JP2014020973A - Device and method for measuring flatness - Google Patents

Device and method for measuring flatness Download PDF

Info

Publication number
JP2014020973A
JP2014020973A JP2012161037A JP2012161037A JP2014020973A JP 2014020973 A JP2014020973 A JP 2014020973A JP 2012161037 A JP2012161037 A JP 2012161037A JP 2012161037 A JP2012161037 A JP 2012161037A JP 2014020973 A JP2014020973 A JP 2014020973A
Authority
JP
Japan
Prior art keywords
glass substrate
measurement
flatness
reflected light
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012161037A
Other languages
Japanese (ja)
Inventor
Taro Yamaoka
太郎 山岡
Makoto Fukushima
真 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2012161037A priority Critical patent/JP2014020973A/en
Publication of JP2014020973A publication Critical patent/JP2014020973A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flatness measuring device and a flatness measuring method which allow for measuring flatness of a surface under measurement without being affected by errors associated with movement accuracy of optical means such as a laser displacement meter.SOLUTION: A measurement light beam is irradiated on a vertically placed glass substrate and on a vertically or approximately vertically placed object under measurement through the glass substrate, and a reflected measurement light beam from the object under measurement and a reflected light beam from the glass substrate are measured. The measurement light beam is irradiated on a plurality of spots on the object under measurement and a plurality of reflected measurement light beams and reflected light beams from the glass substrate are acquired to measure flatness of the object under measurement using the plurality of reflected measurement light beams, the plurality of reflected light beams from the glass substrate, and flatness of the glass substrate surface.

Description

本発明は、平坦度測定装置及びその方法に係わり、基板を保持する保持台の平坦度を測定する平坦度測定装置及びその方法に関する。   The present invention relates to a flatness measuring apparatus and method, and more particularly to a flatness measuring apparatus and method for measuring the flatness of a holding table for holding a substrate.

液晶などを用いたフラットパネルディスプレイは、軽量、薄型、低消費電力などの特徴によりブラウン管を駆逐して、TVの表示手段として主流となり、また携帯端末用表示装置としても無くてはならないものになっている。このようなフラットパネルディスプレイは、ガラスなどの基板上に表示素子を形成して製造するが、大画面化や製造コスト低減のため、より大きな基板上に素子を形成できる製造装置が求められている。   Flat panel displays using liquid crystal, etc., have become a mainstream display means for TVs, and have become indispensable as a display device for portable terminals by destroying the cathode ray tube due to features such as light weight, thinness, and low power consumption. ing. Such a flat panel display is manufactured by forming a display element on a substrate such as glass, but a manufacturing apparatus capable of forming the element on a larger substrate is demanded in order to increase the screen size and reduce the manufacturing cost. .

このような基板は、その大きさに比して薄いため、素子を形成する際は、基板を外側から支えるだけではその形状を保てず、基板と同寸か、それより大きな保持台上に基板を載置している。その場合、基板の重さにより、基板が保持台の表面形状に倣うように載置される。すなわち、保持台の表面精度(平坦度)が基板の平坦度に影響する。一方、特に携帯端末では、より高精細化のため画素の大きさが小さくなっているため、成膜時の基板の平坦度が悪いと画素に欠陥が発生する可能性がある。   Since such a substrate is thin compared to its size, when forming an element, it is not possible to maintain its shape simply by supporting the substrate from the outside, but on a holding table that is the same size or larger than the substrate. A substrate is placed. In this case, the substrate is placed so as to follow the surface shape of the holding table depending on the weight of the substrate. That is, the surface accuracy (flatness) of the holding table affects the flatness of the substrate. On the other hand, particularly in a portable terminal, the size of a pixel is reduced for higher definition. Therefore, if the flatness of a substrate at the time of film formation is poor, a defect may occur in the pixel.

このようなことから、保持台の平坦度を定期的にチェックすることが重要である。特許文献1には、基板の平坦度を測定する際、レーザ変位計を用いて測定する技術が記載されている。特に、高い平坦度を有する基準平面と基板の表面及び裏面との間隔をレーザ変位計で測定することが開示されている。   For this reason, it is important to periodically check the flatness of the holding table. Patent Document 1 describes a technique of measuring using a laser displacement meter when measuring the flatness of a substrate. In particular, it is disclosed to measure the distance between a reference plane having high flatness and the front and back surfaces of a substrate with a laser displacement meter.

特開2007−46946号公報JP 2007-46946 A

レーザ変位計を用いて平坦度を測定する場合、レーザ変位計を測定対象の基板や保持台に平行に走らせ、レーザ変位計と測定対象の基板表面との距離を測っている。一方、基板は、どんどん大型化しており、それに伴ってレーザ変位計の移動距離も大きくならざるを得ない。   When measuring flatness using a laser displacement meter, the laser displacement meter is run in parallel with the substrate to be measured and a holding table, and the distance between the laser displacement meter and the substrate surface to be measured is measured. On the other hand, the substrate is becoming larger and the moving distance of the laser displacement meter must be increased accordingly.

移動距離の増加により、レーザ変位計の走行誤差も大きくなり、この移動誤差が測定対象の平坦度の測定値に含まれ正確な測定結果が得られなくなる。このため、レーザ変位計の移動精度を高精度にして誤差を小さく抑える必要がある。   Due to the increase of the moving distance, the traveling error of the laser displacement meter also increases, and this moving error is included in the measured value of the flatness of the measurement object, and an accurate measurement result cannot be obtained. For this reason, it is necessary to reduce the error by making the movement accuracy of the laser displacement meter high.

しかしながら、レーザ変位計を高精度に移動させるには、高精度で高剛性な移動機構が必要であり、この種の移動機構は大型、高重量となり、その取り扱いが困難になることが予想される。   However, in order to move the laser displacement meter with high accuracy, a high-accuracy and high-rigidity moving mechanism is required, and this type of moving mechanism is expected to be large and heavy and difficult to handle. .

また、特許文献1の方法では、その表面粗さが400nm以下の高精度な平面形状を有する基準平面が必要であるが、そのような高精度な基準平面は高価である。   Further, in the method of Patent Document 1, a reference plane having a highly accurate planar shape with a surface roughness of 400 nm or less is required, but such a highly accurate reference plane is expensive.

