JP2014020364A - Internal combustion engine provided with exhaust turbine or turbocharger performing power generation - Google Patents
Internal combustion engine provided with exhaust turbine or turbocharger performing power generation Download PDFInfo
- Publication number
- JP2014020364A JP2014020364A JP2012175390A JP2012175390A JP2014020364A JP 2014020364 A JP2014020364 A JP 2014020364A JP 2012175390 A JP2012175390 A JP 2012175390A JP 2012175390 A JP2012175390 A JP 2012175390A JP 2014020364 A JP2014020364 A JP 2014020364A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust
- turbine
- internal combustion
- exhaust gas
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Landscapes
- Supercharger (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Abstract
Description
本発明は、排気タービンまたは吸気を圧縮するターボチャージャーの回転軸に発電機を接続し、排気エネルギーを電気エネルギーとして回収する内燃機関に関する。The present invention relates to an internal combustion engine in which a generator is connected to a rotating shaft of an exhaust turbine or a turbocharger that compresses intake air, and exhaust energy is recovered as electric energy.
近年、地球環境問題、特に温室効果ガスの影響が社会問題化して以降、限りあるエネルギーの使用量を削減する省エネの機運が高まっている。特に、石油資源を大量に消費し、温室効果ガスであるCO2を排出する自動車は、省エネの技術開発が問われている。In recent years, since global environmental problems, especially the effects of greenhouse gases, have become social problems, there has been an increase in energy-saving momentum to reduce the amount of limited energy used. In particular, automobiles that consume a large amount of petroleum resources and emit CO2 that is a greenhouse gas are required to develop energy-saving technology.
一般的な自動車は、ガソリンまたは軽油をエンジン内で燃焼する内燃機関によって駆動力を得ている。内燃機関内における燃焼時の全エネルギーを100%とすると、燃焼時のエネルギーの20〜30%程度しか利用できていない。そのほかは、機械的な摩擦力によって失われる機械的損失、エンジンを冷却するために失われる冷却損失、高温でエネルギーの高い排気ガスを未使用のまま失ってしまう排気損失などでエネルギーは費やされてしまう。In general automobiles, driving force is obtained by an internal combustion engine that burns gasoline or light oil in the engine. Assuming that the total energy during combustion in the internal combustion engine is 100%, only about 20 to 30% of the energy during combustion can be used. Other than that, energy is wasted due to mechanical loss lost due to mechanical frictional force, cooling loss lost to cool the engine, exhaust loss that loses high-temperature, high-energy exhaust gas unused, etc. End up.
近年、内燃機関に加えて動力用または発電用のモータを備えたハイブリッド自動車が実用化されている。様々な方式が存在するが、内燃機関と動力用のモータを直結したパラレル方式では、モータが発電機としても動作する。自動車の減速時には、アクセルがオフとなっており、内燃機関にはガソリンが供給されないが、タイヤが回転する力でモータを回転させて電力を発生させることができる。発電機として動作するモータは、駆動トルクを必要とするため、一種のブレーキとして作用する。運動エネルギーを電気エネルギーに変換して回収することで制動をかける電気ブレーキの一手法であり、回生ブレーキと呼ばれる。In recent years, hybrid vehicles including a motor for power generation or power generation in addition to an internal combustion engine have been put into practical use. There are various systems, but in the parallel system in which the internal combustion engine and the power motor are directly connected, the motor operates as a generator. When the automobile is decelerated, the accelerator is off and gasoline is not supplied to the internal combustion engine, but electric power can be generated by rotating the motor with the force of rotating the tire. Since a motor that operates as a generator requires a driving torque, it acts as a kind of brake. It is a method of electric brake that applies braking by converting kinetic energy into electric energy and recovering it, and is called regenerative braking.
上述のハイブリッド自動車は、内燃機関の力によって発電機を回して発電するだけでなく、回生ブレーキを利用して電気エネルギーを充電池に蓄える。理想的には、内燃機関の力によって発電するのではなく、内燃機関が生み出したエネルギーのうち、未使用のエネルギーを電力エネルギーに変換して、蓄電池に充電し、次の駆動時にモータが使用する電力エネルギーとすることが望ましい。The above-described hybrid vehicle not only generates power by turning the generator by the force of the internal combustion engine, but also stores electrical energy in the rechargeable battery using a regenerative brake. Ideally, it does not generate electricity by the power of the internal combustion engine, but converts unused energy generated by the internal combustion engine into electric energy, charges the storage battery, and uses the motor for the next drive It is desirable to use electric power energy.
