JP2014017457A5 - - Google Patents

Download PDF

Info

Publication number
JP2014017457A5
JP2014017457A5 JP2012155970A JP2012155970A JP2014017457A5 JP 2014017457 A5 JP2014017457 A5 JP 2014017457A5 JP 2012155970 A JP2012155970 A JP 2012155970A JP 2012155970 A JP2012155970 A JP 2012155970A JP 2014017457 A5 JP2014017457 A5 JP 2014017457A5
Authority
JP
Japan
Prior art keywords
fiber
glass
sio
outer periphery
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012155970A
Other languages
Japanese (ja)
Other versions
JP2014017457A (en
JP5819266B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2012155970A priority Critical patent/JP5819266B2/en
Priority claimed from JP2012155970A external-priority patent/JP5819266B2/en
Publication of JP2014017457A publication Critical patent/JP2014017457A/en
Publication of JP2014017457A5 publication Critical patent/JP2014017457A5/ja
Application granted granted Critical
Publication of JP5819266B2 publication Critical patent/JP5819266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

(3)コア内を伝送させる伝送路は単一モード伝送路であることが望ましく、極微細加工を実現させるためにコアのサイズを小さくし、コアと第1クラッド層の比屈折率差大きくしている。そのためにコア内に屈折率を高くするための添加物を多く添加させているが、コアの外周の第1クラッド層との軟化温度の差が大きくなり、ファイバを製造する上で熱膨張係数の差が出てきて安定的な製造がしにくくなっている。
(3) The transmission path for transmission through the core is preferably a single-mode transmission path, and the core size is reduced in order to realize ultrafine processing, and the relative refractive index difference between the core and the first cladding layer is increased. doing. Therefore, many additives for increasing the refractive index are added in the core, but the difference in softening temperature between the core and the first cladding layer on the outer periphery of the core becomes large, and the coefficient of thermal expansion is increased in manufacturing the fiber. The difference comes out and it is difficult to make stable production.

また、高出力のレーザ光を得るためには、コアガラスは、その径が大きく、かつ信号増幅光における高次モードを抑制させるためにクラッドとの比屈折率差はあまり大きくない方が好ましい。そこで、SiO系ガラスからなるクラッド内に複数の空孔を設けることにより、このクラッドの屈折率を等価的に下げることができ、しかも上記空孔の数量m、空孔径d、空孔間隔Λなどで上記等価屈折率を制御することができる。これにより、コアガラス内に添加する希土類元素の添加量を濃度消光を生じさない範囲で最適化できるように、希土類元素を含んだSiO系のコアガラス内に添加する屈折率を高めるための添加物(例えば、GeO、P、TiO、Al、BaO、ZrO、Nなど)の量を低減し、調節することができるようになる。その結果、励起光による希土類イオンの励起効率の最適化が出来、励起光から信号光増幅へのエネルギー変換効率を向上させることができる。
また別の効果として、結果的にコアガラスの軟化温度をクラッドの軟化温度に近い値にすることができるので、ファイバ母材を高温状態に加熱してファイバを製造する際の軟化温度の差による形状変形を小さく抑えることができると共に、製造し易くなる。すなわち、ファイバ母材の形状に相似したファイバ形状を容易に実現することができる。特に、軟化温度を近づけることによってファイバ内に所望形状の空隙を保ったままのファイバ構造を実現するのに有効である。
In order to obtain a high-power laser beam, it is preferable that the core glass has a large diameter and that the relative refractive index difference with the cladding is not so large in order to suppress higher-order modes in the signal amplification light. Therefore, by providing a plurality of holes in the cladding made of SiO 2 glass, the refractive index of the cladding can be reduced equivalently, and the number m of the holes, the hole diameter d, the hole interval Λ The above-mentioned equivalent refractive index can be controlled by, for example. Thus, as the addition amount of the rare earth element added to the core glass can be optimized within a range that does not cause concentration quenching, to increase the refractive index to be added to the core glass of SiO 2 system including a rare earth element The amount of additives (eg, GeO 2 , P 2 O 5 , TiO 2 , Al 2 O 3 , BaO, ZrO 2 , N, etc.) can be reduced and adjusted. As a result, the excitation efficiency of the rare earth ions by the excitation light can be optimized, and the energy conversion efficiency from the excitation light to the signal light amplification can be improved.
As another effect, the softening temperature of the core glass can be made close to the softening temperature of the clad, resulting in a difference in softening temperature when the fiber preform is heated to a high temperature state. Shape deformation can be suppressed to a small level, and manufacturing becomes easy. That is, a fiber shape similar to the shape of the fiber preform can be easily realized. In particular, it is effective for realizing a fiber structure in which a desired shape of the air gap is maintained in the fiber by bringing the softening temperature closer.

