JP2014019796A - Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same - Google Patents

Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same Download PDF

Info

Publication number
JP2014019796A
JP2014019796A JP2012160040A JP2012160040A JP2014019796A JP 2014019796 A JP2014019796 A JP 2014019796A JP 2012160040 A JP2012160040 A JP 2012160040A JP 2012160040 A JP2012160040 A JP 2012160040A JP 2014019796 A JP2014019796 A JP 2014019796A
Authority
JP
Japan
Prior art keywords
resin composition
thermosetting resin
compound
group
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012160040A
Other languages
Japanese (ja)
Other versions
JP6040606B2 (en
Inventor
Shintaro Hashimoto
慎太郎 橋本
Masato Miyatake
正人 宮武
Tomohiko Kotake
智彦 小竹
Shunsuke Nagai
駿介 長井
Yasuo Inoue
康雄 井上
Shin Takanezawa
伸 高根沢
Hikari Murai
曜 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012160040A priority Critical patent/JP6040606B2/en
Publication of JP2014019796A publication Critical patent/JP2014019796A/en
Application granted granted Critical
Publication of JP6040606B2 publication Critical patent/JP6040606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition excellent in low thermal expansion and desmear resistance, and a prepreg, a laminate and a printed wiring board using the same.SOLUTION: A thermosetting resin containing (a) an epoxy resin having a naphthalene skeleton, (b) a maleimide compound having at least two N-substituted maleimide groups in the molecular structure and a phenoxy group, (c) a silicone compound having a primary amino group, and (d) an amine compound having an acidic substituent, and a prepreg, a laminate and a printed wiring board using the same are provided.

Description

本発明は半導体パッケージやプリント配線板用に好適な熱硬化性樹脂組成物に関し、詳しくは特に低熱膨張性に優れ、耐デスミア性に優れた熱硬化性樹脂組成物、これを用いたプリプレグ、積層板及びプリント配線板に関する。   The present invention relates to a thermosetting resin composition suitable for semiconductor packages and printed wiring boards, and in particular, a thermosetting resin composition excellent in low thermal expansion and desmear resistance, and a prepreg and a laminate using the same. The present invention relates to a board and a printed wiring board.

近年の電子機器の小型化・高性能化により、プリント配線板では配線密度の高密度化、高集積化が進展し、これに伴って配線用積層板の信頼性向上への要求が強まっている。このような用途においては、優れた低熱膨張係数を備えることが要求される。   Due to the recent downsizing and higher performance of electronic devices, printed wiring boards have become increasingly dense and highly integrated, and this has led to a demand for improved reliability of wiring laminates. . In such applications, it is required to have an excellent low thermal expansion coefficient.

プリント配線板用積層板としては、エポキシ樹脂を主剤とした樹脂組成物とガラス織布とを硬化・一体成形したものが一般的である。エポキシ樹脂は、熱膨張率が大きいため、芳香環を有するエポキシ樹脂の選択やシリカ等の無機充填材を高充填化することで低熱膨張化を図っている(例えば、特許文献1参照)。しかし、無機充填材の充填量を増やすことは、吸湿による絶縁信頼性の低下や樹脂−配線層の密着不足、プレス成形不良を起こすことが知られている。
また、高密度実装、高多層化積層板に広く使用されているポリビスマレイミド樹脂は、接着性に難点があり、低熱膨張性も十分ではない。
As a laminated board for a printed wiring board, one obtained by curing and integrally molding a resin composition mainly composed of an epoxy resin and a glass woven fabric is generally used. Since an epoxy resin has a large coefficient of thermal expansion, low thermal expansion is achieved by selecting an epoxy resin having an aromatic ring or by highly filling an inorganic filler such as silica (for example, see Patent Document 1). However, increasing the filling amount of the inorganic filler is known to cause a decrease in insulation reliability due to moisture absorption, insufficient adhesion of the resin-wiring layer, and poor press molding.
In addition, polybismaleimide resins widely used for high-density packaging and highly multilayered laminates have drawbacks in adhesion, and low thermal expansion is not sufficient.

さらに、積層板用の材料として、エポキシ樹脂及びフェノール樹脂と変性イミド樹脂を主成分とする熱硬化性樹脂組成物が知られている(例えば、特許文献2参照)。この変性イミド樹脂含有組成物は耐湿性や接着性が改良されるものの、メチルエチルケトン等の汎用性溶媒への可溶性確保のため水酸基とエポキシ基を含有する低分子化合物で変性するので、得られる変性イミド樹脂の耐デスミア性がポリビスマレイミド樹脂と比較すると、大幅に劣るという問題がある。   Furthermore, a thermosetting resin composition mainly composed of an epoxy resin, a phenol resin, and a modified imide resin is known as a material for a laminate (see, for example, Patent Document 2). Although this modified imide resin-containing composition is improved in moisture resistance and adhesiveness, it is modified with a low molecular weight compound containing a hydroxyl group and an epoxy group to ensure solubility in a general-purpose solvent such as methyl ethyl ketone. There is a problem that the desmear resistance of the resin is significantly inferior to that of the polybismaleimide resin.

さらに、特に近年、半導体用パッケージ基板では,小型化,薄型化に伴い,部品実装時やパッケージ組み立て時において,チップと基板との熱膨張係数の差に起因した反りが大きな課題となっている。   Further, particularly in recent years, with semiconductor package substrates, warping due to the difference in coefficient of thermal expansion between the chip and the substrate has become a major issue at the time of component mounting and package assembly along with the reduction in size and thickness.

多層プリント回路基板を製造する過程において、レーザ加工によりビアホールを形成した後、過マンガン酸溶液などのデスミア液でデスミア処理したときに、樹脂の耐デスミア性が低いため、ビアホール内の樹脂が削られ、凹凸が大きくなり、不良が発生する問題があった。このため、優れた耐デスミア性を兼備することが要求される。   In the process of manufacturing a multilayer printed circuit board, after forming a via hole by laser processing and desmearing with a desmear solution such as a permanganate solution, the resin in the via hole is scraped because the desmear resistance of the resin is low. There is a problem that the irregularities become large and defects occur. Therefore, it is required to have excellent desmear resistance.

特開平5−148343号公報Japanese Patent Laid-Open No. 5-148343 特開平6−263843号公報JP-A-6-263843

本発明の目的は、こうした現状に鑑み、特に低熱膨張性および耐デスミア性に優れる熱硬化性樹脂組成物、これを用いたプリプレグ、積層板及びプリント配線板を提供することである。   In view of the current situation, an object of the present invention is to provide a thermosetting resin composition that is particularly excellent in low thermal expansion and desmear resistance, a prepreg, a laminate, and a printed wiring board using the same.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定のエポキシ樹脂、特定のマレイミド化合物、シリコーン化合物およびアミン化合物が配合された樹脂組成物が上記目的に沿うものであることを見出し、本発明に到達した。   As a result of intensive studies to achieve the above object, the present inventors have found that a resin composition containing a specific epoxy resin, a specific maleimide compound, a silicone compound and an amine compound meets the above object. The present invention has been found.

すなわち、本発明は、以下の熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板を提供するものである。
1.ナフタレン骨格を有するエポキシ樹脂(a)、分子構造中に少なくとも2個のN−置換マレイミド基を有し、かつフェノキシ基を有するマレイミド化合物(b)、アミノ基を有するシリコーン化合物(c)及び酸性置換基を有するアミン化合物(d)を配合してなる熱硬化性樹脂組成物。
2.前記ナフタレン骨格を有するエポキシ樹脂(a)がナフトール/クレゾールノボラック型骨格を有する化合物である上記1に記載の熱硬化性樹脂組成物。
3.さらに、分子構造中に少なくとも2個の1級アミノ基を有するアミン化合物(e)を配合する上記1又は2に記載の熱硬化性樹脂組成物。
4.ナフタレン骨格を有するエポキシ樹脂(a)、分子構造中に少なくとも2個のN−置換マレイミド基を有し、かつフェノキシ基を有するマレイミド化合物(b)と1級アミノ基を有するシリコーン化合物(c)と酸性置換基を有するアミン化合物(d)と分子構造中に少なくとも2個の1級アミノ基を有する有機アミン化合物(e)とを反応させて得られる、アミノ基、イミド基及びN−置換マレイミド基を有する変性シリコーン化合物を含有する熱硬化性樹脂組成物。
5.さらに、無機充填材を含有する上記1〜4のいずれかに記載の熱硬化性樹脂組成物。6.さらに、硬化促進剤として、下記の式(I)に示す構造のヘキサメチレンジイソシアネートと2−エチル−4−メチルイミダゾールの付加反応物を含有する上記1〜5のいずれかに記載の熱硬化性樹脂組成物。
That is, this invention provides the following thermosetting resin compositions, a prepreg, a laminated board, and a printed wiring board.
1. Epoxy resin (a) having naphthalene skeleton, maleimide compound (b) having at least two N-substituted maleimide groups in the molecular structure and having a phenoxy group, silicone compound (c) having an amino group, and acidic substitution A thermosetting resin composition comprising an amine compound (d) having a group.
2. 2. The thermosetting resin composition according to 1 above, wherein the epoxy resin (a) having a naphthalene skeleton is a compound having a naphthol / cresol novolak skeleton.
3. Furthermore, the thermosetting resin composition of said 1 or 2 which mix | blends the amine compound (e) which has an at least 2 primary amino group in molecular structure.
4). An epoxy resin having a naphthalene skeleton (a), a maleimide compound (b) having at least two N-substituted maleimide groups in the molecular structure and having a phenoxy group, and a silicone compound (c) having a primary amino group; Amino group, imide group and N-substituted maleimide group obtained by reacting an amine compound (d) having an acidic substituent with an organic amine compound (e) having at least two primary amino groups in the molecular structure The thermosetting resin composition containing the modified silicone compound which has this.
5. Furthermore, the thermosetting resin composition in any one of said 1-4 containing an inorganic filler. 6). Furthermore, as a hardening accelerator, the thermosetting resin in any one of said 1-5 containing the addition reaction product of the hexamethylene diisocyanate of the structure shown to the following formula (I), and 2-ethyl-4-methylimidazole Composition.