未使用のエネルギーを電力エネルギーに変換するためには、発電機を回さねばならない。エンジンを冷却しているラジエター液は、温度上昇後、約100度と安定していることから、アンモニアやペンタン・フロンなど水よりも低沸点の媒体を、熱水であるラジエター液で沸騰させてタービンを回して発電させるバイナリー発電(binary cycle)が原理的に可能であるが、まだまだ機器構成が大きく、ハイブリッド自動車に搭載できる状況ではない。In order to convert unused energy into electric energy, the generator must be turned. Since the radiator liquid that cools the engine is stable at about 100 degrees after the temperature rises, a medium with a lower boiling point than water, such as ammonia or pentane / fluorocarbon, is boiled with the radiator liquid that is hot water. In principle, binary power generation by turning a turbine to generate power is possible, but the device configuration is still large and it is not a situation that can be installed in a hybrid vehicle.
高温の排気ガスは、タービンを回転させるエネルギーを有しており、既にターボチャージャー(以下、ターボと呼ぶ)が自動車にて実用化されている。ターボは、排気側のタービンと吸気側のタービンが同一の軸で結ばれており、排気ガスによって排気側のタービンを回転させると、吸気側のタービンも回り、それによって吸気が圧縮されてエンジンに押し込まれる。通常の自然吸気エンジンでは、アクセル全開時に、吸気圧は大気圧と同じになる。ターボ付のエンジンでは、大気圧以上の吸気をエンジンに押し込めるため、見かけ上の排気量を大きくすることができる。従来は、高出力のエンジンを実現するために用いられてきた技術であるが、最近ではエンジンの排気量を小さくすることで燃費を良くしながら、必要時にはもとの排気量相当の出力を得るための省エネを志向するターボが主流になりつつある。High-temperature exhaust gas has energy for rotating a turbine, and a turbocharger (hereinafter referred to as a turbo) has already been put into practical use in an automobile. In the turbo, the exhaust-side turbine and the intake-side turbine are connected by the same shaft, and when the exhaust-side turbine is rotated by exhaust gas, the intake-side turbine also rotates, thereby compressing the intake air into the engine. Pushed in. In a normal natural intake engine, the intake pressure is the same as the atmospheric pressure when the accelerator is fully opened. In an engine equipped with a turbo, intake air that exceeds atmospheric pressure is pushed into the engine, so the apparent displacement can be increased. Conventionally, this technology has been used to realize a high-power engine. Recently, while reducing the engine displacement, the fuel consumption is improved and the output equivalent to the original displacement is obtained when necessary. To achieve energy saving, turbo is becoming mainstream.
ターボは、排気エネルギーを回転力に変換する。この原理を応用すれば、排気ガスを利用して、発電機を回し、電力エネルギーを産み出すことができる。図1に示すように、従来のターボの回転軸に発電機を接続することが知られている(特開昭60−195329など)。図1のように、回転軸で直接発電機をまわしても良いし、ギヤやベルト駆動のプーリーを介して発電機を回しても良い。この方法のターボは、吸気を圧縮する作用と発電を行う作用の2つを行うことになる。吸気を圧縮する作用を行ってエンジン出力を上げる必要がなく、排気ガスを利用して電力エネルギーを産み出すのみであれば、図2に示すように、排気タービンのみを用意し、発電機を回せばよい。The turbo converts exhaust energy into rotational force. If this principle is applied, it is possible to produce electric energy by turning the generator using the exhaust gas. As shown in FIG. 1, it is known to connect a generator to a conventional turbo rotating shaft (JP-A-60-195329, etc.). As shown in FIG. 1, the generator may be directly rotated by a rotating shaft, or the generator may be rotated through a gear or a belt-driven pulley. The turbo of this method performs two actions: an action of compressing intake air and an action of generating electric power. If it is not necessary to increase the engine output by compressing the intake air and only produce electric power energy using the exhaust gas, prepare only the exhaust turbine and turn the generator as shown in FIG. That's fine.
