構成される。電池容器20内で、電極体10はその捲回方向を重力が作用する方向(図示において上下方向)とし、捲回側面を電池容器20の長手方向(図示において左右方向)両側面に対向させるようにして収容されている。
外装21は、一面(図示において上面)が開口する金属製の箱状部材であり、角型形状を有する。蓋体22は、外装21の開口面を塞ぐ金属製の平板部材であり、外装21の開口面に応じた形状を有する。外装21及び蓋体22の材料としては、例えばアルミニウムが挙げられる。
蓋体22の両側部には、正極端子17及び負極端子18が貫通可能かつ固定可能な孔(不図示)が設けられており、その各孔を介して正極端子17及び負極端子18が外部に突出されている。正極端子17及び負極端子18は外装21の内壁と接触しないように所定の隙間を空けて配置されており、外装21の両側部の内壁と電極体10との間には空間が形成されている。
As shown in FIG. 1, the battery container 20 is a housing member that houses the electrode body 10, and includes an exterior 21, a lid 22, and the like. In the battery container 20, the electrode body 10 has a winding direction as a direction in which gravity acts (vertical direction in the drawing), and the winding side faces the both sides of the longitudinal direction (left and right direction in the drawing) of the battery container 20. Is contained.
The exterior 21 is a metal box-shaped member that opens on one surface (upper surface in the drawing), and has a square shape. The lid 22 is a metal flat plate member that closes the opening surface of the exterior 21, and has a shape corresponding to the opening surface of the exterior 21. Examples of the material of the exterior 21 and the lid 22 include aluminum.
Holes (not shown) through which the positive electrode terminal 17 and the negative electrode terminal 18 can be penetrated and fixed are provided on both sides of the lid 22, and the positive electrode terminal 17 and the negative electrode terminal 18 are exposed to the outside through the holes. It is protruding. The positive electrode terminal 17 and the negative electrode terminal 18 are arranged with a predetermined gap so as not to contact the inner wall of the exterior 21, and a space is formed between the inner wall on both sides of the exterior 21 and the electrode body 10. .

図1に示すように、蓋体22の正極端子17側には、蓋体22の厚み方向(図示において上下方向)に向けて開口する注液口25が形成されている。注液口25の外装21内部側には、電解液を所定箇所に案内するガイド部材26が付設されている。注液口25から注液される電解液は、ガイド部材26によって電池容器20の内部空間(より厳密には、外装21の正極端子17側の内壁と電極体10とにより形成される空間)に案内される。
このガイド部材26は、樹脂からなる部材であり、正極端子17により固定・支持されている。
As shown in FIG. 1, a liquid injection port 25 that opens in the thickness direction (vertical direction in the drawing) of the lid body 22 is formed on the positive terminal 17 side of the lid body 22. A guide member 26 for guiding the electrolytic solution to a predetermined location is attached to the inside of the exterior 21 of the liquid injection port 25. The electrolyte injected from the injection port 25 is introduced into the internal space of the battery container 20 by the guide member 26 (more precisely, the space formed by the inner wall of the exterior 21 on the positive electrode terminal 17 side and the electrode body 10). Guided.
The guide member 26 is a resin member, and is fixed and supported by the positive electrode terminal 17.

図4に示すように、ガイド部材26は、電解液を正極端子17側(正極板11の正極未担持部15側)へ案内する案内部28と、正極端子17に固定するための固定部29とからなる。
案内部28は、二面(図示において上面及び固定部29側の側面)が開口する略直方体形状を有する部位であり、二つの開口面のうち一面(上面)から他面(側面)に向けて電解液を案内する。
固定部29は、案内部28の前記側面側の開口部分から側方に突出して設けられる板状の部位である。固定部29には、正極端子17の延在方向(図示において上下方向)に貫通する固定孔29aが開口されている。この固定孔29aは、正極端子17の外周部分に応じた形状に形成されており、固定孔29aに正極端子17が貫入し、溶着する。これにより、ガイド部材26が正極端子17に固定・支持されている。
この場合、ガイド部材26を樹脂により構成することによって、正極端子17に溶着固定する際の金属異物発生を抑制している。また、ガイド部材26を樹脂製とすることによって、射出成形等の成形自由度を向上でき、電解液等を注液する製造工程を有する種々の電池に対する汎用性を担保できる。なお、ガイド部材26の樹脂材料としては、十分な耐電解液性・耐ガス性を有するものとする。
As shown in FIG. 4, the guide member 26 includes a guide portion 28 that guides the electrolytic solution to the positive electrode terminal 17 side (the positive electrode unsupported portion 15 side of the positive electrode plate 11), and a fixing portion 29 that is fixed to the positive electrode terminal 17. It consists of.
The guide portion 28 is a portion having a substantially rectangular parallelepiped shape in which two surfaces (the upper surface and the side surface on the fixed portion 29 side in the drawing) are opened, and one surface (upper surface) of the two opening surfaces faces the other surface (side surface). Guide the electrolyte.
The fixing portion 29 is a plate-like portion provided to protrude laterally from the opening portion on the side surface side of the guide portion 28. The fixing portion 29 has a fixing hole 29a penetrating in the extending direction of the positive electrode terminal 17 (vertical direction in the drawing). The fixing hole 29a is formed in a shape corresponding to the outer peripheral portion of the positive electrode terminal 17, and the positive electrode terminal 17 penetrates and is welded to the fixing hole 29a. Thereby, the guide member 26 is fixed and supported by the positive electrode terminal 17.
In this case, by forming the guide member 26 of resin, the generation of metal foreign objects when welding and fixing to the positive electrode terminal 17 is suppressed. Further, by making the guide member 26 made of resin, the degree of freedom of molding such as injection molding can be improved, and versatility for various batteries having a manufacturing process of injecting an electrolytic solution or the like can be secured. Note that the resin material of the guide member 26 has sufficient electrolytic solution resistance and gas resistance.

