JP2014017916A - Radio power transmitter - Google Patents

Radio power transmitter Download PDF

Info

Publication number
JP2014017916A
JP2014017916A JP2012152105A JP2012152105A JP2014017916A JP 2014017916 A JP2014017916 A JP 2014017916A JP 2012152105 A JP2012152105 A JP 2012152105A JP 2012152105 A JP2012152105 A JP 2012152105A JP 2014017916 A JP2014017916 A JP 2014017916A
Authority
JP
Japan
Prior art keywords
power transmission
power
side resonator
transmission side
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012152105A
Other languages
Japanese (ja)
Other versions
JP5952662B2 (en
Inventor
Toshio Ishizaki
俊雄 石崎
Satoshi Nojiri
諭司 野尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryukoku University
Original Assignee
Ryukoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryukoku University filed Critical Ryukoku University
Priority to JP2012152105A priority Critical patent/JP5952662B2/en
Publication of JP2014017916A publication Critical patent/JP2014017916A/en
Application granted granted Critical
Publication of JP5952662B2 publication Critical patent/JP5952662B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radio power transmitter capable of significantly reducing deterioration in transmission efficiency even when changing a rotation angle of a direction of a reception side resonator.SOLUTION: A radio power transmitter 1 comprises: two power transmission side resonators 2x and 2y; a reception side resonator 3 which is smaller than the power transmission side resonators 2x and 2y and is movable; and a high frequency power supply 4. One power transmission side resonator 2x is excited by an output signal of the high frequency power supply 4, and another power transmission side resonator 2y is excited not by the high frequency power supply but by an electromagnetic field generated by the one power transmission side resonator 2x, which generates at least two natural resonance frequencies slightly differing from each other. Power is transmitted to the reception side resonator 3 by making the reception side resonator 3 resonate at the at least two natural resonance frequencies.

Description

本発明は、非放射電磁界結合を用いて無線電力伝送を行う共振型結合方式の無線電力伝送装置に関する。   The present invention relates to a resonant coupling type wireless power transmission apparatus that performs wireless power transmission using non-radiated electromagnetic field coupling.

無線電力伝送には、磁気誘導方式、共振型結合方式、放射電磁波方式などがあり、この中でも非放射電磁界結合を用いて行われる共振型結合方式は、高効率で、かつ数メートル程度の中距離電力伝送が可能なため、近年、非常に注目を集めている。   Wireless power transmission includes magnetic induction method, resonant coupling method, radiated electromagnetic wave method, etc. Among them, the resonant coupling method performed using non-radiated electromagnetic field coupling is highly efficient and is about several meters in length. In recent years, it has attracted a great deal of attention because of its ability to transmit distance power.

図8は共振型結合方式の無線電力伝送装置の基本の構成を示す図である。無線電力伝送装置101では、高周波電源104から供給される電力は、結合ループなどのインピーダンス整合手段105を介して送電側共振器102に供給され、伝送距離dに応じた結合係数kで電磁界結合している受電側共振器103に伝送される。その後、同じく結合ループなどのインピーダンス整合手段106を介して負荷107に電力が供給される。この際の最大電力伝送効率は、共振器間の結合係数kと共振器の良さを示す無負荷Q値の積によって決まることが知られている。そのため、無負荷Q値の高い共振器構造や、遠方まで結合係数kが大きくなるような構成が詳しく研究されてきた。この場合の結合係数kは、送受電共振器相互間の相対的な位置や向きに依存する関数となる。   FIG. 8 is a diagram showing a basic configuration of a resonance type wireless power transmission apparatus. In the wireless power transmission device 101, the power supplied from the high frequency power source 104 is supplied to the power transmission side resonator 102 via the impedance matching means 105 such as a coupling loop, and is electromagnetically coupled with a coupling coefficient k corresponding to the transmission distance d. Is transmitted to the power receiving side resonator 103. Thereafter, electric power is supplied to the load 107 through the impedance matching means 106 such as a coupling loop. It is known that the maximum power transmission efficiency at this time is determined by the product of the coupling coefficient k between the resonators and the no-load Q value indicating the goodness of the resonators. For this reason, a resonator structure with a high unloaded Q value and a configuration in which the coupling coefficient k increases far away have been studied in detail. The coupling coefficient k in this case is a function that depends on the relative position and orientation between the power transmitting and receiving resonators.

したがって、無線電力伝送にして伝送線を無くしたにも拘らず、従来の無線電力伝送装置は、電力伝送に適した送受電共振器相互間の相対的な位置や向きはかなり限定的なものであり、それから離れると伝送効率が大きく劣化し易いものであった。   Therefore, despite the fact that the transmission line has been eliminated for wireless power transmission, the conventional wireless power transmission device has a relatively limited relative position and orientation between power transmitting and receiving resonators suitable for power transmission. In addition, the transmission efficiency tends to be greatly deteriorated when it is away from it.