Figure 2014019796
Figure 2014019796

7.上記1〜6のいずれかに記載の熱硬化性樹脂組成物を基材に含浸又は塗工した後、Bステージ化されてなるプリプレグ。
8.絶縁樹脂層が上記7のプリプレグを用いて形成されたものである積層板。
9.上記8の積層板における絶縁樹脂層の片面又は両面に配置された金属箔を回路加工して得られたものであるプリント配線板。
7). A prepreg formed by impregnating or coating a base material with the thermosetting resin composition according to any one of the above 1 to 6, and then forming a B-stage.
8). A laminate in which an insulating resin layer is formed using the prepreg described in 7 above.
9. The printed wiring board obtained by carrying out circuit processing of the metal foil arrange | positioned at the single side | surface or both surfaces of the insulating resin layer in the laminated board of said 8.

本発明の熱硬化性樹脂組成物を基材に含浸、又は塗工して得たプリプレグ、及び該プリプレグを積層成形することにより製造した積層板、及び該積層板を用いて製造された多層プリント配線板は、特に低熱膨張性、耐デスミア性などに優れており、高集積化された電子機器用プリント配線板として有用である。   A prepreg obtained by impregnating or coating a base material with the thermosetting resin composition of the present invention, a laminate produced by laminating the prepreg, and a multilayer print produced using the laminate The wiring board is particularly excellent in low thermal expansion and desmear resistance, and is useful as a highly integrated printed wiring board for electronic equipment.

以下、本発明について詳細に説明する。
本発明の熱硬化性樹脂組成物は、ナフタレン骨格を有するエポキシ樹脂(a)と、分子構造中に少なくとも2個のN−置換マレイミド基を有し、かつフェノキシ基を有するマレイミド化合物(b)、アミノ基を有するシリコーン化合物(c)及び酸性置換基を有するアミン化合物(d)が配合されたものである。
Hereinafter, the present invention will be described in detail.
The thermosetting resin composition of the present invention comprises an epoxy resin (a) having a naphthalene skeleton, a maleimide compound (b) having at least two N-substituted maleimide groups in the molecular structure and having a phenoxy group, A silicone compound (c) having an amino group and an amine compound (d) having an acidic substituent are blended.

本発明の熱硬化性樹脂組成物は、ナフタレン骨格を有するエポキシ樹脂(a)を用いることにより、低熱膨張率化、及び高弾性率化がなされ、さらに耐デスミア性を向上させることができる。
ナフタレン骨格を有するエポキシ樹脂(a)としては、下記一般式(II〜VIII)で表されるものが挙げられる。
By using the epoxy resin (a) having a naphthalene skeleton, the thermosetting resin composition of the present invention has a low thermal expansion coefficient and a high elastic modulus, and can further improve desmear resistance.
Examples of the epoxy resin (a) having a naphthalene skeleton include those represented by the following general formulas (II to VIII).

Figure 2014019796
Figure 2014019796

(式(II)中、R1は水素原子または1価のハロゲン非含有有機基を表し、nは1〜10の整数を表す。) (In formula (II), R 1 represents a hydrogen atom or a monovalent halogen-free organic group, and n represents an integer of 1 to 10.)

Figure 2014019796
Figure 2014019796

(式(III)中、nは1〜10の整数を表す。) (In formula (III), n represents an integer of 1 to 10)

Figure 2014019796
Figure 2014019796

(式(IV)中、nは1〜10の整数を表す。) (In formula (IV), n represents an integer of 1 to 10)

Figure 2014019796
Figure 2014019796

(式(V)中、nは1〜10の整数を表す。) (In the formula (V), n represents an integer of 1 to 10.)

Figure 2014019796
Figure 2014019796

Figure 2014019796
Figure 2014019796

(式(VII)中、R2は単結合または2価のハロゲン非含有有機基を表す。) (In formula (VII), R 2 represents a single bond or a divalent halogen-free organic group.)

Figure 2014019796
Figure 2014019796

(式(VIII)中、R3は単結合または2価のハロゲン非含有有機基を表し、R4は水素原子または1価のハロゲン非含有有機基を表す。) (In Formula (VIII), R 3 represents a single bond or a divalent halogen-free organic group, and R 4 represents a hydrogen atom or a monovalent halogen-free organic group.)

一般式(II)中のR1、及び一般式(VIII)中のR4で示される1価のハロゲン非含有有機基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基などのアルキル基;フェニル基、ベンジル基、ナフチル基などのアリール基;ピリジル基などが挙げられる。また、一般式(VII)中のR2、及び一般式(VIII)中のR3で示される2価のハロゲン非含有有機基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基などのアルキレン基;フェニレン基、ナフチレン基などのアリーレン基;ピリジレン基などが挙げられる。
これらの中で耐熱性、耐デスミア性の観点から一般式(II)で表される構造が好ましく、低熱膨張性の観点から下記の一般式(IX)で表されるナフトール/クレゾールノボラック型骨格を有するエポキシ樹脂がさらに好ましい。
Examples of the monovalent halogen-free organic group represented by R 1 in the general formula (II) and R 4 in the general formula (VIII) include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group. Alkyl group; aryl group such as phenyl group, benzyl group and naphthyl group; pyridyl group and the like. The divalent halogen-free organic group represented by R 2 in the general formula (VII) and R 3 in the general formula (VIII) includes a methylene group, an ethylene group, a propylene group, a butylene group, and a pentylene group. An arylene group such as a phenylene group or a naphthylene group; a pyridylene group.
Among these, a structure represented by the general formula (II) is preferable from the viewpoint of heat resistance and desmear resistance, and a naphthol / cresol novolak skeleton represented by the following general formula (IX) is preferable from the viewpoint of low thermal expansion. An epoxy resin having is more preferable.

Figure 2014019796
Figure 2014019796

[nは1〜10の整数である。] [n is an integer of 1 to 10. ]

上記一般式(VIII)および(IX)で表されるナフタレン骨格を有するエポキシ樹脂(a)は、市販品を用いることができ、例えば、「EXA−9520」(水酸基当量244)、「EXA−9530」(水酸基当量249)、「EXA−9540」(水酸基当量231)、「EXA−4750」(水酸基当量188)、〔以上、DIC(株)製〕、「NC―7000L」(水酸基当量231)、〔以上、日本化薬(株)製〕が挙げられる。   As the epoxy resin (a) having a naphthalene skeleton represented by the above general formulas (VIII) and (IX), a commercially available product can be used, for example, “EXA-9520” (hydroxyl equivalent 244), “EXA-9530”. (Hydroxyl equivalent 249), "EXA-9540" (hydroxyl equivalent 231), "EXA-4750" (hydroxyl equivalent 188), [manufactured by DIC Corporation], "NC-7000L" (hydroxyl equivalent 231), [Nippon Kayaku Co., Ltd.].

次に、本発明の熱硬化性樹脂組成物を構成する、分子構造中に少なくとも2個のN−置換マレイミド基を有し、かつフェノキシ基を有するマレイミド化合物(b)は、マレイミド化合物を含有する樹脂の弾性率を下げることに寄与する。
分子構造中に少なくとも2個のN−置換マレイミド基を有し、かつフェノキシ基を有するマレイミド化合物(b)としては、例えば、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン〔大和化成工業(株)製、商品名:BMI−4000〕が挙げられる。
Next, the maleimide compound (b) having at least two N-substituted maleimide groups in the molecular structure and having a phenoxy group constituting the thermosetting resin composition of the present invention contains a maleimide compound. Contributes to lowering the elastic modulus of the resin.
As the maleimide compound (b) having at least two N-substituted maleimide groups in the molecular structure and having a phenoxy group, for example, 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane [ Daiwa Kasei Kogyo Co., Ltd., trade name: BMI-4000].

次に、1級アミノ基を有するシリコーン化合物(c)としては、市販品を用いることができ、例えば、両末端にアミノ基を有する「PAM−E」(官能基当量130)、「KF−8010」(官能基当量430)、「X−22−161A」(官能基当量800)、「X−22−161B」(官能基当量1500)、「KF−8012」(官能基当量2200)、「KF−8008」(官能基当量5700)〔以上、信越化学工業(株)製〕、「BY16−871」(官能基当量130)、「BY16−853U」(官能基当量460)〔以上、東レダウコーニング(株)製〕が挙げられ、側鎖に1つのアミノ基を有する「BY16−849」〔東レダウコーニング(株)製〕が挙げられる。これらは単独で、あるいは2種類以上を混合して用いてもよい。   Next, as the silicone compound (c) having a primary amino group, a commercially available product can be used. For example, “PAM-E” (functional group equivalent 130) having amino groups at both ends, “KF-8010” "(Functional group equivalent 430)", "X-22-161A" (functional group equivalent 800), "X-22-161B" (functional group equivalent 1500), "KF-8012" (functional group equivalent 2200), "KF -8008 "(functional group equivalent 5700) [manufactured by Shin-Etsu Chemical Co., Ltd.]," BY16-871 "(functional group equivalent 130)," BY16-853U "(functional group equivalent 460) [more, Toray Dow Corning "BY16-849" [manufactured by Toray Dow Corning Co., Ltd.] having one amino group in the side chain. These may be used alone or in admixture of two or more.

