JP2014016373A - Method of measuring component amount in coating film - Google Patents
Method of measuring component amount in coating film Download PDFInfo
- Publication number
- JP2014016373A JP2014016373A JP2013225461A JP2013225461A JP2014016373A JP 2014016373 A JP2014016373 A JP 2014016373A JP 2013225461 A JP2013225461 A JP 2013225461A JP 2013225461 A JP2013225461 A JP 2013225461A JP 2014016373 A JP2014016373 A JP 2014016373A
- Authority
- JP
- Japan
- Prior art keywords
- amount
- coating film
- light
- component
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、塗布膜中の成分量の測定方法に関する。 The present invention relates to a method for measuring the amount of a component in a coating film.
従来、ある対象物内の成分量を同時に測定する方法としては、成分量ごとに光の吸収量が異なることを利用して、光を照射しその吸収度を調べる方法が提案されている。 Conventionally, as a method for simultaneously measuring the amount of a component in a certain object, a method has been proposed in which the amount of absorption of light is different for each amount of component and light is irradiated to examine the degree of absorption.
その方法の一つとして、ある特定の波長光を選び、その波長光における吸光度を測定することで成分量を換算するという方法がある。例えば、特許文献1では複数層の機能層を持つ電子写真感光体材料に、各々の機能層が最も吸収しやすい波長の光を複数照射することで、その吸収量から膜厚を求めている。 As one of the methods, there is a method of converting a component amount by selecting light of a specific wavelength and measuring absorbance at the wavelength light. For example, in Patent Document 1, an electrophotographic photosensitive material having a plurality of functional layers is irradiated with a plurality of lights having wavelengths that are most easily absorbed by each functional layer, and the film thickness is obtained from the amount of absorption.
また、特許文献2では、多成分を含む水溶液に赤外光を照射し、1500nm〜1850nmにおける赤外光スペクトルを求め、予め求めておいた成分量が既知の場合の赤外吸収スペクトルから主な吸収波長を指定しその波長における吸収量を測定することで各成分の量を求める方法が提案されている。 Moreover, in patent document 2, infrared light is irradiated to the aqueous solution containing a multicomponent, the infrared light spectrum in 1500 nm-1850 nm is calculated | required, and the main component is obtained from the infrared absorption spectrum in case the component quantity calculated | required previously is known. A method has been proposed in which the amount of each component is determined by specifying an absorption wavelength and measuring the amount of absorption at that wavelength.
また、別の方法として非特許文献1に示すように、全体量が同一のときに内部の成分量比を変化させ吸光度の成分量比依存性の検量線を求めておくことで、ある特定波長を照射しその吸光度変化を測定して、対象物内の成分量を求める方法がある。この方法は特許文献3でも提案されている。 As another method, as shown in Non-patent Document 1, when the total amount is the same, the internal component amount ratio is changed to obtain a calibration curve that is dependent on the component amount ratio of the absorbance. There is a method of determining the amount of a component in an object by measuring the change in absorbance by irradiating. This method is also proposed in Patent Document 3.
また、ある対象物内の複数の成分量を同時に測定する方法として、特許文献4には、複数種類の成分が混合された塗布膜に成分量と同数の種類の波長光を照射し、各波長光の全成分による吸光度を測定しておき、さらにあらかじめ各波長における吸光度と各成分量の関係から各波長における吸光度に対する各成分量の比例係数を求めておいて、未知の各成分の成分量について行列式を立て、それを解くことで各成分の成分量を算出する方法が提案されている。 In addition, as a method for simultaneously measuring a plurality of component amounts in a certain object, Patent Document 4 irradiates a coating film in which a plurality of types of components are mixed with the same number of types of wavelength light as each component amount, and each wavelength Measure the absorbance of all components of light, and obtain the proportional coefficient of each component amount with respect to the absorbance at each wavelength from the relationship between the absorbance at each wavelength and the amount of each component in advance. A method has been proposed in which a determinant is set and a component amount of each component is calculated by solving the determinant.
しかし、上述した特許文献1〜4で提案されている方法は、すべて測定対象内の溶媒量が変化しないことを前提としている。そのため、対象物が乾燥中の塗布膜であり膜中の溶媒量を測定する場合には、特許文献1〜4の方法では、塗布膜中の溶媒が蒸発して気体となり、膜中の溶媒のみならず蒸発した気体も赤外光を吸光してしまうため、塗布膜中の成分量を正しく測定することが困難となっていた。 However, all of the methods proposed in Patent Documents 1 to 4 described above are based on the premise that the amount of solvent in the measurement target does not change. Therefore, when the object is a coating film being dried and the amount of solvent in the film is measured, in the methods of Patent Documents 1 to 4, the solvent in the coating film evaporates into a gas, and only the solvent in the film is obtained. In addition, since the evaporated gas absorbs infrared light, it is difficult to correctly measure the amount of components in the coating film.
測定対象物以外の気体が測定に影響を及ぼすのを避けるため、気体を除去しながら測定を行なう方法が提案されている。例えば、特許文献5ではカラムを用いて測定に障害を及ぼす気体を除去した後に赤外吸光度の測定を行なっている。また、特許文献6では、除去剤を用いて気体を取り除いて成分量の測定を行なっている。 In order to avoid the gas other than the measurement object from affecting the measurement, a method of performing measurement while removing the gas has been proposed. For example, in Patent Document 5, infrared absorbance is measured after removing a gas that interferes with the measurement using a column. Moreover, in patent document 6, gas is removed using a removal agent and the amount of components is measured.