この対策のため、送電側共振器を複数設けて、受電側共振器の位置或いは向きの変化による伝送効率の劣化を低減する無線電力伝送装置がこれまで提案されている。特許文献1は、車両を充電する無線電力伝送装置であり、車両の停止位置による受電側共振器の位置に応じて、複数並列に設けた送電側共振器のうち伝送効率が高い送電側共振器を選択する技術が記載されている。非特許文献1は、図9に示すように、受電側共振器103の向きに応じて、2個並列に設けた送電側共振器102、102の給電位相差を制御器104’によって同相と逆相とに切り替える技術の無線電力伝送装置101’が記載されている。符号105は送信側のインピーダンス整合手段、符号106は受信側のインピーダンス整合手段、符号107は負荷である。より詳細には、受電側共振器103の向きの回転角度θが−60°〜60°のときは同相、−90°〜−60°と60°〜90°のときは逆相としている。   For this measure, wireless power transmission apparatuses have been proposed in which a plurality of power transmission side resonators are provided to reduce deterioration in transmission efficiency due to a change in the position or orientation of the power reception side resonator. Patent Document 1 is a wireless power transmission device that charges a vehicle, and a power transmission side resonator having high transmission efficiency among a plurality of power transmission side resonators provided in parallel according to the position of the power reception side resonator according to the stop position of the vehicle. Techniques for selecting are described. In Non-Patent Document 1, as shown in FIG. 9, the feeding phase difference between two power transmitting resonators 102 and 102 provided in parallel according to the direction of the power receiving resonator 103 is reversed by the controller 104 ′ from the same phase. A wireless power transmission device 101 ′ for switching to a phase is described. Reference numeral 105 denotes a transmission-side impedance matching means, reference numeral 106 denotes a reception-side impedance matching means, and reference numeral 107 denotes a load. More specifically, when the rotation angle θ in the direction of the power receiving side resonator 103 is −60 ° to 60 °, the phase is in phase, and when it is −90 ° to −60 ° and 60 ° to 90 °, the phase is reversed.

特開2010−183812号公報JP 2010-183812 A

小川健一郎、外5名、“磁気共鳴型無線電力伝送における送電コイルアレーの効率測定”、2010年電子情報通信学会通信ソサイエティ大会、電子情報通信学会、2010年、B−1−2、p.2Kenichiro Ogawa, 5 others, "Measurement of efficiency of power transmission coil array in magnetic resonance type wireless power transmission", 2010 IEICE Communication Society Conference, IEICE, 2010, B-1-2, p. 2

しかしながら、受電側共振器の向きの変化については、特許文献1に記載の技術では対応できない。また、非特許文献1に記載の技術においては、特定の位置において受電側共振器の向きの回転角度を変えた実験値が開示されているのみである。したがって、無線電力伝送というメリットを十分に享受できるように、特に受電側共振器の向きの変化による伝送効率の劣化を低減する対策については、開発の余地は大きい。   However, the change in the direction of the power-receiving-side resonator cannot be handled by the technique described in Patent Document 1. Further, in the technique described in Non-Patent Document 1, only experimental values are disclosed in which the rotation angle of the direction of the power receiving resonator is changed at a specific position. Therefore, in order to fully enjoy the merit of wireless power transmission, there is a lot of room for development particularly for measures for reducing deterioration in transmission efficiency due to a change in the direction of the power-receiving-side resonator.

本発明は、係る事由に鑑みてなされたものであり、その目的は、受電側共振器の向きの回転角度を変化させても伝送効率の劣化を大幅に低減し得る無線電力伝送装置を提供することにある。   The present invention has been made in view of such a reason, and an object of the present invention is to provide a wireless power transmission device that can significantly reduce deterioration in transmission efficiency even when the rotation angle of the direction of the power receiving resonator is changed. There is.

上記目的を達成するために、請求項1に記載の無線電力伝送装置は、複数の送電側共振器と、前記送電側共振器より小型で移動可能な少なくとも1個の受電側共振器と、少なくとも1個の高周波電源と、を具備し、前記送電側共振器のうち少なくとも2個は互いに略直交するように配置し電磁界結合させ、該略直交するように配置された2個の送電側共振器は、一方の送電側共振器が1個の高周波電源の出力信号で励振され、かつ、他方の送電側共振器が前記高周波電源によらずに一方の送電側共振器が発生する電磁界で励振されることで、周波数が僅かに異なる少なくとも2個の固有共振周波数を発生させてその少なくとも2個の固有共振周波数で前記受電側共振器を共振させることにより、前記受電側共振器に電力を伝送することを特徴とする。   To achieve the above object, the wireless power transmission device according to claim 1 includes a plurality of power transmission side resonators, at least one power reception side resonator that is smaller and movable than the power transmission side resonators, and at least And at least two of the power transmission side resonators are arranged so as to be substantially orthogonal to each other and electromagnetically coupled to each other, and two power transmission side resonances arranged so as to be substantially orthogonal to each other The power transmission side resonator is excited by the output signal of one high frequency power source, and the other power transmission side resonator is an electromagnetic field generated by one power transmission side resonator without depending on the high frequency power source. By being excited, at least two natural resonance frequencies having slightly different frequencies are generated, and the power receiving resonator is resonated with the at least two natural resonance frequencies, thereby supplying power to the power receiving resonator. Feature to transmit To.

請求項2に記載の無線電力伝送装置は、請求項1に記載の無線電力伝送装置において、前記1個の高周波電源の出力信号の周波数は、前記少なくとも2個の固有共振周波数に合致するように切り替えられることを特徴とする。   The wireless power transmission device according to claim 2 is the wireless power transmission device according to claim 1, wherein a frequency of an output signal of the one high-frequency power supply matches the at least two natural resonance frequencies. It can be switched.

請求項3に記載の無線電力伝送装置は、請求項2に記載の無線電力伝送装置において、前記少なくとも2個の固有共振周波数は、奇モードと偶モードに対応する固有共振周波数であり、前記1個の高周波電源の出力信号の周波数は、前記奇モードに対応する固有共振周波数と前記偶モードに対応する固有共振周波数に合致するように切り替えられることを特徴とする。   The wireless power transmission device according to claim 3 is the wireless power transmission device according to claim 2, wherein the at least two natural resonance frequencies are natural resonance frequencies corresponding to an odd mode and an even mode. The frequency of the output signal of each high frequency power source is switched so as to match the natural resonance frequency corresponding to the odd mode and the natural resonance frequency corresponding to the even mode.