本発明の第1実施例に係るファイバの横断面図(a)、ニアフィールドパターンを示す図(b)。1A is a cross-sectional view of a fiber according to a first embodiment of the present invention, and FIG. 従来のファイバを用いた加工例(a)、及び図1(a)のファイバを用いた加工例(b) A processing example (a) using a conventional fiber and a processing example (b) using the fiber of FIG . 本発明の第2実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 2nd Example of this invention. 本発明の第3実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 3rd Example of this invention. 本発明の第4実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 4th Example of this invention. 本発明の第5実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 5th Example of this invention. 本発明の第6実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 6th Example of this invention. 本発明の第7実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 7th Example of this invention. 本発明の第8実施例に係るファイバの横断面図。The transverse cross section of the fiber concerning the 8th example of the present invention. 本発明の第9実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 9th Example of this invention. 本発明の第10実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 10th Example of this invention. 本発明の第11実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 11th Example of this invention. 本発明の第12実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 12th Example of this invention. 本発明の第13実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 13th Example of this invention. 本発明の第14実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 14th Example of this invention. 本発明の第15実施例に係るファイバの横断面図(a)、ニアフィールドパターンを示す図(b)。The cross-sectional view (a) of the fiber which concerns on 15th Example of this invention, The figure (b) which shows a near field pattern. 本発明の第16実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 16th Example of this invention. 本発明の第17実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 17th Example of this invention. 本発明の第18実施例に係るファイバの横断面図。The transverse cross section of the fiber concerning the 18th example of the present invention. 本発明の第19実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 19th Example of this invention. 本発明の第20実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 20th Example of this invention. 本発明の第21実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 21st Example of this invention. 本発明の第22実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 22nd Example of this invention. 本発明の第23実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 23rd Example of this invention. 本発明の第24実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 24th Example of this invention. 本発明の第25実施例に係るファイバの横断面図。The cross-sectional view of the fiber which concerns on 25th Example of this invention. 本発明の第26実施例に係るファイバの横断面図。A cross-sectional view of a fiber according to a twenty-sixth embodiment of the present invention. 本発明の第27実施例に係るファイバの製造方法を説明するための図。The figure for demonstrating the manufacturing method of the fiber which concerns on 27th Example of this invention. 本発明の第28実施例に係るファイバの製造方法を説明するための図。The figure for demonstrating the manufacturing method of the fiber which concerns on 28th Example of this invention. 本発明の第28実施例に係るファイバの製造方法を説明するための図。The figure for demonstrating the manufacturing method of the fiber which concerns on 28th Example of this invention. 本発明の第29実施例に係るファイバレーザの概略構成図。The schematic block diagram of the fiber laser which concerns on 29th Example of this invention. 本発明の第30実施例に係るファイバ型増幅器の概略構成図。The schematic block diagram of the fiber type amplifier which concerns on 30th Example of this invention. 従来のファイバの例を示す図。The figure which shows the example of the conventional fiber. 従来のファイバの例を示す図。The figure which shows the example of the conventional fiber. 従来のファイバの例を示す図。The figure which shows the example of the conventional fiber. 従来のファイバの例を示す図。The figure which shows the example of the conventional fiber. 従来のファイバの例を示す図。The figure which shows the example of the conventional fiber. 従来のファイバの例を示す図。The figure which shows the example of the conventional fiber.