しかしながら、特許文献5及び特許文献6で提案されるカラムや除去剤を利用する方法では、カラムや除去剤が気体をある程度吸収すると気体を吸収する力が鈍り機能が落ちるため、度々交換が必要となる。そのため、カラムや除去剤で気体を除去してから成分量を測定する方法では、工業的な用途のような、例えば、塗布膜から蒸発する気体を除去しながら連続的に塗布膜中の成分量を測定する場合、非常に手間が掛かっていた。 However, in the method using the column and the removal agent proposed in Patent Literature 5 and Patent Literature 6, if the column or the removal agent absorbs the gas to some extent, the force to absorb the gas becomes dull and the function is deteriorated. Become. Therefore, in the method of measuring the amount of components after removing the gas with a column or remover, the amount of components in the coating film continuously while removing the gas evaporating from the coating film, such as in industrial applications. It was very time consuming to measure.
本発明はこのような事情に鑑みてなされたもので、塗布膜から蒸発した気体を除去しながら、連続的に塗布膜内の成分量を正確に測定することができる塗布膜中の成分量の測定方法を提供することを目的する。 The present invention has been made in view of such circumstances, and it is possible to accurately measure the amount of components in a coating film continuously while removing gas evaporated from the coating film. The purpose is to provide a measurement method.
前記目的を達成するために、本発明の塗布膜中の成分量の測定方法は、複数の溶媒を含む塗布膜の乾燥中に各溶媒の成分量を連続的に測定する方法であって、塗布膜に複数の光源から光照射を行い、複数の受光センサがそれぞれ波長の異なる光を受光する構成であり、塗布膜が吸収した異なる波長の光吸収量を連続的に測定する工程と、測定された光吸収量から塗布膜中の成分量を算出する工程と、を含む。 In order to achieve the above object, the method for measuring the amount of a component in a coating film of the present invention is a method for continuously measuring the component amount of each solvent during the drying of a coating film containing a plurality of solvents, The film is irradiated with light from a plurality of light sources, and a plurality of light receiving sensors respectively receive light having different wavelengths, and the step of continuously measuring the light absorption amount of different wavelengths absorbed by the coating film is measured. And calculating a component amount in the coating film from the light absorption amount.
本発明によれば、塗布膜から蒸発した気体を除去しながら塗布膜に光照射を行って光吸収量を測定し、その光吸収量から塗布膜内部の成分量を算出することによって、塗布膜液から蒸発した気体が滞留して照射された光を吸収するのを防止できる。これにより、蒸発した気体の成分量が測定されないので、塗布膜内の成分量を正確に測定することができる。また、カラムや除去剤を使用しないので、連続的な成分量の測定が可能となる。 According to the present invention, the coating film is irradiated by irradiating the coating film with light while removing the vaporized gas from the coating film, measuring the light absorption amount, and calculating the component amount inside the coating film from the light absorption amount. The gas evaporated from the liquid can be prevented from staying and absorbing the irradiated light. Thereby, since the component amount of the evaporated gas is not measured, the component amount in the coating film can be accurately measured. In addition, since no column or remover is used, continuous component amounts can be measured.
測定する溶媒の数と複数の受光センサは同数であることが好ましい。 The number of solvents to be measured and the number of light receiving sensors are preferably the same.
塗布膜に光照射を行なって光吸収量を測定する工程は、n種類の成分C1・・・Cnが混合された塗布膜に、成分量と同数の種類の波長光L1・・・Lnを照射し、各波長光の全成分による光吸収量A1・・・Anを測定する工程を含み、光吸収量から塗布膜中の成分量を算出する工程は、各波長光L1・・・Lnにおける、n種類の各成分C1・・・Cnの光吸収量と各成分量の関係から予め求めた比例係数k11・・・knnと測定された光吸収量A1・・・Anとから、式(1)で表される行列式を解くことで塗布膜中の未知の各成分の成分量a1・・・anを算出する工程を含むことが好ましい。 The step of measuring the amount of light absorption by irradiating the coating film with light is performed by irradiating the coating film in which n types of components C1... Cn are mixed with the same number of types of wavelength light L1. And measuring the light absorption amount A1... An based on all components of each wavelength light, and calculating the component amount in the coating film from the light absorption amount in each wavelength light L1. From the proportionality coefficient k 11 ... k nn obtained in advance from the relationship between the light absorption amount of each of the n types of components C 1... Cn and the amount of each component, and the measured light absorption amounts A 1. preferably includes a step of calculating component amounts a 1 · · · a n unknown components in the coating film by solving the represented determinant 1).
さらに、以下の発明を開示する。 Furthermore, the following invention is disclosed.
塗布膜から蒸発した気体を除去する方法が、塗布膜付近の空気移動により気体を除去する方法であることが好ましい。空気移動による除去は簡易な方法であるので好ましい。 The method of removing the gas evaporated from the coating film is preferably a method of removing the gas by air movement in the vicinity of the coating film. Removal by air movement is preferable because it is a simple method.
塗布膜付近の空気移動が、塗布膜付近に風を当てる及び/又は塗布膜付近を吸引することによる空気移動であることが好ましい。空気移動による除去に用いられる送風(もしくは吸引)装置はメンテナンスの手間が比較的かからないので好ましい。 The air movement in the vicinity of the coating film is preferably air movement by applying air to the vicinity of the coating film and / or sucking the vicinity of the coating film. A blower (or suction) device used for removal by air movement is preferable because it requires relatively little maintenance work.
機能性フィルムの製造方法は、走行する支持体に塗布液を塗布し塗布膜を形成する工程と、上記塗布膜中の成分量の測定方法により一定時間毎に塗布膜中の成分量を測定する工程と、成分量のバラツキが所定範囲内となるよう塗布膜の乾燥条件を調整する工程と、を有することを特徴とする。 The functional film manufacturing method measures the amount of components in a coating film at regular intervals by a step of applying a coating solution to a traveling support to form a coating film and a method for measuring the amount of components in the coating film. And a step of adjusting the drying conditions of the coating film so that the variation in the component amount is within a predetermined range.