請求項4に記載の無線電力伝送装置は、請求項1〜3のいずれか1項に記載の無線電力伝送装置において、前記略直交するように配置された2個の送電側共振器に略直交するように別の送電側共振器を更に配置し、該別の送電側共振器は、前記1個の高周波電源の出力信号とは無相関な別の励振信号で励振されることを特徴とする。   A wireless power transmission device according to a fourth aspect of the present invention is the wireless power transmission device according to any one of the first to third aspects, wherein the wireless power transmission device is substantially orthogonal to the two power transmission side resonators arranged so as to be substantially orthogonal to each other. Further, another power transmission side resonator is further arranged, and the another power transmission side resonator is excited by another excitation signal uncorrelated with the output signal of the one high frequency power source. .

請求項5に記載の無線電力伝送装置は、請求項4に記載の無線電力伝送装置において、前記別の励振信号は、前記1個の高周波電源の出力信号と位相差を時間的に変化させることを特徴とする。   The wireless power transmission device according to claim 5 is the wireless power transmission device according to claim 4, wherein the another excitation signal temporally changes a phase difference with an output signal of the one high-frequency power source. It is characterized by.

請求項6に記載の無線電力伝送装置は、請求項4に記載の無線電力伝送装置において、前記別の励振信号は、前記1個の高周波電源の出力信号と周波数をわずかに違えていることを特徴とする。   The wireless power transmission device according to claim 6 is the wireless power transmission device according to claim 4, wherein the other excitation signal has a frequency slightly different from an output signal of the one high-frequency power source. Features.

本発明によれば、互いに略直交するように配置された送電側共振器の一方の送電側共振器を1個の高周波電源の出力信号で励振し、他方の送電側共振器を高周波電源によらずに一方の送電側共振器が発生する電磁界で励振することで、受電側共振器の向きの回転角度を変化させても伝送効率の劣化を大幅に低減し得る無線電力伝送装置を提供することができる。   According to the present invention, one power transmission side resonator of power transmission side resonators arranged so as to be substantially orthogonal to each other is excited by an output signal of one high frequency power source, and the other power transmission side resonator is driven by a high frequency power source. A wireless power transmission device capable of significantly reducing deterioration in transmission efficiency even when the rotational angle of the power receiving side resonator is changed by exciting with an electromagnetic field generated by one power transmitting side resonator be able to.

本発明の実施形態に係る無線電力伝送装置の構成を模式的に示す斜視図である。1 is a perspective view schematically showing a configuration of a wireless power transmission device according to an embodiment of the present invention. 同上の無線電力伝送装置の構成を模式的に示す平面図である。It is a top view which shows typically the structure of a wireless power transmission apparatus same as the above. 同上の無線電力伝送装置の固有共振モードを説明するための説明図である。It is explanatory drawing for demonstrating the natural resonance mode of a wireless power transmission apparatus same as the above. 送電側共振器が1個の場合の受電を説明する平面図である。It is a top view explaining electric power reception in case the power transmission side resonator is one. 送電側共振器が1個の場合の受電の特性を示す特性図である。It is a characteristic view which shows the characteristic of electric power reception in case the power transmission side resonator is one. 同上の無線電力伝送装置の磁界ベクトルを示す平面図である。It is a top view which shows the magnetic field vector of a wireless power transmission apparatus same as the above. 同上の無線電力伝送装置の構成の変形例を模式的に示す斜視図である。It is a perspective view which shows typically the modification of a structure of the wireless power transmission apparatus same as the above. 従来の無線電力伝送装置の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the conventional wireless power transmission apparatus. 従来の無線電力伝送装置の別の構成を模式的に示す平面図である。It is a top view which shows typically another structure of the conventional wireless power transmission apparatus.

以下、本発明を実施するための形態を図面を参照しながら説明する。本発明の実施形態に係る無線電力伝送装置1は、共振型結合方式のものであって、図1及び図2に示すように、2個の送電側共振器2x、2yを具備し、それらを互いに略直交するように配置している。また、2個の送電側共振器2x、2yよりも小型で移動可能な1個の受電側共振器3を具備している。また、高周波交流電力の出力信号を出力する1個の高周波電源4を具備しており、その出力信号で2個の送電側共振器2x、2yのうち一方の送電側共振器2xのみを励振している。他方の送電側共振器2yは、後述するように送電側共振器2xが発生する電磁界(非放射電磁界)で励振される。受電側共振器3には、2個の送電側共振器2x、2yから伝送距離d、d’に応じて電力が伝送される。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. A wireless power transmission device 1 according to an embodiment of the present invention is of a resonant coupling type, and includes two power transmission side resonators 2x and 2y as shown in FIGS. They are arranged so as to be substantially orthogonal to each other. In addition, the power receiving side resonator 3 is smaller and movable than the two power transmitting side resonators 2x and 2y. Moreover, it has one high frequency power supply 4 that outputs an output signal of high frequency AC power, and only one power transmission side resonator 2x of the two power transmission side resonators 2x and 2y is excited by the output signal. ing. The other power transmission side resonator 2y is excited by an electromagnetic field (non-radiated electromagnetic field) generated by the power transmission side resonator 2x as described later. Power is transmitted to the power receiving side resonator 3 from the two power transmitting side resonators 2x and 2y according to the transmission distances d and d '.

送電側共振器2x、2yは、その形状が限定されるものではないが、例えば、電気導線が平面的でスパイラル状に巻かれて形成されるコイルとすることが可能である。   The shapes of the power transmission side resonators 2x and 2y are not limited. For example, the power transmission side resonators 2x and 2y can be coils formed by winding an electric conductor in a flat and spiral shape.