図5に本発明のファイバの第4実施例を示す。このファイバは、その中心部に希土類元素を含んだSiO系の矩形状構造のコアガラス1を有し、その外周に断面矩形状のSiOガラスからなる低屈折率のクラッド2dを有し、該クラッド2dの外周を8角形の構造をしたF添加したSiOガラス4dで囲み、該Fを添加したSiOガラス4dをSiOガラス5dで覆ったことを特徴とするファイバである。このファイバも矩形状構造のSiOガラスからなる低屈折率のクラッド2dの外周が広い面積の空隙3dで覆われているので、励起光の伝送する伝送路のNAを高くすることができる。なお、Fを添加したSiOガラス4dは、クラッド2dの角部が4箇所(6−1、6−2、6−3、6−4)で接した状態で該クラッド2dを覆っており、該Fを添加したSiOガラス4dの外周をSiOガラス5dで覆っている。
このような構造のファイバも、母材を線引してファイバ化すると矩形状構造のSiOガラスからなる低屈折率のクラッド2dの4つの角はわずかに丸くなるが、これも許容できるものである。また、8角形構造のFを添加したSiOガラス4dの8つの角は、ファイバ線引時にわずかに丸くなるが、これはファイバの特性に影響を与えることは少ないので、十分に許容できるものである。
FIG. 5 shows a fourth embodiment of the fiber of the present invention. This fiber has a core glass 1 having a SiO 2 -based rectangular structure containing a rare earth element at its center, and a low refractive index clad 2d made of SiO 2 glass having a rectangular cross section on the outer periphery thereof. enclosed in SiO 2 glass 4d with the addition of F in which the octagonal structure the outer periphery of the cladding 2d, is a fiber which is characterized in that covering the SiO 2 glass 4d with the addition of the F in SiO 2 glass 5d. In this fiber, the outer periphery of the low refractive index clad 2d made of SiO 2 glass having a rectangular structure is covered with a wide space 3d, so that the NA of the transmission path for transmitting the excitation light can be increased. Note that the SiO 2 glass 4d to which F is added covers the cladding 2d in a state where the corners of the cladding 2d are in contact with each other at four locations (6-1, 6-2, 6-3, 6-4). The outer periphery of the SiO 2 glass 4d to which the F is added is covered with the SiO 2 glass 5d.
In the fiber having such a structure, when the base material is drawn into a fiber, the four corners of the low refractive index clad 2d made of SiO 2 glass having a rectangular structure are slightly rounded. This is also acceptable. is there. In addition, the eight corners of the SiO 2 glass 4d to which F having an octagonal structure is added are slightly rounded when the fiber is drawn, but this is sufficiently acceptable because it hardly affects the fiber characteristics. is there.

この製造方法を用いると、希土類元素を添加したSiO系コアガラス1の外周に密着性良くSiOガラスからなる低屈折率のクラッド2を形成することができるので、コアガラス1の外周の構造不均一性による散乱損失を低減させることができる。
また、上記SiOガラスからなる低屈折率のクラッド2と共に上記最外周のSiOガラス5も液体原料の出発原料を固化、加熱して一緒に形成することにより母材を低コストで製造することができる。上記において、希土類元素を添加したコアガラス1はVAD法で製造したGeOとAlを添加した多孔質のSiOガラスロッドにYbCl の水溶液を含浸させた後に乾燥、塩素雰囲気中での高温加熱によって製造した。そして、その希土類元素を添加したコアガラス1の外周にSiOガラス20μmの厚みに形成して製造したガラスロッド13である。
When this manufacturing method is used, the low refractive index clad 2 made of SiO 2 glass can be formed on the outer periphery of the SiO 2 -based core glass 1 to which the rare earth element is added. Scattering loss due to non-uniformity can be reduced.
Further, solidifying the starting material of low refractive index the outermost SiO 2 glass 5 also liquid source with the cladding 2 made of the SiO 2 glass, to manufacture a preform at a low cost by forming together by heating Can do. In the above, the core glass 1 to which the rare earth element is added is impregnated with an aqueous solution of YbCl 3 on a porous SiO 2 glass rod to which GeO 2 and Al 2 O 3 added by the VAD method are added, and then dried in a chlorine atmosphere. Produced by high temperature heating. Then, a glass rod 13 produced by forming a SiO 2 glass in a thickness of 20μm on the outer circumference of the core glass 1 with the addition of the rare earth elements.