以上のように、電池1は、電池容器20内部に、注液口25から正極未担持部15側(正極端子17側)の内部空間へ案内するガイド部材26を具備する。
これにより、電極体10の捲回側面(注液端面)側に電解液を案内することによって、注液効率を向上できるとともに、電池容器20内に混入する金属異物が、注液口25から注液される電解液の液圧によって、負極未担持部16側(負極端子18側)から正極板11の合材担持部とセパレータ13との隙間に混入する不具合を抑制できる。
従って、電解液の注液効率を担保しつつ、電池1を製造後、電池1外部からの振動付与等によって正極板11の前記合材担持部と金属異物とが突発的に接点を持ち、金属異物が析出することに起因する電極体10内部の短絡不良を抑制できる。
また、電池1において、電解液を注液口25からガイド部材26、及びガイド部材26から連続的に配置される正極端子17を介して電池容器20の内部空間に案内しているので、効率的な注液を実現できるとともに、電極体10の一部を構成する正極未担持部15に接続される正極端子17を介して電極体10への電解液の浸透を助長できる。また、電解液が案内される電池容器20の内部空間は電極体10の捲回側面に面しているので、電極体10への接触面積が大きくなる、つまり電極体10への浸透効率を向上できる。
As described above, the battery 1 includes the guide member 26 that guides from the liquid injection port 25 to the internal space on the positive electrode unsupported portion 15 side (positive electrode terminal 17 side) inside the battery container 20.
Thereby, by guiding the electrolytic solution to the wound side surface (injection end surface) side of the electrode body 10, the injection efficiency can be improved, and metal foreign matter mixed in the battery container 20 is injected from the injection port 25. Due to the liquid pressure of the electrolytic solution to be liquefied, it is possible to suppress a problem of being mixed from the negative electrode unsupported portion 16 side (negative electrode terminal 18 side) into the gap between the composite material supporting portion of the positive electrode plate 11 and the separator 13.
Therefore, after manufacturing the battery 1 while ensuring the efficiency of injecting the electrolyte, the composite material holding portion of the positive electrode plate 11 and the metal foreign object suddenly have a contact by virtue of applying vibration from the outside of the battery 1, and the metal Short-circuit failure inside the electrode body 10 due to the precipitation of foreign matters can be suppressed.
Further, in the battery 1, since the electrolytic solution is guided from the injection port 25 to the internal space of the battery container 20 through the guide member 26 and the positive electrode terminal 17 continuously arranged from the guide member 26, the battery 1 is efficient. In addition, it is possible to realize a proper liquid injection and to promote the penetration of the electrolytic solution into the electrode body 10 through the positive electrode terminal 17 connected to the positive electrode unsupported portion 15 constituting a part of the electrode body 10. Further, since the internal space of the battery container 20 through which the electrolytic solution is guided faces the wound side surface of the electrode body 10, the contact area with the electrode body 10 is increased, that is, the penetration efficiency into the electrode body 10 is improved. it can.

さらに、電池1において、正極未担持部15とセパレータ13との境界部分は接着されているため、正極未担持部15とセパレータ13との隙間に金属異物が混入することがない。
これにより、注液口25から電解液を注液する際に、正極未担持部15側から正極板11の合材担持部とセパレータ13との隙間に金属異物が混入することを確実に防止できる。
従って、電池1の製造時にも、正極板11の合材担持部に金属異物が接点を持ち、金属異物が析出することに起因する電極体10内部の短絡不良を抑制できる。
Furthermore, in the battery 1, since the boundary portion between the positive electrode unsupported portion 15 and the separator 13 is bonded, no metal foreign matter is mixed into the gap between the positive electrode unsupported portion 15 and the separator 13.
Thereby, when injecting electrolyte from the injection hole 25, it can prevent reliably that a metal foreign material mixes into the clearance gap between the composite material support part of the positive electrode plate 11, and the separator 13 from the positive electrode unsupported part 15 side. .
Accordingly, even when the battery 1 is manufactured, a short circuit failure inside the electrode body 10 due to the metal foreign matter having a contact point on the mixture carrying portion of the positive electrode plate 11 and the metal foreign matter being deposited can be suppressed.

以下では、図5〜図10を参照して、電池1を製造する電池製造工程S1について説明する。
図5に示すように、電池製造工程S1は、収容工程S10、注液工程S20、拘束工程S30、初期充電工程S40、本封止工程S50、高温エージング工程S60、検査工程S70等を具備する。
Below, with reference to FIGS. 5-10, battery manufacturing process S1 which manufactures the battery 1 is demonstrated.
As shown in FIG. 5, the battery manufacturing process S1 includes a housing process S10, a liquid injection process S20, a restraining process S30, an initial charging process S40, a main sealing process S50, a high temperature aging process S60, an inspection process S70, and the like.

収容工程S10は、電池容器20内に電極体10を収容し、電池容器20の開口部を塞ぐ工程である。
図6に示すように、収容工程S10では、正極端子17、負極端子18及びガイド部材26が蓋体22に固定され、電極体10が正極端子17及び負極端子18に接続・固定された状態で、これらを一体的に外装21内に収容し、外装21の開口面と蓋体22とをレーザ溶接等により接合することによって、電池容器20内に電極体10を収容する。このとき、電池容器20は蓋体22によって封止された状態となり、電池容器20内は、蓋体22に設けられた注液口25を除いて密閉された状態となる。
なお、本実施形態では、収容工程S10前に、捲回体としての電極体10が用意されており、その際に、正極未担持部15とセパレータ13との境界部分19は接着されているものとする(図3参照)。
The housing step S <b> 10 is a step of housing the electrode body 10 in the battery container 20 and closing the opening of the battery container 20.
As shown in FIG. 6, in the accommodating step S <b> 10, the positive electrode terminal 17, the negative electrode terminal 18, and the guide member 26 are fixed to the lid body 22, and the electrode body 10 is connected and fixed to the positive electrode terminal 17 and the negative electrode terminal 18. These are integrally accommodated in the exterior 21, and the electrode body 10 is accommodated in the battery container 20 by joining the opening surface of the exterior 21 and the lid body 22 by laser welding or the like. At this time, the battery container 20 is sealed by the lid 22, and the inside of the battery container 20 is sealed except for the liquid injection port 25 provided in the lid 22.
In the present embodiment, the electrode body 10 as a wound body is prepared before the accommodating step S10, and the boundary portion 19 between the positive electrode unsupported portion 15 and the separator 13 is bonded at that time. (See FIG. 3).