測定した塗布膜中の成分量のバラツキを所定範囲となるよう乾燥条件を調整しているので、品質の安定した機能性フィルムを製造することができる。 Since the drying conditions are adjusted so that the variation in the measured component amount in the coating film falls within a predetermined range, a functional film with stable quality can be produced.
塗布膜の乾燥条件を調整する工程が、成分量のバラツキが、直近1秒以上前に測定した成分量から換算した平均値から±2%以内に収まるように乾燥条件を調整する工程であることが好ましい。 The step of adjusting the drying condition of the coating film is a step of adjusting the drying condition so that the variation in the component amount is within ± 2% from the average value converted from the component amount measured immediately before 1 second or more. Is preferred.
直近1秒以上とする理由は、直近1秒以内に測定した膜厚値は既に膜厚ムラによる影響が及ぼされている可能性があるためである。仮に、直近1秒以内に測定した膜厚値を平均値の中に換算してしまうと、平均値と測定した膜厚値との比較をしたとしても、膜厚ムラが生じていることを発見できなくなる可能性があるからである。 The reason for setting it to the latest 1 second or more is that the film thickness value measured within the last 1 second may have already been affected by the film thickness unevenness. If the film thickness value measured within the last 1 second is converted into the average value, it will be found that even if the average value is compared with the measured film thickness value, film thickness unevenness occurs. This is because it may not be possible.
また、±2%以内とする理由は、膜厚誤差が2%以上となってしまうと、機能性フィルムとしての機能が発現しなくなるからである。 The reason why it is within ± 2% is that when the film thickness error is 2% or more, the function as a functional film does not appear.
本発明によれば、塗布膜から蒸発した気体を除去しながら、連続的に塗布膜内の成分量を正確に測定することができる。 ADVANTAGE OF THE INVENTION According to this invention, the component quantity in a coating film can be measured correctly continuously, removing the gas evaporated from the coating film.
以下添付図面に従って本発明の好ましい実施の形態について説明する。本発明は以下の好ましい実施の形態により説明されるが、本発明の範囲を逸脱すること無く、多くの手法により変更を行うことができ、本実施の形態以外の他の実施の形態を利用することができる。従って、本発明の範囲内における全ての変更が特許請求の範囲に含まれる。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. The present invention will be described with reference to the following preferred embodiments, but can be modified in many ways without departing from the scope of the present invention, and other embodiments than the present embodiment can be used. be able to. Accordingly, all modifications within the scope of the present invention are included in the claims.
図1は、塗布膜中の成分量の測定に使用される測定装置の概略構成図である。測定装置10は、第一の光源12及び第二の光源14、第一の光源12からの光を受光する第一のセンサ16及び第二の光源14からの光を受光する第二のセンサ18、支持体20上に形成された塗布膜22付近に空気を供給する送風ファン24、送風ファン24からの空気を吸引する吸引機26を備える。測定装置10は、さらに、第一のセンサ16と第二のセンサ18と電気的に接続された計算機28を備える。 FIG. 1 is a schematic configuration diagram of a measuring apparatus used for measuring the amount of components in a coating film. The measuring device 10 includes a first light source 12 and a second light source 14, a first sensor 16 that receives light from the first light source 12, and a second sensor 18 that receives light from the second light source 14. A blower fan 24 for supplying air to the vicinity of the coating film 22 formed on the support 20 and a suction device 26 for sucking air from the blower fan 24 are provided. The measuring apparatus 10 further includes a calculator 28 that is electrically connected to the first sensor 16 and the second sensor 18.
第一の光源12と第二の光源14とは、異なる波長の光を塗布膜に照射できるよう構成される。図1に示す測定装置10の構成に限定されず、一つの光源からの光を複数のフィルタを透過させることで、異なる波長の光を塗布膜22に照射しても良い。第一の光源12と第二の光源14から照射される光は、1400nm−1〜7000nm−1の波長の光であることが好ましい。1400nm−1〜7000nm−1の波長の光を選択するのは、有機溶剤が有する官能機の吸収帯この波長の範囲内にあるからである。 The 1st light source 12 and the 2nd light source 14 are comprised so that the light of a different wavelength can be irradiated to a coating film. The configuration of the measurement apparatus 10 illustrated in FIG. 1 is not limited, and light from a single light source may be applied to the coating film 22 with light having different wavelengths by transmitting the light through a plurality of filters. Light emitted from the first light source 12 and the second light source 14 is preferably light of a wavelength of 1400nm -1 ~7000nm -1. To select light having a wavelength of 1400nm -1 ~7000nm -1 is because in the range of the absorption band wavelength of functional machine having an organic solvent.
第一の光源12と第二の光源14から塗布膜22に向けて光が照射される。第一の光源12と第二の光源14からの光は、塗布膜22及び支持体20を透過し、第一のセンサ16と第二のセンサ18により受光される。塗布膜22及び支持体20を透過する際に、塗布膜22に含まれる成分に応じて所定の波長の光が吸収される。計算機28は、第一のセンサ16と第二のセンサ18からの光吸収量の測定データを受け、測定データに基づいて塗布膜22の成分量を算出する。 Light is irradiated from the first light source 12 and the second light source 14 toward the coating film 22. Light from the first light source 12 and the second light source 14 passes through the coating film 22 and the support 20 and is received by the first sensor 16 and the second sensor 18. When passing through the coating film 22 and the support 20, light having a predetermined wavelength is absorbed according to the components contained in the coating film 22. The calculator 28 receives the measurement data of the light absorption amount from the first sensor 16 and the second sensor 18 and calculates the component amount of the coating film 22 based on the measurement data.