酸性置換基を有するアミン化合物(d)としては、例えば、m−アミノフェノール、p−アミノフェノール、o−アミノフェノール、p−アミノ安息香酸、m−アミノ安息香酸、o−アミノ安息香酸、o−アミノベンゼンスルホン酸、m−アミノベンゼンスルホン酸、p−アミノベンゼンスルホン酸、3,5−ジヒドロキシアニリン、3,5−ジカルボキシアニリンが挙げられ、これらの中で、溶解性や合成の収率の点からm−アミノフェノール、p−アミノフェノール、o−アミノフェノール、p−アミノ安息香酸、m−アミノ安息香酸、及び3,5−ジヒドロキシアニリンが好ましく、耐熱性の点からm−アミノフェノール及びp−アミノフェノールがより好ましく、低熱膨張性の点からp−アミノフェノールが特に好ましい。   Examples of the amine compound (d) having an acidic substituent include m-aminophenol, p-aminophenol, o-aminophenol, p-aminobenzoic acid, m-aminobenzoic acid, o-aminobenzoic acid, o- Examples include aminobenzenesulfonic acid, m-aminobenzenesulfonic acid, p-aminobenzenesulfonic acid, 3,5-dihydroxyaniline, and 3,5-dicarboxyaniline. Among these, solubility and synthesis yield From the viewpoint, m-aminophenol, p-aminophenol, o-aminophenol, p-aminobenzoic acid, m-aminobenzoic acid, and 3,5-dihydroxyaniline are preferable, and m-aminophenol and p are preferable from the viewpoint of heat resistance. -Aminophenol is more preferable, and p-aminophenol is particularly preferable from the viewpoint of low thermal expansion.

分子構造中に少なくとも2個の1級アミノ基を有するアミン化合物(e)としては、例えば、ジアミノベンジジン、ジアミノジフェニルメタン、ジアミノジフェニルエーテル、ジアミノジフェニルスルホン、3,3'−ジクロロ−4,4'−ジアミノビフェニル、3,3'−ジメトキシ−4,4'−ジアミノビフェニル、3,3'−ジメチル−4,4'−ジアミノビフェニル、3,3'−ジクロロ−4,4'−ジアミノビフェニル、3,3'−ジメチル−4,4'−ジアミノビフェニル−6,6'−ジスルホン酸、2,2' 、5,5'−テトラクロロ−4,4'−ジアミノビフェニル、4,4'−メチレン−ビス(2−クロロアニリン)、1,3'−ビス(4−アミノフェノキシ)ベンゼン、2,2'−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、4,4'−ビス(4−アミノフェノキシ)ビフェニル、2,2'−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,4'−ビス(4−アミノフェノキシ)ベンゼン、4,4'−ジアミノジフェニルスルフィド、2,2'−ジメチル−4,4'−ジアミノビフェニル、4,4'−ジアミノ−3,3'−ビフェニルジオール、9,9'−ビス(4−アミノフェニル)フルオレン、o‐トリジンスルホンが挙げられる。   Examples of the amine compound (e) having at least two primary amino groups in the molecular structure include diaminobenzidine, diaminodiphenylmethane, diaminodiphenyl ether, diaminodiphenylsulfone, 3,3′-dichloro-4,4′-diamino. Biphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dichloro-4,4′-diaminobiphenyl, 3,3 '-Dimethyl-4,4'-diaminobiphenyl-6,6'-disulfonic acid, 2,2', 5,5'-tetrachloro-4,4'-diaminobiphenyl, 4,4'-methylene-bis ( 2-chloroaniline), 1,3′-bis (4-aminophenoxy) benzene, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, bis [ -(4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 4,4'-bis (4-aminophenoxy) biphenyl, 2,2'-bis [4- (4 -Aminophenoxy) phenyl] hexafluoropropane, 1,4'-bis (4-aminophenoxy) benzene, 4,4'-diaminodiphenyl sulfide, 2,2'-dimethyl-4,4'-diaminobiphenyl, 4, Examples include 4'-diamino-3,3'-biphenyldiol, 9,9'-bis (4-aminophenyl) fluorene, and o-tolidine sulfone.

本発明の熱硬化性樹脂組成物は、前記(b)〜(d)成分を含むことによって、弾性率を低下させることができるため、当該熱硬化性樹脂組成物挙動を支持体であるガラスクロスの挙動に従わせることができ、基材に低熱膨張性を付与することができる。また、溶剤溶解性、樹脂の相容性が向上し、それに加えて、長鎖構造により架橋点間分子量を大きくさせて、樹脂中の官能基密度を低減させることにより、高い耐デスミア性を得ることができる。   Since the thermosetting resin composition of the present invention can reduce the elastic modulus by including the components (b) to (d), the behavior of the thermosetting resin composition is a glass cloth as a support. The low thermal expansion property can be imparted to the base material. In addition, solvent solubility and resin compatibility are improved, and in addition to that, the molecular weight between cross-linking points is increased by the long chain structure, and the functional group density in the resin is reduced, thereby obtaining high desmear resistance. be able to.

本発明の熱硬化性樹脂組成物では、分子構造中に少なくとも2個のN−置換マレイミド基を有し、かつフェノキシ基を有するマレイミド化合物(b)、1級アミノ基を有するシリコーン化合物(c)、酸性置換基を有するアミン化合物(d)、及び分子構造中に少なくとも2個の1級アミノ基を有する有機アミン化合物(e)を、必要により加熱・保温し,あらかじめ反応させておくことができ、当該反応で得られる、アミノ基、イミド基及びN−置換マレイミド基を有する変性シリコーン化合物を、本発明の熱硬化性樹脂組成物に含有させておくことができる。
この反応の際のマレイミド化合物(b)の使用量は、ゲル化の防止と耐熱性の観点から、マレイミド化合物(b)のマレイミド基の当量が、シリコーン化合物(c)とアミン化合物(e)の1級アミノ基の当量を超える範囲であることが望ましい。
また、当該反応温度は70〜200℃とすることが好ましく、反応時間は0.5〜10時間とすることが好ましい。
In the thermosetting resin composition of the present invention, the maleimide compound (b) having at least two N-substituted maleimide groups in the molecular structure and having a phenoxy group, and the silicone compound (c) having a primary amino group The amine compound (d) having an acidic substituent and the organic amine compound (e) having at least two primary amino groups in the molecular structure can be heated and kept warm if necessary, and reacted in advance. The modified silicone compound having an amino group, an imide group and an N-substituted maleimide group obtained by the reaction can be contained in the thermosetting resin composition of the present invention.
The amount of the maleimide compound (b) used in this reaction is such that the equivalent of the maleimide group of the maleimide compound (b) is that of the silicone compound (c) and the amine compound (e) from the viewpoint of prevention of gelation and heat resistance. A range exceeding the equivalent of the primary amino group is desirable.
The reaction temperature is preferably 70 to 200 ° C., and the reaction time is preferably 0.5 to 10 hours.

以上の反応で使用される有機溶媒は、特に制限されないが、例えばエタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;酢酸エチルエステルやγ−ブチロラクトン等のエステル系溶剤;テトラヒドロフラン等のエーテル系溶剤;トルエン、キシレン、メシチレン等の芳香族系溶剤;ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の窒素原子含有溶剤;ジメチルスルホキシド等の硫黄原子含有溶剤が挙げられ、1種又は2種以上を混合して使用できる。
これらの中で、溶解性の点からシクロヘキサノン、プロピレングリコールモノメチルエーテル、メチルセロソルブ、γ−ブチロラクトン、及びジメチルアセトアミドが好ましく、低毒性であることや揮発性が高くプリプレグの製造時に残溶剤として残りにくい点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、及びジメチルアセトアミドが特に好ましい。
The organic solvent used in the above reaction is not particularly limited, but alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone Solvents; Ester solvents such as ethyl acetate and γ-butyrolactone; Ether solvents such as tetrahydrofuran; Aromatic solvents such as toluene, xylene and mesitylene; Nitrogen atoms such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone Solvents: Sulfur atom-containing solvents such as dimethyl sulfoxide can be mentioned, and one or two or more can be mixed and used.
Among these, cyclohexanone, propylene glycol monomethyl ether, methyl cellosolve, γ-butyrolactone, and dimethylacetamide are preferable from the viewpoint of solubility, and have low toxicity and high volatility, so that they do not remain as residual solvents when producing prepregs. To cyclohexanone, propylene glycol monomethyl ether, and dimethylacetamide are particularly preferred.

有機溶媒の使用量は、溶解性と反応時間の観点から、マレイミド化合物(b)、シリコーン化合物(c)、酸性置換基を有するアミン化合物(d)、及び分子構造中に少なくとも2個の1級アミノ基を有する有機アミン化合物(e)の合計量100質量部に対して、25〜1000質量部とすることが好ましく、40〜700質量部とすることがより好ましい。
また、上記反応には、必要により任意に反応触媒を使用することができる。反応触媒は、特に限定されないが、トリエチルアミン、ピリジン、トリブチルアミン等のアミン類;メチルイミダゾール、フェニルイミダゾール等のイミダゾール類;トリフェニルホスフィン等のリン系触媒等が挙げられ、1種又は2種以上を混合して使用できる。
The amount of the organic solvent used is from the viewpoint of solubility and reaction time, maleimide compound (b), silicone compound (c), amine compound (d) having an acidic substituent, and at least two primary compounds in the molecular structure. It is preferable to set it as 25-1000 mass parts with respect to 100 mass parts of total amounts of the organic amine compound (e) which has an amino group, and it is more preferable to set it as 40-700 mass parts.
In the above reaction, a reaction catalyst can be optionally used as necessary. The reaction catalyst is not particularly limited, and examples thereof include amines such as triethylamine, pyridine, and tributylamine; imidazoles such as methylimidazole and phenylimidazole; phosphorus-based catalysts such as triphenylphosphine, and the like. Can be mixed and used.