注液工程S20は、収容工程S10にて封止された電池容器20内に電解液を注液する工程である。この電解液としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)等の環状カーボネート類とジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等の鎖状カーボネート類との混合有機溶媒中に、LiPF6、LiClO4、LiBF4等の支持電解質を溶解させた溶液を使用することができる。
図7に示すように、注液工程S20では、注液口25からガイド部材26を介して電池容器20内に電解液を充填する。より具体的には、注液口25から注液される電解液は、ガイド部材26の案内部28(図4参照)に一時的に貯溜された後、案内部28の前記側面側の開口部分から正極端子17側に案内され、正極端子17に沿って外装21の内部空間に溜まる。そして、外装21の正極端子17側の内部空間に貯溜する電解液は、電極体10の正極端子17側の捲回側面(注液端面)の隙間から電極体10に浸透する。
つまり、電解液は、注液口25→ガイド部材26→正極端子17の順に案内されて外装21の内部空間に貯溜され、電極体10に浸透する。
このとき、電極体10内への電解液の注液端面は正極端子17側の捲回側面であるため、電池容器20内に混入する金属異物が、注液口25から注液される電解液の液圧によって、負極未担持部16側(負極端子18側)から正極板11の合材担持部とセパレータ13との隙間に混入する不具合を抑制できる。
さらに、セパレータ13と正極未担持部15との境界部分には隙間がないため、電解液が正極未担持部15側から電極体10の捲回側面の隙間に浸透する際に、セパレータ13と正極板11の合材担持部との間に金属異物(例えば、端子17・18を未担持部15・16に溶接する際に発生するスパッタ)が入り込むことがなく、金属異物と正極(正極板11の合材担持部)との接触による当該金属異物の析出を防止できる。
図8に示すように、所定量の電解液が電池容器20内に注液された後、注液口25をゴム栓30にて仮封止する。このゴム栓30としては、エチレン―プロピレン共重合体(EPDM)、クロロピレンゴム、ブチルゴム、シリコンゴム、フッ素系ゴム等を使用することができる。その他、耐電解液性・耐ガス性で蓋体22に密着する性質を有するものであれば使用可能である。
なお、注液工程S20は、露点−30℃の環境下にて行われる。
The liquid injection step S20 is a step of injecting an electrolytic solution into the battery container 20 sealed in the housing step S10. Examples of the electrolyte include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC), and chains such as dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). A solution in which a supporting electrolyte such as LiPF6, LiClO4, LiBF4, or the like is dissolved in an organic solvent mixed with the carbonated carbonate can be used.
As shown in FIG. 7, in the liquid injection step S <b> 20, the electrolytic solution is filled into the battery container 20 from the liquid injection port 25 through the guide member 26. More specifically, the electrolytic solution injected from the injection port 25 is temporarily stored in the guide portion 28 (see FIG. 4) of the guide member 26, and then the opening portion on the side surface side of the guide portion 28. To the positive terminal 17 side, and accumulates in the internal space of the exterior 21 along the positive terminal 17. Then, the electrolytic solution stored in the internal space on the positive electrode terminal 17 side of the outer casing 21 penetrates into the electrode body 10 through the gap on the wound side surface (injection end surface) of the electrode body 10 on the positive electrode terminal 17 side.
That is, the electrolytic solution is guided in the order of the injection port 25 → the guide member 26 → the positive electrode terminal 17, stored in the internal space of the exterior 21, and permeates the electrode body 10.
At this time, since the injection end surface of the electrolyte solution into the electrode body 10 is a wound side surface on the positive electrode terminal 17 side, the metal foreign matter mixed in the battery container 20 is injected from the injection port 25. With this hydraulic pressure, it is possible to suppress the problem of mixing into the gap between the composite material supporting portion of the positive electrode plate 11 and the separator 13 from the negative electrode unsupported portion 16 side (negative electrode terminal 18 side).
Further, since there is no gap at the boundary portion between the separator 13 and the positive electrode unsupported portion 15, when the electrolyte penetrates into the gap on the winding side surface of the electrode body 10 from the positive electrode unsupported portion 15 side, the separator 13 and the positive electrode Metal foreign matter (for example, spatter generated when the terminals 17 and 18 are welded to the unsupported portions 15 and 16) does not enter between the mixed material carrying portion of the plate 11 and the metal foreign matter and the positive electrode (positive plate 11). The metal foreign matter can be prevented from being precipitated due to contact with the composite material carrying part.
As shown in FIG. 8, after a predetermined amount of electrolyte is injected into the battery container 20, the injection port 25 is temporarily sealed with a rubber plug 30. As the rubber plug 30, ethylene-propylene copolymer (EPDM), chloropyrene rubber, butyl rubber, silicon rubber, fluorine-based rubber, or the like can be used. In addition, any material can be used as long as it has an electrolytic solution resistance and a gas resistance and has a property of being in close contact with the lid 22.
In addition, liquid injection process S20 is performed in a dew point-30 degreeC environment.

拘束工程S30は、注液工程S20にて電解液を注液した後の電池1を拘束し、電池1の初期性能を安定化させる工程である。
図9に示すように、拘束工程S30では、電池1の幅広面を両面側から拘束する拘束部材31を用いて、拘束圧0.8MPaで拘束する。なお、この拘束部材31は、所望の拘束圧で電池1を拘束できるとともに、実際の拘束圧を測定可能に構成されている。
拘束部材31による拘束圧が低すぎる場合、電極体10に十分に拘束力が行き渡らず、電極体10内に電圧のバラツキが生じる。このため、拘束圧は0.2MPa以上であることが望ましい。
また、前記拘束圧が高すぎる場合、外装21と蓋体22との接合面に不具合が生じ得る。さらに、電極体10中の部材としてイオン透過性と電子電動の絶縁性を有する多孔質体の強度を超えて拘束した場合、閉回路状態の電圧保持性が失われたりする。このため、拘束圧の上限として、外装21と蓋体22との接合強度、及び上記多孔質体の強度を考慮して設定することが望ましい。
The restraining step S30 is a step of restraining the battery 1 after injecting the electrolyte in the pouring step S20 and stabilizing the initial performance of the battery 1.
As shown in FIG. 9, in the restraint step S30, the restraint member 31 that restrains the wide surface of the battery 1 from both sides is restrained at a restraint pressure of 0.8 MPa. The restraining member 31 can restrain the battery 1 with a desired restraining pressure and can measure the actual restraining pressure.
When the restraining pressure by the restraining member 31 is too low, the restraining force does not reach the electrode body 10 sufficiently, and voltage variation occurs in the electrode body 10. For this reason, it is desirable that the restraint pressure is 0.2 MPa or more.
Moreover, when the said restraint pressure is too high, a malfunction may arise in the joint surface of the exterior 21 and the cover body 22. FIG. Furthermore, when the member in the electrode body 10 is constrained beyond the strength of a porous body having ion permeability and electro-electrical insulation, the voltage retention in a closed circuit state is lost. For this reason, it is desirable to set the upper limit of the restraint pressure in consideration of the bonding strength between the outer casing 21 and the lid body 22 and the strength of the porous body.