本発明の第1の目的は、レーザ変位計などの光学手段の移動精度に依存しない、基板などの被測定対象表面の平坦度を測定できる平坦度測定装置及びその方法を提供することにある。
また、本発明の第2の目的は、有機EL成膜装置において、レーザ変位計などの光学手段の移動精度に依存しない、基板を保持する基板保持台表面の平坦度を測定可能な平坦度測定装置及びその方法を提供することにある。
A first object of the present invention is to provide a flatness measuring apparatus and method for measuring the flatness of a surface to be measured such as a substrate, which does not depend on the movement accuracy of an optical means such as a laser displacement meter.
The second object of the present invention is to measure the flatness of an organic EL film forming apparatus capable of measuring the flatness of the surface of the substrate holder that holds the substrate without depending on the movement accuracy of optical means such as a laser displacement meter. It is to provide an apparatus and a method thereof.

本発明は、上記の目標を達成するために、少なくとも下記の特徴を有する。
本発明は、垂直又はほぼ垂直に保持された被測定対象と、第1の保持手段に保持され、前記被測定対象に対して平行に対面して設けられたガラス基板と、前記ガラス基板を透過して前記被測定対象に測定光を照射する照射手段と、前記被測定対象からの測定反射光を測定する第1の測定手段と、前記ガラス基板からのガラス基板反射光を測定する第2の測定手段と、前記被測定対象の所定の位置に前記測定光を照射し、前記測定反射光と前記ガラス基板反射光を測定できるように、前記照射手段と、前記第1の測定手段と、前記第2の測定手段とを移動させる2次元移動機構と、前記2次元移動機構を制御し、前記測定反射光と前記ガラス基板反射光の測定結果と前記ガラス基板の平坦度から前記被測定対象表面の平坦度を測定する制御装置と、を有することを第1の特徴とする。
The present invention has at least the following features in order to achieve the above-mentioned goal.
The present invention relates to an object to be measured that is held vertically or substantially vertically, a glass substrate that is held by a first holding means and is provided in parallel with the object to be measured, and is transmitted through the glass substrate. Then, an irradiating means for irradiating the measurement target with measurement light, a first measurement means for measuring the measurement reflected light from the measurement target, and a second for measuring the glass substrate reflected light from the glass substrate Measuring means, and the irradiation means, the first measuring means, and the measurement means so that the measurement light can be irradiated to a predetermined position of the measurement target, and the measurement reflected light and the glass substrate reflected light can be measured. A two-dimensional movement mechanism for moving the second measuring means; and the two-dimensional movement mechanism for controlling the surface of the object to be measured from the measurement result of the measurement reflected light and the reflected light of the glass substrate and the flatness of the glass substrate. Control device for measuring the flatness of , The first, comprising a.

また、本発明は、垂直に設けられたガラス基板と、前記ガラス基板を透過して、前記ガラス基板に垂直又は略垂直に保持された被測定対象と、に測定光を照射し、前記被測定対象からの測定反射光と前記ガラス基板からのガラス基板反射光とを測定し、前記被測定対象の複数の位置に前記測定光を照射し、複数の前記測定反射光と前記ガラス基板反射光を得、複数の前記測定反射光と前記ガラス基板反射光と前記ガラス基板表面の平坦度から前記被測定対象表面の平坦度を測定する、ことを第2の特徴とする。   Further, the present invention irradiates measurement light to a glass substrate provided vertically and an object to be measured that is transmitted through the glass substrate and held vertically or substantially perpendicular to the glass substrate, The measurement reflected light from the object and the glass substrate reflected light from the glass substrate are measured, the measurement light is irradiated to a plurality of positions of the measurement target, and the plurality of measurement reflected light and the glass substrate reflected light are irradiated. The second characteristic is that the flatness of the surface to be measured is measured from a plurality of the measured reflected light, the reflected glass substrate light, and the flatness of the glass substrate surface.

さらに、前記被測定対象は、蒸着材料を基板に蒸着する真空蒸着チャンバの前記基板を保持する基板保持台であり、前記第1の保持手段は、前記基板の所定に位置に蒸着するためのマスクのフレーム部分を模擬した模擬マスクであり、前記2次元移動機構は、前記模擬マスクに固定されていてもよい。   Further, the object to be measured is a substrate holder for holding the substrate in a vacuum deposition chamber for depositing a deposition material on the substrate, and the first holding means is a mask for depositing a predetermined position on the substrate. The two-dimensional movement mechanism may be fixed to the simulated mask.

また、基台と、前記被測定対象は、前記基台に設けられた第2の保持手段に保持され、前記第1の保持手段は前記基台に設けられ、前記2次元移動機構は、前記第1の保持手段又は前記基台に設けてもよい。
さらに、前記照射手段と、前記第1の測定手段と、前記第2の測定手段は、それらを一体化したレーザ変位計であってもよい。
また、前記ガラス基板の平坦度は既知であってもよい。
The base and the object to be measured are held by second holding means provided on the base, the first holding means is provided on the base, and the two-dimensional moving mechanism is You may provide in a 1st holding means or the said base.
Furthermore, the irradiation unit, the first measurement unit, and the second measurement unit may be a laser displacement meter in which they are integrated.
The flatness of the glass substrate may be known.

さらに、前記第2の測定手段は、前記ガラス基板の前記第2の測定手段側の表面とその反対側の裏面からのガラス基板表面反射光とガラス基板裏面反射光を測定し、前記制御装置は、ガラス基板表面反射光とガラス基板裏面反射光に基づいて前記ガラス基板表面の平坦度を求めてもよい。
また、前記ガラス基板の前記平坦度は、前記ガラス基板表面反射光と前記ガラス基板裏面反射光との測定距離の差に基づいて求めてもよい。
Further, the second measuring means measures the glass substrate surface reflected light and the glass substrate back surface reflected light from the surface on the second measuring means side of the glass substrate and the back surface on the opposite side, and the control device The flatness of the glass substrate surface may be obtained based on the glass substrate surface reflected light and the glass substrate back surface reflected light.
The flatness of the glass substrate may be obtained based on a difference in measurement distance between the reflected light on the glass substrate surface and the reflected light on the back surface of the glass substrate.