図1に示す測定装置10は、送風ファン24と吸引機26の双方を備えている。これにより、塗布膜22から蒸発した気体が除去される。但し、これに限定されず、送風ファン24と吸引機26の何れか一方のみを備える場合でも良い。 The measuring apparatus 10 shown in FIG. 1 includes both a blower fan 24 and a suction device 26. Thereby, the gas evaporated from the coating film 22 is removed. However, the present invention is not limited to this, and only one of the blower fan 24 and the suction device 26 may be provided.
本発明によれば、成分量の測定に影響を及ぼす可能性のある、塗布膜22から蒸発した気体が除去されるので、気体の成分量が光吸収量に含まれず、正確に塗布膜中の成分量を測定することができる。 According to the present invention, the evaporated gas from the coating film 22 that may affect the measurement of the component amount is removed. Therefore, the component amount of the gas is not included in the light absorption amount, and is accurately contained in the coating film. The amount of ingredients can be measured.
次に塗布膜中の成分量の測定方法についてより詳細に説明する。塗布膜中に含まれる成分がA及びBの2溶媒であり、その成分量を測定する場合を例に説明する。 Next, the measuring method of the component amount in the coating film will be described in more detail. The case where the components contained in the coating film are two solvents A and B and the amounts of the components are measured will be described as an example.
まず、最初に、溶媒A及びBの光吸収量と照射する波長の関係のスペクトルを測定する。図2(A)及び(B)に示すように、波長を横軸に、赤外吸収量を縦軸にして、測定した値をプロットする。測定した両スペクトルから、測定した成分量と同数の(この場合2つ)波長を選択する。 First, the spectrum of the relationship between the light absorption amounts of the solvents A and B and the irradiation wavelength is measured. As shown in FIGS. 2A and 2B, the measured values are plotted with the wavelength on the horizontal axis and the infrared absorption amount on the vertical axis. From both measured spectra, the same number of wavelengths as the measured component amount (in this case, two) are selected.
2つの波長を選択する基準は、(1)少なくとも1波長においては、溶媒間の光吸収量が異なること、(2)できるだけ吸収量が高い波長を選ぶこと、の2点である。この基準に基づいて、図2(A)及び(B)に示すように、丸印で囲まれた部分に該当する波長が選択される。ここで、選択された2波長の内で低い方の波長をλ1(nm)、高い方の波長をλ2(nm)とする。 There are two criteria for selecting the two wavelengths: (1) at least one wavelength has a different amount of light absorption between the solvents, and (2) a wavelength having the highest possible absorption amount. Based on this criterion, as shown in FIGS. 2A and 2B, the wavelength corresponding to the portion surrounded by a circle is selected. Here, of the two selected wavelengths, the lower wavelength is λ1 (nm) and the higher wavelength is λ2 (nm).
次に、溶媒Aと溶媒Bのそれぞれについて、波長λ1(nm)と波長λ2(nm)での溶媒量と吸収量の関係を求めることにより、検量線が作成される。検量線とは、測定物の光吸収量(ピーク強度)と成分量(質量%)とを関連付けたものである。この検量線は、成分量が既知の測定物を測定して得られた光吸収量スペクトルデータに基づき作成される。図3(A)及び(B)は、溶媒Aと溶媒Bについて、波長λ1(nm)を照射したときの、成分量と赤外吸収量の関係を表したグラフの一例である。また、図4(A)及び(B)は、溶媒Aと溶媒Bについて、波長λ2(nm)を照射したときの、成分量と赤外吸収量の関係を表したグラフの一例である。それぞれの検量線である図3及び図4から、溶媒量と吸収量の比例係数a,b,c,dが求められる。 Next, for each of the solvent A and the solvent B, a calibration curve is created by obtaining the relationship between the solvent amount and the absorption amount at the wavelength λ1 (nm) and the wavelength λ2 (nm). The calibration curve is a correlation between the light absorption amount (peak intensity) and the component amount (mass%) of the measurement object. This calibration curve is created based on light absorption amount spectrum data obtained by measuring a measurement object with a known component amount. FIGS. 3A and 3B are examples of graphs showing the relationship between the component amount and the infrared absorption amount when the solvent A and the solvent B are irradiated with the wavelength λ1 (nm). 4A and 4B are examples of graphs showing the relationship between the component amount and the infrared absorption amount when the solvent A and the solvent B are irradiated with the wavelength λ2 (nm). From the respective calibration curves shown in FIGS. 3 and 4, proportional coefficients a, b, c, and d of the solvent amount and the absorption amount are obtained.
最後に、成分量の測定について説明する。塗布膜中に含まれる溶媒Aの未知の成分量をX、溶媒Bの未知の成分量をYとする。この塗布膜に対し、波長λ1(nm)と波長λ2(nm)の光を照射し、それぞれの吸収量を測定する。測定したλ1(nm)の吸収量(吸光度)をAbs1、λ2(nm)の吸収量(吸光度)をAbs2とし、検量線から求められた比例係数をa,b,c,dとすると以下の式が成り立つ。 Finally, the measurement of the component amount will be described. The unknown component amount of the solvent A contained in the coating film is X, and the unknown component amount of the solvent B is Y. The coating film is irradiated with light having a wavelength λ1 (nm) and a wavelength λ2 (nm), and the amount of absorption is measured. If the measured absorption amount (absorbance) of λ1 (nm) is Abs1, the absorption amount (absorbance) of λ2 (nm) is Abs2, and the proportionality coefficient obtained from the calibration curve is a, b, c, d, the following equation Holds.