Claims (18)

ファイバの中心部に希土類元素を含んだSiO系ガラスからなる高屈折率のコアガラスを有し、該コアガラスの外周に希土類元素を含まないSiO系ガラスからなる低屈折率のクラッドを有し、該クラッドの外周の大部分を空隙で覆い、該空隙の外周に、Fを添加したSiOガラスを該クラッドの外周の少なくとも3箇所で接して覆う構造とし、該Fを添加したSiOガラスの外周をFを添加しないSiO系ガラスで覆ったことを特徴とするファイバ。 The center of the fiber has a high refractive index core glass made of SiO 2 glass containing rare earth elements, and the core glass has a low refractive index clad made of SiO 2 glass containing no rare earth elements. Then, most of the outer periphery of the cladding is covered with voids, and the outer periphery of the voids is covered with SiO 2 glass added with F at at least three locations on the outer periphery of the cladding, and the SiO 2 doped with F is added. A fiber characterized in that the outer periphery of glass is covered with SiO 2 glass not containing F. ファイバの中心部に希土類元素を含んだSiO系ガラスからなる高屈折率のコアガラスと、該コアガラスの外周に設けた希土類元素を含まないSiO系ガラスからなるクラッドと、該クラッドの外周に設けた、Fを添加したSiOガラス層とを有し、
該Fを添加したSiOガラス層の外周の大部分を空隙で覆い、該空隙の外周にFを添加したSiOガラスを該Fを添加したSiO ガラス層の外周の少なくとも3箇所で接して覆う構造とし、前記Fを添加したSiOガラスの外周をFを添加しないSiO系ガラスで覆ったことを特徴とするファイバ。
A high refractive index core glass made of SiO 2 glass containing rare earth elements in the center of the fiber, a clad made of SiO 2 glass not containing rare earth elements provided on the outer periphery of the core glass, and an outer periphery of the cladding And a SiO 2 glass layer added with F,
Most of the outer periphery of the SiO 2 glass layer to which F has been added is covered with a gap, and the SiO 2 glass to which F has been added is in contact with the outer periphery of the gap at at least three locations on the outer periphery of the SiO 2 glass layer to which the F has been added. a structure for covering the fiber, characterized in that the outer periphery of the SiO 2 glass doped with the F is covered with SiO 2 glass without addition of F.
ファイバの中心部に希土類元素を含んだSiO系ガラスからなる高屈折率のコアガラスと、該コアガラスの外周に設けた希土類元素を含まないSiO系ガラスからなるクラッドと、該クラッドの外周に設けた、Fを添加したSiOガラス層とを有し、
該Fを添加したSiOガラス層の外周の大部分を空隙で覆い、該空隙の外周にFを添加しないSiO系ガラスを該Fを添加したSiO ガラス層の外周の少なくとも3箇所で接して覆う構造としたことを特徴とするファイバ。
A high refractive index core glass made of SiO 2 glass containing rare earth elements in the center of the fiber, a clad made of SiO 2 glass not containing rare earth elements provided on the outer periphery of the core glass, and an outer periphery of the cladding And a SiO 2 glass layer added with F,
Covered with voids most of the outer periphery of the SiO 2 glass layer with the addition of the F, contact with SiO 2 glass without addition of F on the outer periphery of the void in at least three places of the outer periphery of the SiO 2 glass layer with the addition of the F A fiber characterized by having a structure to cover.