本発明によれば、レーザ変位計などの光学手段の移動精度に依存しない、基板などの被測定対象表面の平坦度を測定できる平坦度測定装置及びその方法を提供できる。
また、本発明によれば、有機EL成膜装置において、レーザ変位計などの光学手段の移動精度に依存しない、基板を保持する基板保持台表面の平坦度を測定可能な平坦度測定装置及びその方法を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the flatness measuring apparatus and its method which can measure the flatness of the to-be-measured object surfaces, such as a board | substrate, which do not depend on the movement precision of optical means, such as a laser displacement meter, can be provided.
Further, according to the present invention, in the organic EL film forming apparatus, the flatness measuring device capable of measuring the flatness of the surface of the substrate holding table that holds the substrate, which is independent of the movement accuracy of the optical means such as a laser displacement meter, and the same Can provide a method.

本発明を適用した有機ELデバイス製造装置の実施形態を示す図である。It is a figure which shows embodiment of the organic EL device manufacturing apparatus to which this invention is applied. 本実施形態の有機ELデバイス製造装置における真空搬送チャンバと真空蒸着チャンバの構成概要を示す図である。It is a figure which shows the structure outline | summary of the vacuum conveyance chamber and the vacuum evaporation chamber in the organic EL device manufacturing apparatus of this embodiment. マスクの構成と、基板保持部とマスクとの関係を示した図である。It is the figure which showed the structure of a mask, and the relationship between a board | substrate holding part and a mask. 平坦度測定装置の第1の実施例を示す図である。It is a figure which shows the 1st Example of a flatness measuring device. 平坦度を求めるための主要要素の関係と、そのときのレーザ変位計で測定されるデータを示している図である。It is a figure which shows the relationship of the main elements for calculating | requiring flatness, and the data measured with the laser displacement meter at that time. 基板保持台表面の平坦度測定処理フローを示す図である。It is a figure which shows the flatness measurement processing flow of a substrate holding stand surface. 平坦度測定装置の第2の実施例を示す図である。It is a figure which shows the 2nd Example of a flatness measuring device. 平坦度測定装置をスタンドアロンとして用いる実施形態を示す図である。It is a figure which shows embodiment using a flatness measuring apparatus as stand-alone.

以下本発明の実施形態を図面を用いて説明する。
図1は、本発明の実施形態を適用した有機ELデバイス製造装置の実施形態であって、更にアライメントと蒸着を同一の真空蒸着チャンバ1で実現する有機ELデバイス製造装置100を示している。有機ELデバイス製造装置100は中心部に真空搬送ロボット5を持った多角形の真空搬送チャンバ2と、その周辺部に放射状に基板ストッカ室3や成膜室である真空蒸着チャンバ1を配置したクラスタ型の有機ELデバイス製造装置の構成を有している。各真空蒸着チャンバ1は基板6を保持する基板保持部9と、アライメント部8と、基板に蒸着材料で蒸着する蒸着部7とを有する。また、真空蒸着チャンバ1及び基板ストッカ室3と真空搬送室2との間には、互いの真空を隔離するゲート弁10が設けられている。なお、40は有機ELデバイス製造装置100の構成要素を制御する制御装置である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an embodiment of an organic EL device manufacturing apparatus to which an embodiment of the present invention is applied, and further shows an organic EL device manufacturing apparatus 100 that realizes alignment and vapor deposition in the same vacuum vapor deposition chamber 1. The organic EL device manufacturing apparatus 100 is a cluster in which a polygonal vacuum transfer chamber 2 having a vacuum transfer robot 5 at the center and a substrate stocker chamber 3 and a vacuum deposition chamber 1 as a film forming chamber are arranged radially around the periphery. Type organic EL device manufacturing apparatus. Each vacuum deposition chamber 1 includes a substrate holding unit 9 that holds a substrate 6, an alignment unit 8, and a vapor deposition unit 7 that deposits a vapor deposition material on the substrate. Further, a gate valve 10 that isolates the vacuum from each other is provided between the vacuum deposition chamber 1 and the substrate stocker chamber 3 and the vacuum transfer chamber 2. Reference numeral 40 denotes a control device that controls components of the organic EL device manufacturing apparatus 100.

図2は、本実施形態の有機ELデバイス製造装置における真空搬送チャンバ2と真空蒸着チャンバ1の構成概要を示す。
真空搬送チャンバ2は、ゲート弁10を介して基板6を真空蒸着チャンバ1に搬入出する真空搬送ロボット5を有する。真空搬送ロボット5は、全体を上下に移動可能な自由度59と、左右に旋回可能な2リンク構造のアーム57と、その先端には基板搬送用の櫛歯状ハンド58とを有する。
FIG. 2 shows a schematic configuration of the vacuum transfer chamber 2 and the vacuum deposition chamber 1 in the organic EL device manufacturing apparatus of this embodiment.
The vacuum transfer chamber 2 includes a vacuum transfer robot 5 that carries the substrate 6 into and out of the vacuum deposition chamber 1 via the gate valve 10. The vacuum transfer robot 5 has a degree of freedom 59 that can move up and down as a whole, a two-link structure arm 57 that can turn left and right, and a comb-like hand 58 for transferring a substrate at the tip.

一方、真空蒸着チャンバは、蒸着材料である発光材料を基板6に蒸着し、EL層を形成する真空チャンバである。真空蒸着チャンバ1の基板保持部9は、搬送ロボット5の櫛歯状ハンド58と干渉することなく、基板6を受渡し可能で、ゲート弁10を介して搬入された基板6を保持する基板保持台91と、基板保持台91を旋回させて基板6を直立させマスク81に正対させる基板保持台旋回手段93とを有する。基板保持台91は、基板6を冷却する冷却機構を有しており、クーリングプレートとも呼ばれる。   On the other hand, the vacuum deposition chamber is a vacuum chamber in which a light emitting material as a deposition material is deposited on the substrate 6 to form an EL layer. The substrate holding unit 9 of the vacuum evaporation chamber 1 can deliver the substrate 6 without interfering with the comb-like hand 58 of the transfer robot 5 and holds the substrate 6 carried in via the gate valve 10. 91, and substrate holding table turning means 93 for turning the substrate holding table 91 so that the substrate 6 stands upright and faces the mask 81. The substrate holding base 91 has a cooling mechanism for cooling the substrate 6 and is also called a cooling plate.