発電機を回すためには、ある程度の駆動トルクを必要とする。このため、エンジンの回転数が低く、排気エネルギーが小さいときには、発電機を回す駆動トルクが十分に得られない可能性がある。以下、図1と図2で説明した従来技術の課題について説明する。In order to turn the generator, a certain amount of driving torque is required. For this reason, when the engine speed is low and the exhaust energy is small, there is a possibility that the driving torque for turning the generator cannot be sufficiently obtained. Hereinafter, the problems of the prior art described with reference to FIGS. 1 and 2 will be described.
自然吸気エンジンでは、アクセルを開けて、エンジンの回転数が上昇すると、それに比例して出力が上昇する。一方、ターボ付のエンジンは、アクセルを開ける→エンジン回転数の上昇→排気エネルギーの増大→排気タービンの回転数が上昇(=吸気タービンの回転数が上昇)→過給圧が上昇→出力の上昇となる。つまり、ターボ付のエンジンでは、アクセルを開けてから、一歩遅れて出力が上昇する。これをターボラグと言う。In a naturally aspirated engine, when the accelerator is opened and the engine speed increases, the output increases in proportion. On the other hand, for an engine with a turbo, open the accelerator → Increase engine speed → Increase exhaust energy → Increase exhaust turbine speed (= intake turbine speed increases) → Increase supercharging pressure → Increase output It becomes. In other words, in a turbo engine, the output rises one step after opening the accelerator. This is called a turbo lag.
図1の原理でターボに発電機を取り付けた場合の従来技術の課題について説明する。アクセルの開度が小さいとき、エンジンの回転数は低く、排気ガスのエネルギーが小さい。このため、排気ガスによって、ターボの回転数を十分に上げられず、吸気が不十分なことからエンジン出力は上がらない。一方、アクセル開度が大きくなると、エンジンの回転数も上がり、排気エネルギーが高くなるため、ターボの回転数が急に上昇してエンジン出力も大きくなる。もともとターボ付のエンジンには、上述したように、ターボラグが原理的に存在する。しかしながら、ターボに発電機を接続したことにより、電力エネルギーを回収できるメリットを得るものの、ターボラグがおおきくなってしまう(図3)。以上が、ターボを利用して電力エネルギーを得る際の課題である。The problem of the prior art when the generator is attached to the turbo based on the principle of FIG. 1 will be described. When the accelerator opening is small, the engine speed is low and the exhaust gas energy is small. For this reason, the exhaust gas cannot sufficiently increase the rotational speed of the turbo and the intake power is insufficient, so that the engine output does not increase. On the other hand, as the accelerator opening increases, the engine speed increases and the exhaust energy increases, so the turbo speed increases suddenly and the engine output increases. As described above, a turbo lag exists in principle in an engine with a turbo. However, by connecting the generator to the turbo, the advantage of recovering power energy is obtained, but the turbo lag becomes large (FIG. 3). The above is a problem in obtaining electric power energy using a turbo.
図2の原理で排気タービンに発電機を取り付けた場合の従来技術の課題について説明する。アクセルの開度が小さいとき、エンジンの回転数は低く、排気ガスのエネルギーが小さい。このため、排気ガスによって、排気タービンを十分に回すことができない。つまり、止まっているかわずかに回っている排気タービンは、エンジンが排気ガスを排出する際の排気抵抗となってしまう。一方、アクセルの開度を大きくすると、エンジンの回転数も上がり、排気エネルギーが十分に高くなるため、発電機を回すことができる。内燃機関では、排気ガスをスムーズに排出することが、燃費や性能向上に直結するため、発電機を接続した排気タービンを排気側に取り付けたことにより、電力エネルギーを回収できるものの、アクセル開度の小さいときに、内燃機関そのものの効率が下がってしまうことになる。以上が、排気タービンを利用して電力エネルギーを得る際の課題である。The problem of the prior art when the generator is attached to the exhaust turbine based on the principle of FIG. 2 will be described. When the accelerator opening is small, the engine speed is low and the exhaust gas energy is small. For this reason, the exhaust turbine cannot be sufficiently rotated by the exhaust gas. In other words, an exhaust turbine that is stopped or slightly rotating becomes an exhaust resistance when the engine exhausts exhaust gas. On the other hand, when the accelerator opening is increased, the engine speed increases and the exhaust energy becomes sufficiently high, so that the generator can be turned. In an internal combustion engine, exhausting exhaust gas directly has a direct effect on fuel efficiency and performance.Therefore, it is possible to recover power energy by installing an exhaust turbine connected to a generator on the exhaust side. When it is small, the efficiency of the internal combustion engine itself decreases. The above is a problem in obtaining electric power energy using an exhaust turbine.