高周波電源4は、詳細には、インピーダンスの整合を行う結合ループ5を介して送電側共振器2xを励振する。高周波電源4は、その出力信号を結合ループ5に出力し、結合ループ5は、送電側共振器2xに電磁界結合している。なお、送電側共振器2yについては、それの励振のための結合ループなどを設けていない。また、結合ループ5は、他の公知のインピーダンス整合手段で置き換えることも可能である。   Specifically, the high-frequency power source 4 excites the power-transmission-side resonator 2x via the coupling loop 5 that performs impedance matching. The high-frequency power source 4 outputs the output signal to the coupling loop 5, and the coupling loop 5 is electromagnetically coupled to the power transmission side resonator 2x. In addition, about the power transmission side resonator 2y, the coupling loop for the excitation is not provided. The coupling loop 5 can be replaced with other known impedance matching means.

受電側共振器3は、その形状が限定されるものではないが、例えば、電気導線が平面的でスパイラル状に巻かれて形成されるコイルとすることが可能である。また、直径を小さくするために、電気導線を送電側共振器2x、2yのコイルよりも密に巻いたり、コイルの両端間にコンデンサを接続したりすることができる。   The shape of the power receiving side resonator 3 is not limited. For example, the power receiving side resonator 3 can be a coil formed by winding an electric conductor in a planar and spiral shape. Further, in order to reduce the diameter, the electric conducting wire can be wound more densely than the coils of the power transmitting resonators 2x and 2y, or a capacitor can be connected between both ends of the coil.

受電側共振器3は、詳細には、インピーダンスの整合を行う結合ループ6を介して、受け取った電力を負荷7に供給する。結合ループ6は、受電側共振器3に電磁界結合している。負荷7は、通信端末機などの機器の所要の機能を発揮するための回路である。なお、結合ループ6は、他の公知のインピーダンス整合手段で置き換えることも可能である。また、図2では結合ループ6及び負荷7は省略している。   Specifically, the power receiving side resonator 3 supplies the received power to the load 7 through the coupling loop 6 that performs impedance matching. The coupling loop 6 is electromagnetically coupled to the power receiving side resonator 3. The load 7 is a circuit for exhibiting a required function of a device such as a communication terminal. The coupling loop 6 can be replaced by other known impedance matching means. In FIG. 2, the coupling loop 6 and the load 7 are omitted.

このような構成により、無線電力伝送装置1では、高周波電源4によって励振された送電側共振器2xは、周囲の領域に非放射電磁界を発生させる。そうすると、送電側共振器2yは、送電側共振器2xが発生する非放射電磁界に結合して励振される。そして、送電側共振器2yも周囲の領域に非放射電磁界を発生させる。2個の送電側共振器2x、2yの近く(例えば、2個の送電側共振器2x、2yの中心線の交点付近)では、送電側共振器2xからの非放射電磁界と送電側共振器2yからの非放射電磁界とが合成された非放射電磁界の電磁界分布となる。なお、送電側共振器2yは、高周波電源によらずに、送電側共振器2xが発生する非放射電磁界に結合して励振されるので、送電側共振器2xとの間の干渉によって無駄な電力が消費されることもない。   With this configuration, in the wireless power transmission device 1, the power transmission side resonator 2 x excited by the high frequency power source 4 generates a non-radiated electromagnetic field in the surrounding area. Then, the power transmission side resonator 2y is excited by being coupled to the non-radiated electromagnetic field generated by the power transmission side resonator 2x. The power transmission side resonator 2y also generates a non-radiating electromagnetic field in the surrounding area. Near the two power transmission resonators 2x and 2y (for example, near the intersection of the center lines of the two power transmission resonators 2x and 2y), the non-radiated electromagnetic field from the power transmission resonator 2x and the power transmission resonator The electromagnetic field distribution of the non-radiated electromagnetic field obtained by combining the non-radiated electromagnetic field from 2y is obtained. Note that the power transmission side resonator 2y is excited by being coupled to the non-radiated electromagnetic field generated by the power transmission side resonator 2x without depending on the high-frequency power source, and thus is wasted due to interference with the power transmission side resonator 2x. No power is consumed.

このような電磁界分布は、図3に示すように、複数の固有共振モード(この図では2個の固有共振モード)を有する電磁界分布になり、固有共振モードそれぞれに対応する周波数が僅かに異なる複数の固有共振周波数が発生する。これら複数の固有共振モードは、送電側共振器2xと送電側共振器2yが同様の大きさと形状ならば、通常、送電側共振器2xと送電側共振器2yが逆相で共振する奇モードと同相で共振する偶モードであり、図3に示すように周波数が僅かに異なる2個の固有共振周波数が発生する。これら複数の固有共振モードの制御については後に詳述する。なお、図3は、単体のとき(送電側共振器2yが結合していないとき)の固有共振周波数が約25.0MHzの送電側共振器2xに、送電側共振器2yが結合した場合を示しており、2個の固有共振周波数が約24.9MHzと約25.1MHzになっている。縦軸は、SパラメータS21である。   As shown in FIG. 3, such an electromagnetic field distribution is an electromagnetic field distribution having a plurality of natural resonance modes (in this figure, two natural resonance modes), and the frequency corresponding to each of the natural resonance modes is slightly increased. A plurality of different natural resonance frequencies are generated. The plurality of natural resonance modes are usually an odd mode in which the power transmission side resonator 2x and the power transmission side resonator 2y resonate in opposite phases if the power transmission side resonator 2x and the power transmission side resonator 2y have the same size and shape. This is an even mode that resonates in the same phase, and two natural resonance frequencies slightly different in frequency are generated as shown in FIG. The control of the plurality of natural resonance modes will be described in detail later. FIG. 3 shows a case where the power transmission side resonator 2y is coupled to the power transmission side resonator 2x having a natural resonance frequency of about 25.0 MHz when it is a single unit (when the power transmission side resonator 2y is not coupled). The two natural resonance frequencies are about 24.9 MHz and about 25.1 MHz. The vertical axis is the S parameter S21.