本発明の熱硬化性樹脂組成物には、硬化促進剤を含有させることができる。硬化促進剤としては、下記の式(I)に示す構造のヘキサメチレンジイソシアネートと2−エチル−4−メチルイミダゾールの付加反応物が最も好ましい。   The thermosetting resin composition of the present invention can contain a curing accelerator. As the curing accelerator, an addition reaction product of hexamethylene diisocyanate and 2-ethyl-4-methylimidazole having a structure represented by the following formula (I) is most preferable.

Figure 2014019796
Figure 2014019796

さらに、必要に応じて、硬化促進剤として、イミダゾール類及びその誘導体、有機リン系化合物、第二級アミン類、第三級アミン類、及び第四級アンモニウム塩等を加えてもよく、これらの1種又は2種以上を混合して使用できる。   Furthermore, if necessary, imidazoles and derivatives thereof, organophosphorus compounds, secondary amines, tertiary amines, quaternary ammonium salts, and the like may be added as curing accelerators. One kind or a mixture of two or more kinds can be used.

本発明の熱硬化性樹脂組成物には、任意に無機充填材を含有させることができる。無機充填材としては、シリカ、アルミナ、タルク、マイカ、カオリン、水酸化アルミニウム、ベーマイト、水酸化マグネシウム、ホウ酸亜鉛、スズ酸亜鉛、酸化亜鉛、酸化チタン、窒化ホウ素、炭酸カルシウム、硫酸バリウム、ホウ酸アルミニウム、チタン酸カリウム、EガラスやTガラス、Dガラス等のガラス粉や中空ガラスビーズ等が挙げられ、これらはそれぞれ単独で使用することもできるし、2種以上を混合して使用することもできる。   The thermosetting resin composition of the present invention can optionally contain an inorganic filler. Inorganic fillers include silica, alumina, talc, mica, kaolin, aluminum hydroxide, boehmite, magnesium hydroxide, zinc borate, zinc stannate, zinc oxide, titanium oxide, boron nitride, calcium carbonate, barium sulfate, and boron. Examples include aluminum oxide, potassium titanate, glass powder such as E glass, T glass, and D glass, and hollow glass beads. These can be used alone or in combination of two or more. You can also.

無機充填材としては、誘電特性、耐熱性、低熱膨張性の点からシリカが特に好ましい。シリカとしては、例えば、湿式法で製造され含水率の高い沈降シリカと、乾式法で製造され結合水等をほとんど含まない乾式法シリカが挙げられ、乾式法シリカとしてはさらに、製造法の違いにより破砕シリカ、フュームドシリカ、溶融球状シリカが挙げられる。これらの中で、低熱膨張性及び樹脂に充填した際の高流動性から溶融球状シリカが好ましい。   As the inorganic filler, silica is particularly preferable from the viewpoints of dielectric properties, heat resistance, and low thermal expansion. Examples of the silica include a precipitated silica produced by a wet method and having a high water content, and a dry method silica produced by a dry method and containing almost no bound water. The dry method silica further includes differences in production methods. Examples include crushed silica, fumed silica, and fused spherical silica. Among these, fused spherical silica is preferable because of its low thermal expansion and high fluidity when filled in a resin.

無機充填材として溶融球状シリカを用いる場合、その平均粒子径は0.1〜10μmであることが好ましく、0.3〜8μmであることがより好ましい。該溶融球状シリカの平均粒子径を0.1μm以上にすることで、樹脂に高充填した際の流動性を良好に保つことができ、さらに10μm以下にすることで、粗大粒子の混入確率を減らし粗大粒子起因の不良の発生を抑えることができる。ここで、平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めた時、体積50%に相当する点の粒子径のことであり、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。   When fused spherical silica is used as the inorganic filler, the average particle size is preferably 0.1 to 10 μm, and more preferably 0.3 to 8 μm. By setting the average particle diameter of the fused spherical silica to 0.1 μm or more, the fluidity when the resin is highly filled can be kept good, and by setting it to 10 μm or less, the mixing probability of coarse particles is reduced. Generation of defects due to coarse particles can be suppressed. Here, the average particle diameter is a particle diameter at a point corresponding to a volume of 50% when a cumulative frequency distribution curve based on the particle diameter is obtained with the total volume of the particles as 100%, and a laser diffraction scattering method is used. It can be measured with a particle size distribution measuring device.

無機充填材の配合量は、熱硬化性樹脂組成物中の固形分換算樹脂成分合計量100質量部に対して、20〜300質量部であることが好ましく、50〜200質量部であることがより好ましい。無機充填材の配合量を20〜300質量部にすることで、プリプレグの成形性と低熱膨張性を良好に保つことができる。   It is preferable that the compounding quantity of an inorganic filler is 20-300 mass parts with respect to 100 mass parts of solid content conversion resin component total amount in a thermosetting resin composition, and it is 50-200 mass parts. More preferred. By making the compounding quantity of an inorganic filler into 20-300 mass parts, the moldability and low thermal expansibility of a prepreg can be kept favorable.

本発明の熱硬化性樹脂組成物には、樹脂組成物として熱硬化性の性質を損なわない程度に、熱可塑性樹脂、エラストマー、有機充填材、難燃剤、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤及び接着性向上剤等を使用できる。   The thermosetting resin composition of the present invention includes a thermoplastic resin, an elastomer, an organic filler, a flame retardant, an ultraviolet absorber, an antioxidant, and a photopolymerization as long as the thermosetting property is not impaired as the resin composition. Initiators, fluorescent brighteners and adhesion improvers can be used.

熱可塑性樹脂の例としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンエーテル樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、キシレン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、シリコーン樹脂、テトラフルオロエチレン樹脂が挙げられる。   Examples of thermoplastic resins include polyethylene, polypropylene, polystyrene, polyphenylene ether resin, phenoxy resin, polycarbonate resin, polyester resin, polyamide resin, polyamideimide resin, polyimide resin, xylene resin, polyphenylene sulfide resin, polyetherimide resin, poly Examples include ether ether ketone resins, polyether imide resins, silicone resins, and tetrafluoroethylene resins.

エラストマーの例としては、ポリブタジエン、アクリロニトリル、エポキシ変性ポリブタジエン、無水マレイン酸変性ポリブタジエン、フェノール変性ポリブタジエン及びカルボキシ変性アクリロニトリルが挙げられる。   Examples of elastomers include polybutadiene, acrylonitrile, epoxy-modified polybutadiene, maleic anhydride-modified polybutadiene, phenol-modified polybutadiene, and carboxy-modified acrylonitrile.

有機充填材の例としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンエーテル樹脂、シリコーン樹脂、テトラフルオロエチレン樹脂等よりなる均一構造の樹脂フィラー、アクリル酸エステル系樹脂、メタクリル酸エステル系樹脂、共役ジエン系樹脂等よりなるゴム状態のコア層と、アクリル酸エステル系樹脂、メタクリル酸エステル系樹脂、芳香族ビニル系樹脂、シアン化ビニル系樹脂よりなるガラス状態のシェル層を持つコアシェル構造の樹脂フィラーが挙げられる。   Examples of organic fillers include resin fillers of uniform structure made of polyethylene, polypropylene, polystyrene, polyphenylene ether resin, silicone resin, tetrafluoroethylene resin, acrylate ester resin, methacrylate ester resin, conjugated diene resin And a core-shell structure resin filler having a glassy shell layer made of an acrylic ester resin, a methacrylic ester resin, an aromatic vinyl resin, and a vinyl cyanide resin. .

難燃剤の例としては、臭素や塩素を含有する含ハロゲン系難燃剤;トリフェニルホスフェート、トリクレジルホスフェート、トリスジクロロプロピルホスフェート、リン酸エステル系化合物、赤リン等のリン系難燃剤;スルファミン酸グアニジン、硫酸メラミン、ポリリン酸メラミン、メラミンシアヌレート等の窒素系難燃剤;シクロホスファゼン、ポリホスファゼン等のホスファゼン系難燃剤;三酸化アンチモン等の無機系難燃剤が挙げられる。   Examples of flame retardants include halogen-containing flame retardants containing bromine and chlorine; phosphorus flame retardants such as triphenyl phosphate, tricresyl phosphate, trisdichloropropyl phosphate, phosphoric ester compounds, red phosphorus; sulfamic acid Nitrogen flame retardants such as guanidine, melamine sulfate, melamine polyphosphate and melamine cyanurate; phosphazene flame retardants such as cyclophosphazene and polyphosphazene; and inorganic flame retardants such as antimony trioxide.