上記で説明した課題を解決するためには、排気ガスのエネルギーが小さいとき、ターボまたは排気タービンによって発電機を回さず、排気ガスのエネルギーが大きいとき、ターボまたは排気タービンによって発電機を回すことができればよい。クラッチなどにより機械的に発電機を回転軸に接続・開放する機構を設けることは、原理的には実現可能であるが、小型化・軽量化の観点から現実的ではない。In order to solve the problem described above, the generator is not rotated by the turbo or exhaust turbine when the energy of the exhaust gas is small, and the generator is rotated by the turbo or exhaust turbine when the energy of the exhaust gas is large. If you can. Although it is possible in principle to provide a mechanism for mechanically connecting / disconnecting the generator to / from the rotating shaft by a clutch or the like, it is not practical from the viewpoint of miniaturization and weight reduction.
本発明では、交流発電機では励磁電流を制御することにより、発電をオン・オフできることを利用する。一般的な交流発電機は、永久磁石を回転させ、電磁誘導でコイル(ステータ・コイル)に電流を発生させる。自動車では、交流発電機、整流器、電圧を一定に制御するレギュレータが一体化されたオルタネータと呼ばれる交流発電機を具備している。自動車のオルタネータは、永久磁石の代わりに電磁石(ローターコイル)を回転させ、ステータ・コイルより交流電力を取り出す。このため、オルタネータは、永久磁石の発電機と異なり、ロータ・コイルを磁化する電力を制御することで、オルタネータの発電をオン・オフすることができる。つまり、ロータ・コイルを磁化する電力を制御することで、発電機の回転負荷を制御できる。In the present invention, the AC generator utilizes the fact that power generation can be turned on and off by controlling the excitation current. A general AC generator rotates a permanent magnet and generates current in a coil (stator coil) by electromagnetic induction. An automobile includes an alternator called an alternator in which an alternator, a rectifier, and a regulator that controls a voltage are integrated. An alternator of an automobile rotates an electromagnet (rotor coil) instead of a permanent magnet, and takes out AC power from the stator coil. For this reason, unlike the permanent magnet generator, the alternator can turn on / off the power generation of the alternator by controlling the power that magnetizes the rotor coil. In other words, the rotational load of the generator can be controlled by controlling the power for magnetizing the rotor coil.
図4は、オルタネータの回転負荷を減らして省エネの自動車を実現するための事例である。蓄電池の発生電圧や消費電流などから蓄電池が充電要となったときのみ、オルタネータの発電をオンにする充電制御を行う。特開平05−328799では、エンジンの回転数に応じて、オルタネータの充電制御を行うことが示されている。FIG. 4 shows an example of realizing an energy saving vehicle by reducing the rotational load of the alternator. Only when the storage battery needs to be charged due to the generated voltage or current consumption of the storage battery, charge control for turning on the power generation of the alternator is performed. Japanese Patent Laid-Open No. 05-328799 discloses that the alternator charging control is performed in accordance with the engine speed.
本発明では、排気ガスのエネルギーが小さいとき、排気タービンまたはターボに接続された発電機を動作させず、排気ガスのエネルギーが大きいとき、発電機を動作させる。発電機の動作を制御するためには、排気ガスのエネルギーを検出する手段が必要となる。アクセル開度やエンジンの回転数(タコメータ)は、排気ガスのエネルギーにほぼ比例しているが、直接的ではない。本発明では、排気タービンまたはターボの回転数、排気ガス流量、ターボによる吸気側の過給圧のいずれかを用い、排気ガスのエネルギーを検出し、発電機の動作を制御する。In the present invention, the generator connected to the exhaust turbine or the turbo is not operated when the energy of the exhaust gas is small, and the generator is operated when the energy of the exhaust gas is large. In order to control the operation of the generator, a means for detecting the energy of the exhaust gas is required. The accelerator opening and the engine speed (tachometer) are almost proportional to the energy of the exhaust gas, but are not direct. In the present invention, the exhaust gas energy is detected using any one of the rotational speed of the exhaust turbine or turbo, the exhaust gas flow rate, and the turbocharging pressure on the intake side by the turbo to control the operation of the generator.