初期充電工程S40は、拘束工程S30によりコンディショニングされた電池1に初期充電を施す工程である。
初期充電工程S40では、拘束部材31で電池1を拘束したまま正極端子17及び負極端子18に電極を接続して、電池1の初期充電を行う。このとき、負極側にリチウムイオンが挿入されるにつれて、電極体10が膨張し電池1の電圧が上昇するとともに、拘束圧が上昇する。この拘束圧に応じて初期充電工程S40を終了する。
より具体的には、電池1内の電圧を測定した際に、電解液が分解する電圧以内であり、正極・負極間の最終の化学反応ピークとなる電圧付近で終了することが望ましい。
The initial charging step S40 is a step of performing initial charging on the battery 1 conditioned by the restraining step S30.
In the initial charging step S40, electrodes are connected to the positive terminal 17 and the negative terminal 18 while the battery 1 is restrained by the restraining member 31, and the battery 1 is initially charged. At this time, as lithium ions are inserted on the negative electrode side, the electrode body 10 expands, the voltage of the battery 1 increases, and the restraint pressure increases. The initial charging step S40 is terminated according to the restraining pressure.
More specifically, when measuring the voltage in the battery 1, it is preferable that the measurement be within the voltage at which the electrolytic solution is decomposed and close to the voltage that becomes the final chemical reaction peak between the positive electrode and the negative electrode.

本封止工程S50は、初期充電工程S40にて初期充電された電池1内に発生するガスを抜き、注液工程S20にて仮封止されていた注液口25を本封止する工程である。
図10に示すように、本封止工程S50では、拘束部材31で電池1を拘束した状態で、注液口25からゴム栓30を抜き取り、金属製の板材32を、注液口25を完全に覆うように被せ、板材32と蓋体22とをレーザ溶接等により溶着して本封止する。これらの工程は露点−30℃の環境下にて行われる。
板材32による本封止後、拘束部材31による拘束を一旦解除し、電池1の漏れ検査を行い、再度拘束部材31により拘束した状態で下工程に移行する。
The main sealing step S50 is a step in which the gas generated in the battery 1 initially charged in the initial charging step S40 is removed and the liquid injection port 25 temporarily sealed in the liquid injection step S20 is main sealed. is there.
As shown in FIG. 10, in the main sealing step S <b> 50, in a state where the battery 1 is restrained by the restraining member 31, the rubber plug 30 is removed from the liquid filling port 25, and the metal plate material 32 is completely removed from the liquid filling port 25. Then, the plate member 32 and the lid body 22 are welded by laser welding or the like and finally sealed. These steps are performed in an environment with a dew point of −30 ° C.
After the main sealing by the plate material 32, the restraint by the restraining member 31 is once released, the leakage inspection of the battery 1 is performed, and the process proceeds to the lower process while restrained by the restraining member 31 again.

高温エージング工程S60は、本封止工程S50にて本封止された電池1を、高温でエージングする工程である。より具体的には、電池1を50℃の環境下で15時間エージングする。
検査工程S70は、高温エージング工程S60にて高温エージングが施された電池1に対して、自己放電検査を行う工程である。より具体的には、電池1を室温(25℃)で10日間自己放電させる。
The high temperature aging step S60 is a step of aging the battery 1 that has been sealed in the main sealing step S50 at a high temperature. More specifically, the battery 1 is aged in an environment of 50 ° C. for 15 hours.
The inspection step S70 is a step of performing a self-discharge inspection on the battery 1 that has been subjected to high temperature aging in the high temperature aging step S60. More specifically, the battery 1 is self-discharged at room temperature (25 ° C.) for 10 days.

以上の電池製造工程S1を経て、電池1が製造され、製品として適宜出荷される。   The battery 1 is manufactured through the battery manufacturing process S1 described above, and is appropriately shipped as a product.

本実施形態に係る電池1は、電極体10の捲回方向を重力の作用する方向とし、端子接続部を側方とする二次電池としたが、これに限定されず、例えば図11に示すように、電極体10の捲回方向を重力の作用する方向と直交する方向とする縦型の電池2、つまり電極体10の収容形態が異なる電池としても良く、電池容器を略封止した状態で、所定の注液口から電解液を注液する製造形態を有する電池であれば良い。   Although the battery 1 according to the present embodiment is a secondary battery in which the winding direction of the electrode body 10 is the direction in which gravity acts and the terminal connection portion is a side, the present invention is not limited to this, for example, as shown in FIG. Thus, the battery 2 may be a vertical battery 2 in which the winding direction of the electrode body 10 is orthogonal to the direction in which gravity acts, that is, a battery having a different accommodation form of the electrode body 10, and the battery container is substantially sealed. Thus, any battery may be used as long as it has a manufacturing form in which an electrolytic solution is injected from a predetermined injection port.

図11に示すように、別実施形態に係る電池2は、充放電要素である電極体40、及び電極体40を内部に収容する電池容器50とを具備し、充放電可能に構成されるリチウムイオン二次電池である。
電極体40は、電池1の電極体10と略同じ構成を有する捲回型の電極体である。
電池容器50は、外装51及び蓋体52等により構成される。電池容器50内で、電極体40はその捲回方向が重力が作用する方向と直交する方向(図示において左右方向)とし、捲回側面を電池容器50の底面及び上面に対向させるようにして収容されている。
外装51は、一面(図示において上面)が開口する金属製の箱状部材であり、角型形状を有する。蓋体52は、外装51の開口面を塞ぐ金属製の平板部材であり、外装51の開口面に応じた形状を有する。外装51及び蓋体52の材料としては、例えばアルミニウムが挙げられる。
外装51と蓋体52とは、絶縁性の封止樹脂53により絶縁されつつ固定されている。
As shown in FIG. 11, a battery 2 according to another embodiment includes an electrode body 40 that is a charge / discharge element, and a battery container 50 that houses the electrode body 40 therein, and is configured to be chargeable / dischargeable. It is an ion secondary battery.
The electrode body 40 is a wound electrode body having substantially the same configuration as the electrode body 10 of the battery 1.
The battery container 50 includes an exterior 51, a lid 52, and the like. Within the battery case 50, the electrode body 40 is accommodated such that the winding direction is a direction perpendicular to the direction in which gravity acts (the left-right direction in the drawing), and the winding side faces the bottom and top surfaces of the battery case 50. Has been.
The exterior 51 is a metal box-shaped member that opens on one surface (the upper surface in the drawing), and has a square shape. The lid 52 is a metal flat plate member that closes the opening surface of the exterior 51, and has a shape corresponding to the opening surface of the exterior 51. Examples of the material of the exterior 51 and the lid 52 include aluminum.
The exterior 51 and the lid 52 are fixed while being insulated by an insulating sealing resin 53.