その他、紫外線吸収剤の例としてはベンゾトリアゾール系紫外線吸収剤、酸化防止剤の例としてはヒンダードフェノール系やヒンダードアミン系酸化防止剤、光重合開始剤の例としてはベンゾフェノン類、ベンジルケタール類、チオキサントン系の光重合開始剤、蛍光増白剤の例としてはスチルベン誘導体の蛍光増白剤、接着性向上剤の例としては尿素シラン等の尿素化合物やシラン系、チタネート系、アルミネート系等のカップリング剤が挙げられる。
また、配合時、無機充填材をシラン系、チタネート系等のカップリング剤、シリコーンオリゴマー等の表面処理剤で前処理、あるいはインテグラルブレンド処理することも好ましい。
Other examples of UV absorbers include benzotriazole UV absorbers, examples of antioxidants include hindered phenols and hindered amines, and examples of photopolymerization initiators include benzophenones, benzyl ketals, and thioxanthone. Examples of photopolymerization initiators and fluorescent brighteners include stilbene derivative fluorescent brighteners, and adhesion improvers such as urea compounds such as urea silane and silane, titanate and aluminate cups. A ring agent is mentioned.
Further, at the time of blending, it is also preferable that the inorganic filler is pretreated with a silane-based or titanate-based coupling agent or a surface-treating agent such as a silicone oligomer, or an integral blend treatment.

本発明の熱硬化性樹脂組成物は、通常、希釈溶媒として有機溶媒を使用し、ワニスとして使用される。該有機溶媒は特に制限されないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;メチルセロソルブ等のアルコール系溶媒;テトラヒドロフランなどのエーテル系溶媒、トルエン、キシレン、メシチレン等の芳香族系溶媒が挙げられ、1種又は2種以上を混合して使用できる。
最終的に得られるワニス中の樹脂組成物は、ワニス全体の40〜90質量%であることが好ましく、50〜80質量%であることがより好ましい。ワニス中の樹脂組成物の含有量を40〜90質量%にすることで、塗工性を良好に保ち、適切な樹脂組成物付着量のプリプレグを得ることができる。
The thermosetting resin composition of the present invention is usually used as a varnish using an organic solvent as a diluting solvent. The organic solvent is not particularly limited. For example, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; alcohol solvents such as methyl cellosolve; ether solvents such as tetrahydrofuran; aromatics such as toluene, xylene, and mesitylene A system solvent is mentioned and it can use 1 type or in mixture of 2 or more types.
It is preferable that the resin composition in the varnish finally obtained is 40 to 90 mass% of the whole varnish, and it is more preferable that it is 50 to 80 mass%. By setting the content of the resin composition in the varnish to 40 to 90% by mass, it is possible to maintain good coatability and obtain a prepreg having an appropriate resin composition adhesion amount.

本発明のプリプレグは、本発明の熱硬化性樹脂組成物を、基材に含浸又は塗工した後、Bステージ化してなるものである。すなわち、本発明の熱硬化性樹脂組成物を、基材に含浸又は、吹付け、押出し等の方法で塗工した後、加熱等により半硬化(Bステージ化)して本発明のプリプレグを製造する。以下、本発明のプリプレグについて詳述する。   The prepreg of the present invention is formed by impregnating or coating the thermosetting resin composition of the present invention on a base material and then forming a B-stage. That is, the thermosetting resin composition of the present invention is applied to a substrate by a method such as impregnation, spraying, or extrusion, and then semi-cured (B-stage) by heating or the like to produce the prepreg of the present invention. To do. Hereinafter, the prepreg of the present invention will be described in detail.

本発明のプリプレグに用いられる基材として、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。その材質の例としては、Eガラス、Dガラス、Sガラス及びQガラス等の無機物繊維;ポリイミド、ポリエステル及びテトラフルオロエチレン等の有機繊維、並びにそれらの混合物が挙げられる。
これらの基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット及びサーフェシングマット等の形状を有するが、材質及び形状は、目的とする成形物の用途や性能により選択され、必要により、単独又は2種類以上の材質及び形状を組み合わせることができる。
基材の厚さは、特に制限されず、例えば、約0.03〜0.5mmのものを使用することができ、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、耐熱性や耐湿性、加工性の面から好適である。
該基材に対する樹脂組成物の付着量が、乾燥後のプリプレグの樹脂含有率で、20〜90質量%となるように、基材に含浸又は塗工した後、通常、100〜200℃の温度で1〜30分加熱乾燥し、半硬化(Bステージ化)させることで、本発明のプリプレグを得ることができる。
As the base material used in the prepreg of the present invention, known materials used for various types of laminates for electrical insulating materials can be used. Examples of the material include inorganic fibers such as E glass, D glass, S glass, and Q glass; organic fibers such as polyimide, polyester, and tetrafluoroethylene, and mixtures thereof.
These base materials have, for example, shapes such as woven fabric, non-woven fabric, robink, chopped strand mat, and surfacing mat, but the material and shape are selected depending on the intended use and performance of the molded product, and if necessary, A single material or two or more materials and shapes can be combined.
The thickness of the substrate is not particularly limited. For example, a substrate having a thickness of about 0.03 to 0.5 mm can be used, and the substrate is surface-treated with a silane coupling agent or the like, or mechanically opened. Is suitable from the viewpoints of heat resistance, moisture resistance and processability.
After impregnating or coating the base material so that the amount of the resin composition attached to the base material is 20 to 90% by mass in terms of the resin content of the prepreg after drying, the temperature is usually 100 to 200 ° C. The prepreg of the present invention can be obtained by drying by heating for 1 to 30 minutes and semi-curing (B-stage).

本発明の積層板は、絶縁樹脂層が本発明のプリプレグを用いて形成されたものであり、前述のプリプレグを用いて、積層成形して、本発明の積層板を形成することができる。例えば、前述のプリプレグを、1〜20枚重ね、その片面又は両面に銅及びアルミニウム等の金属箔を配置した構成で積層成形することにより積層板を製造することができる。金属箔は、電気絶縁材料用積層板で用いるものであれば特に制限されない。また、成形条件は、例えば、電気絶縁材料用積層板及び多層板の手法が適用でき、例えば多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100〜250℃、圧力0.2〜10MPa、加熱時間0.1〜5時間の範囲で成形することができる。また、本発明のプリプレグと内層用配線板とを組合せ、積層成形して、多層板を製造することもできる。   In the laminated board of the present invention, the insulating resin layer is formed using the prepreg of the present invention, and the laminated board of the present invention can be formed by laminating using the prepreg described above. For example, a laminated board can be manufactured by laminating 1-20 sheets of the prepregs described above and laminating them with a structure in which a metal foil such as copper and aluminum is disposed on one or both sides thereof. The metal foil is not particularly limited as long as it is used for the laminate for an electrical insulating material. The molding conditions may be, for example, a laminated plate for an electrical insulating material and a multilayer plate. For example, a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine or the like is used, and the temperature is 100 to 250 ° C. and the pressure is 0. It can be molded in a range of 2 to 10 MPa and a heating time of 0.1 to 5 hours. Further, the prepreg of the present invention and the inner layer wiring board can be combined and laminated to produce a multilayer board.

本発明のプリント配線板は、本発明の積層板における絶縁樹脂層の片面又は両面に配置された金属箔を回路加工して得られたものである。すなわち、本発明の積層板の導体層を通常のエッチング法によって配線加工し、前述のプリプレグを介して配線加工した積層板を複数積層し、加熱プレス加工することによって一括して多層化した後、ドリル加工又はレーザ加工によるスルーホール又はブラインドビアホールの形成と、メッキ又は導電性ペーストによる層間配線の形成を経て多層プリント配線板を製造することができる。   The printed wiring board of the present invention is obtained by circuit processing of a metal foil disposed on one or both surfaces of the insulating resin layer in the laminated board of the present invention. That is, the conductor layer of the laminated board of the present invention is processed by wiring by a normal etching method, a plurality of laminated boards processed by wiring through the above-mentioned prepreg, and after being multilayered by heating press processing, A multilayer printed wiring board can be manufactured through formation of through holes or blind via holes by drilling or laser processing, and formation of interlayer wiring by plating or conductive paste.

次に、下記の実施例により本発明を更に詳しく説明するが、これらの実施例は本発明を制限するものではない。
なお、以下の実施例で得られた銅張積層板は、以下の方法で性能を測定・評価した。
Next, the present invention will be described in more detail with reference to the following examples, but these examples do not limit the present invention.
The copper clad laminate obtained in the following examples was measured and evaluated for performance by the following method.

(1)ガラス転移温度(Tg)
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置(デュポン社製「TMA2940」)を用いて圧縮法で熱機械分析をおこなった。評価基板を当該装置のX方向に装着後、荷重5g、昇温速度10℃/分の測定条件にて連続して2回測定した。2回目の測定における熱膨張曲線の異なる接線の交点で示されるTgを求め、耐熱性を評価した。
(2)熱膨張率
上記(1)ガラス転移温度の評価方法と同様にして熱機械分析を行い、2回目の測定における30℃から100℃までの平均熱膨張率を算出し、これを熱膨張率の値とした。
(3)曲げ弾性率
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた50mm×25mmの評価基板を作製し、(株)オリエンテック社製「5トンテンシロン」を用い、クロスヘッド速度1mm/minスパン間距離20mmで測定した。
(4)銅箔接着性(銅箔ピール強度)
銅張積層板を銅エッチング液に浸漬することにより3mm幅の銅箔を形成して評価基板を作製し、引張り試験機を用いて銅箔の接着性(ピール強度)を測定した。
(5)耐デスミア性
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた40mm×40mmの評価基板を、下記の表(A)に示す工程によりデスミア処理した。薬液はアトテック社製を用いた。耐デスミア性の評価は、デスミア処理前の乾燥重量に対するデスミア処理後の重量差から算出した。
(1) Glass transition temperature (Tg)
A 5 mm square evaluation board from which the copper foil was removed by immersing the copper clad laminate in a copper etching solution was prepared, and thermomechanical analysis was performed by a compression method using a TMA test apparatus (“TMA2940” manufactured by DuPont). . After mounting the evaluation substrate in the X direction of the apparatus, the measurement was continuously performed twice under the measurement conditions of a load of 5 g and a heating rate of 10 ° C./min. The Tg indicated by the intersection of tangents with different thermal expansion curves in the second measurement was determined, and the heat resistance was evaluated.
(2) Thermal expansion coefficient Thermomechanical analysis was performed in the same manner as in the above (1) glass transition temperature evaluation method, and the average thermal expansion coefficient from 30 ° C. to 100 ° C. in the second measurement was calculated. The rate value was used.
(3) Flexural modulus A 50 mm x 25 mm evaluation board from which the copper foil was removed by immersing a copper clad laminate in a copper etching solution, and using “5 ton tensilon” manufactured by Orientec Co., Ltd. Measurement was performed at a head speed of 1 mm / min and a span distance of 20 mm.
(4) Copper foil adhesion (copper foil peel strength)
A copper foil having a width of 3 mm was formed by immersing the copper clad laminate in a copper etching solution to produce an evaluation substrate, and the adhesion (peel strength) of the copper foil was measured using a tensile tester.
(5) Desmear resistance A 40 mm × 40 mm evaluation board from which the copper foil was removed by immersing the copper-clad laminate in a copper etching solution was subjected to desmear treatment by the process shown in Table (A) below. A chemical manufactured by Atotech was used. The evaluation of desmear resistance was calculated from the weight difference after desmear treatment with respect to the dry weight before desmear treatment.