本発明では、排気ガスで回転するタービンを具備し、当該タービンの回転軸に直接またはギヤやベルト駆動のプーリーを介して発電機が接続されている内燃機関において、タービンの回転数を計測する手段と、計測したタービンの回転数があらかじめ設定するしきい値を超えているかを検出する手段を有し、タービンの回転数がしきい値を超えた場合にのみロータ・コイルを磁化し、発電機を動作させる制御を行う。In the present invention, in an internal combustion engine having a turbine rotating with exhaust gas and having a generator connected to a rotating shaft of the turbine directly or via a gear or belt driven pulley, means for measuring the rotational speed of the turbine And means for detecting whether the measured turbine speed exceeds a preset threshold value, and magnetizes the rotor coil only when the turbine speed exceeds the threshold value. Control to operate.
本発明では、タービンの回転数を計測する手段を排気ガスの流量を計測する手段に交換しても実現できる。排気ガスの流量を測定する方法としては、既存技術である内燃機関の吸気量を測定するエアフロメーターの各方法(フラップ方式、熱電対方式、カルマン渦流方式など)が応用できる。排気ガスの流量測定は、測定温度が高く、燃焼後の不純物に対応するダスト対策が必要となる。航空機の速度を測る計器として長い歴史を有するピトー管方式は、高温のガスを測定でき、ダスト対策にも強く、燃焼排ガスの測定にも用いられており、利用可能である。In the present invention, this can be realized by replacing the means for measuring the rotational speed of the turbine with a means for measuring the flow rate of the exhaust gas. As a method for measuring the flow rate of the exhaust gas, each method (flap method, thermocouple method, Karman vortex method, etc.) of an air flow meter that measures the intake air amount of an internal combustion engine, which is an existing technology, can be applied. The exhaust gas flow rate measurement requires high measures temperature and measures against dust corresponding to impurities after combustion. The Pitot tube method, which has a long history as an instrument for measuring the speed of aircraft, can measure high-temperature gas, is strong against dust, and is also used for measurement of combustion exhaust gas.
本発明では、ターボの場合は、タービンの回転数や排気ガスの流量を計測する手段に代えて、吸気の過給圧を計測する手段に交換しても実現できる。ターボによる吸気側の過給圧は、排気ガスそのもののエネルギーではないが、ターボは吸気タービンと排気タービンが同一軸で構成されているため、排気ガスのエネルギーである排気タービンの回転数と密接であることを利用する。In the present invention, the turbo can be realized by replacing the means for measuring the rotational speed of the turbine and the flow rate of the exhaust gas with means for measuring the supercharging pressure of the intake air. The turbocharging pressure on the intake side by the turbo is not the energy of the exhaust gas itself, but in the turbo, the intake turbine and the exhaust turbine are configured on the same shaft, so it is closely related to the rotational speed of the exhaust turbine, which is the energy of the exhaust gas. Take advantage of something.
本発明では、バッテリの充電を最終目的としている。このため、上述した機能に加え、蓄電池の電圧、電流または温度によって充電要を検出する手段を加え、蓄電池への充電が必要な場合にのみ、本発明による発電機の制御を行うこともできる。この場合、蓄電池の状況によって、発電機を動作させる制御を減らすことができる。The final purpose of the present invention is to charge the battery. For this reason, in addition to the above-described function, a means for detecting the necessity of charging based on the voltage, current or temperature of the storage battery is added, and the generator can be controlled only when the storage battery needs to be charged. In this case, the control for operating the generator can be reduced depending on the state of the storage battery.
本発明の内燃機関によれば、排気ガスのエネルギーが小さいときには、排気タービンに連動した発電機を停止させ、排気ガスのエネルギーが大きいときには、排気タービンに連動した発電機を動作させ、充電池を充電することができる内燃機関を実現できる。According to the internal combustion engine of the present invention, when the energy of the exhaust gas is small, the generator linked to the exhaust turbine is stopped, and when the energy of the exhaust gas is large, the generator linked to the exhaust turbine is operated, An internal combustion engine that can be charged can be realized.