受電側共振器3は、送電側共振器2xと送電側共振器2yから電磁界分布が発生する2個の固有共振周波数のどちらでも共振できるような形状、大きさ、又は構造であり、2個の送電側共振器2x、2yの近くの領域に配置されると、非放射電磁界によって共振に基づく結合が発生して電力が伝わる。そして、受電側共振器3に伝わった電力は負荷7に供給される。   The power receiving side resonator 3 has a shape, a size, or a structure that can resonate at any of two natural resonance frequencies in which electromagnetic field distribution is generated from the power transmitting side resonator 2x and the power transmitting side resonator 2y. If the power transmission side resonators 2x and 2y are arranged in a region near the power transmission side resonators 2x and 2y, coupling based on resonance is generated by the non-radiated electromagnetic field, and power is transmitted. The electric power transmitted to the power receiving side resonator 3 is supplied to the load 7.

次に、2個の送電側共振器2x、2yと受電側共振器3との間における電力の伝送効率について説明する。なお、送電共振器2x、2yと受電共振器3との間の結合は、電界と磁界の両方で行われ、送電共振器2x、2yに対向する受電共振器3のコイルの巻き方向などによって電界と磁界の2つの結合度の和もしくは差になる。しかし、一般的に、電界結合は共振器同士の距離が離れると急速に減衰するため、主に磁界結合によって電力伝送が行われている。したがって、以下の説明では、磁界結合を中心にして述べる。   Next, the power transmission efficiency between the two power transmitting resonators 2x and 2y and the power receiving resonator 3 will be described. The coupling between the power transmission resonators 2x and 2y and the power reception resonator 3 is performed by both the electric field and the magnetic field, and the electric field depends on the winding direction of the coil of the power reception resonator 3 facing the power transmission resonators 2x and 2y. And the sum or difference of the two coupling degrees of the magnetic field. However, in general, electric field coupling is rapidly attenuated as the distance between the resonators increases, so that power transmission is mainly performed by magnetic field coupling. Therefore, the following description will focus on magnetic field coupling.

まず、参考のために送電側共振器2yを省いて送電側共振器2xだけにして、図4に示すように、送電側共振器2xに対して受電側共振器3が傾いたときの結合の変化を説明する。磁界ベクトルは、送電側共振器2xから垂直に発生する。図5は、受電側共振器3の向きの回転角度θに対する結合係数kの変化の様子を示すものである。結合係数kは、正規化して示している。曲線a、b、cはそれぞれ、送電側共振器2xと受電側共振器3の間の距離dが7cm、8cm、9cmの場合の実測値である。送電側共振器2xの直径は23cm、受電側共振器3の直径は3.1cmとしている。   First, for reference, the power transmission side resonator 2y is omitted and only the power transmission side resonator 2x is used. As shown in FIG. 4, the coupling when the power reception side resonator 3 is inclined with respect to the power transmission side resonator 2x is shown. Explain the change. The magnetic field vector is generated vertically from the power transmission side resonator 2x. FIG. 5 shows how the coupling coefficient k changes with respect to the rotation angle θ in the direction of the power-receiving-side resonator 3. The coupling coefficient k is normalized and shown. Curves a, b, and c are actually measured values when the distance d between the power transmission side resonator 2x and the power reception side resonator 3 is 7 cm, 8 cm, and 9 cm, respectively. The diameter of the power transmission side resonator 2x is 23 cm, and the diameter of the power reception side resonator 3 is 3.1 cm.

結合係数kは正対時(受電側共振器3の向きの回転角度θが0°のとき)が最大となり、そのときの値で規格化してグラフにするとコサインカーブで近似されることがわかる。これは、送電側共振器2xから出射されて平行に分布する磁界ベクトルを受電側共振器3が投影面積に応じて受電していることを示している。したがって、受電側共振器3の傾き、すなわち向きの回転角度θが大きく、受電側共振器3が磁界ベクトルと平行(受電側共振器3の向きの回転角度θが90°)になると、受電することが難しくなってくることが分かる。   It can be seen that the coupling coefficient k is maximum when facing the opposite direction (when the rotation angle θ in the direction of the power-receiving-side resonator 3 is 0 °), normalized by the value at that time, and approximated by a cosine curve. This indicates that the power receiving side resonator 3 receives the magnetic field vector emitted from the power transmitting side resonator 2x and distributed in parallel according to the projected area. Therefore, when the power receiving side resonator 3 has a large inclination, that is, the rotational angle θ of the direction, and the power receiving side resonator 3 is parallel to the magnetic field vector (the rotational angle θ of the direction of the power receiving side resonator 3 is 90 °), power is received. You can see that it becomes difficult.

次に、2個の送電側共振器2x、2yが設けられた無線電力伝送装置1における磁界ベクトルについて説明する。図6の(a)は2個の共振モードのうち奇モード、(b)は偶モードの固有共振周波数に合致した周波数で送電側共振器2xが励振されたときの磁界ベクトルを示すものである。図における2個の送電側共振器2x、2yの中心線の交点付近(破線の枠で示す)に注目すると、磁界ベクトルは、(a)の奇モードでは斜め右下、(b)の偶モードでは斜め左下に向いており、奇モードと偶モードで磁界ベクトルの向きがほぼ90度ずれていることがわかる。   Next, a magnetic field vector in the wireless power transmission device 1 provided with the two power transmission side resonators 2x and 2y will be described. 6A shows an odd mode of the two resonance modes, and FIG. 6B shows a magnetic field vector when the power transmission side resonator 2x is excited at a frequency that matches the natural resonance frequency of the even mode. . When attention is paid to the vicinity of the intersection of the center lines of the two power transmission side resonators 2x and 2y in the figure (indicated by a broken line frame), the magnetic field vector is diagonally lower right in the odd mode of (a) and the even mode of (b). In FIG. 5, the direction is obliquely lower left, and it can be seen that the direction of the magnetic field vector is shifted by approximately 90 degrees between the odd mode and the even mode.