Figure 2014019796
Figure 2014019796

実施例1〜7及び比較例1〜4
以下に示す各成分を第1表及び第2表に示した配合割合(質量部)で混合し、溶媒にメチルエチルケトンを用いて樹脂分65質量%の均一なワニスを作製した。次に、このワニスを厚さ0.1mmのEガラスクロスに含浸塗工し、160℃で10分加熱乾燥して樹脂含有量48質量%のプリプレグを得た。
このプリプレグを4枚重ね、12μmの電解銅箔を上下に配置し、圧力2.5MPa、温度240℃で60分間プレスを行って、銅張積層板を得た。得られた銅張積層板の試験・評価した結果を第1表及び第2表に示す。
Examples 1-7 and Comparative Examples 1-4
Each component shown below was mixed in the blending ratio (parts by mass) shown in Tables 1 and 2, and methyl ethyl ketone was used as a solvent to prepare a uniform varnish having a resin content of 65% by mass. Next, this varnish was impregnated and applied to an E glass cloth having a thickness of 0.1 mm and dried by heating at 160 ° C. for 10 minutes to obtain a prepreg having a resin content of 48 mass%.
Four prepregs were stacked, 12 μm electrolytic copper foils were placed one above the other, and pressed at a pressure of 2.5 MPa and a temperature of 240 ° C. for 60 minutes to obtain a copper-clad laminate. Tables 1 and 2 show the results of tests and evaluations of the obtained copper-clad laminate.

ナフタレン骨格を有するエポキシ樹脂(a)
(a−1)α−ナフトール/クレゾールノボラック型エポキシ樹脂〔日本化薬(株)製、商品名:NC−7000L〕
(a−2)ナフトール/クレゾールノボラック型エポキシ樹脂〔DIC(株)製、商品名:EXA−9520〕
(a−3)3官能ナフタレン型エポキシ樹脂〔DIC(株)製、商品名:EXA−4750〕
Epoxy resin having naphthalene skeleton (a)
(A-1) α-Naphthol / cresol novolac type epoxy resin [manufactured by Nippon Kayaku Co., Ltd., trade name: NC-7000L]
(A-2) Naphthol / cresol novolac type epoxy resin [manufactured by DIC Corporation, trade name: EXA-9520]
(A-3) Trifunctional naphthalene type epoxy resin [manufactured by DIC Corporation, trade name: EXA-4750]

分子構造中に少なくとも2個のN−置換マレイミド基有し、かつフェノキシ基を有するマレイミド化合物(b)
(b−1)2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン〔大和化成工業(株)製、商品名:BMI−4000〕
Maleimide compound (b) having at least two N-substituted maleimide groups in the molecular structure and having a phenoxy group
(B-1) 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane (manufactured by Daiwa Kasei Kogyo Co., Ltd., trade name: BMI-4000)

アミノ基を有するシリコーン化合物(c)
(c−1)両末端ジアミン変性シロキサン〔信越化学工業(株)製、商品名:X−22−161A〕
(c−2)両末端ジアミン変性シロキサン〔信越化学工業(株)製、商品名:KF−8012〕
(c−3)側鎖型アミノ変性シロキサン〔東レ・ダウコーニング(株)製、商品名:BY16−849〕
Silicone compound having amino group (c)
(C-1) Both-end diamine-modified siloxane [manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X-22-161A]
(C-2) Both-end diamine-modified siloxane [manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KF-8012]
(C-3) Side chain type amino-modified siloxane [manufactured by Toray Dow Corning Co., Ltd., trade name: BY16-849]

酸性置換基を有するアミン化合物(d)
(d−1)芳香族アミン〔関東化学(株)製、p−アミノフェノール〕
(d−2)芳香族アミン〔関東化学(株)製、m−アミノフェノール〕
Amine compound (d) having acidic substituent
(D-1) Aromatic amine [manufactured by Kanto Chemical Co., Inc., p-aminophenol]
(D-2) Aromatic amine [manufactured by Kanto Chemical Co., Ltd., m-aminophenol]

分子構造中に少なくとも2個の1級アミノ基を有するアミン化合物(e)
(e−1)3,3'−ジエチル−4,4'−ジアミノジフェニルメタン〔日本化薬(株)製、商品名:KAYAHARD A−A〕
(e−2)2,2'−ビス[4−(4−アミノフェノキシ)フェニル]プロパン〔和歌山精化工業(株)製、商品名:BAPP〕
Amine compound (e) having at least two primary amino groups in the molecular structure
(E-1) 3,3′-diethyl-4,4′-diaminodiphenylmethane [manufactured by Nippon Kayaku Co., Ltd., trade name: KAYAHARD AA]
(E-2) 2,2′-bis [4- (4-aminophenoxy) phenyl] propane [manufactured by Wakayama Seika Kogyo Co., Ltd., trade name: BAPP]

2個のN−置換マレイミド基を有するマレイミド化合物(f)
(f−1)ビス(4−マレイミドフェニル)メタン〔ケイ・アイ化成(株)製、商品名:BMI〕
Maleimide compound (f) having two N-substituted maleimide groups
(F-1) Bis (4-maleimidophenyl) methane [manufactured by Kay Kasei Co., Ltd., trade name: BMI]

製造例1(変性シリコーン化合物(X−1)の製造)
温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、X−22−161A(c−1成分)99.2gと、3,3'−ジエチル−4,4'−ジアミノジフェニルメタン(e−1成分)54.4gと、p−アミノフェノール(d−1成分)4.8gと、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン(b−1成分)219.1g及びプロピレングリコールモノメチルエーテル(有機溶媒)250.0gを入れ、100℃で3時間反応させて、変性シリコーン化合物(X−1)含有溶液を得た。
Production Example 1 (Production of Modified Silicone Compound (X-1))
In a reaction vessel with a capacity of 2 liters that can be heated and cooled, equipped with a thermometer, a stirrer, a moisture quantifier with a reflux condenser, 99.2 g of X-22-161A (component c-1), 3,3′- Diethyl-4,4′-diaminodiphenylmethane (e-1 component) 54.4 g, p-aminophenol (d-1 component) 4.8 g, 2,2-bis (4- (4-maleimidophenoxy) phenyl ) 219.1 g of propane (component b-1) and 250.0 g of propylene glycol monomethyl ether (organic solvent) were added and reacted at 100 ° C. for 3 hours to obtain a modified silicone compound (X-1) -containing solution.

製造例2(変性シリコーン化合物(X−2)の製造)
製造例1と同様の反応容器を用い、これにKF−8012(c−2成分)23.8gと、3,3'−ジエチル−4,4'−ジアミノジフェニルメタン(e−1成分)15.0gと、p−アミノフェノール(d−1成分)4.7gと、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン(b−1成分)215.6g及びプロピレングリコールモノメチルエーテル(有機溶媒)250.0gを入れ、115℃で3時間反応させて、変性シリコーン化合物(X−2)含有溶液を得た。
Production Example 2 (Production of Modified Silicone Compound (X-2))
Using the same reaction vessel as in Production Example 1, 23.8 g of KF-8012 (component c-2) and 15.0 g of 3,3′-diethyl-4,4′-diaminodiphenylmethane (component e-1) were used. 4.7 g of p-aminophenol (d-1 component), 215.6 g of 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane (b-1 component) and propylene glycol monomethyl ether (organic) Solvent) 250.0 g was added and reacted at 115 ° C. for 3 hours to obtain a modified silicone compound (X-2) -containing solution.

製造例3(変性シリコーン化合物(X−3)の製造)
製造例1と同様の反応容器を用い、これにBY16−849(c−3成分)148.2gと、3,3'−ジエチル−4,4'−ジアミノジフェニルメタン(e−1成分)54.5gと、p−アミノフェノール(d−1成分)4.7gと、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン(b−1成分)215.6g及びプロピレングリコールモノメチルエーテル(有機溶媒)250.0gを入れ、115℃で3時間反応させて、変性シリコーン化合物(X−3)含有溶液を得た。
Production Example 3 (Production of Modified Silicone Compound (X-3))
Using the same reaction vessel as in Production Example 1, 148.2 g of BY16-849 (component c-3) and 54.5 g of 3,3′-diethyl-4,4′-diaminodiphenylmethane (component e-1) were used. 4.7 g of p-aminophenol (d-1 component), 215.6 g of 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane (b-1 component) and propylene glycol monomethyl ether (organic) Solvent) 250.0 g was added and reacted at 115 ° C. for 3 hours to obtain a modified silicone compound (X-3) -containing solution.