アライメント部8は、マスク81と、マスク81を上下左右に移動させるアライメント駆動部83と、マスク81と基板6のそれぞれに設けられたアラインメントマーク(図示せず)を撮像するアライメントカメラ86とを有する。   The alignment unit 8 includes a mask 81, an alignment driving unit 83 that moves the mask 81 up and down, left and right, and an alignment camera 86 that captures an alignment mark (not shown) provided on each of the mask 81 and the substrate 6. .

マスク81は、図3に示すように、基板6への蒸着パターンを形成するマスク部81Mと、マスク部を保持するフレーム部81Fとからなる。マスク部81Mには、引出し図に示すように、基板6に蒸着する部分に対応した箇所に開口部81hを有する。本例では赤(R)、緑(G)、青(B)の発光材料を蒸着するマスクのうち赤に対応する開口部を示している。即ち、赤(R)用のマスクの場合は引出し図の2、3段目に示すように赤(R)のみが開口している。マスクの寸法は基板の大型化に伴い2000mm×2000mmにもなり、その重量も300kg超にも及ぶ。マスク部81Mの厚さは50μm程度であり、今後さらに薄くなる傾向がある。一方、フレーム部81Fの厚さは50mmである。   As shown in FIG. 3, the mask 81 includes a mask portion 81M that forms a vapor deposition pattern on the substrate 6 and a frame portion 81F that holds the mask portion. As shown in the drawing, the mask portion 81M has an opening 81h at a location corresponding to a portion to be deposited on the substrate 6. In this example, an opening corresponding to red is shown in a mask for depositing red (R), green (G), and blue (B) light emitting materials. That is, in the case of a mask for red (R), only red (R) is opened as shown in the second and third stages of the drawing. The size of the mask becomes 2000 mm × 2000 mm with the increase in size of the substrate, and its weight also exceeds 300 kg. The thickness of the mask portion 81M is about 50 μm and tends to become thinner in the future. On the other hand, the thickness of the frame portion 81F is 50 mm.

アライメント駆動部83は、アライメントカメラ86の撮像結果に基づいて制御装置40によって駆動され、マスク81と基板6とを共に垂直な状態でアライメントを行う。マスク81は、アライメント駆動部83で上下左右に駆動される方向以外、即ち前後方向には自由度を持たないように、その下部で保持されている。蒸着部7は、蒸発源71と、蒸発源を昇降させる蒸発源昇降手段72とを有し、基板6の全面に亘って蒸着する。   The alignment driving unit 83 is driven by the control device 40 based on the imaging result of the alignment camera 86, and aligns the mask 81 and the substrate 6 in a vertical state. The mask 81 is held at a lower portion thereof so as not to have a degree of freedom in a direction other than the direction in which the alignment driving unit 83 is driven vertically and horizontally, that is, in the front-rear direction. The vapor deposition unit 7 includes an evaporation source 71 and an evaporation source lifting / lowering means 72 that lifts and lowers the evaporation source, and deposits the entire surface of the substrate 6.

図4は、基板保持部91とマスク81との関係を示した図である。マスク81は垂直に保持され、基板保持部91は、垂直又はマスク側とは反対方向に最大1度位の傾斜を持ってマスク81に正対している。   FIG. 4 is a diagram showing the relationship between the substrate holding part 91 and the mask 81. The mask 81 is held vertically, and the substrate holding portion 91 faces the mask 81 with an inclination of up to about 1 degree in the vertical direction or the direction opposite to the mask side.

本実施形態の特徴は、マスク部81Mを有しないフレーム部81Fのみを有する模擬マスク81sに、平坦度の既知のガラス基板を固定して、レーザ変位計で基板保持部91の基板保持面91hの平坦度を測定することである。   A feature of this embodiment is that a glass substrate with a known flatness is fixed to a simulated mask 81s having only a frame portion 81F that does not have a mask portion 81M, and the substrate holding surface 91h of the substrate holding portion 91 is fixed by a laser displacement meter. It is to measure the flatness.

図4は、平坦度測定装置20の第1の実施例を示す図である。図4(a)は、平坦度測定装置20を、図3においてA方向から見た側面図である。図4(b)は、平坦度測定装置20を、図3においてB方向、即ち図2の蒸着部7側から見た正面図である。   FIG. 4 is a diagram illustrating a first embodiment of the flatness measuring apparatus 20. FIG. 4A is a side view of the flatness measuring apparatus 20 as viewed from the direction A in FIG. FIG. 4B is a front view of the flatness measuring device 20 as viewed from the B direction in FIG. 3, that is, from the vapor deposition section 7 side in FIG.

平坦度測定装置20は、フレーム部81Fのみを有する模擬マスク81sと、模擬マスクに固定された平坦度の既知のガラス基板6gと、測定対象である基板保持台91の反対側に設けられ、照射手段及び受光手段を一体化し光学手段であるレーザ変位計21と、模擬マスク81sに固定され、レーザ変位計を基板保持面91hと平行する面内を移動させる2次元移動機構22とを有する。実施例では、2次元を、図4(b)に示す紙面上下方向をY方向、紙面左右方向をX方向として表す。模擬マスク81sをガラス基板6gの固定用に使用することにより、新たに機構を設けることなく、アライメント部8をガラス基板6gの保持部として使用できる利点がある。   The flatness measuring device 20 is provided on the opposite side of the simulated mask 81s having only the frame portion 81F, the known flat glass substrate 6g fixed to the simulated mask, and the substrate holding table 91 to be measured. The laser displacement meter 21 which is an optical means by integrating the means and the light receiving means, and the two-dimensional movement mechanism 22 which is fixed to the simulation mask 81s and moves the laser displacement meter in a plane parallel to the substrate holding surface 91h. In the embodiment, in the two dimensions, the vertical direction on the paper surface shown in FIG. By using the simulated mask 81s for fixing the glass substrate 6g, there is an advantage that the alignment unit 8 can be used as a holding unit for the glass substrate 6g without newly providing a mechanism.