このように奇モードと偶モードで磁界ベクトルの向きがずれていると、受電側共振器3の向きの回転角度θが変わって奇モードと偶モードのどちらかのモードから電力を受け取ることが困難でも、奇モードと偶モードのうちのその他のモードでは受電側共振器3は電力を受け取り易くなる。したがって、無線電力伝送装置1は、受電側共振器3の向きの回転角度θに適合したモードを発生させることで、回転角度θを変化させても結合係数kの変化が非常に少なく、伝送効率の劣化を大幅に低減し得るものとなり、受電側共振器3は良好に受電できることになる。   Thus, if the direction of the magnetic field vector is deviated between the odd mode and the even mode, the rotation angle θ of the direction of the power-receiving-side resonator 3 changes and it is difficult to receive power from either the odd mode or the even mode. However, in other modes of the odd mode and the even mode, the power receiving side resonator 3 can easily receive power. Therefore, the wireless power transmission device 1 generates a mode suitable for the rotation angle θ in the direction of the power-receiving-side resonator 3 so that the change in the coupling coefficient k is very small even when the rotation angle θ is changed, and the transmission efficiency is increased. Therefore, the power receiving side resonator 3 can receive power satisfactorily.

奇モードか偶モードのうち電側共振器3の向きの回転角度θに適合したモードを発生させるため、高周波電源4は、その出力信号の周波数(励振周波数)が、奇モードに対応する固有共振周波数と偶モードに対応する固有共振周波数に合致するように切り替えられるようにする。例えば、受電側共振器3の向きを検出し、受電側共振器3の向きの回転角度θに応じて、奇モードに対応する固有共振周波数と偶モードに対応する固有共振周波数のいずれかに合致するように切り替えられるようにする。又は、受電側共振器3の向きに係わらず、奇モードに対応する固有共振周波数と偶モードに対応する固有共振周波数に所定時間毎に交互に合致するように切り替えられるようにすることも可能である。   In order to generate a mode suitable for the rotation angle θ in the direction of the power-side resonator 3 between the odd mode and the even mode, the high-frequency power source 4 has a natural resonance whose output signal frequency (excitation frequency) corresponds to the odd mode. The frequency is switched to match the natural resonance frequency corresponding to the even mode. For example, the direction of the power-receiving-side resonator 3 is detected, and either the natural resonance frequency corresponding to the odd mode or the natural resonance frequency corresponding to the even mode is matched according to the rotation angle θ of the direction of the power-receiving side resonator 3. To be able to switch. Alternatively, regardless of the direction of the power-receiving-side resonator 3, it is possible to switch so that the natural resonance frequency corresponding to the odd mode and the natural resonance frequency corresponding to the even mode are alternately matched every predetermined time. is there.

なお、無線電力伝送装置1における送電側共振器2xと送電側共振器2yとが、互いに異なる形状、大きさ、又は構造であると、それらの電磁界結合により生じた固有共振モードが奇モードと偶モード以外のモードになったり、2個よりも多くなったりする場合も有る。そのような場合でも、少なくとも2個の固有共振モードは、それらの固有共振周波数に高周波電源4の出力信号の周波数が合致するように切り替えられることによって制御され、上述した奇モードと偶モードの場合と同様に磁界ベクトルの向きをずらして、受電側共振器3の向きの回転角度θを変化させても、伝送効率の劣化を大幅に低減し得るものとなり、受電側共振器3が良好に受電できるようにすることが可能である。   In addition, when the power transmission side resonator 2x and the power transmission side resonator 2y in the wireless power transmission device 1 have different shapes, sizes, or structures, the natural resonance mode generated by their electromagnetic coupling is an odd mode. There may be a mode other than the even mode, or more than two modes. Even in such a case, at least two natural resonance modes are controlled by switching so that the frequency of the output signal of the high-frequency power supply 4 matches the natural resonance frequency. In the same manner as described above, even if the direction of the magnetic field vector is shifted and the rotation angle θ of the direction of the power receiving side resonator 3 is changed, the deterioration of transmission efficiency can be greatly reduced, and the power receiving side resonator 3 can receive power well. It is possible to make it possible.

次に、無線電力伝送装置1を変形した無線電力伝送装置1’について説明する。この無線電力伝送装置1’は、図7に示すように、無線電力伝送装置1の構成に加えて、送電側共振器2xと送電側共振器2yに略直交するように別の送電側共振器2zを更に配置している。この送電側共振器2zは、高周波電源4の出力信号とは無相関な別の励振信号で励振されるようにしている。この別の励振信号として、高周波電源4’の出力信号が用いられる。なお、送電側共振器2zには、結合ループ5zが電磁界結合しており、結合ループ5zには高周波電源4’の出力信号が入力される。また、結合ループ5zは、他の公知のインピーダンス整合手段で置き換えることも可能である。   Next, a wireless power transmission device 1 'obtained by modifying the wireless power transmission device 1 will be described. As shown in FIG. 7, in addition to the configuration of the wireless power transmission device 1, this wireless power transmission device 1 ′ includes another power transmission side resonator so as to be substantially orthogonal to the power transmission side resonator 2x and the power transmission side resonator 2y. 2z is further arranged. The power transmission side resonator 2z is excited by another excitation signal uncorrelated with the output signal of the high frequency power supply 4. As this other excitation signal, the output signal of the high-frequency power supply 4 'is used. The coupling loop 5z is electromagnetically coupled to the power transmission side resonator 2z, and the output signal of the high frequency power source 4 'is input to the coupling loop 5z. The coupling loop 5z can be replaced with other known impedance matching means.