比較製造例1(変性シリコーン化合物(X−4)の製造)
製造例1と同様の反応容器を用い、これにX−22−161A(c−1成分)99.2gと、3,3'−ジエチル−4,4'−ジアミノジフェニルメタン(e−1成分)54.4gと、p−アミノフェノール(d−1成分)4.8gと、ビス(4−マレイミドフェニル)メタン(f−1成分、b−1に対する比較成分)125.3g及びプロピレングリコールモノメチルエーテル(有機溶媒)250.0gを入れ、100℃で3時間反応させて、変性シリコーン化合物(X−4)含有溶液を得た。
Comparative Production Example 1 (Production of Modified Silicone Compound (X-4))
The same reaction vessel as in Production Example 1 was used. To this, 99.2 g of X-22-161A (c-1 component) and 3,3′-diethyl-4,4′-diaminodiphenylmethane (e-1 component) 54 were added. .4 g, p-aminophenol (d-1 component) 4.8 g, bis (4-maleimidophenyl) methane (f-1 component, comparison component to b-1) 125.3 g and propylene glycol monomethyl ether (organic) Solvent) 250.0 g was added and reacted at 100 ° C. for 3 hours to obtain a modified silicone compound (X-4) -containing solution.

比較製造例2(変性シリコーン化合物(X−5)の製造)
製造例1と同様の反応容器を用い、これにBY16−849(c−3成分)148.2gと、3,3'−ジエチル−4,4'−ジアミノジフェニルメタン(e−1成分)54.4gと、p−アミノフェノール(d−1成分)4.8gと、ビス(4−マレイミドフェニル)メタン(f−1成分、b−1に対する比較成分)125.3g及びプロピレングリコールモノメチルエーテル(有機溶媒)250.0gを入れ、100℃で3時間反応させて、変性シリコーン化合物(X−5)含有溶液を得た。
Comparative Production Example 2 (Production of Modified Silicone Compound (X-5))
Using the same reaction vessel as in Production Example 1, 148.2 g of BY16-849 (component c-3) and 54.4 g of 3,3′-diethyl-4,4′-diaminodiphenylmethane (component e-1) were used. 4.8 g of p-aminophenol (d-1 component), 125.3 g of bis (4-maleimidophenyl) methane (f-1 component, comparative component for b-1) and propylene glycol monomethyl ether (organic solvent) 250.0 g was added and reacted at 100 ° C. for 3 hours to obtain a modified silicone compound (X-5) -containing solution.

エポキシ樹脂(g)
(g−1)フェノールノボラック型エポキシ樹脂〔DIC(株)製、商品名:N−770〕
(g−2)ビフェニルアラルキル型エポキシ樹脂〔日本化薬(株)製、商品名:NC−3000H〕
Epoxy resin (g)
(G-1) Phenol novolac type epoxy resin [manufactured by DIC Corporation, trade name: N-770]
(G-2) Biphenyl aralkyl type epoxy resin [manufactured by Nippon Kayaku Co., Ltd., trade name: NC-3000H]

硬化促進剤:下記の式(I)に示す構造のヘキサメチレンジイソシアネートと2−エチル−4−メチルイミダゾールの付加反応物
無機充填材:溶融シリカ((株)アドマテックス製、商品名:SC2050−KNK)
Curing accelerator: Addition reaction product of hexamethylene diisocyanate and 2-ethyl-4-methylimidazole having a structure represented by the following formula (I): Inorganic filler: Fused silica (manufactured by Admatechs Co., Ltd., trade name: SC2050-KNK) )

Figure 2014019796
Figure 2014019796

Figure 2014019796
Figure 2014019796

Figure 2014019796
Figure 2014019796

第1表から明らかなように、本発明の実施例では、ガラス転移温度(Tg)、低熱膨張率、弾性率、銅箔接着性および耐デスミア性の全てに優れている。一方、第2表から明らかなように、比較例では、ガラス転移温度(Tg)、低熱膨張率、弾性率、銅箔接着性および耐デスミア性の全ての特性を同時に満たすものはなく、特に低熱膨張率および耐デスミア性の特性に劣っている。従って、本発明の熱硬化性樹脂組成物は、特に低熱膨張率および耐デスミア性に優れた積層板が得られている。   As is apparent from Table 1, the examples of the present invention are excellent in all of glass transition temperature (Tg), low thermal expansion coefficient, elastic modulus, copper foil adhesion and desmear resistance. On the other hand, as is apparent from Table 2, in the comparative example, none of the glass transition temperature (Tg), the low thermal expansion coefficient, the elastic modulus, the copper foil adhesion and the desmear resistance are satisfied at the same time. Inferior expansion coefficient and desmear resistance. Therefore, the thermosetting resin composition of the present invention has a laminated sheet excellent in low thermal expansion coefficient and desmear resistance.

本発明の熱硬化性樹脂組成物は、特に低熱膨張率および耐デスミア性に優れた積層板が得られることから、高密度化、高多層化されたプリント配線板を製造することができ、大量のデータを高速で処理するコンピュータや情報機器端末等の用いられる電子機器の配線板に好適に用いられる。   The thermosetting resin composition of the present invention can produce a laminated board having a particularly low thermal expansion coefficient and resistance to desmear, so that a printed wiring board having a high density and a high multilayer can be produced. It is suitably used for a wiring board of an electronic device such as a computer or an information device terminal that processes the data at a high speed.

Claims (9)

ナフタレン骨格を有するエポキシ樹脂(a)、分子構造中に少なくとも2個のN−置換マレイミド基を有し、かつフェノキシ基を有するマレイミド化合物(b)、1級アミノ基を有するシリコーン化合物(c)及び酸性置換基を有するアミン化合物(d)を配合してなる熱硬化性樹脂組成物。   An epoxy resin having a naphthalene skeleton (a), a maleimide compound (b) having at least two N-substituted maleimide groups in the molecular structure and having a phenoxy group, and a silicone compound (c) having a primary amino group; A thermosetting resin composition comprising an amine compound (d) having an acidic substituent. 前記ナフタレン骨格を有するエポキシ樹脂(a)がナフトール/クレゾールノボラック型骨格を有する化合物である請求項1記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to claim 1, wherein the epoxy resin (a) having a naphthalene skeleton is a compound having a naphthol / cresol novolac skeleton. さらに、分子構造中に少なくとも2個の1級アミノ基を有する有機アミン化合物(e)を配合する請求項1又は2に記載の熱硬化性樹脂組成物。   Furthermore, the thermosetting resin composition of Claim 1 or 2 which mix | blends the organic amine compound (e) which has an at least 2 primary amino group in molecular structure. ナフタレン骨格を有するエポキシ樹脂(a)、分子構造中に少なくとも2個のN−置換マレイミド基を有し、かつフェノキシ基を有するマレイミド化合物(b)と1級アミノ基を有するシリコーン化合物(c)と酸性置換基を有するアミン化合物(d)と分子構造中に少なくとも2個の1級アミノ基を有する有機アミン化合物(e)とを反応させて得られる、アミノ基、イミド基及びN−置換マレイミド基を有する変性シリコーン化合物を含有する熱硬化性樹脂組成物。   An epoxy resin having a naphthalene skeleton (a), a maleimide compound (b) having at least two N-substituted maleimide groups in the molecular structure and having a phenoxy group, and a silicone compound (c) having a primary amino group; Amino group, imide group and N-substituted maleimide group obtained by reacting an amine compound (d) having an acidic substituent with an organic amine compound (e) having at least two primary amino groups in the molecular structure The thermosetting resin composition containing the modified silicone compound which has this. さらに、無機充填材を含有する請求項1〜4のいずれかに記載の熱硬化性樹脂組成物。   Furthermore, the thermosetting resin composition in any one of Claims 1-4 containing an inorganic filler. さらに、硬化促進剤として、下記の式(I)に示す構造のヘキサメチレンジイソシアネートと2−エチル−4−メチルイミダゾールの付加反応物を含有する請求項1〜5のいずれかに記載の熱硬化性樹脂組成物。
Figure 2014019796
Furthermore, the thermosetting property in any one of Claims 1-5 containing the addition reaction product of the hexamethylene diisocyanate of the structure shown to following formula (I) and 2-ethyl-4-methylimidazole as a hardening accelerator. Resin composition.
Figure 2014019796
請求項1〜6のいずれかに記載の熱硬化性樹脂組成物を基材に含侵又は塗工した後、Bステージ化してなるプリプレグ。   A prepreg formed by impregnating or coating the thermosetting resin composition according to any one of claims 1 to 6 on a base material and then forming a B-stage. 絶縁樹脂層が請求項7に記載のプリプレグを用いて形成されたものである積層板。   A laminated board in which the insulating resin layer is formed using the prepreg according to claim 7. 請求項8に記載の積層板における絶縁樹脂層の片面又は両面に配置された金属箔を回路加工して得られたものであるプリント配線板。   The printed wiring board obtained by carrying out circuit processing of the metal foil arrange | positioned at the single side | surface or both surfaces of the insulating resin layer in the laminated board of Claim 8.
JP2012160040A 2012-07-18 2012-07-18 Thermosetting resin composition, prepreg, laminate and printed wiring board using the same Active JP6040606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012160040A JP6040606B2 (en) 2012-07-18 2012-07-18 Thermosetting resin composition, prepreg, laminate and printed wiring board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012160040A JP6040606B2 (en) 2012-07-18 2012-07-18 Thermosetting resin composition, prepreg, laminate and printed wiring board using the same