(1)aX + bY = Abs1、(2) cX + dY = Abs2
この(1)及び(2)の2式の連立方程式を解くことによってXとYが求められる。したがって、溶媒A、Bの量がそれぞれ算出される。(1)及び(2)の2式を行列式で表現すると以下の式となる。
(1) aX + bY = Abs1, (2) cX + dY = Abs2
X and Y are obtained by solving the two simultaneous equations (1) and (2). Therefore, the amounts of solvents A and B are calculated respectively. When the two formulas (1) and (2) are expressed by determinants, the following formulas are obtained.
次に、本発明の機能性フィルムの製造方法の例を、図5を参照して説明する。なお。既に説明した測定装置と同様の構成には同一符号を付して説明を省略する場合がある。 Next, the example of the manufacturing method of the functional film of this invention is demonstrated with reference to FIG. Note that. The same components as those of the measuring apparatus already described may be denoted by the same reference numerals and description thereof may be omitted.
図5に示すように、送出し機60を用いてフィルムロール62からウエブWが送出される。送出し機60の下流に、塗布装置64が配置されている。バックアップローラ66にウエブWが支持された状態で塗布装置64から塗布液がウエブWに供給されることにより、塗布膜(不図示)がウエブW上に形成される。供給される塗布液の種類は一種類だけでなく、複数種類の塗布液を供給することができる。なお、塗布装置64は図5に示すエクストルージョン型に限定されるものではなく、塗布液をウエブに供給できる限り、ロールコータ型、グラビアコート型、ロールコートプラスドクター型、リバースロールコータ型、スライドコート型等を使用することができる。 As shown in FIG. 5, the web W is delivered from the film roll 62 using the delivery device 60. A coating device 64 is disposed downstream of the delivery device 60. A coating film (not shown) is formed on the web W by supplying the coating liquid from the coating device 64 to the web W while the web W is supported by the backup roller 66. Not only one type of coating liquid is supplied, but also a plurality of types of coating liquids can be supplied. Note that the coating device 64 is not limited to the extrusion type shown in FIG. 5, and as long as the coating liquid can be supplied to the web, a roll coater type, a gravure coat type, a roll coat plus doctor type, a reverse roll coater type, a slide A coat mold or the like can be used.
塗布装置64の下流には乾燥ゾーン68が設けられる。乾燥ゾーン68には乾燥風装置70が設けられる。乾燥風装置70からの乾燥風によりウエブW上の塗布膜を乾燥させることができる。乾燥ゾーン68内に第一の光源12、第二の光源14、第一の光源12からの光を受光する第一のセンサ16及び第二の光源14からの光を受光する第二のセンサ18が配置される。さらに、乾燥ゾーン68内に送風ファン24が設置される。第一の光源12及び第二の光源14からの赤外光が照射される塗布膜の付近に、送風ファン24からの空気がウエブWの走行方向に対して垂直方向から供給される。これによって、塗布膜から蒸発した気体が除去される。 A drying zone 68 is provided downstream of the coating device 64. A drying air device 70 is provided in the drying zone 68. The coating film on the web W can be dried by the drying air from the drying air device 70. In the drying zone 68, the first light source 12, the second light source 14, the first sensor 16 that receives light from the first light source 12, and the second sensor 18 that receives light from the second light source 14. Is placed. Further, the blower fan 24 is installed in the drying zone 68. Air from the blower fan 24 is supplied from a direction perpendicular to the running direction of the web W in the vicinity of the coating film irradiated with infrared light from the first light source 12 and the second light source 14. Thereby, the gas evaporated from the coating film is removed.
第一のセンサ16及び第二のセンサ18はデータ処理装置72に電気的に接続される。また、乾燥風装置70も同様にデータ処理装置72に電気的に接続される。測定データ(吸光度)が、第一のセンサ16及び第二のセンサ18からデータ処理装置72に送られる。データ処理装置72は、予め検量線から求めておいた比例係数と測定データとから塗布膜中の成分量の算出を行なう。成分量の算出は、走行するウエブWに対して、一定時間毎、例えば0.1秒間隔で行われる。算出された成分量が、例えばデータ処理装置72のディスプレイに表示される。また、算出された成分量は時間毎にデータ処理装置72に記録される。記録された成分量から平均値を算出することができる。 The first sensor 16 and the second sensor 18 are electrically connected to the data processing device 72. Similarly, the drying air device 70 is electrically connected to the data processing device 72. Measurement data (absorbance) is sent from the first sensor 16 and the second sensor 18 to the data processing device 72. The data processing device 72 calculates the component amount in the coating film from the proportionality coefficient obtained beforehand from the calibration curve and the measurement data. The calculation of the component amount is performed on the traveling web W at regular intervals, for example, at intervals of 0.1 seconds. The calculated component amount is displayed on the display of the data processing device 72, for example. Further, the calculated component amount is recorded in the data processing device 72 every time. An average value can be calculated from the recorded component amounts.
この成分量の平均値と算出された成分量を比較し、成分量のバラツキが計算される。成分量のバラツキが所定の範囲内となるようにデータ処理装置72は乾燥風装置70の風量風向及び温度等を制御する。乾燥風装置70を制御することにより、成分量のバラツキが所定の範囲内に制御される。これにより品質的に安定した機能性フィルムを製造することができる。 The average value of the component amounts is compared with the calculated component amount, and the variation in the component amounts is calculated. The data processing device 72 controls the air flow direction, temperature, and the like of the dry air device 70 so that the variation in the component amount is within a predetermined range. By controlling the drying air device 70, the variation in the component amount is controlled within a predetermined range. Thereby, the functional film stable in quality can be manufactured.