図11(a)に示すように、電極体40は、電池容器50(外装51)の開口面側に正極未担持部45が配され、底面側に負極未担持部46が配されるようにして収容されており、負極未担持部46と外装51の底面とが溶接により接合されている。また、正極未担持部45には正極端子47がレーザ溶接等により接続されている。この正極端子47は、蓋体52を貫通して電池容器50の外部へ突出されている。   As shown in FIG. 11A, the electrode body 40 has a positive electrode unsupported portion 45 disposed on the opening surface side of the battery container 50 (exterior 51) and a negative electrode unsupported portion 46 disposed on the bottom surface side. The negative electrode unsupported portion 46 and the bottom surface of the exterior 51 are joined by welding. A positive electrode terminal 47 is connected to the positive electrode unsupported portion 45 by laser welding or the like. The positive electrode terminal 47 penetrates the lid body 52 and protrudes to the outside of the battery container 50.

図11に示すように、蓋体52には、蓋体52の厚み方向(図示において上下方向)に向けて開口する注液口55が形成されている。注液口55の外装51内部側には、電解液を所定箇所に案内するガイド部材56が付設されている。注液口55から注液される電解液は、ガイド部材56によって電池容器50の内部空間(より厳密には、外装51の正極端子47側の内壁と電極体40とにより形成される空間)に案内される。
ガイド部材56は、ガイド部材26と同様に樹脂からなる部材であり、正極端子47により固定・支持されている。
As shown in FIG. 11, the lid 52 is formed with a liquid injection port 55 that opens in the thickness direction of the lid 52 (the vertical direction in the drawing). A guide member 56 for guiding the electrolytic solution to a predetermined location is attached to the inside of the exterior 51 of the liquid injection port 55. The electrolyte injected from the liquid injection port 55 is introduced into the internal space of the battery container 50 by the guide member 56 (more precisely, the space formed by the inner wall of the exterior 51 on the positive electrode terminal 47 side and the electrode body 40). Guided.
The guide member 56 is a member made of resin like the guide member 26, and is fixed and supported by the positive electrode terminal 47.

図11(b)に示すように、ガイド部材56は、外装51の内部形状に応じた外形を有し、蓋体52と略平行に配置されている。
ガイド部材56は、注液口55の直下部分に開口部57を有する。この開口部57を介して電解液が電極体40側へ案内される。また、ガイド部材56は、中央部分にガイド部材56の厚み方向(図示において上下方向)に貫通する固定孔58を有する。この固定孔58は、正極端子47の外周部分に応じた形状に形成されており、固定孔58に正極端子47が貫入し、溶着する。これにより、ガイド部材56が正極端子47に固定・支持されている。
As shown in FIG. 11B, the guide member 56 has an outer shape corresponding to the internal shape of the exterior 51 and is disposed substantially parallel to the lid body 52.
The guide member 56 has an opening 57 directly below the liquid injection port 55. The electrolytic solution is guided to the electrode body 40 side through the opening 57. In addition, the guide member 56 has a fixing hole 58 that penetrates in the center portion in the thickness direction of the guide member 56 (vertical direction in the drawing). The fixing hole 58 is formed in a shape corresponding to the outer peripheral portion of the positive electrode terminal 47, and the positive electrode terminal 47 penetrates into the fixing hole 58 and is welded. Thereby, the guide member 56 is fixed and supported by the positive electrode terminal 47.

以上のように構成される電池2は、電池容器50内部に、注液口55から正極端子47側の内部空間へ案内するガイド部材56を具備する。
これにより、電池1の場合と同様に、ガイド部材56によって電極体40の捲回側面(注液端面)側に電解液を案内することによって、注液効率を向上できるとともに、電池容器50内に混入する金属異物が、注液口55から注液される電解液の液圧によって、負極未担持部46側(負極端子側)から正極板の合材担持部とセパレータとの隙間に混入する不具合を抑制できる。
このように、電池1と電極体10の収容形態の異なる電池2についても、電池1と同様の作用効果が得られる。
なお、電極体40の捲回方向は、重力の作用する方向に直交する方向として電池容器50内に収容されるため、注液端面(捲回側面)は重力方向となる。このため、本実施形態では、電解液の注液効率は特に考慮する必要はなく、電解液を注液口55→ガイド部材56→電極体40の順に案内することによって、正極端子47を介さずに電極体40の正極未担持部45に案内している。
The battery 2 configured as described above includes a guide member 56 that guides from the liquid injection port 55 to the internal space on the positive electrode terminal 47 side in the battery container 50.
As a result, as in the case of the battery 1, the electrolyte solution is guided to the wound side surface (injection end surface) side of the electrode body 40 by the guide member 56, whereby the injection efficiency can be improved, and the battery container 50 can be A problem that metal foreign matter is mixed into the gap between the negative electrode unsupported portion 46 side (negative electrode terminal side) and the mixture supporting portion of the positive electrode plate and the separator due to the liquid pressure of the electrolyte injected from the injection port 55. Can be suppressed.
As described above, the same effect as that of the battery 1 can be obtained for the battery 2 in which the battery 1 and the electrode body 10 are accommodated differently.
In addition, since the winding direction of the electrode body 40 is accommodated in the battery container 50 as a direction orthogonal to the direction in which gravity acts, the liquid injection end surface (winding side surface) is the gravity direction. For this reason, in this embodiment, it is not necessary to consider the injection efficiency of the electrolytic solution, and the electrolytic solution is guided in the order of the injection port 55 → the guide member 56 → the electrode body 40, so that the positive electrode terminal 47 is not interposed. To the positive electrode unsupported portion 45 of the electrode body 40.

以下では、図12及び図13を参照して、本発明により奏する効果について、比較例を用いた比較実験を行った実験結果に基づいて説明する。
図12に示すように、比較例に係る電池3は、電池1において、注液口25及びガイド部材26が負極端子18側に設けられている構成を有する。つまり、電池3における電解液の注液は負極端子18側から行われる構成である。
なお、電池3は、電池1と同様の製造方法によって製造可能である。
Below, with reference to FIG.12 and FIG.13, the effect show | played by this invention is demonstrated based on the experimental result which conducted the comparative experiment using the comparative example.
As illustrated in FIG. 12, the battery 3 according to the comparative example has a configuration in which the liquid injection port 25 and the guide member 26 are provided on the negative electrode terminal 18 side in the battery 1. That is, the electrolyte solution injection in the battery 3 is performed from the negative electrode terminal 18 side.
The battery 3 can be manufactured by the same manufacturing method as the battery 1.