2次元移動機構22は、模擬マスク81sのガラス基板6gが挿入されている開口部81kより大きな開口部23kを有する外枠23と、レーザ変位計21をY方向に移動させるY移動機構24と、外枠23の上下に設けられ、Y移動機構24をX方向に移動させるX方向機構25と、外枠23を模擬マスク81sに固定する四隅に設けられた固定部26と、を有する。   The two-dimensional moving mechanism 22 includes an outer frame 23 having an opening 23k larger than the opening 81k into which the glass substrate 6g of the simulated mask 81s is inserted, a Y moving mechanism 24 that moves the laser displacement meter 21 in the Y direction, The X direction mechanism 25 is provided above and below the outer frame 23 and moves the Y moving mechanism 24 in the X direction, and the fixing portions 26 are provided at the four corners that fix the outer frame 23 to the simulation mask 81s.

X移動機構25は、上下外枠23に設けられた2組のリニアガイドLGを有する。リニアガイドLGは、ガイドレール25rとガイドレール上を移動するガイドブロック25gとを有する。一方、Y移動機構24は、X移動機構25のリニアガイド25gに固定されたビーム24bと、ビーム24bに設けられたガイドレール24rと、レーザ変位計21を固定し、ガイドレール24r上を移動するリニアブロック24gとを有する。   The X moving mechanism 25 has two sets of linear guides LG provided on the upper and lower outer frames 23. The linear guide LG includes a guide rail 25r and a guide block 25g that moves on the guide rail. On the other hand, the Y moving mechanism 24 fixes the beam 24b fixed to the linear guide 25g of the X moving mechanism 25, the guide rail 24r provided on the beam 24b, and the laser displacement meter 21, and moves on the guide rail 24r. And a linear block 24g.

上記において、リニアブロック24g、25gの駆動方法は図示しないが、所謂リニアモータや、回転モータによるボール螺子の駆動等を用いてもよい。
実施例1によれば、ガラス基板6g、模擬マスク81s及び2次元移動機構を一体化することにより、メンテナンス時、装置への取り外しを行う際に作業の煩雑さを解消できる。
次に、本実施例における基板保持台91表面即ち基板保持面91hの平坦度測定方法を説明する。
In the above description, the driving method of the linear blocks 24g and 25g is not shown, but a so-called linear motor, a ball screw driving by a rotary motor, or the like may be used.
According to the first embodiment, by integrating the glass substrate 6g, the simulated mask 81s, and the two-dimensional movement mechanism, it is possible to eliminate troublesome work when removing the apparatus from the apparatus during maintenance.
Next, a method for measuring the flatness of the surface of the substrate holding table 91, that is, the substrate holding surface 91h in this embodiment will be described.

図5は、平坦度を求めるための主要要素の関係と、そのときのレーザ変位計21で測定されるデータを示している。測定されるデータは、レーザ変位計21のパルス光に対するガラス基板6gの表面(又は裏面)から反射光21gと、ターゲットである基板保持面91hからの反射光21tである。制御装置40は、反射光21g、21tの到達時間からそれぞれ往復距離Lg、Ltを求めることができる。ガラス基板Lgと基板保持面91h間の平坦度測定距離Lsは式(1)で求めることができる。
Ls=(Lt−Lg)/2 (1)
式(1)及び図5から分かるように、ガラス基板6gとレーザ変位計21との距離には無関係である。それ故、2次元移動機構22は、レーザ変位計を基板保持面91hと平行面に移動させる移動精度を必要としない。
FIG. 5 shows the relationship between the main elements for obtaining the flatness and the data measured by the laser displacement meter 21 at that time. Data to be measured are reflected light 21g from the front surface (or back surface) of the glass substrate 6g with respect to the pulsed light of the laser displacement meter 21, and reflected light 21t from the substrate holding surface 91h as a target. The control device 40 can determine the reciprocal distances Lg and Lt from the arrival times of the reflected lights 21g and 21t, respectively. The flatness measurement distance Ls between the glass substrate Lg and the substrate holding surface 91h can be obtained by Expression (1).
Ls = (Lt−Lg) / 2 (1)
As can be seen from the equation (1) and FIG. 5, the distance between the glass substrate 6g and the laser displacement meter 21 is irrelevant. Therefore, the two-dimensional movement mechanism 22 does not require the movement accuracy for moving the laser displacement meter to the plane parallel to the substrate holding surface 91h.

以上説明した実施例によれば、被測定対象とレーザ変位計との間にガラス基板を設けることにより、レーザ変位計から被測定対象表面までの絶対距離ではなく、ガラス基板と被測定対象表面の相対距離を測ることによって、2次元移動機構22の位置精度に関係なく、被測定対象表面の平坦度測定を行うことができる。   According to the embodiment described above, by providing the glass substrate between the object to be measured and the laser displacement meter, the absolute distance from the laser displacement meter to the surface to be measured is not the distance between the glass substrate and the surface to be measured. By measuring the relative distance, the flatness of the surface to be measured can be measured regardless of the positional accuracy of the two-dimensional movement mechanism 22.

また、ガラス基板6gと基板保持部91の位置関係は測定中変わらないため、基板保持部91の多数の点で、平坦度測定距離Lsを測定し、統計処理によって平坦度を評価することができる。
基板保持部91の平坦度Hsは、式(2)に示すように、平坦度測定距離Lsを統計処理した測定平坦度Hkから、同一統計処理したガラス基板6gの既知の平坦度Hgの差として求められる。
Hs=Hk−Hg (2)
なお、前述した統計処理としては、最大値と最小値の差、平均値などが上げられる。
Further, since the positional relationship between the glass substrate 6g and the substrate holding portion 91 does not change during the measurement, the flatness measurement distance Ls can be measured at many points of the substrate holding portion 91, and the flatness can be evaluated by statistical processing. .
The flatness Hs of the substrate holding portion 91 is obtained as a difference between the measured flatness Hk obtained by statistically processing the flatness measurement distance Ls and the known flatness Hg of the glass substrate 6g subjected to the same statistical processing as shown in the equation (2). Desired.
Hs = Hk−Hg (2)
Note that, as the statistical processing described above, a difference between the maximum value and the minimum value, an average value, and the like are raised.

以上説明した平坦度測定方法によれば、予めガラス基板6gの平坦度Hgを求めておけば、基板保持面91hの平坦度を求めることができる。ガラス基板6gの平坦度は、従来の技術方法で、特に模擬マス81sにガラス基板6gをセットした状態で、既知の平坦度を求める。   According to the flatness measuring method described above, if the flatness Hg of the glass substrate 6g is obtained in advance, the flatness of the substrate holding surface 91h can be obtained. As for the flatness of the glass substrate 6g, a known flatness is obtained by a conventional technical method, particularly in a state where the glass substrate 6g is set in the simulated mass 81s.