成分量のバラツキに関して、成分量測定の直近1秒以上前に測定した成分量から換算した平均値と測定した成分量と比較し、そのバラツキが±2%以内であるか否か判断する。バラツキが±2%以上である場合、±2%以内に収まるようにデータ処理装置72が乾燥風装置70の乾燥条件を調整する。 Regarding the variation in the component amount, the average value converted from the component amount measured immediately before the component amount measurement is compared with the measured component amount, and it is determined whether the variation is within ± 2%. When the variation is ± 2% or more, the data processing device 72 adjusts the drying condition of the drying air device 70 so that it is within ± 2%.
直近1秒以上前に測定した成分量から換算した平均値と測定した成分量とを比較するのは、以下の理由からである。 The reason why the average value converted from the component amount measured immediately before one second or more and the measured component amount are compared is as follows.
直近1秒以内に測定した膜厚値は既に膜厚ムラによる影響が及ぼされている可能性がある。そのため平均値の中に換算してしまうと、平均値と測定した膜厚値との比較をしても、膜厚ムラが生じていることを発見できなくなる可能性があるからである。 The film thickness value measured within the last 1 second may have already been affected by the film thickness unevenness. For this reason, if the average value is converted into the average value, it may not be possible to find out that film thickness unevenness has occurred even if the average value is compared with the measured film thickness value.
乾燥ゾーン68から送り出されたウエブWは、ガイドローラ74、76に案内され、ガイドローラ74、76の下流に設けられた巻取り機78により巻き取られる。 The web W fed out from the drying zone 68 is guided by guide rollers 74 and 76 and wound by a winder 78 provided downstream of the guide rollers 74 and 76.
本発明が適用されるウエブとして、トリアセチルセルロース(TAC)、ポリエチレンテフタレート(PET)、ポリエチレンナフレタート(PEN)のフィルムを好適に使用することができる。 As the web to which the present invention is applied, a film of triacetylcellulose (TAC), polyethylene terephthalate (PET), or polyethylene naphrelate (PEN) can be preferably used.
また、上述のウエブに塗布される塗布液として、磁気テープ及び光学補償フィルムに適した材料を含んだ有機溶剤を好適に使用することができる。 Moreover, the organic solvent containing the material suitable for a magnetic tape and an optical compensation film can be used suitably as a coating liquid apply | coated to the above-mentioned web.
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、製造条件等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の具体例に制限されるものではない。 The present invention will be described more specifically with reference to the following examples. The materials, production conditions, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the following specific examples.
<実施例1>
モル比率が1:1であるMEK(メチルエチルケトン)・シクロヘキサノン混合溶液を作製し、厚み80μmのトリアセチルセルロース(フジタック、富士フイルム(株)製)の上に、バー(径3mm)を用いて混合溶液を塗布した。次いで塗布膜を乾燥させた。次に、塗布膜に対し0.2m/sの風を当てながら、3600nmと2300nmの波長光の2波長の照射し、光吸収量の測定を連続的に行った。各波長光の光吸収量に対するMEK量とシクロヘキサノン量の比例係数を予めそれぞれ求めた。ここで、MEK量の3600nmの光吸収量に対する比例係数をk11、シクロヘキサノン量の3600nmの光吸収量に対する比例係数をk12、MEK量の2300nmの光吸収量に対する比例係数をk21、シクロヘキサノン量の2300nmの光吸収量に対する比例係数をk22とした。MEKの未知の成分量をa1、シクロヘキサノンの未知の成分量をa2、3600nmの波長光の光吸収量をA1、2300nmの波長光の光吸収量をA2として下記の行列式を解くことで、MEKとシクロヘキサノンそれぞれの成分量の時間依存性を算出した。
<Example 1>
A MEK (methyl ethyl ketone) / cyclohexanone mixed solution having a molar ratio of 1: 1 is prepared, and the mixed solution is used on a 80 μm thick triacetyl cellulose (Fujitack, manufactured by Fuji Film Co., Ltd.) using a bar (diameter 3 mm). Was applied. Subsequently, the coating film was dried. Next, while applying a wind of 0.2 m / s to the coating film, irradiation with two wavelengths of wavelengths of 3600 nm and 2300 nm was performed, and the light absorption amount was continuously measured. Proportional coefficients of the MEK amount and the cyclohexanone amount with respect to the light absorption amount of each wavelength light were previously determined. Here, the proportion coefficient of the MEK amount with respect to the light absorption amount of 3600 nm is k 11 , the proportion coefficient of the cyclohexanone amount with respect to the light absorption amount of 3600 nm is k 12 , the proportion coefficient of the MEK amount with respect to the light absorption amount of 2300 nm is k 21 , and the amount of cyclohexanone. the proportionality coefficient for the light absorption amount of 2300nm of the k 22. The following determinant is solved with the unknown component amount of MEK as a 1 , the unknown component amount of cyclohexanone as a 2 , the light absorption amount of light with a wavelength of 3600 nm as A 1 , and the light absorption amount of light as a wavelength of 2300 nm as A 2. Thus, the time dependency of each component amount of MEK and cyclohexanone was calculated.
以上のように、成分量を測定した結果に対して、算出した成分量時間依存性について上下のふらつきがあるかどうかについて評価を行った。ここで、ふらつきとは測定データに対して求めた6次までの線形近似式から実データの平均的なずれ幅の10倍以上のずれが起こることをふらつきと定義した。成分量の時間依存性を算出した際に、成分量にふらつきがなかった場合を○とし、成分量の時間依存性を算出した際に、成分量にふらつきがあった場合を×とした。 As described above, whether or not there is fluctuation in the upper and lower sides of the calculated component amount time dependency was evaluated on the result of measuring the component amount. Here, the wobbling is defined as a wobbling that a deviation of 10 times or more of the average deviation width of the actual data occurs from the linear approximation expression up to the sixth order obtained for the measurement data. When the time dependency of the component amount was calculated, the case where the component amount did not fluctuate was evaluated as ◯, and when the component amount was calculated as the time dependency, the case where the component amount was unstable was evaluated as x.