図13に示す電池1と電池3との比較実験の実験結果は、以下の(1)〜(3)の手順を経て得られたものである。
(1)それぞれ電極体10が電池容器20内に収容された状態の二つの電池1・3を用意する。
(2)金属異物として、銅異物を正極側・負極側にそれぞれ20個づつ混入した状態で、電池1・3に電解液を注液する。
(3)電解液注液後、電池1・3をそれぞれ分解し、(a)正極端子17側の負極板12端面(負極板12の合材担持部端面)に付着する銅異物の数、(b)負極板12の合材担持部とセパレータ13との間に混入している銅異物の数、(c)負極端子18側の正極板11端面(正極板11の合材担持部端面)に付着する銅異物の数、(d)正極板11の合材担持部とセパレータ13との間に混入している銅異物の数をカウントする。
The experimental results of the comparative experiment between the battery 1 and the battery 3 shown in FIG. 13 are obtained through the following procedures (1) to (3).
(1) Two batteries 1 and 3 are prepared in a state where the electrode body 10 is housed in the battery container 20, respectively.
(2) As a metal foreign matter, an electrolytic solution is poured into the batteries 1 and 3 in a state where 20 copper foreign matters are mixed on the positive electrode side and the negative electrode side, respectively.
(3) After electrolyte injection, the batteries 1 and 3 were disassembled respectively, and (a) the number of copper foreign matter adhering to the end surface of the negative electrode plate 12 on the side of the positive electrode terminal 17 (end surface of the composite material carrying portion of the negative electrode plate 12) b) number of copper foreign matter mixed between the composite material carrying part of the negative electrode plate 12 and the separator 13; (c) on the end face of the positive electrode plate 11 on the negative electrode terminal 18 side (end face of the composite material carrying part of the positive electrode plate 11). The number of adhering copper foreign matters, (d) the number of copper foreign matters mixed between the composite material carrying part of the positive electrode plate 11 and the separator 13 are counted.

図13に示すように、電池1では、負極端子18側の正極板11の端面に付着する銅異物の存在はなかった(0/20個)が、比較例に係る電池3では、負極端子18側の正極板11の端面に付着する銅異物が存在した(4/20個)。また、電池1では、正極板11の合材担持部とセパレータ13との間に混入している銅異物の存在はなかった(0/20個)が、比較例に係る電池3では、正極板11の合材担持部とセパレータ13との間に混入している銅異物が存在した(1/20個)。
これらは、電池3において、負極端子18側から注液される電解液の液圧によって、銅異物80が電極体10内(特に、負極端子18側の正極板11の端面)に混入したことによる。一方、正極端子17側から電解液を注液する電池1では、負極端子18側の正極板11の合材担持部の端部への銅異物の付着はない。
As shown in FIG. 13, in the battery 1, there was no copper foreign matter adhering to the end face of the positive electrode plate 11 on the negative electrode terminal 18 side (0/20), but in the battery 3 according to the comparative example, the negative electrode terminal 18. Copper foreign matter adhered to the end face of the positive electrode plate 11 on the side was present (4/20 pieces). In addition, in the battery 1, there was no copper foreign matter mixed between the composite material carrying portion of the positive electrode plate 11 and the separator 13 (0/20), but in the battery 3 according to the comparative example, the positive electrode plate There were copper foreign matters mixed between the 11 composite material carrying portions and the separator 13 (1/20).
These are because in the battery 3, the copper foreign matter 80 was mixed in the electrode body 10 (particularly, the end face of the positive electrode plate 11 on the negative electrode terminal 18 side) due to the liquid pressure of the electrolyte injected from the negative electrode terminal 18 side. . On the other hand, in the battery 1 in which the electrolytic solution is injected from the positive electrode terminal 17 side, there is no adhesion of copper foreign matter to the end portion of the composite material carrying portion of the positive electrode plate 11 on the negative electrode terminal 18 side.

また、電池3においては、負極端子18側の正極板11の端面に銅異物が付着することによって、注液後の自己放電検査時に銅異物が析出し、当該析出物の成長によりセパレータ13の孔部を介して正極板11と負極板12とが短絡する短絡不良が生じ得る。
但し、負極端子18側から注液する構成の電池3においても、電池容器20の内壁に付着する金属異物の混入を抑制できるという効果を奏する。
つまり、電池3は、電池容器20内部に、注液口25から負極未担持部16側(負極端子18側)の内部空間へ案内するガイド部材26を具備するため、電池容器20の内壁に付着している金属異物が注液される電解液に含まれる可能性を低減できる。
また、電解液を注液口25からガイド部材26、及びガイド部材26から連続的に配置される負極端子18を介して電池容器20の内部空間に案内しているので、効率的な注液を実現できるとともに、電極体10の一部を構成する負極未担持部16に接続される負極端子18を介して電極体10への電解液の浸透を助長できる。また、電解液が案内される電池容器20の内部空間は電極体10の捲回側面に面しているので、電極体10への接触面積が大きくなる、つまり電極体10への浸透効率を向上できる。
このように、電池3のように、電解液を負極端子18側(負極未担持部16側)から注液しても良く、電極体10に対する金属異物の混入の可能性を低減できる。
Further, in the battery 3, the copper foreign matter adheres to the end face of the positive electrode plate 11 on the negative electrode terminal 18 side, so that the copper foreign matter is deposited during the self-discharge inspection after the injection, and the pores of the separator 13 are grown due to the growth of the precipitate. A short circuit failure in which the positive electrode plate 11 and the negative electrode plate 12 are short-circuited through the portion may occur.
However, even in the battery 3 configured to be injected from the negative electrode terminal 18 side, there is an effect that it is possible to suppress the mixing of metal foreign substances adhering to the inner wall of the battery container 20.
That is, since the battery 3 includes the guide member 26 that guides from the liquid injection port 25 to the internal space on the negative electrode unsupported portion 16 side (negative electrode terminal 18 side), the battery 3 adheres to the inner wall of the battery container 20. It is possible to reduce the possibility that the metallic foreign matter is contained in the injected electrolyte.
Further, since the electrolytic solution is guided from the liquid injection port 25 to the internal space of the battery container 20 through the guide member 26 and the negative electrode terminal 18 continuously disposed from the guide member 26, the efficient liquid injection is performed. While being realizable, the penetration of the electrolyte into the electrode body 10 can be promoted via the negative electrode terminal 18 connected to the negative electrode unsupported portion 16 constituting a part of the electrode body 10. Further, since the internal space of the battery container 20 through which the electrolytic solution is guided faces the wound side surface of the electrode body 10, the contact area with the electrode body 10 is increased, that is, the penetration efficiency into the electrode body 10 is improved. it can.
Thus, like the battery 3, the electrolytic solution may be injected from the negative electrode terminal 18 side (negative electrode unsupported portion 16 side), and the possibility of contamination of metal foreign matter into the electrode body 10 can be reduced.