請求項1〜3のいずれかに記載のファイバにおいて、ファイバの中心部に、希土類元素を含んだSiO系ガラスからなる高屈折率の前記コアガラスが所定間隔を有して複数個配置されていることを特徴とするファイバ。 The fiber according to any one of claims 1 to 3, wherein a plurality of the high refractive index core glasses made of SiO 2 glass containing rare earth elements are arranged at a predetermined interval at the center of the fiber. A fiber characterized by 請求項1〜4のいずれかに記載のファイバにおいて、希土類元素を含んだSiO系ガラスからなる高屈折率の前記コアガラスの外形断面形状が矩形か多角形、あるいは円形であることを特徴とするファイバ。 The fiber according to any one of claims 1 to 4, wherein an outer cross-sectional shape of the high refractive index core glass made of SiO 2 glass containing rare earth elements is rectangular, polygonal, or circular. Fiber. 請求項1〜5のいずれかに記載のファイバにおいて、外形断面形状が円形、角が丸みを帯びた矩形か多角形のいずれかであることを特徴とするファイバ。 The fiber according to any one of claims 1 to 5, wherein the outer cross-sectional shape is a circle and the corner is a rounded rectangle or a polygon. 請求項1〜6のいずれかに記載のファイバにおいて、SiO系ガラスからなる低屈折率の前記クラッド内に複数の空孔を有することを特徴とするファイバ。 The fiber according to any one of claims 1 to 6, wherein the fiber has a plurality of holes in the low refractive index clad made of SiO 2 glass. 請求項7に記載のファイバにおいて、前記複数の空孔を含有するSiO系ガラスからなる低屈折率の前記クラッド内の空孔は所定間隔で三角格子状に配置されており、フォトニックバンドギャップ構造を形成していることを特徴とするファイバ。 8. The fiber according to claim 7, wherein the holes in the cladding having a low refractive index made of SiO 2 glass containing the plurality of holes are arranged in a triangular lattice shape at a predetermined interval. A fiber characterized by forming a structure. 請求項1〜8のいずれかに記載のファイバにおいて、前記コアガラスに含まれる希土類元素が、Er、Yb、Nd、Eu、Pr、Tm、Ho、La、Sm、Ceの中の少なくとも1種を含んでいることを特徴とするファイバ。 The fiber according to any one of claims 1 to 8, wherein the rare earth element contained in the core glass is at least one of Er, Yb, Nd, Eu, Pr, Tm, Ho, La, Sm, and Ce. A fiber characterized by containing. 請求項1〜9のいずれかに記載のファイバにおいて、前記コアガラスが、SiOガラスか、GeO、P、TiO、Al、BaO、B、ZrO、F、Nの少なくとも1種を含んだSiOガラスであることを特徴とするファイバ。 The fiber according to any one of claims 1 to 9, wherein the core glass is SiO 2 glass, GeO 2 , P 2 O 5 , TiO 2 , Al 2 O 3 , BaO, B 2 O 3 , ZrO 2 , A fiber characterized by being SiO 2 glass containing at least one of F and N. 請求項1〜10のいずれかに記載のファイバにおいて、前記クラッドの外形断面形状が円形、三角形、四角形、六角形、あるいは角が丸みを帯びた三角形、四角形、六角形のいずれかであることを特徴とするファイバ。 The fiber according to any one of claims 1 to 10, wherein an outer cross-sectional shape of the cladding is any one of a circle, a triangle, a rectangle, a hexagon, or a triangle, a rectangle, and a hexagon with rounded corners. Characteristic fiber. 請求項1又は2に記載のファイバにおいて、前記クラッドの外形断面形状が円形の場合には、前記Fを添加したSiOガラスの中空部の断面形状は矩形か三角形、あるいは多角形であることを特徴とするファイバ。 3. The fiber according to claim 1 , wherein when the outer cross-sectional shape of the cladding is circular, the cross-sectional shape of the hollow portion of the SiO 2 glass to which F is added is a rectangle, a triangle, or a polygon. Characteristic fiber. 請求項1又は2に記載のファイバにおいて、前記クラッドの外形断面形状が三角形又は四角形の場合には、前記Fを添加したSiOガラスの中空部の断面形状が円形又は多角形であることを特徴とするファイバ。 3. The fiber according to claim 1 , wherein when the outer cross-sectional shape of the clad is a triangle or a quadrangle, the cross-sectional shape of the hollow portion of the SiO 2 glass to which the F is added is a circle or a polygon. And fiber. 