Publications (2)

Publication Number Publication Date
JP2014019796A true JP2014019796A (en) 2014-02-03
JP6040606B2 JP6040606B2 (en) 2016-12-07

Family

ID=50195075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012160040A Active JP6040606B2 (en) 2012-07-18 2012-07-18 Thermosetting resin composition, prepreg, laminate and printed wiring board using the same

Country Status (1)

Country Link
JP (1) JP6040606B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224308A (en) * 2014-05-28 2015-12-14 日立化成株式会社 Thermosetting resin composition, prepreg, film with resin, laminate sheet, multilayer printed circuit board and semiconductor package
JP2015232066A (en) * 2014-06-09 2015-12-24 日立化成株式会社 Thermosetting resin composition, and prepreg, laminate and printed wiring board prepared using the same
WO2018151287A1 (en) * 2017-02-17 2018-08-23 日立化成株式会社 Prepreg, laminate, printed wiring board, coreless substrate, semiconductor package and method for producing coreless substrate
WO2019172342A1 (en) * 2018-03-06 2019-09-12 日立化成株式会社 Prepreg, layered plate, multilayer printed wiring board, semiconductor package, and resin composition, and method of manufacturing prepreg, layered plate, and multilayer printed wiring board

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246933A (en) * 1986-04-18 1987-10-28 Shin Etsu Chem Co Ltd Production of imide group-containing organopolysiloxane
JPS63235329A (en) * 1987-03-10 1988-09-30 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Heat resistant polymer based on maleimide arbitrarily containing bis(maleimide)-siloxane and siloxane-diamine and its production
JPH03221526A (en) * 1990-01-26 1991-09-30 Hitachi Chem Co Ltd Production of cured product of maleimide resin
JP2000204246A (en) * 1999-01-11 2000-07-25 Tomoegawa Paper Co Ltd Thermosetting lowely dielectric resin composition and its use
JP2010043253A (en) * 2008-07-15 2010-02-25 Hitachi Chem Co Ltd Thermosetting insulating resin composition, and prepreg, film with resin, laminate and multilayer printed wiring board using the same
JP2010106150A (en) * 2008-10-30 2010-05-13 Hitachi Chem Co Ltd Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same
JP2010248473A (en) * 2009-03-27 2010-11-04 Hitachi Chem Co Ltd Thermosetting resin composition, and prepreg, laminate and multi-layered printed wiring board using same
JP2011157509A (en) * 2010-02-02 2011-08-18 Hitachi Chem Co Ltd Thermosetting insulating resin composition, and prepreg, laminated board, and multilayer printed wiring board using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246933A (en) * 1986-04-18 1987-10-28 Shin Etsu Chem Co Ltd Production of imide group-containing organopolysiloxane
JPS63235329A (en) * 1987-03-10 1988-09-30 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Heat resistant polymer based on maleimide arbitrarily containing bis(maleimide)-siloxane and siloxane-diamine and its production
JPH03221526A (en) * 1990-01-26 1991-09-30 Hitachi Chem Co Ltd Production of cured product of maleimide resin
JP2000204246A (en) * 1999-01-11 2000-07-25 Tomoegawa Paper Co Ltd Thermosetting lowely dielectric resin composition and its use
JP2010043253A (en) * 2008-07-15 2010-02-25 Hitachi Chem Co Ltd Thermosetting insulating resin composition, and prepreg, film with resin, laminate and multilayer printed wiring board using the same
JP2010106150A (en) * 2008-10-30 2010-05-13 Hitachi Chem Co Ltd Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same
JP2010248473A (en) * 2009-03-27 2010-11-04 Hitachi Chem Co Ltd Thermosetting resin composition, and prepreg, laminate and multi-layered printed wiring board using same
JP2011157509A (en) * 2010-02-02 2011-08-18 Hitachi Chem Co Ltd Thermosetting insulating resin composition, and prepreg, laminated board, and multilayer printed wiring board using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224308A (en) * 2014-05-28 2015-12-14 日立化成株式会社 Thermosetting resin composition, prepreg, film with resin, laminate sheet, multilayer printed circuit board and semiconductor package
JP2015232066A (en) * 2014-06-09 2015-12-24 日立化成株式会社 Thermosetting resin composition, and prepreg, laminate and printed wiring board prepared using the same
JP7088031B2 (en) 2017-02-17 2022-06-21 昭和電工マテリアルズ株式会社 Manufacturing method of prepreg, laminated board, printed wiring board, coreless board, semiconductor package and coreless board
CN110268008A (en) * 2017-02-17 2019-09-20 日立化成株式会社 Prepreg, plywood, printed wiring board, coreless substrate, semiconductor package body and coreless substrate manufacturing method
KR20190120169A (en) * 2017-02-17 2019-10-23 히타치가세이가부시끼가이샤 Method for manufacturing prepreg, laminated board, printed wiring board, coreless substrate, semiconductor package and coreless substrate
JPWO2018151287A1 (en) * 2017-02-17 2019-12-12 日立化成株式会社 Prepreg, laminated board, printed wiring board, coreless substrate, semiconductor package, and coreless substrate manufacturing method
US11214660B2 (en) 2017-02-17 2022-01-04 Showa Denko Materials Co., Ltd. Prepreg, laminate, printed wiring board, coreless substrate, semiconductor package and method for producing coreless substrate
WO2018151287A1 (en) * 2017-02-17 2018-08-23 日立化成株式会社 Prepreg, laminate, printed wiring board, coreless substrate, semiconductor package and method for producing coreless substrate
CN110268008B (en) * 2017-02-17 2022-07-08 昭和电工材料株式会社 Prepreg, laminate, printed wiring board, coreless substrate, semiconductor package, and method for manufacturing coreless substrate
KR102429887B1 (en) * 2017-02-17 2022-08-04 쇼와덴코머티리얼즈가부시끼가이샤 Prepregs, laminates, printed wiring boards, coreless substrates, semiconductor packages, and methods for manufacturing coreless substrates
TWI820015B (en) * 2017-02-17 2023-11-01 日商力森諾科股份有限公司 Prepreg, laminated board, printed wiring board, coreless substrate, semiconductor package, and method for manufacturing coreless substrate
WO2019172342A1 (en) * 2018-03-06 2019-09-12 日立化成株式会社 Prepreg, layered plate, multilayer printed wiring board, semiconductor package, and resin composition, and method of manufacturing prepreg, layered plate, and multilayer printed wiring board
JPWO2019172342A1 (en) * 2018-03-06 2021-03-18 昭和電工マテリアルズ株式会社 Manufacturing method of prepreg, laminated board, multilayer printed wiring board, semiconductor package and resin composition, and prepreg, laminated board and multilayer printed wiring board

Also Published As

Publication number Publication date
JP6040606B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6330892B2 (en) Maleimide resin composition, cured product thereof, prepreg, laminate and multilayer printed wiring board
JP6160675B2 (en) Resin composition, prepreg, laminate and printed wiring board using the same
JP5614048B2 (en) Thermosetting insulating resin composition, and prepreg, laminate and multilayer printed wiring board using the same
JP6065437B2 (en) Thermosetting resin composition, prepreg, laminate and printed wiring board using the same
JP6322919B2 (en) Thermosetting resin composition, prepreg, laminate and printed wiring board using the same
JP5949249B2 (en) Thermosetting resin composition, prepreg, laminate and printed wiring board using the same
JP6065438B2 (en) Prepreg, laminated board using the same, and multilayer printed wiring board
JP6606882B2 (en) Thermosetting resin composition, prepreg, laminate and multilayer printed wiring board
JP6427959B2 (en) Thermosetting resin composition, prepreg, film with resin, laminate, multilayer printed wiring board, and semiconductor package
JP5633382B2 (en) Thermosetting resin composition and prepreg, laminate and multilayer printed wiring board using the same
JP6040606B2 (en) Thermosetting resin composition, prepreg, laminate and printed wiring board using the same
JP6248524B2 (en) Thermosetting resin composition, prepreg, laminate and printed wiring board using the same
JP5914988B2 (en) Prepreg, laminate and printed wiring board using thermosetting resin composition
JP2012236920A (en) Thermosetting resin composition, and prepreg, laminate and printed-wiring board using the composition
JP6040605B2 (en) Thermosetting resin composition, prepreg, laminate and printed wiring board using the same
JP6152246B2 (en) Pre-preg for printed wiring board, laminated board and printed wiring board
JP2016033195A (en) Thermosetting resin composition, and prepreg, laminate and multilayer printed wiring board using the same
JPWO2019245026A1 (en) Method for manufacturing thermosetting resin composition, prepreg, laminated board, printed wiring board and semiconductor package, and thermosetting resin composition
JP7130922B2 (en) Printed wiring boards, prepregs, laminates and semiconductor packages
JP6164318B2 (en) Pre-preg for printed wiring board, laminated board and printed wiring board
JP2014012762A (en) Prepreg using organic fiber base material and manufacturing method of the same, and laminated plate, metal foil-clad laminated plate, and wiring board using the prepreg
JP2017095718A (en) Prepreg, and laminate and multilayer printed board prepared therewith
JP2015232066A (en) Thermosetting resin composition, and prepreg, laminate and printed wiring board prepared using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R151 Written notification of patent or utility model registration

Ref document number: 6040606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350