<実施例2>
実施例1において、塗布溶液をモル比率1:1のアセトン・シクロヘキサン混合溶液とし、吸収度を測定する場合に照射する波長を6700nmと5900nmにした以外は、同様にして成分量の時間依存性を測定した。
<Example 2>
In Example 1, the coating solution was an acetone / cyclohexane mixed solution having a molar ratio of 1: 1, and the time dependency of the amount of components was similarly changed except that the wavelengths irradiated when measuring the absorbance were 6700 nm and 5900 nm. It was measured.
<実施例3>
実施例1において、塗布溶液をモル比率1:1:1のMEK・シクロヘキサノン・シクロヘキサン混合溶液とした。この混合溶液に吸収度を測定する場合に照射する波長を5900nmと3600nmと2300nmとした。ここで、MEK量の5900Nm波長光への比例係数k11、シクロヘキサノン量の5900nmの波長光への比例係数k12、シクロヘキサン量の5900nmの波長光への比例係数k13、MEK量の3600nm波長光への比例係数k21、シクロヘキサノン量の3600nmの波長光への比例係数k22、シクロヘキサン量の3600nmの波長光への比例係数k23、MEK量の2300nm波長光への比例係数k31、シクロヘキサノン量の2300nmの波長光への比例係数k32、シクロヘキサン量の2300nmの波長光への比例係数k33とした。MEKの未知の成分量をa1、シクロヘキサノンの未知の成分量をa2、シクロヘキサンの未知の成分量をa3、5900nmの波長光の光吸収量をA1、3600nmの波長光の光吸収量をA2、2300nmの波長光の光吸収量をA3とし、下記の行列式を解くことによってMEK・シクロヘキサノン・シクロヘキサンの成分量を算出した。
<Example 3>
In Example 1, the coating solution was a MEK / cyclohexanone / cyclohexane mixed solution having a molar ratio of 1: 1: 1. When measuring the absorbance of this mixed solution, the wavelengths irradiated were 5900 nm, 3600 nm, and 2300 nm. Here, the proportionality coefficient k 11 of the MEK amount to 5900 Nm wavelength light, the proportionality factor k 12 of the cyclohexanone amount to 5900 nm wavelength light, the proportionality factor k 13 of the cyclohexane amount to wavelength light of 5900 nm, the MEK amount of 3600 nm wavelength light Proportional coefficient k 21 , Proportional coefficient k 22 of cyclohexanone amount to 3600 nm wavelength light, Proportional coefficient k 23 of cyclohexane amount to 3600 nm wavelength light, Proportion factor k 31 of MEK amount to 2300 nm wavelength light, Cyclohexanone amount The proportional coefficient k 32 to 2300 nm wavelength light and the proportional coefficient k 33 of cyclohexane amount to 2300 nm wavelength light were used. The unknown component amount of MEK is a 1 , the unknown component amount of cyclohexanone is a 2 , the unknown component amount of cyclohexane is a 3 , the light absorption amount of light with a wavelength of 5900 nm is A 1 , and the light absorption amount of light with a wavelength of 3600 nm And A 2 , the light absorption amount of light having a wavelength of 2300 nm was A 3, and the component amounts of MEK, cyclohexanone, and cyclohexane were calculated by solving the following determinant.
<比較例1>
実施例1において、塗布膜に対し風を当てなかったこと以外は、同様にして成分量の時間依存性を測定した。
<Comparative Example 1>
In Example 1, the time dependency of the component amount was measured in the same manner except that no wind was applied to the coating film.
<比較例2>
実施例2において、塗布膜に対し風を当てなかったこと以外は、同様にして成分量の時間依存性を測定した。
<Comparative Example 2>
In Example 2, the time dependency of the component amount was measured in the same manner except that no wind was applied to the coating film.
<比較例3>
実施例3において、塗布膜に対し風を当てなかったこと以外は、同様にして成分量の時間依存性を測定した。
<Comparative Example 3>
In Example 3, the time dependency of the component amount was measured in the same manner except that no air was applied to the coating film.
図6の表は、実施例1〜3及び比較例1〜3について、塗布膜への送風の有無と成分量にふらつきの結果を表示したものである。表から明らかなように送風を塗布膜に供給した実施例1〜3では、評価は全て○であった。一方、比較例1〜3について、評価は全て×であった。 The table | surface of FIG. 6 displays the result of the fluctuation | variation to the presence or absence of the ventilation to a coating film, and the amount of components about Examples 1-3 and Comparative Examples 1-3. As is clear from the table, in Examples 1 to 3 in which air was supplied to the coating film, the evaluations were all good. On the other hand, about Comparative Examples 1-3, all evaluation was x.
10…測定装置、12…第一の光源、14…第二の光源、16…第一のセンサ、18…第二のセンサ,24…送風ファン、26…吸引機、28…計算機 DESCRIPTION OF SYMBOLS 10 ... Measuring apparatus, 12 ... First light source, 14 ... Second light source, 16 ... First sensor, 18 ... Second sensor, 24 ... Blower fan, 26 ... Suction machine, 28 ... Calculator
Claims (3)
前記塗布膜に複数の光源から光照射を行い、複数の受光センサがそれぞれ波長の異なる光を受光する構成であり、前記塗布膜が吸収した異なる波長の光吸収量を連続的に測定する工程と、
測定された前記光吸収量から前記塗布膜中の成分量を算出する工程と、
を含む塗布膜中の成分量の測定方法。 A method for continuously measuring the amount of each solvent component during drying of a coating film containing a plurality of solvents,
The step of irradiating the coating film with light from a plurality of light sources, wherein the plurality of light receiving sensors respectively receive light having different wavelengths, and continuously measuring the light absorption amount of the different wavelengths absorbed by the coating film; ,
Calculating a component amount in the coating film from the measured light absorption amount;
A method for measuring the amount of a component in a coating film containing.