請求項1又は2に記載のファイバにおいて、前記クラッドの外形断面形状が多角形の場合には、前記Fを添加したSiOガラスの中空部の断面形状が円形であることを特徴とするファイバ。 3. The fiber according to claim 1 , wherein when the outer cross-sectional shape of the clad is a polygon, the cross-sectional shape of the hollow portion of the SiO 2 glass to which the F is added is circular. 請求項1〜14のいずれかに記載のファイバにおいて、SiO系ガラスからなる低屈折率の前記クラッドおよび最外周の前記SiO系ガラスを、SiOの液体原料の出発原料を固化、加熱して形成したことを特徴とするファイバ。 In the fiber according to any one of claims 1 to 14, the cladding and the outermost periphery of the SiO 2 glass having a low refractive index of SiO 2 based glass, the starting materials of SiO 2 liquid material solidifies, heat A fiber characterized by being formed. 請求項1〜14のいずれかに記載のファイバにおいて、SiOの液体原料を金型内に充填し、固化した後に該金型から固化体を離脱し、塩素雰囲気中で該固化体を高温加熱することによりガラス化して得たファイバ母材を、高温で線引きして得たことを特徴とするファイバ。 The fiber according to any one of claims 1 to 14, wherein a liquid raw material of SiO 2 is filled in a mold and solidified, then the solidified body is detached from the mold, and the solidified body is heated at high temperature in a chlorine atmosphere. A fiber obtained by drawing a fiber preform obtained by vitrification at a high temperature. 請求項1〜16のいずれかに記載のファイバを備えるファイバ型増幅器において、信号光を前記ファイバのコアガラスの中に結合させ、希土類元素を励起する励起光をコアガラスを含むSiO系ガラスからなる低屈折率のクラッド内に結合させて伝搬させるようにしたことを特徴とするファイバ型増幅器。 The fiber type amplifier comprising the fiber according to any one of claims 1 to 16, wherein signal light is coupled into the core glass of the fiber, and excitation light for exciting the rare earth element is made of SiO 2 glass containing the core glass. A fiber-type amplifier characterized by being coupled and propagated in a low refractive index clad. 請求項1〜16のいずれかに記載のファイバと、該ファイバの入力端側には、レーザ光を全反射し、励起光を透過する波長選択全反射鏡を配置させ、前記ファイバの出射端側には、レーザ光を半透過させる反射鏡を設け、励起光を前記ファイバの入力端側から前記クラッド内に結合させて伝搬させるようにし、前記ファイバの出射端側からレーザ光を出射させるようにしたことを特徴とするファイバレーザ。   The fiber according to any one of claims 1 to 16, and a wavelength-selective total reflection mirror that totally reflects laser light and transmits excitation light is disposed on an input end side of the fiber, and an output end side of the fiber Is provided with a reflecting mirror that semi-transmits the laser light so that the excitation light is coupled and propagated from the input end side of the fiber into the cladding, and the laser light is emitted from the output end side of the fiber. A fiber laser characterized by that.
JP2012155970A 2012-07-11 2012-07-11 Manufacturing method of single mode fiber Active JP5819266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012155970A JP5819266B2 (en) 2012-07-11 2012-07-11 Manufacturing method of single mode fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012155970A JP5819266B2 (en) 2012-07-11 2012-07-11 Manufacturing method of single mode fiber