本発明は、排気ガスから電力エネルギーを有効に取り出すことのできる内燃機関に関する。The present invention relates to an internal combustion engine that can effectively extract electric power energy from exhaust gas.
1 内燃機関本体
2 軸出力
3 軸出力の回転方向
4 軸出力の接続先
5 吸気
6 排気
7 ターボ(ターボチャージャー)
8 排気ガスエネルギー回収用発電機
9 排気タービン
10 過給圧
11 エンジン回転数
12 最大過給圧
13 通常のターボを備えた内燃機関の特性
14 発電機付ターボを備えた内燃機関の特性
15 一般的な内燃機関用発電機
16 銅線(プラス側)
17 充電池の接続先
18 充電池
19 充電制御装置
20 各種車載センサからの入力
21 温度センサ
22 電圧センサ
23 電流センサ
24 プーリー駆動のベルトドライブ
25 回転数検出器
26 ピトー管センサ
27 過給圧センサ1 Internal
8 Exhaust gas
17
本発明の実施例1を説明する。図5は、内燃機関の排気ガスによって、排気タービンが回り、発電機が動作し、蓄電池への充電を行うことができる構成を示している。排気タービンの回転数を常に検出し、排気ガスのエネルギーの大小を把握する。排気タービンの回転数が小さいときは、励磁電流をカットし、発電機の動作を停止させ、排気タービンの回転負荷を低減する。逆に、排気タービンの回転数が大きいときは、励磁電流を流し、発電機を動作させる。本実施例では、蓄電池の電圧もモニタし、蓄電池が充電要であり、排気タービンの回転数が大きいときのみ、発電機を動作させる制御を行っている。この制御例を図6に示す。以上、本実施例によれば、排気抵抗を小さい、蓄電池への充電が可能な排気タービン付の内燃機関を実現できる。A first embodiment of the present invention will be described. FIG. 5 shows a configuration in which the exhaust turbine is rotated by the exhaust gas of the internal combustion engine, the generator is operated, and the storage battery can be charged. Always detect the number of revolutions of the exhaust turbine and grasp the magnitude of the energy of the exhaust gas. When the rotational speed of the exhaust turbine is small, the excitation current is cut, the operation of the generator is stopped, and the rotational load of the exhaust turbine is reduced. Conversely, when the rotational speed of the exhaust turbine is large, an exciting current is passed to operate the generator. In the present embodiment, the voltage of the storage battery is also monitored, and control is performed so that the generator is operated only when the storage battery needs to be charged and the rotational speed of the exhaust turbine is high. An example of this control is shown in FIG. As described above, according to this embodiment, it is possible to realize an internal combustion engine with an exhaust turbine having a small exhaust resistance and capable of charging a storage battery.
本発明の実施例2を説明する。図7は、内燃機関の排気ガスによって、ターボが回り、吸気を圧縮してエンジンに充填すると同時に、発電機によって蓄電池への充電を行うことができる構成を示している。本構成では、ピトー管により排気ガスの流速を検出し、排気ガスのエネルギーの大小を把握する。排気ガスの流速が小さいときは、励磁電流をカットし、発電機の動作を停止させ、ターボの回転負荷を低減する。逆に、排気ガスの流速が大きいときは、励磁電流を流し、発電機を動作させる。以上、本実施例によれば、ターボラグを小さくしながら、蓄電池への充電可能なターボ付の内燃機関を実現できる。また、実施例1と同様に、蓄電池の状況をモニタし、蓄電池が充電要のときのみ、発電機の制御を行うことも可能である。A second embodiment of the present invention will be described. FIG. 7 shows a configuration in which the turbo is turned by the exhaust gas of the internal combustion engine, the intake air is compressed and charged into the engine, and at the same time, the storage battery can be charged by the generator. In this configuration, the flow rate of the exhaust gas is detected by a pitot tube, and the magnitude of the energy of the exhaust gas is grasped. When the flow rate of the exhaust gas is small, the exciting current is cut, the operation of the generator is stopped, and the rotational load of the turbo is reduced. Conversely, when the exhaust gas flow rate is high, an exciting current is supplied to operate the generator. As described above, according to the present embodiment, it is possible to realize a turbo-equipped internal combustion engine capable of charging a storage battery while reducing the turbo lag. Similarly to the first embodiment, the state of the storage battery can be monitored, and the generator can be controlled only when the storage battery needs to be charged.