次に、上述測定方法を含めた基板保持部91の平坦度測定処理フローを図6を用いて説明する。処理フローは、図1に示す制御装置40で行なわれる。制御装置40は、X移動機構25、Y移動機構24を制御すると共に、レーザ変位計21の出力を取込み、データ処理して平坦度を求める。
まず、準備として、ガラス基板6gの平坦度を別の測定器で測定する(S1)。2次元移動機構22がセットされた模擬マスク81s、即ち平坦度測定装置20をアライメント部8にセットする(S2)。測定位置にレーザ変位計21を移動させ、平坦度測定距離Lsを測定する(S3)。S3の測定を予め決めた全ての位置で実施したかを判断する(S4)。実施していなければ、レーザ変位計21を次の測定位置へ移動させ(S5)、S3へ行く。実施したならば、平坦度測定距離Lsの統計処理を行ない測定平坦度Hkを評価する(S6)。次に、ガラス基板6gの既知の平坦度Hgから式(2)を用いて、基板保持台91の基板保持面91hの平坦度を求める(S7)。
Next, the flatness measurement process flow of the substrate holding part 91 including the above-described measurement method will be described with reference to FIG. The processing flow is performed by the control device 40 shown in FIG. The control device 40 controls the X moving mechanism 25 and the Y moving mechanism 24, takes in the output of the laser displacement meter 21, and performs data processing to obtain flatness.
First, as a preparation, the flatness of the glass substrate 6g is measured with another measuring device (S1). The simulated mask 81s in which the two-dimensional moving mechanism 22 is set, that is, the flatness measuring device 20 is set in the alignment unit 8 (S2). The laser displacement meter 21 is moved to the measurement position, and the flatness measurement distance Ls is measured (S3). It is determined whether the measurement of S3 has been performed at all predetermined positions (S4). If not, the laser displacement meter 21 is moved to the next measurement position (S5), and the process goes to S3. If implemented, statistical processing of the flatness measurement distance Ls is performed to evaluate the measurement flatness Hk (S6). Next, the flatness of the substrate holding surface 91h of the substrate holding base 91 is obtained from the known flatness Hg of the glass substrate 6g using Equation (2) (S7).

以上説明した実施例1によれば、基板保持台91の基板保持面91hの平坦度を精度よく測ることができ、基板保持面91hの表面精度(平坦度)が原因となる蒸着の品質低下を防ぐことができる。   According to the first embodiment described above, the flatness of the substrate holding surface 91h of the substrate holding table 91 can be measured with high accuracy, and the quality of vapor deposition caused by the surface accuracy (flatness) of the substrate holding surface 91h can be reduced. Can be prevented.

図7は、平坦度測定装置20の第2の実施例を示す図である。実施例2は、測定に用いるガラス基板6gから表面反射光21gと裏面反射光21rを弁別して測定できる場合の例である。   FIG. 7 is a diagram showing a second embodiment of the flatness measuring apparatus 20. Example 2 is an example in which the front surface reflected light 21g and the back surface reflected light 21r can be discriminated and measured from the glass substrate 6g used for measurement.

実施例2では、実施例1と同様に、表面反射光21gと裏面反射光21rから基板6gの表裏面を含めた平坦度Hg’を評価する。そして、表裏面のそれぞれに平坦度Hgを平坦度Hg’の1/2とする。次に、基板保持面91hから反射光21tと表面反射光21g又は裏面反射光21rとから、基板保持面91の平坦度Hsを求める。   In Example 2, as in Example 1, the flatness Hg ′ including the front and back surfaces of the substrate 6g is evaluated from the front surface reflected light 21g and the back surface reflected light 21r. The flatness Hg is set to ½ of the flatness Hg ′ on each of the front and back surfaces. Next, the flatness Hs of the substrate holding surface 91 is obtained from the reflected light 21t and the front surface reflected light 21g or the back surface reflected light 21r from the substrate holding surface 91h.

実施例2によれば、ガラス基板6gの平坦度を予め測定することなく、ガラス基板の表裏面の平坦度を測定し、基板保持面91の平坦度Hsを求める方法を提供できる。   According to the second embodiment, it is possible to provide a method of measuring the flatness of the front and back surfaces of the glass substrate and determining the flatness Hs of the substrate holding surface 91 without measuring the flatness of the glass substrate 6g in advance.

以上の説明した実施例1,2では、図1に示す基板保持台旋回手段93で基板保持台91を水平から垂直にたてて、基板保持台を模擬マスク81sと平行に正対している例を説明した。しかし、図2の説明で述べたように多少の傾斜している場合はある。その場合は、例えば、基板保持台旋回手段93の角度検出装置で傾斜角を検出し、その傾斜角と測定位置に基づいて各平坦度測定距離Lsを補正して、基板保持面91hの平坦度を測定することができる。   In the first and second embodiments described above, the substrate holding table 91 is vertically set by the substrate holding table turning means 93 shown in FIG. 1, and the substrate holding table faces the simulation mask 81s in parallel. Explained. However, as described in the description of FIG. In that case, for example, the angle detection device of the substrate holding table turning means 93 detects the inclination angle, corrects each flatness measurement distance Ls based on the inclination angle and the measurement position, and flatness of the substrate holding surface 91h. Can be measured.

以上の説明では、有機EL成膜装置の基板保持台91の基板保持面91hの平坦度を求める場合を説明した。図8に示す実施形態では、平坦度測定装置20及びガラス基板などの測定対象30を保持する保持部28と、保持部を固定する基台27とを設け、スタンドアロンの平坦度測定装置として用いることができる。この場合、勿論、ガラス基板6gを保持するガラス基板保持部31は、マスク81を模擬する必要はない。なお、30hは測定対象30の平坦度測定表面を示す。   In the above description, the case of obtaining the flatness of the substrate holding surface 91h of the substrate holding table 91 of the organic EL film forming apparatus has been described. In the embodiment shown in FIG. 8, a holding unit 28 that holds a measurement target 30 such as a flatness measuring device 20 and a glass substrate and a base 27 that fixes the holding unit are provided and used as a stand-alone flatness measuring device. Can do. In this case, of course, the glass substrate holder 31 that holds the glass substrate 6g does not need to simulate the mask 81. Note that 30 h indicates the flatness measurement surface of the measurement object 30.