高周波電源4’の出力信号(ずなわち、別の励振信号)は、より詳細には、高周波電源4の出力信号と無相関になるようにそれとの位相差を時間的に変化させたものか、或いは高周波電源4の出力信号と周波数をわずかに違えたものとなっている。高周波電源4’の出力信号が高周波電源4の出力信号との位相差を時間的に変化させたものの場合は、高周波電源4’を高周波電源4とは独立に高周波信号を発生するか或いは高周波電源4’に高周波電源4の出力信号を入力させ、その位相を時間的に変化させて出力させればよい。高周波電源4’の出力信号が周波電源4の出力信号と周波数をわずかに違えたものの場合は、高周波電源4’を高周波電源4とは独立に高周波信号を発生して交流電源として出力信号を出力するものとすればよい。   More specifically, whether the output signal (ie, another excitation signal) of the high frequency power supply 4 ′ is obtained by changing the phase difference with the output signal of the high frequency power supply 4 so as to be uncorrelated with the output signal of the high frequency power supply 4. Alternatively, the output signal of the high frequency power source 4 and the frequency are slightly different. In the case where the output signal of the high frequency power source 4 ′ is obtained by temporally changing the phase difference from the output signal of the high frequency power source 4, the high frequency power source 4 ′ generates a high frequency signal independently of the high frequency power source 4 or the high frequency power source. What is necessary is just to input the output signal of the high frequency power supply 4 to 4 ', and to change the phase temporally and to output it. When the output signal of the high frequency power supply 4 ′ is slightly different in frequency from the output signal of the frequency power supply 4, the high frequency power supply 4 ′ generates a high frequency signal independently of the high frequency power supply 4 and outputs the output signal as an AC power supply. What should I do?

このような無線電力伝送装置1’は、無線電力伝送装置1と同様に、電磁界分布が、磁界ベクトルの向きがずれた複数の固有共振モードを有する電磁界分布になり、複数の固有共振モードに対応する複数の固有共振周波数が発生する。無線電力伝送装置1’における電磁界分布は、更に、磁界ベクトルの向きが3次元方向に時間的に変化する。それにより、受電側共振器3が3次元方向に向きを様々に変えた場合でも、伝送効率の劣化を低減して良好に受電できるようにすることが可能である。   In such a wireless power transmission device 1 ′, similarly to the wireless power transmission device 1, the electromagnetic field distribution has an electromagnetic field distribution having a plurality of natural resonance modes in which the directions of the magnetic field vectors are deviated. A plurality of natural resonance frequencies corresponding to. In the electromagnetic field distribution in the wireless power transmission device 1 ′, the direction of the magnetic field vector further changes with time in a three-dimensional direction. Thereby, even when the power-receiving-side resonator 3 is changed in various directions in the three-dimensional direction, it is possible to reduce power transmission deterioration and to receive power satisfactorily.

以上、本発明の実施形態に係る無線電力伝送装置について説明したが、本発明は、上述の実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。   The wireless power transmission device according to the embodiment of the present invention has been described above. However, the present invention is not limited to that described in the above-described embodiment, and various modifications within the scope of the matters described in the claims. Design changes are possible.

1 無線電力伝送装置
2x、2y 送電側共振器
3 受電側共振器
4 高周波電源
5 送電側の結合ループ(インピーダンス整合手段)
6 受電側の結合ループ(インピーダンス整合手段)
7 負荷
DESCRIPTION OF SYMBOLS 1 Wireless power transmission device 2x, 2y Power transmission side resonator 3 Power receiving side resonator 4 High frequency power supply 5 Transmission side coupling loop (impedance matching means)
6 Receiving side coupling loop (impedance matching means)
7 Load

Claims (6)

複数の送電側共振器と、
前記送電側共振器より小型で移動可能な少なくとも1個の受電側共振器と、
少なくとも1個の高周波電源と、を具備し、
前記送電側共振器のうち少なくとも2個は互いに略直交するように配置し電磁界結合させ、
該略直交するように配置された2個の送電側共振器は、
一方の送電側共振器が1個の高周波電源の出力信号で励振され、かつ、他方の送電側共振器が前記高周波電源によらずに一方の送電側共振器が発生する電磁界で励振されることで、
周波数が僅かに異なる少なくとも2個の固有共振周波数を発生させてその少なくとも2個の固有共振周波数で前記受電側共振器を共振させることにより、前記受電側共振器に電力を伝送することを特徴とする無線電力伝送装置。
A plurality of power transmission side resonators;
At least one power receiving resonator that is smaller and movable than the power transmitting resonator;
And at least one high frequency power source,
At least two of the power transmission side resonators are arranged so as to be substantially orthogonal to each other and electromagnetically coupled,
The two power transmission side resonators arranged so as to be substantially orthogonal are:
One power transmission side resonator is excited by an output signal of one high frequency power source, and the other power transmission side resonator is excited by an electromagnetic field generated by one power transmission side resonator without depending on the high frequency power source. With that
Generating at least two natural resonance frequencies having slightly different frequencies, and resonating the power reception side resonator with the at least two natural resonance frequencies, thereby transmitting power to the power reception side resonator. Wireless power transmission device.
前記1個の高周波電源の出力信号の周波数は、前記少なくとも2個の固有共振周波数に合致するように切り替えられることを特徴とする請求項1に記載の無線電力伝送装置。   2. The wireless power transmission device according to claim 1, wherein the frequency of the output signal of the one high-frequency power source is switched to match the at least two natural resonance frequencies. 前記少なくとも2個の固有共振周波数は、奇モードと偶モードに対応する固有共振周波数であり、
前記1個の高周波電源の出力信号の周波数は、前記奇モードに対応する固有共振周波数と前記偶モードに対応する固有共振周波数に合致するように切り替えられることを特徴とする請求項2に記載の無線電力伝送装置。
The at least two natural resonance frequencies are natural resonance frequencies corresponding to an odd mode and an even mode,
The frequency of the output signal of the one high-frequency power source is switched so as to match a natural resonance frequency corresponding to the odd mode and a natural resonance frequency corresponding to the even mode. Wireless power transmission device.
前記略直交するように配置された2個の送電側共振器に略直交するように別の送電側共振器を更に配置し、
該別の送電側共振器は、前記1個の高周波電源の出力信号とは無相関な別の励振信号で励振されることを特徴とする請求項1〜3のいずれか1項に記載の無線電力伝送装置。
Further disposing another power transmission side resonator so as to be substantially orthogonal to the two power transmission side resonators disposed so as to be substantially orthogonal,
4. The radio according to claim 1, wherein the another power transmission side resonator is excited by another excitation signal that is uncorrelated with an output signal of the one high-frequency power source. Power transmission device.
前記別の励振信号は、前記1個の高周波電源の出力信号と位相差を時間的に変化させることを特徴とする請求項4に記載の無線電力伝送装置。   The wireless power transmission device according to claim 4, wherein the another excitation signal temporally changes a phase difference with the output signal of the one high-frequency power source. 前記別の励振信号は、前記1個の高周波電源の出力信号と周波数をわずかに違えていることを特徴とする請求項4に記載の無線電力伝送装置。   The wireless power transmission device according to claim 4, wherein the frequency of the another excitation signal is slightly different from that of the output signal of the one high-frequency power source.
JP2012152105A 2012-07-06 2012-07-06 Wireless power transmission device Expired - Fee Related JP5952662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012152105A JP5952662B2 (en) 2012-07-06 2012-07-06 Wireless power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012152105A JP5952662B2 (en) 2012-07-06 2012-07-06 Wireless power transmission device