以上のように、電池1では、電解液を正極端子17側から注液することにより、電池容器20内での電解液の液圧がかかる方向を正極端子17側から負極端子18側の一方向に規制するので、電池容器20内に混入する金属異物が負極端子18側の正極板11の合材担持部に付着することを防止できる。
このように、電池1と電池3とを比較した場合、電池1のように正極端子17側(正極未担持部15側)から電解液を注液する電池1の方がより効果的である。
As described above, in the battery 1, by pouring the electrolyte from the positive electrode terminal 17 side, the direction in which the electrolyte pressure in the battery container 20 is applied is one direction from the positive electrode terminal 17 side to the negative electrode terminal 18 side. Therefore, it is possible to prevent the metallic foreign matter mixed in the battery container 20 from adhering to the composite material carrying portion of the positive electrode plate 11 on the negative electrode terminal 18 side.
Thus, when the battery 1 and the battery 3 are compared, the battery 1 that injects the electrolyte from the positive electrode terminal 17 side (positive electrode unsupported portion 15 side) like the battery 1 is more effective.

1、2 電池
10、40 電極体(充放電要素)
11 正極板
12 負極板
13 セパレータ
15、45 正極未担持部(正極板の合材未担持部)
17、47 正極端子
20、50 電池容器
25、55 注液口
26、56 ガイド部材
1, 2 Battery 10, 40 Electrode body (charge / discharge element)
DESCRIPTION OF SYMBOLS 11 Positive electrode plate 12 Negative electrode plate 13 Separator 15, 45 Positive electrode unsupported part (Corporate unsupported part of positive electrode plate)
17, 47 Positive electrode terminal 20, 50 Battery container 25, 55 Injection port 26, 56 Guide member

Claims (8)

活物質を含む合材が担持される合材担持部、及び前記合材が担持されない合材未担持部とを表面に有する正極板、及び、
活物質を含む合材が担持される合材担持部、及び前記合材が担持されない合材未担持部とを表面に有する負極板を含み、
前記正極板及び負極板の合材担持部を多孔質体からなるセパレータを介して積層してなる充放電要素と、
前記充放電要素を内部に収容する電池容器と、を具備し、
前記正極板の合材未担持部を、前記正極板及び負極板の合材担持部の積層部分における一側に配置するとともに、前記負極板の合材未担持部を、前記正極板及び負極板の合材担持部の積層部分における他側に配置した電池の製造方法であって、
前記電池容器内に前記充放電要素を収容した状態で、前記正極板又は負極板の合材未担持部側から電解液を注液する注液工程を含む電池の製造方法。
A positive electrode plate having, on the surface thereof, a composite material supporting portion on which a composite material containing an active material is supported, and a composite material unsupported portion on which the composite material is not supported, and
Including a negative electrode plate having, on the surface thereof, a composite material supporting portion on which a composite material containing an active material is supported, and a composite material unsupported portion on which the composite material is not supported,
A charge / discharge element formed by laminating a composite material supporting part of the positive electrode plate and the negative electrode plate via a separator made of a porous body;
A battery container containing the charge / discharge element therein,
The unsupported portion of the positive electrode plate is disposed on one side of the laminated portion of the mixed material support portion of the positive electrode plate and the negative electrode plate, and the unsupported portion of the negative electrode plate is disposed on the positive electrode plate and the negative electrode plate. A method of manufacturing a battery disposed on the other side of the laminated portion of the composite material carrying part,
A battery manufacturing method including a liquid injection step of injecting an electrolytic solution from the unsupported portion side of the positive electrode plate or the negative electrode plate in a state where the charge / discharge element is accommodated in the battery container.
前記注液工程にて電解液を注液する際に用いられる注液口から前記電解液が注液される側の合材未担持部側に案内するガイド部材を、前記注液口に連続的に設け、
前記注液工程において、
前記電解液を、前記ガイド部材を介して前記注液口から、前記電解液が注液される側の合材未担持部側に案内する請求項1に記載の電池の製造方法。
A guide member that guides from the injection port used when injecting the electrolyte solution in the injection step to the unsupported portion side of the mixture on the side where the electrolyte solution is injected is continuously provided to the injection port. Provided in
In the liquid injection step,
The battery manufacturing method according to claim 1, wherein the electrolytic solution is guided from the liquid injection port through the guide member to a mixture unsupported portion side on which the electrolytic solution is injected.
前記電解液が注液される側の合材未担持部は、前記正極板の合材未担持部である請求項1又は請求項2に記載の電池の製造方法。   The method for manufacturing a battery according to claim 1, wherein the unsupported portion of the mixture on the side where the electrolyte is injected is an unsupported portion of the positive electrode plate. 前記注液工程前に、
前記セパレータの正極側端部と、前記正極板の合材未担持部とを接着する工程を含む請求項3に記載の電池の製造方法。
Before the liquid injection step,
The method for manufacturing a battery according to claim 3, comprising a step of bonding a positive electrode side end portion of the separator and an unsupported portion of the positive electrode plate.
活物質を含む合材が担持される合材担持部、及び前記合材が担持されない合材未担持部とを表面に有する正極板、及び、
活物質を含む合材が担持される合材担持部、及び前記合材が担持されない合材未担持部とを表面に有する負極板を含み、
前記正極板及び負極板の合材担持部を多孔質体からなるセパレータを介して積層し、
前記正極板の合材未担持部を、前記正極板及び負極板の合材担持部の積層部分における一側に配置するとともに、前記負極板の合材未担持部を、前記正極板及び負極板の合材担持部の積層部分における他側に配置してなる充放電要素と、
前記充放電要素を内部に収容する電池容器と、
前記電池容器の表面に設けられ、当該電池容器内に電解液を注液する際に用いられる注液口と、
前記電解液を、前記注液口から前記充放電要素の正極板又は負極板の合材未担持部側に案内するガイド部材とを具備する電池。
A positive electrode plate having, on the surface thereof, a composite material supporting portion on which a composite material containing an active material is supported, and a composite material unsupported portion on which the composite material is not supported, and
Including a negative electrode plate having, on the surface thereof, a composite material supporting portion on which a composite material containing an active material is supported, and a composite material unsupported portion on which the composite material is not supported,
Laminating the material carrying part of the positive electrode plate and the negative electrode plate through a separator made of a porous body,
The unsupported portion of the positive electrode plate is disposed on one side of the laminated portion of the mixed material support portion of the positive electrode plate and the negative electrode plate, and the unsupported portion of the negative electrode plate is disposed on the positive electrode plate and the negative electrode plate. A charge / discharge element arranged on the other side of the laminated portion of the composite material carrying part,
A battery container containing the charge / discharge element therein;
A liquid injection port provided on the surface of the battery container and used for injecting an electrolyte into the battery container;
A battery comprising: a guide member that guides the electrolytic solution from the liquid injection port to the unsupported portion side of the positive electrode plate or the negative electrode plate of the charge / discharge element.
前記電解液が注液される側の合材未担持部は、前記電池容器内から外側へ向けて突出して設けられる電極端子と接続され、
前記電解液は、前記電極端子、及び前記ガイド部材を介して案内される請求項5に記載の電池。
The mixture unsupported portion on the side where the electrolytic solution is injected is connected to an electrode terminal provided to protrude outward from the inside of the battery container,
The battery according to claim 5, wherein the electrolytic solution is guided through the electrode terminal and the guide member.
前記電解液が注液される側の合材未担持部は、前記正極板の合材未担持部である請求項5又は請求項6に記載の電池。   The battery according to claim 5 or 6, wherein the mixture unsupported portion on the side where the electrolytic solution is injected is a mixture unsupported portion of the positive electrode plate. 前記セパレータの正極側端部と、前記正極板の合材未担持部とが接着される請求項7に記載の電池。   The battery according to claim 7, wherein a positive electrode side end portion of the separator is bonded to an unsupported portion of the positive electrode plate.
JP2009017202A 2009-01-28 2009-01-28 Method of manufacturing battery, and battery Pending JP2010176989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009017202A JP2010176989A (en) 2009-01-28 2009-01-28 Method of manufacturing battery, and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009017202A JP2010176989A (en) 2009-01-28 2009-01-28 Method of manufacturing battery, and battery