Publications (3)

Publication Number Publication Date
JP2014017457A JP2014017457A (en) 2014-01-30
JP2014017457A5 true JP2014017457A5 (en) 2015-01-15
JP5819266B2 JP5819266B2 (en) 2015-11-18

Family

ID=50111874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012155970A Active JP5819266B2 (en) 2012-07-11 2012-07-11 Manufacturing method of single mode fiber

Country Status (1)

Country Link
JP (1) JP5819266B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487171A (en) * 2014-10-08 2016-04-13 中兴通讯股份有限公司 Bended multi-mode optical waveguide and manufacturing method thereof
KR101708259B1 (en) * 2015-04-30 2017-02-21 한국광기술원 double-clad fiber and fiber laser using the same
CN106876850A (en) * 2015-12-14 2017-06-20 泰科电子(上海)有限公司 Dielectric waveguide
CN109143464B (en) * 2018-11-29 2019-03-12 中聚科技股份有限公司 A kind of rear-earth-doped glass optical fiber and preparation method thereof
CN111552028B (en) * 2020-04-21 2021-04-20 中国科学院西安光学精密机械研究所 Radiation-resistant erbium-doped optical fiber for space and preparation method thereof
EP4160832A4 (en) * 2020-06-05 2023-12-13 National University Corporation Saitama University Mode-locking method selectively using two different wavelengths, and laser device using said method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116052A (en) * 1974-02-25 1975-09-11
JP2003329869A (en) * 2002-05-17 2003-11-19 Mitsubishi Cable Ind Ltd Double-clad fiber and method for manufacturing the same
JP2004356318A (en) * 2003-05-28 2004-12-16 Fujikura Ltd Photoexciting method of optical amplification medium fiber, photoexcited light incidence structure to optical amplification medium fiber, optical fiber amplifier and optical fiber laser
JP2005289766A (en) * 2004-04-02 2005-10-20 Nippon Sheet Glass Co Ltd Preform for optical element, optical element manufactured using the same, and method for manufacturing preform for optical element
JP5102979B2 (en) * 2006-06-12 2012-12-19 三菱電線工業株式会社 Laser beam emission method
JP2009168914A (en) * 2008-01-11 2009-07-30 Mitsubishi Cable Ind Ltd Optical fiber and method for manufacturing the same
JP5227038B2 (en) * 2008-01-16 2013-07-03 三菱電線工業株式会社 Optical fiber
JP2010129886A (en) * 2008-11-28 2010-06-10 Hitachi Cable Ltd Optical fiber for fiber laser, and fiber laser
JP5676152B2 (en) * 2010-06-15 2015-02-25 湖北工業株式会社 Optical fiber and manufacturing method thereof
JP5555134B2 (en) * 2010-10-26 2014-07-23 湖北工業株式会社 Optical fiber
WO2012172996A1 (en) * 2011-06-16 2012-12-20 古河電気工業株式会社 Multicore amplifying optical fiber

Similar Documents

Publication Publication Date Title
EP1421420B1 (en) Optical Fibre with high numerical aperture
JP2014017457A5 (en)
US8731356B2 (en) Microstructured optical fibers and manufacturing methods thereof
JP6306624B2 (en) Fiber that provides double-clad gain with increased cladding absorption while maintaining single-mode operation
US6990282B2 (en) Photonic crystal fibers
JP4755114B2 (en) Double clad optical fiber with glass core doped with rare earth metal
CN102508333B (en) Preparation method of double clad all-solid-state photonic crystal fiber
AU2002336075A1 (en) Optical fibre with high numerical aperture, method of its production, and use thereof
JP2007316526A (en) Photonic band gap fiber and fiber laser
US7978947B2 (en) Photonic bandgap fiber
JP5819266B2 (en) Manufacturing method of single mode fiber
JPWO2010052815A1 (en) Photonic bandgap fiber
Kristiansen et al. Microstructured fibers and their applications
JP2009060097A (en) Optical fiber for fiber lasers, its production method, and fiber laser
CN108333669A (en) A kind of single polarization active microstructured optical fibers of aperiodicity coarse pitch single mode
JP4080701B2 (en) Double-clad fiber and manufacturing method thereof
WO2014197052A2 (en) Multi-core optical fibers
JP2008226885A (en) Rare earth doped photonic band gap fiber and optical amplifier
JP5539594B2 (en) Fiber and fiber manufacturing method
WO2003100488A1 (en) Optical waveguide, method of its production, and its use
CN111175886B (en) Optical fiber device capable of filtering long wavelength
JP6033200B2 (en) Fiber that provides gain with increased cladding absorption while maintaining single mode operation
JPH10148718A (en) Optical fiber for laser
JP2017525127A (en) Polarization-maintaining large mode area gain fiber with elliptical cladding layer
CN103760633A (en) Double-cladding all-solid photonic crystal gain fiber and manufacturing method thereof