Publications (2)

Publication Number Publication Date
JP2014017916A true JP2014017916A (en) 2014-01-30
JP5952662B2 JP5952662B2 (en) 2016-07-13

Family

ID=50112136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012152105A Expired - Fee Related JP5952662B2 (en) 2012-07-06 2012-07-06 Wireless power transmission device

Country Status (1)

Country Link
JP (1) JP5952662B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151156A1 (en) * 2014-03-31 2015-10-08 富士通株式会社 Wireless power supply system and wireless power supply method
JP2016059145A (en) * 2014-09-08 2016-04-21 学校法人 龍谷大学 Wireless power transmission device
JP2017135831A (en) * 2016-01-27 2017-08-03 日東電工株式会社 Power supply device and power reception and supply device
JP2017135828A (en) * 2016-01-27 2017-08-03 日東電工株式会社 Magnetic field formation device, power supply device, power reception device, power reception and supply device, and portable device
WO2017199869A1 (en) * 2016-05-19 2017-11-23 シャープ株式会社 Power supply device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010093721A1 (en) * 2009-02-10 2010-08-19 Qualcomm Incorporated System, apparatus and method for power transfer in public places

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010093721A1 (en) * 2009-02-10 2010-08-19 Qualcomm Incorporated System, apparatus and method for power transfer in public places

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151156A1 (en) * 2014-03-31 2015-10-08 富士通株式会社 Wireless power supply system and wireless power supply method
JPWO2015151156A1 (en) * 2014-03-31 2017-04-13 富士通株式会社 Wireless power supply system and wireless power supply method
US10374460B2 (en) 2014-03-31 2019-08-06 Fujitsu Limited Wireless power transfer system and wireless power transfer method
JP2016059145A (en) * 2014-09-08 2016-04-21 学校法人 龍谷大学 Wireless power transmission device
JP2017135831A (en) * 2016-01-27 2017-08-03 日東電工株式会社 Power supply device and power reception and supply device
JP2017135828A (en) * 2016-01-27 2017-08-03 日東電工株式会社 Magnetic field formation device, power supply device, power reception device, power reception and supply device, and portable device
WO2017199869A1 (en) * 2016-05-19 2017-11-23 シャープ株式会社 Power supply device
JPWO2017199869A1 (en) * 2016-05-19 2018-12-20 シャープ株式会社 Power supply device
CN109155537A (en) * 2016-05-19 2019-01-04 夏普株式会社 Power supply unit

Also Published As

Publication number Publication date
JP5952662B2 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
EP2643916B1 (en) Wireless power utilization in a local computing environment
US8766482B2 (en) High efficiency and power transfer in wireless power magnetic resonators
CN106575873B (en) method and apparatus for adjustable coupling for improved wireless high-Q resonant power transfer
US20160013661A1 (en) Resonators for wireless power transfer systems
US8786135B2 (en) Wireless energy transfer with anisotropic metamaterials
JP5465640B2 (en) Resonance type wireless power transmission apparatus and resonance type wireless power transmission method
US9312700B2 (en) Wireless power transmission apparatus
JP5952662B2 (en) Wireless power transmission device
JP2010537496A5 (en)
JP2012186992A (en) System for exchanging energy wirelessly
JP5667019B2 (en) Wireless power transmission apparatus and method
KR20170041706A (en) Wireless electric field power transmission system, transmitter and receiver therefor and method of wirelessly transferring power
US8674549B2 (en) System and method for energy transfer
JP2011151946A (en) Relay coil sheet and wireless power feed system
KR20120051320A (en) Wireless energy transfer device
JP5854721B2 (en) System and method for wirelessly exchanging energy
JP6024015B2 (en) Wireless power transmission device
KR101222137B1 (en) Directional wireless power transmission apparatus using magnetic resonance induction
JP6164720B2 (en) Coupled resonator type wireless power transmission system
JP2016059146A (en) Under seawater power supply system
JP2014093811A (en) Power supply section and power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150609

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150728

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160610

R150 Certificate of patent or registration of utility model

Ref document number: 5952662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees