JP2014020192A - Steel bar reinforcement wooden structure in construction and bridge - Google Patents

Steel bar reinforcement wooden structure in construction and bridge Download PDF

Info

Publication number
JP2014020192A
JP2014020192A JP2012174402A JP2012174402A JP2014020192A JP 2014020192 A JP2014020192 A JP 2014020192A JP 2012174402 A JP2012174402 A JP 2012174402A JP 2012174402 A JP2012174402 A JP 2012174402A JP 2014020192 A JP2014020192 A JP 2014020192A
Authority
JP
Japan
Prior art keywords
concrete
specific strength
bridge
value
buildings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012174402A
Other languages
Japanese (ja)
Inventor
Noboru Watanabe
昇 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIBIRU SEKKEI CONSULTANT KK
Original Assignee
SHIBIRU SEKKEI CONSULTANT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIBIRU SEKKEI CONSULTANT KK filed Critical SHIBIRU SEKKEI CONSULTANT KK
Priority to JP2012174402A priority Critical patent/JP2014020192A/en
Publication of JP2014020192A publication Critical patent/JP2014020192A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Bridges Or Land Bridges (AREA)
  • Panels For Use In Building Construction (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that a "specific strength" is a value resulting from dividing a strength of a material with a specific weight of that material, a material having a large value of specific strength is "light and strong", a material having a small value of specific strength is "heavy and weak", the material having the largest value of specific strength is timber of Japanese cedar or the like, the material with the next largest value is steel, the material of the smallest value is concrete, namely, concrete is a heaviest and weakest material, therefore, since an inertia force ((dead weight)×(acceleration of earthquake)) in the case of an earthquake is large, heavy concrete is easy to collapse by itself and since concrete is used frequently for floors, walls or poles of buildings or main girders, bridge piers or bridge abutment of bridges conventionally, such buildings or bridges may collapse by themselves since they are heavy and have large inertia forces in the case of an earthquake.SOLUTION: It is better to stop using concrete of a small specific strength for floors, walls or poles of buildings or main girders, bridge piers or bridge abutment of bridges but to use timber of a high specific strength and the buildings or the bridges are reinforced by burying steel frames in the outer periphery of the timber.

Description

本発明は、建築工学および橋梁工学における構造設計に関する新技術である。  The present invention is a new technology related to structural design in architectural engineering and bridge engineering.

材料の強さには、表1にみられるように、「比強度」という概念があり、「比強度」とは、強度(kg/cm)を比重で割った値で、この値が大きいのは「軽くて強い材料」であり、この値が小さいのは「重くて弱い材料」である。

Figure 2014020192
As shown in Table 1, the strength of the material has a concept of “specific strength”, and “specific strength” is a value obtained by dividing strength (kg / cm 2 ) by specific gravity, and this value is large. Is a “light and strong material”, and a small value is a “heavy and weak material”.
Figure 2014020192

重くて弱いコンクリートでスラブ(厚い板)を作る場合には、コンクリートのスラブの中に大量の鉄筋を埋め込んで補強しなければならない。これが「欽筋コンクリートスラブ」である。そこで、軽くて強い木材のスラブの上面と下面に鉄筋を埋め込んで補強し、「鉄筋木材スラブ」を作れば、「鉄筋コンクリートスラブ」よりも優れた軽くて強いスラブを作ることができる。このスラブを「SWスラブ」といい、Steel stiffened Wooden Slabであり、ハイブリッドスラブ(複合構造スラブ)であり、軽くて強い。  When a slab (thick board) is made of heavy and weak concrete, a large amount of reinforcing bars must be embedded in the concrete slab for reinforcement. This is the “Reinforced concrete slab”. Therefore, if a steel bar is reinforced by embedding reinforcing bars on the upper and lower surfaces of a light and strong wood slab, a lighter and stronger slab can be made that is superior to the “steel reinforced concrete slab”. This slab is called “SW slab”, which is Steel-stiffened Wood Slab, a hybrid slab, and is light and strong.

従来の建築の床、壁、柱などには、比強度の小さいコンクリートが多く使われてきているから、重くて弱いので、地震時、慣性力((自重)X(地震の加速度))が大きく、自ら倒壊する可能性が大きい。  Since concrete with low specific strength has been used for floors, walls, pillars, etc. of conventional buildings, it is heavy and weak, so the inertia force ((self weight) X (acceleration of earthquake)) is large during an earthquake. There is a high possibility of collapse.

従来の建築の床には、キーストンプレートとコンクリートモルタルによる水平スラブが用いられているから、比強度が小さく、コンクリートモルタルが固まるのに約1カ月かかり、リサイクルは難しい。  Since the floor of a conventional building uses a horizontal slab made of keystone plates and concrete mortar, the specific strength is low, and it takes about one month for the concrete mortar to harden, making it difficult to recycle.

従来の建築の壁には、アスベスト(石綿)入りの鉛直スラブが用いられているから、将来、改築撤去時に、猛毒なアスベストの粉塵のために、作業員の健康が害される恐れが大きく、リサイクルは難しい。  Because vertical slabs containing asbestos (asbestos) are used for the walls of conventional buildings, there is a high risk of harm to workers' health due to the extremely toxic asbestos dust in the future during renovation and removal. Is difficult.

従来の橋梁の上部工には、比強度の小さいコンクリート製のコンクリートPC橋が用いられており、重くて弱いので、地震時、慣性力が大きく、自ら落橋する可能性が大きい。
実際に、東日本大震災では、多くのコンクリートPC橋が落橋している。
A concrete PC bridge made of concrete with a low specific strength is used for the conventional superstructure of the bridge. Since it is heavy and weak, it has a large inertial force in the event of an earthquake and has a high possibility of dropping itself.
In fact, in the Great East Japan Earthquake, many concrete PC bridges have been dropped.

従来の橋梁の下部工には、比強度の小さいコンクリート製の橋脚、橋台が用いられており、重くて弱いので、地震時、慣性力が大きく、自ら倒壊の可能性が大きい。
実際に、阪神大震災では、コンクリート製の橋脚が大部分倒壊している。
Conventional bridge substructures use concrete piers and abutments with low specific strength. They are heavy and weak, so they have a high inertial force during earthquakes and are highly likely to collapse.
In fact, most of the concrete piers have collapsed in the Great Hanshin Earthquake.

問題を解決するための手段Means to solve the problem

第1に、建築の床には、比強度の小さいコンクリートモルタルは一切使わず、比強度の大きな「水平SWスラブ」とした。  First, concrete mortar with low specific strength was not used at all for the floor of the building, but a “horizontal SW slab” with high specific strength was used.

第2に、建築の壁には、猛毒なアスベスト入りの壁を使わず、比強度の大きな「鉛直SWスラブ」とした。  Secondly, the wall of the building is made of “vertical SW slab” with high specific strength, without using highly poisoned asbestos-containing walls.

第3に、建築の柱には、比強度の小さな「鉄筋コンクリート柱」は止めて、比強度の大きな「SW柱」とした。  Thirdly, “reinforced concrete columns” with low specific strength were stopped as architectural columns and “SW columns” with high specific strength were used.

第4に、橋梁の上部工には、比強度の小さい「コンクリートPC橋」は止めて、比強度の大きな「SW橋」とした。  Fourthly, the “concrete PC bridge” with a low specific strength was stopped for the superstructure of the bridge, and a “SW bridge” with a high specific strength was used.

第5に、橋梁の下部工の橋脚・橋台には、比強度の小さい「コンクリート橋脚・橋台」は止めて、比強度の大きい「SW橋脚・橋台」とした。  Fifth, “concrete piers / abutments” with a low specific strength were stopped on the piers / abutments of the substructure of the bridge to make “SW piers / abutments” with a high specific strength.

第6に、以上のSW構造に使う木質材には、杉などの間伐材で作った集成材やLVL(単板積層材)のJAS(日本農林規格)に認定されたものを使うことにした。  Sixth, we decided to use the wood materials used for the above SW structure that are certified by JAS (Japanese Agricultural Standards) of laminated lumber made of thinned timber and other LVL (single-ply laminated material) .

SWスラブの横断面図Cross section of SW slab SW柱の横断面図(正方形断面)Cross section of SW pillar (square section) SW柱の横断面図(円形断面)Cross section of SW pillar (circular cross section) SW梁の横断面図Cross section of SW beam SW建築の平断面図SW cross section SW橋梁の一般図General view of SW bridge SW橋脚の基本設計図Basic design of SW pier SW梁の工場製作の1例Example of SW beam factory production

以下、本発明の実施の形態を図1〜図8に基いて説明する。  Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1においては、SWスラブの1木質材の上面と下面に2鉄筋を埋め込んで補強していることを示している。  In FIG. 1, it is shown that two reinforcing bars are embedded and reinforced on the upper and lower surfaces of one wood material of the SW slab.

図2においては、正方形断面のSW柱の3木質柱の外側周辺に2鉄筋を埋め込んで補強していることを示している。  FIG. 2 shows that two reinforcing bars are embedded and reinforced around the outside of the three wooden pillars of the SW pillar having a square section.

図3においては、円形断面のSW柱の3木質柱の外側周辺に2鉄筋を埋め込んで補強していることを示している。  FIG. 3 shows that two reinforcing bars are embedded and reinforced around the outside of the three wood pillars of the SW pillar having a circular cross section.

図4においては、SW梁の4木質梁の上側と下側に2鉄筋を埋め込んで補強していることを示している。  FIG. 4 shows that two reinforcing bars are embedded and reinforced on the upper and lower sides of the four wooden beams of the SW beam.

図5においては、SW建築における6SW柱と8SW床と9SW壁が示されている。  In FIG. 5, 6SW pillars, 8SW floors, and 9SW walls in SW architecture are shown.

図6においては、SW橋梁の一般図が示され、14橋梁の上部工と15SW橋脚と16SW橋台と17鋼管基礎杭が示され、14橋梁の上部工のA−A断面図においては、10鋼床版と11デッキプレートと12Uリブと7SW梁が示され、19現場接着により、13連結用鉛直鋼板と7SW梁とが現場連結されることが示されている。  In FIG. 6, a general view of SW bridge is shown, 14 bridge superstructure, 15SW pier, 16SW abutment and 17 steel pipe foundation pile are shown, and in AA cross section of 14 bridge superstructure, 10 steel The floor slab, 11 deck plate, 12U rib and 7SW beam are shown, and the 19 connecting vertical steel plate and 7SW beam are shown to be connected in situ by 19 site bonding.

図7においては、15SW橋脚のA−A断面図が示すように、SW橋脚は1木質材を2鉄筋が補強していることが示されている。  In FIG. 7, as the AA sectional view of the 15SW pier shows, the SW pier shows that one wooden material is reinforced by two reinforcing bars.

図8においては、1例として、SW梁の工場製作の方法が示され、SW梁の1木質材のフランジ部が予め分離されて加工され、2鉄筋が後から接着剤によって、18工場接着されることが示されている。  In FIG. 8, as an example, a method of manufacturing a SW beam factory is shown, and a flange portion of one wood material of the SW beam is separated and processed in advance, and two rebars are bonded to 18 factories later by an adhesive. It has been shown that.

1 木質材
2 鉄筋
3 木質柱(正方形断面)
4 木質柱(円形断面)
5 木質梁
6 SW柱
7 SW梁
8 SW床
9 SW壁
10 鋼床版
11 デッキプレート
12 Uリブ
13 連結用鉛直鋼板
14 橋の上部工
15 SW橋脚
16 SW橋台
17 鋼管基礎杭
18 工場接着
19 現場接着


1 Wood material 2 Reinforcing bar 3 Wood pillar (square cross section)
4 Wood pillar (circular cross section)
5 Wood beam 6 SW column 7 SW beam 8 SW floor 9 SW wall 10 Steel floor slab 11 Deck plate 12 U rib 13 Vertical steel plate for connection 14 Bridge superstructure 15 SW pier 16 SW abutment 17 Steel pipe foundation pile 18 Factory bond 19 Site Glue,
,
,

Claims (1)

建築の床、壁、柱や橋梁の主桁、橋脚、橋台に、比強度の値の小さいコンクリートを使うことを止めて、代わりに、比強度の値の大きい木材を使い、その外側周辺に鉄筋を埋め込んで補強する。  Stop using concrete with low specific strength for building floors, walls, pillars and bridge main girders, piers, and abutments. Instead, use wood with high specific strength and rebar around the outside. Reinforce by embedding.
JP2012174402A 2012-07-19 2012-07-19 Steel bar reinforcement wooden structure in construction and bridge Pending JP2014020192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012174402A JP2014020192A (en) 2012-07-19 2012-07-19 Steel bar reinforcement wooden structure in construction and bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012174402A JP2014020192A (en) 2012-07-19 2012-07-19 Steel bar reinforcement wooden structure in construction and bridge

Publications (1)

Publication Number Publication Date
JP2014020192A true JP2014020192A (en) 2014-02-03

Family

ID=50195400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012174402A Pending JP2014020192A (en) 2012-07-19 2012-07-19 Steel bar reinforcement wooden structure in construction and bridge

Country Status (1)

Country Link
JP (1) JP2014020192A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113463834A (en) * 2020-03-31 2021-10-01 中国地质大学(北京) Combined rectangular beam and manufacturing method thereof
CN113463836A (en) * 2020-03-31 2021-10-01 中国地质大学(北京) Combined I-shaped beam and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113463834A (en) * 2020-03-31 2021-10-01 中国地质大学(北京) Combined rectangular beam and manufacturing method thereof
CN113463836A (en) * 2020-03-31 2021-10-01 中国地质大学(北京) Combined I-shaped beam and manufacturing method thereof
CN113463836B (en) * 2020-03-31 2022-04-08 中国地质大学(北京) Combined I-shaped beam and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR20180115737A (en) Construction method of multi-story building using steel wall truss for laminated structure
NZ713716A (en) Pre-stressed beams or panels
CN103790295B (en) Reinforced concrete stairs structure and construction method thereof
Yee et al. Performance of IBS precast concrete beam-column connections under earthquake effects: a literature review
JP2013213387A (en) Prefabrication type sw construction having steel pipe pile foundation strong against major earthquake
KR20180012809A (en) Prefabricated column and beam type structure
US20070151173A1 (en) Method of constructing structures with seismically-isolated base
WO2016183607A1 (en) Ultimate (eco) floor system
JP2020037775A (en) Non-brace steel frame building construction method and column base unit
Ongaretto et al. Wood-based solutions to improve quality and safety against seismic events in conservation of historical buildings
JP2010242390A (en) Joining method and structure of column-beam joint part having steel brace
CN103821289A (en) Connection and installation construction method for earthquake collision and damage preventing on support of prefabricated stair
CN103774777A (en) Assembly type skeleton multi-ribbed beam-plate composite structure big plate
JP2014020192A (en) Steel bar reinforcement wooden structure in construction and bridge
Mahajan et al. Performance analysis of RCC and steel concrete composite structure under seismic effect
RU2331738C1 (en) Foundation of piles and slabs
JP2019100057A (en) Construction method of wooded/rc mixed structure building and wooden/rc mixed structure building
Asiz et al. Demands placed on steel frameworks of tall buildings having reinforced concrete or massive wood horizontal slabs
Takahashi et al. Stiffness, ultimate strength capacity and cyclic loading deterioration characteristics of two different wood-structure dwellings following the current Japanese practice
CN203939199U (en) The connection constructing structure of a kind of precast stair bearing place's earthquake-proof impact wreckage
JP5475054B2 (en) Seismic shelter reinforcement method and seismic shelter with high seismic strength
Liu et al. Prefabrication construction in residential building of Vanke real estate company China
TWI759766B (en) Reinforced structure with braced frame
JP7157670B2 (en) building frame
JP2023014542A (en) Precast structure, composite structure, and construction method