光吸収量から塗布膜中の成分量を算出する工程は、各波長光L1・・・Lnにおける、n種類の各成分C1・・・Cnの光吸収量と各成分量の関係から予め求めた比例係数k11・・・knnと測定された前記光吸収量A1・・・Anとから、式(1)で表される行列式を解くことで塗布膜中の未知の各成分の成分量a1・・・anを算出する工程を含む請求項1又は2に記載の塗布膜中の成分量の測定方法。
The step of calculating the component amount in the coating film from the light absorption amount was obtained in advance from the relationship between the light absorption amount of each of the n types of components C1... Cn and the component amounts in each wavelength light L1. From the proportionality coefficient k11... Knn and the measured light absorption amount A1... An, the amount of components a1. The method for measuring the amount of components in the coating film according to claim 1 or 2, comprising a step of calculating an.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013225461A JP2014016373A (en) | 2013-10-30 | 2013-10-30 | Method of measuring component amount in coating film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013225461A JP2014016373A (en) | 2013-10-30 | 2013-10-30 | Method of measuring component amount in coating film |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008312283A Division JP2010133895A (en) | 2008-12-08 | 2008-12-08 | Method for measuring amount of component in application membrane, and method for manufacturing functional film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014016373A true JP2014016373A (en) | 2014-01-30 |
Family
ID=50111148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013225461A Pending JP2014016373A (en) | 2013-10-30 | 2013-10-30 | Method of measuring component amount in coating film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014016373A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54114294A (en) * | 1978-02-03 | 1979-09-06 | Measurex Corp | Method of measuring quantity of substance in measured mixture |
JPS6324144A (en) * | 1986-07-02 | 1988-02-01 | Sanyo Kokusaku Pulp Co Ltd | Method and instrument for infrared measurement of moisture of traveling sheet in explosive atmosphere |
JPH07239300A (en) * | 1994-02-28 | 1995-09-12 | Snow Brand Milk Prod Co Ltd | Multi-component simultaneous measuring method |
JPH07306138A (en) * | 1994-05-12 | 1995-11-21 | Noritake Co Ltd | Gas analyzer |
JP2004163312A (en) * | 2002-11-14 | 2004-06-10 | Arkray Inc | Measurement apparatus, fluorescence measuring apparatus and fluorescence measuring method |
JP2007260570A (en) * | 2006-03-28 | 2007-10-11 | Fujifilm Corp | Method for drying coating film and method for producing planographic printing plate |
-
2013
- 2013-10-30 JP JP2013225461A patent/JP2014016373A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54114294A (en) * | 1978-02-03 | 1979-09-06 | Measurex Corp | Method of measuring quantity of substance in measured mixture |
JPS6324144A (en) * | 1986-07-02 | 1988-02-01 | Sanyo Kokusaku Pulp Co Ltd | Method and instrument for infrared measurement of moisture of traveling sheet in explosive atmosphere |
JPH07239300A (en) * | 1994-02-28 | 1995-09-12 | Snow Brand Milk Prod Co Ltd | Multi-component simultaneous measuring method |
JPH07306138A (en) * | 1994-05-12 | 1995-11-21 | Noritake Co Ltd | Gas analyzer |
JP2004163312A (en) * | 2002-11-14 | 2004-06-10 | Arkray Inc | Measurement apparatus, fluorescence measuring apparatus and fluorescence measuring method |
JP2007260570A (en) * | 2006-03-28 | 2007-10-11 | Fujifilm Corp | Method for drying coating film and method for producing planographic printing plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009119717A (en) | Method and apparatus for measuring amount of impregnating resin in filament winding molding | |
US20190176401A1 (en) | Production device | |
EP3805694B1 (en) | Liquid film thickness measurement method and film production method | |
JP2010133895A (en) | Method for measuring amount of component in application membrane, and method for manufacturing functional film | |
KR20110084104A (en) | Measuring method | |
JP6483663B2 (en) | Method for producing foil or film | |
KR20100007760A (en) | Method for drying coating film | |
JP2014016373A (en) | Method of measuring component amount in coating film | |
JP2012030147A (en) | Slide coating device, coating method using the device, and method for manufacturing optical film using the method | |
JP2010203751A (en) | Method for drying coating film and drier | |
JP5595748B2 (en) | Sheet drying control apparatus, drying control method, and sheet drying apparatus | |
JP2013108648A (en) | Drying device and drying method | |
KR101242699B1 (en) | Method for measuring spreaded quantity of coating layer | |
TWI681821B (en) | Coating apparatus and method for producing coating film | |
JP2008058257A (en) | Method of measuring coated basis weight | |
JPH07234109A (en) | Device and method for measuring high-speed film | |
JP5479259B2 (en) | Coating apparatus and optical film manufacturing method | |
JP2021189008A (en) | Film inspection system, application device, and method for manufacturing film | |
JP2008173589A (en) | Method and apparatus for forming coating film | |
US20220057331A1 (en) | Crystallinity measurement device, resin-containing material manufacturing device, crystallinity measurement method, and resin-containing material manufacturing method | |
TWI447346B (en) | System of real-time measuring thickness | |
TW201536509A (en) | Solution casting method and apparatus | |
JP2005321297A (en) | Evaluation method and manufacturing method for sheet containing oxide powder, electronic parts, and evaluation device and manufacturing device for sheet containing oxide powder | |
JP2007167749A (en) | Manufacturing method of coating film | |
JP2017096652A (en) | Plastic manufacturing condition adjustment method and plastic manufacturing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140616 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140811 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150108 |