また、以上の説明では、測定光を照射し反射光を測定できるレーザ変位計を用いた、照射する照射手段と反射光を受光する受光手段を別々に設け、V字状に配置してもよい。   In the above description, the irradiation unit for irradiating and the light receiving unit for receiving the reflected light using the laser displacement meter that can irradiate the measuring light and measure the reflected light may be provided separately and arranged in a V shape. .

1:真空蒸着チャンバ 2:真空搬送チャンバ
3:基板ストッカ室 5:真空搬送ロボット
6:基板 6g:ガラス基板
7:蒸着部 71:蒸発源
8:アライメント部 81:マスク
81F:マスクのフレーム部 81s:模擬マスク
9:基板保持部 91:基板保持台(クーリングプレート)
91h:基板保持部の基板保持面 10:ゲート弁
20:平坦度測定装置 21:レーザ変位計
22:2次元移動機構 23:外枠
24:Y移動機構 25:X移動機構
30:測定対象
31:ガラス基板を保持するガラス基板保持部
40:制御装置 93:基板保持台旋回駆動手段
100:有機ELデバイス製造装置 Hs:基板保持部の平坦度
Hk:基板保持部の測定平坦度平坦度 Hg:ガラス基板の既知の平坦度
Ls:ガラス基板と基板保持面間の平坦度測定距離
1: Vacuum evaporation chamber 2: Vacuum transfer chamber 3: Substrate stocker chamber 5: Vacuum transfer robot 6: Substrate 6g: Glass substrate 7: Evaporation part 71: Evaporation source 8: Alignment part 81: Mask 81F: Mask frame part 81s: Simulated mask 9: Substrate holder 91: Substrate holder (cooling plate)
91h: Substrate holding surface of substrate holding part 10: Gate valve 20: Flatness measuring device 21: Laser displacement meter 22: Two-dimensional moving mechanism 23: Outer frame 24: Y moving mechanism 25: X moving mechanism 30: Measurement target
31: Glass substrate holding unit for holding the glass substrate 40: Control device 93: Substrate holding table turning driving means 100: Organic EL device manufacturing apparatus Hs: Flatness of substrate holding unit Hk: Measurement flatness flatness of substrate holding unit Hg : Known flatness of glass substrate Ls: Flatness measurement distance between glass substrate and substrate holding surface

Claims (12)

垂直又はほぼ垂直に保持された被測定対象と、
第1の保持手段に保持され、前記被測定対象に対して平行に対面して設けられたガラス基板と、
前記ガラス基板を透過して前記被測定対象に測定光を照射する照射手段と、
前記被測定対象からの測定反射光を測定する第1の測定手段と、
前記ガラス基板からのガラス基板反射光を測定する第2の測定手段と、
前記被測定対象の所定の位置に前記測定光を照射し、前記測定反射光と前記ガラス基板反射光を測定できるように、前記照射手段と、前記第1の測定手段と、前記第2の測定手段とを移動させる2次元移動機構と、
前記2次元移動機構を制御し、前記測定反射光と前記ガラス基板反射光の測定結果と前記ガラス基板の平坦度から前記被測定対象表面の平坦度を測定する制御装置と、
を有することを特徴とする平坦度測定装置。
A measurement object held vertically or nearly vertically;
A glass substrate held by the first holding means and provided in parallel with the object to be measured;
Irradiating means for irradiating the object to be measured with measurement light through the glass substrate;
First measurement means for measuring measurement reflected light from the measurement object;
A second measuring means for measuring the glass substrate reflected light from the glass substrate;
The irradiation means, the first measurement means, and the second measurement are applied so that the measurement light is irradiated onto a predetermined position of the measurement target, and the measurement reflected light and the glass substrate reflected light can be measured. A two-dimensional movement mechanism for moving the means;
A control device for controlling the two-dimensional movement mechanism, and measuring the flatness of the measurement target surface from the measurement reflected light and the measurement result of the glass substrate reflected light and the flatness of the glass substrate;
A flatness measuring apparatus comprising:
前記被測定対象は、蒸着材料を基板に蒸着する真空蒸着チャンバの前記基板を保持する基板保持台であり、
前記第1の保持手段は、前記基板の所定に位置に蒸着するためのマスクのフレーム部分を模擬した模擬マスクであり、
前記2次元移動機構は、前記模擬マスクに固定されていることを特徴とする請求項1に記載の平坦度測定装置。
The object to be measured is a substrate holder that holds the substrate in a vacuum deposition chamber for depositing a deposition material on the substrate,
The first holding means is a simulated mask that simulates a frame portion of a mask for vapor deposition at a predetermined position on the substrate;
The flatness measurement apparatus according to claim 1, wherein the two-dimensional movement mechanism is fixed to the simulation mask.
基台と、
前記被測定対象は、前記基台に設けられた第2の保持手段に保持され、
前記第1の保持手段は前記基台に設けられ、
前記2次元移動機構は、前記第1の保持手段又は前記基台に設けられたことを特徴とする請求項1に記載の平坦度測定装置。
The base,
The measurement object is held by a second holding means provided on the base,
The first holding means is provided on the base;
The flatness measuring apparatus according to claim 1, wherein the two-dimensional movement mechanism is provided on the first holding unit or the base.
前記照射手段と、前記第1の測定手段と、前記第2の測定手段は、それらを一体化したレーザ変位計であることを特徴とする請求項1又は2或いは3に記載の平坦度測定装置。   4. The flatness measuring apparatus according to claim 1, wherein the irradiation unit, the first measuring unit, and the second measuring unit are a laser displacement meter in which they are integrated. . 前記第1の測定手段と前記第2の測定手段は、それぞれ測定反射光、ガラス基板反射光を測定できるように前記照射手段に対してV字状に配置していることを特徴とする請求項1又は2或いは3に記載の平坦度測定装置。   The said 1st measurement means and the said 2nd measurement means are arrange | positioned in the V shape with respect to the said irradiation means so that a measurement reflected light and a glass substrate reflected light can be measured, respectively. The flatness measuring apparatus according to 1, 2 or 3. 前記ガラス基板の平坦度は既知であることを特徴とする請求項1又は2或いは3に記載の平坦度測定装置。   The flatness measuring apparatus according to claim 1, wherein the flatness of the glass substrate is known. 前記第2の測定手段は、前記ガラス基板の前記第2の測定手段側の表面とその反対側の裏面からのガラス基板表面反射光とガラス基板裏面反射光を測定し、
前記制御装置は、ガラス基板表面反射光とガラス基板裏面反射光に基づいて前記ガラス基板表面の平坦度を求めることを特徴とする請求項1又は2或いは3に記載の平坦度測定装置。
The second measuring means measures the glass substrate surface reflected light and the glass substrate back surface reflected light from the surface on the second measuring means side of the glass substrate and the back surface on the opposite side,
The flatness measuring device according to claim 1, wherein the control device obtains the flatness of the glass substrate surface based on the glass substrate surface reflected light and the glass substrate back surface reflected light.
垂直に設けられたガラス基板と、前記ガラス基板を透過して、前記ガラス基板に対面し垂直又は略垂直に保持された被測定対象と、に測定光を照射し、
前記被測定対象からの測定反射光と前記ガラス基板からのガラス基板反射光とを測定し、
前記被測定対象の複数の位置に前記測定光を照射し、複数の前記測定反射光と前記ガラス基板反射光を得、
複数の前記測定反射光と前記ガラス基板反射光と前記ガラス基板表面の平坦度から前記被測定対象表面の平坦度を測定する、
ことを特徴とする平坦度測定方法。
Irradiating measurement light to a vertically provided glass substrate and a measurement target that is transmitted through the glass substrate and faces the glass substrate and is held vertically or substantially vertically,
Measure the measurement reflected light from the object to be measured and the glass substrate reflected light from the glass substrate,
Irradiating the measurement light to a plurality of positions of the measurement target, obtaining a plurality of the measurement reflected light and the glass substrate reflected light,
Measuring the flatness of the surface to be measured from the plurality of measurement reflected light, the glass substrate reflected light and the flatness of the glass substrate surface;
The flatness measuring method characterized by the above-mentioned.
前記照射と、前記測定反射光と前記ガラス基板反射光を測定は、レーザ変位計で行なわれることを特徴とする請求項8に記載の平坦度測定方法。   The flatness measurement method according to claim 8, wherein the irradiation, the measurement reflected light, and the glass substrate reflected light are measured by a laser displacement meter. 前記ガラス基板の平坦度は既知であることを特徴とする請求項8に記載の平坦度測定方法。   The flatness measurement method according to claim 8, wherein the flatness of the glass substrate is known. 前記ガラス基板反射光は、前記ガラス基板の前記測定側の表面とその反対側の裏面からのガラス基板表面反射光とガラス基板裏面反射光を測定し、
前記ガラス基板表面反射光と前記ガラス基板裏面反射光に基づいて前記ガラス基板表面の平坦度を求めることを特徴とする請求項8に記載の平坦度測定方法。
The glass substrate reflected light measures the glass substrate surface reflected light and the glass substrate back surface reflected light from the surface on the measurement side of the glass substrate and the back surface on the opposite side,
The flatness measurement method according to claim 8, wherein flatness of the glass substrate surface is obtained based on the glass substrate surface reflected light and the glass substrate back surface reflected light.
前記ガラス基板の前記平坦度は、前記ガラス基板表面反射光と前記ガラス基板裏面反射光との測定距離の差に基づいて求められることを特徴とする請求項8に記載の平坦度測定方法。   The flatness measurement method according to claim 8, wherein the flatness of the glass substrate is obtained based on a difference in measurement distance between the reflected light on the front surface of the glass substrate and the reflected light on the back surface of the glass substrate.
JP2012161037A 2012-07-20 2012-07-20 Device and method for measuring flatness Pending JP2014020973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012161037A JP2014020973A (en) 2012-07-20 2012-07-20 Device and method for measuring flatness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012161037A JP2014020973A (en) 2012-07-20 2012-07-20 Device and method for measuring flatness

Publications (1)

Publication Number Publication Date
JP2014020973A true JP2014020973A (en) 2014-02-03

Family

ID=50196000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012161037A Pending JP2014020973A (en) 2012-07-20 2012-07-20 Device and method for measuring flatness

Country Status (1)

Country Link
JP (1) JP2014020973A (en)

Similar Documents

Publication Publication Date Title
TWI581068B (en) Lithographic apparatus, device manufacturing method, and method of applying a pattern to a substrate
TW201611097A (en) Imprint apparatus, imprint system, and method of manufacturing article
TWI637246B (en) Projection exposure device and method
CN104793465B (en) Projection aligner
JP2021526237A (en) Multi-board processing in digital lithography system
US10921719B2 (en) Optical measurement device and method
CN107561784B (en) Optical alignment control method and optical alignment equipment
JP4964176B2 (en) Glass plate thickness measuring apparatus and glass plate thickness measuring method
JP2007107884A (en) Substrate inspection device and substrate inspection method
KR102197572B1 (en) Micro LED array as lighting source
JP2019019370A (en) Alignment method, film deposition method, and method for manufacturing electronic device using alignment method
JP2012133122A (en) Proximity exposing device and gap measuring method therefor
JP2014020973A (en) Device and method for measuring flatness
KR102582574B1 (en) Alignment apparatus, film forming apparatus, alignment method, manufacturing method of electronic device, program, and storage medium
JP7440356B2 (en) Alignment equipment, film forming equipment, alignment method, electronic device manufacturing method, program and storage medium
TW201809896A (en) Knife edge set of mask aligner, large-view-field mask aligner, and exposure method
TWI796315B (en) Exposure device and exposure method
KR102080875B1 (en) Stage transferring device and position measuring method of stage
JP2008096908A (en) Substrate holding mechanism and method for holding substrate in exposure apparatus for flat panel display substrate
KR20200052027A (en) Probe station
KR20060047748A (en) Second-dimensional coordinate measuring instrument
KR102282153B1 (en) Lithography machine, vertical control method and exposure method for lithography machine
KR101885106B1 (en) Substrate aligning method and substrate aligning module using the same
WO2023100892A1 (en) Transparent body measuring method and measuring instrument, and method for producing glass plate
JP2008177206A (en) Substrate holder, surface shape measuring device and stress measuring device