本発明の実施例3を説明する。図8は、内燃機関の排気ガスによって、ターボが回り、吸気を圧縮してエンジンに充填すると同時に、発電機によって蓄電池への充電を行うことができる構成を示している。本構成では、ターボによる吸気側の過給圧を検出し、排気ガスのエネルギーの大小を把握する。過給圧が小さいときは、励磁電流をカットし、発電機の動作を停止させ、ターボの回転負荷を低減する。逆に、過給圧が大きいときは、励磁電流を流し、発電機を動作させる。以上、本実施例によれば、ターボラグを小さくしながら、吸気を圧縮すると同時に、蓄電池への充電可能なターボ付の内燃機関を実現できる。また、実施例1と同様に、蓄電池の状況をモニタし、蓄電池が充電要のときのみ、発電機の制御を行うことも可能である。A third embodiment of the present invention will be described. FIG. 8 shows a configuration in which the turbo is turned by the exhaust gas of the internal combustion engine, the intake air is compressed and charged into the engine, and at the same time, the storage battery can be charged by the generator. In this configuration, the supercharging pressure on the intake side by the turbo is detected, and the magnitude of the energy of the exhaust gas is grasped. When the supercharging pressure is small, the exciting current is cut, the operation of the generator is stopped, and the turbo rotational load is reduced. Conversely, when the supercharging pressure is large, an exciting current is supplied to operate the generator. As described above, according to the present embodiment, it is possible to realize a turbo-equipped internal combustion engine that can charge the storage battery while simultaneously compressing the intake air while reducing the turbo lag. Similarly to the first embodiment, the state of the storage battery can be monitored, and the generator can be controlled only when the storage battery needs to be charged.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012175390A JP2014020364A (en) | 2012-07-22 | 2012-07-22 | Internal combustion engine provided with exhaust turbine or turbocharger performing power generation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012175390A JP2014020364A (en) | 2012-07-22 | 2012-07-22 | Internal combustion engine provided with exhaust turbine or turbocharger performing power generation |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014020364A true JP2014020364A (en) | 2014-02-03 |
Family
ID=50195537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012175390A Pending JP2014020364A (en) | 2012-07-22 | 2012-07-22 | Internal combustion engine provided with exhaust turbine or turbocharger performing power generation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014020364A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016138451A (en) * | 2015-01-26 | 2016-08-04 | 株式会社日立製作所 | Electric regenerative supercharger |
CN106401764A (en) * | 2016-11-28 | 2017-02-15 | 吉林大学 | Automobile engine time-sharing supercharging device |
CN107965385A (en) * | 2017-12-20 | 2018-04-27 | 佛山科学技术学院 | A kind of pulsed electricity auxiliary turbine is pressurized power generator |
DE102018107463A1 (en) | 2017-04-03 | 2018-10-04 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas turbine power generation system and control device for the exhaust gas turbine power generation system |
CN110410199A (en) * | 2018-08-07 | 2019-11-05 | 熵零技术逻辑工程院集团股份有限公司 | A kind of high efficiency internal combustion engine |
JP2020006914A (en) * | 2018-07-12 | 2020-01-16 | トヨタ自動車株式会社 | Vehicle control device |
CN111923715A (en) * | 2020-08-10 | 2020-11-13 | 彩虹无人机科技有限公司 | Turbine power generation device capable of utilizing waste gas of internal combustion engine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6429622A (en) * | 1987-07-22 | 1989-01-31 | Mazda Motor | Exhaust gas energy recovering device for engine |
JPH05240058A (en) * | 1992-02-29 | 1993-09-17 | Toyota Motor Corp | Internal combustion engine with turbocharger |
JPH06207522A (en) * | 1993-01-11 | 1994-07-26 | Isuzu Motors Ltd | Turbocharger control device |
JP2007321578A (en) * | 2006-05-30 | 2007-12-13 | Toyota Motor Corp | Power generation control device of supercharger drive type generator |
JP2010206936A (en) * | 2009-03-03 | 2010-09-16 | Mitsubishi Electric Corp | Device for controlling generator |
-
2012
- 2012-07-22 JP JP2012175390A patent/JP2014020364A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6429622A (en) * | 1987-07-22 | 1989-01-31 | Mazda Motor | Exhaust gas energy recovering device for engine |
JPH05240058A (en) * | 1992-02-29 | 1993-09-17 | Toyota Motor Corp | Internal combustion engine with turbocharger |
JPH06207522A (en) * | 1993-01-11 | 1994-07-26 | Isuzu Motors Ltd | Turbocharger control device |
JP2007321578A (en) * | 2006-05-30 | 2007-12-13 | Toyota Motor Corp | Power generation control device of supercharger drive type generator |
JP2010206936A (en) * | 2009-03-03 | 2010-09-16 | Mitsubishi Electric Corp | Device for controlling generator |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016138451A (en) * | 2015-01-26 | 2016-08-04 | 株式会社日立製作所 | Electric regenerative supercharger |
CN106401764A (en) * | 2016-11-28 | 2017-02-15 | 吉林大学 | Automobile engine time-sharing supercharging device |
DE102018107463A1 (en) | 2017-04-03 | 2018-10-04 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas turbine power generation system and control device for the exhaust gas turbine power generation system |
US10581356B2 (en) | 2017-04-03 | 2020-03-03 | Toyota Jidosha Kabushiki Kaisha | Exhaust turbine power generating system and control device for the same |
CN107965385A (en) * | 2017-12-20 | 2018-04-27 | 佛山科学技术学院 | A kind of pulsed electricity auxiliary turbine is pressurized power generator |
JP2020006914A (en) * | 2018-07-12 | 2020-01-16 | トヨタ自動車株式会社 | Vehicle control device |
JP7180156B2 (en) | 2018-07-12 | 2022-11-30 | トヨタ自動車株式会社 | vehicle controller |
CN110410199A (en) * | 2018-08-07 | 2019-11-05 | 熵零技术逻辑工程院集团股份有限公司 | A kind of high efficiency internal combustion engine |
CN111923715A (en) * | 2020-08-10 | 2020-11-13 | 彩虹无人机科技有限公司 | Turbine power generation device capable of utilizing waste gas of internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014020364A (en) | Internal combustion engine provided with exhaust turbine or turbocharger performing power generation | |
US20140230436A1 (en) | Turbo Recharger | |
EP3037640B1 (en) | Turbo compound system control device | |
JP5035473B2 (en) | Turbocharger control device | |
JP5303049B1 (en) | Internal combustion engine control device equipped with electric supercharger | |
MX2013008258A (en) | Rich fuel mixture super-turbocharged engine system. | |
BR112017009722B1 (en) | OVERCHARGING DEVICE FOR AN INTERNAL COMBUSTION ENGINE | |
JP2012187961A (en) | Hybrid vehicle | |
JP2013181393A (en) | Supercharging system for engine | |
Lee et al. | Electrification of turbocharger and supercharger for downsized internal combustion engines and hybrid electric vehicles-benefits and challenges | |
Arsie et al. | Evaluation of CO2 reduction in SI engines with Electric Turbo-Compound by dynamic powertrain modelling | |
CN105515143A (en) | Methods and systems for detecting vehicle charging system faults | |
CN205503268U (en) | Engine turbocharging system and car | |
JP2017136974A (en) | Control device for hybrid vehicle | |
CN103670693A (en) | Turbo compounding hybrid generator powertrain | |
Yamashita et al. | Development of electric supercharger to facilitate the downsizing of automobile engines | |
Michon et al. | Modelling and testing of a turbo-generator system for exhaust gas energy recovery | |
JP2011080398A (en) | Control device for electric supercharger | |
CN110173345A (en) | A kind of hybrid power turbo charge system | |
JP2006238700A (en) | Vehicle control unit | |
CN212242945U (en) | New energy automobile hybrid power system | |
JP2013238141A (en) | Supercharging device with electric motor of hybrid vehicle | |
CN111322150B (en) | Turbo compound system | |
CN113242933A (en) | Turbo compound system | |
Joshi et al. | Simulation of exhaust gas energy recovery system using turbocompounding for a motorcycle engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150408 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160223 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160404 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161213 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170530 |