Publications (1)

Publication Number Publication Date
JP2010176989A true JP2010176989A (en) 2010-08-12

Family

ID=42707732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009017202A Pending JP2010176989A (en) 2009-01-28 2009-01-28 Method of manufacturing battery, and battery

Country Status (1)

Country Link
JP (1) JP2010176989A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105490A1 (en) * 2011-01-31 2012-08-09 株式会社Gsユアサ Electrical storage element
JP2013257951A (en) * 2012-06-11 2013-12-26 Hitachi Vehicle Energy Ltd Square secondary battery
WO2014024522A1 (en) * 2012-08-06 2014-02-13 トヨタ自動車株式会社 Cell
KR20140031395A (en) * 2011-08-09 2014-03-12 도요타지도샤가부시키가이샤 Battery and battery manufacturing method
JP2015111527A (en) * 2013-12-06 2015-06-18 株式会社豊田自動織機 Temporary sealing plug for power storage device
JP2015232942A (en) * 2014-06-09 2015-12-24 株式会社Gsユアサ Power storage element, and method for manufacturing power storage element
US9960406B2 (en) 2014-06-09 2018-05-01 Gs Yuasa International Ltd. Energy storage device and method of manufacturing energy storage device
JP7556925B2 (en) 2022-10-28 2024-09-26 プライムプラネットエナジー&ソリューションズ株式会社 Secondary battery manufacturing method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9166219B2 (en) 2011-01-31 2015-10-20 Gs Yuasa International Ltd. Electric storage device
KR20140004671A (en) * 2011-01-31 2014-01-13 가부시키가이샤 지에스 유아사 Electrical storage element
KR101970838B1 (en) 2011-01-31 2019-04-19 가부시키가이샤 지에스 유아사 Electrical storage element
WO2012105490A1 (en) * 2011-01-31 2012-08-09 株式会社Gsユアサ Electrical storage element
KR20140031395A (en) * 2011-08-09 2014-03-12 도요타지도샤가부시키가이샤 Battery and battery manufacturing method
US9318770B2 (en) 2011-08-09 2016-04-19 Toyota Jidosha Kabushiki Kaisha Battery and method of manufacturing battery
KR101595672B1 (en) * 2011-08-09 2016-02-18 도요타지도샤가부시키가이샤 Battery and battery manufacturing method
JP2013257951A (en) * 2012-06-11 2013-12-26 Hitachi Vehicle Energy Ltd Square secondary battery
JP2014032936A (en) * 2012-08-06 2014-02-20 Toyota Motor Corp Battery
KR101548106B1 (en) 2012-08-06 2015-08-27 도요타지도샤가부시키가이샤 Cell
US9343731B2 (en) 2012-08-06 2016-05-17 Toyota Jidosha Kabushiki Kaisha Battery comprising a liquid inlet for electrolyte injection
WO2014024522A1 (en) * 2012-08-06 2014-02-13 トヨタ自動車株式会社 Cell
JP2015111527A (en) * 2013-12-06 2015-06-18 株式会社豊田自動織機 Temporary sealing plug for power storage device
JP2015232942A (en) * 2014-06-09 2015-12-24 株式会社Gsユアサ Power storage element, and method for manufacturing power storage element
US9960406B2 (en) 2014-06-09 2018-05-01 Gs Yuasa International Ltd. Energy storage device and method of manufacturing energy storage device
JP7556925B2 (en) 2022-10-28 2024-09-26 プライムプラネットエナジー&ソリューションズ株式会社 Secondary battery manufacturing method

Similar Documents

Publication Publication Date Title
JP2010176989A (en) Method of manufacturing battery, and battery
KR101254886B1 (en) Secondary battery
US8852793B2 (en) Secondary battery
KR101675623B1 (en) Secondary Battery and Manufacturing Method Thereof
KR101222269B1 (en) Rechargeable battery and Battery Pack
KR101254853B1 (en) Secondary battery
CN107431159B (en) Battery pack and vehicle including the same
KR20120108045A (en) Battery and method for producing same
US20120148884A1 (en) Secondary battery
US8524390B2 (en) Secondary battery
US9023517B2 (en) Secondary battery
KR20140018014A (en) The manufacturing method of pouch type secondary battery
US20220140452A1 (en) Battery and manufacturing method thereof
KR20140013133A (en) Method of manufactoring secondary battery
JP2014154291A (en) Battery
KR100965718B1 (en) Secondary Battery
JP2010262867A (en) Method of manufacturing secondary battery
US20110189535A1 (en) Secondary battery
KR101222415B1 (en) Secondary battery
JP2010080140A (en) Sealed battery and method of manufacturing the same
JP2011076786A (en) Secondary battery
JP7202526B2 (en) Method for manufacturing non-aqueous electrolyte secondary battery
JP2015106491A (en) Secondary battery with safety valve
JP7039687B2 (en) Battery assembly and batteries
JP7412378B2 (en) Secondary battery manufacturing method and secondary battery assembly