JP2014016200A - Multiaxial stress application testing device and prediction method of stress corrosion cracking - Google Patents

Multiaxial stress application testing device and prediction method of stress corrosion cracking Download PDF

Info

Publication number
JP2014016200A
JP2014016200A JP2012152856A JP2012152856A JP2014016200A JP 2014016200 A JP2014016200 A JP 2014016200A JP 2012152856 A JP2012152856 A JP 2012152856A JP 2012152856 A JP2012152856 A JP 2012152856A JP 2014016200 A JP2014016200 A JP 2014016200A
Authority
JP
Japan
Prior art keywords
annular member
test
piece
stress
multiaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012152856A
Other languages
Japanese (ja)
Other versions
JP6012306B2 (en
Inventor
Kazuya Tsutsumi
一也 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012152856A priority Critical patent/JP6012306B2/en
Publication of JP2014016200A publication Critical patent/JP2014016200A/en
Application granted granted Critical
Publication of JP6012306B2 publication Critical patent/JP6012306B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an axial stress application testing device which achieves the improvement in reliability of a result of a test at a multiaxial stress field, and a prediction method of stress corrosion cracking.SOLUTION: A multiaxial stress application testing device includes: an annular member 5 made of a material having flexibility; a test piece 6 including a body piece 11 arranged at the diametrical center of the annular member 5, and a plurality of arm pieces 12 which are arranged at intervals in a circumferential direction and which extend from the body piece 11 toward the outside of the annular member 5 in a radial direction; and nut members 14 which are externally engaged with each of the arm pieces 12 and which fix the arm pieces 12 to the annular member 5 while pressing the annular member 5 in the radial direction.

Description

本発明は、金属材料に発生する応力腐食割れの試験に適用される多軸応力付加試験装置、及びこれを用いた応力腐食割れの予測方法に関するものである。   The present invention relates to a multiaxial stress application test apparatus applied to a test for stress corrosion cracks occurring in a metal material, and a method for predicting stress corrosion cracks using the same.

例えば発電設備用の機器などに用いられる金属部材においては、金属部材が晒される周辺環境、金属部材の材料、金属部材に加わる応力の三つの条件が重なり、応力腐食割れ(SCC:Stress Corrosion Cracking)が発生することが知られている。   For example, in a metal member used for equipment for power generation facilities, etc., the three conditions of the surrounding environment to which the metal member is exposed, the material of the metal member, and the stress applied to the metal member overlap, and stress corrosion cracking (SCC: Stress Corrosion Cracking) Is known to occur.

ここで、多軸応力場では、単軸応力場と比べて結晶粒界に沿ってき裂が進展する粒界進展型の応力腐食割れが生じやすい可能性があることが報告されている。従って、多軸応力場での試験を行って応力腐食割れを予測することの必要性が増してくると思われるが、試験が容易でない等の理由から多軸応力場での試験はあまり多くは行われていないのが現状である。   Here, it has been reported that in a multiaxial stress field, there is a possibility that a grain boundary progress type stress corrosion cracking in which a crack propagates along a crystal grain boundary is more likely to occur than a uniaxial stress field. Therefore, it seems that there is an increasing need to predict stress corrosion cracking by conducting tests in a multiaxial stress field, but there are not many tests in a multiaxial stress field because the test is not easy. It is the current situation that is not done.

ところで、このような多軸応力場での試験の一例として特許文献1には、試験片を第一試験治具と第二試験治具とで挟み込み、ボルトによって試験片を締め込む試験装置が開示されている。この装置では、ボルトによってZX面及びZY面から応力を与えることで、多軸応力試験を行うことが可能となっている。   By the way, as an example of such a test in a multiaxial stress field, Patent Document 1 discloses a test apparatus in which a test piece is sandwiched between a first test jig and a second test jig and the test piece is tightened with a bolt. Has been. In this apparatus, a multiaxial stress test can be performed by applying stress from the ZX plane and the ZY plane with bolts.

特開2002−296161号公報JP 2002-296161 A

しかしながら、特許文献1に開示された試験装置では、ボルトによって応力の調節を行うこととなるため試験部における応力レベルを正確に管理することが困難な可能性がある。また、試験片が治具によって挟み込まれた状態で試験が行われるため視認性が悪く、き裂発生時を正確に把握することも容易ではない。さらに、高温度での試験中にはボルトの熱変形等によって、試験片の応力が緩和されてしまうリラクゼーションが発生してしまうおそれもある。   However, in the test apparatus disclosed in Patent Document 1, since the stress is adjusted by the bolt, it may be difficult to accurately manage the stress level in the test section. Further, since the test is performed in a state where the test piece is sandwiched between the jigs, the visibility is poor, and it is not easy to accurately grasp the occurrence of the crack. Furthermore, during a test at a high temperature, there is a possibility that relaxation may occur due to relaxation of the stress of the test piece due to thermal deformation of the bolt.

本発明はこのような事情を考慮してなされたものであり、多軸応力場での試験結果の信頼性向上を図る多軸応力付加試験装置、及び応力腐食割れの予測方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a multiaxial stress application test apparatus for improving the reliability of test results in a multiaxial stress field and a method for predicting stress corrosion cracking. Objective.

上記課題を解決するため、本発明は以下の手段を採用している。
即ち、本発明に係る多軸応力付加試験装置は、可撓性を有する材料からなる環状部材と、前記環状部材の径方向内側に配置される本体片、及び、周方向に間隔をあけて複数設けられて前記本体片から前記環状部材の径方向外側に延在するアーム片を有する試験片と、
各前記アーム片に外嵌されて、前記環状部材に対して径方向に向かって押圧しながら該アーム片を固定するナット部材と、を備えることを特徴とする。
In order to solve the above problems, the present invention employs the following means.
That is, the multiaxial stress application test apparatus according to the present invention includes an annular member made of a flexible material, a main body piece arranged radially inside the annular member, and a plurality of pieces spaced apart in the circumferential direction. A test piece provided with an arm piece provided and extending radially outward of the annular member from the body piece;
A nut member that is externally fitted to each of the arm pieces and that fixes the arm piece while pressing the ring member in a radial direction.

このような多軸応力試験装置によると、ナット部材を締め込むと、アーム片を介して本体片に引張り力及び圧縮力を加えることができる。この際、ナット部材の調節のみで引張り力及び圧縮力の調節を行い、試験片に任意の多軸応力を生じさせることが可能となる。
また、環状部材は可撓性を有することから、例えば試験中に試験片に熱変形等が発生した場合には、環状部材がこの熱変形に対抗するように弾性変形することでリラクゼーションの発生を防止できる。
According to such a multiaxial stress test apparatus, when the nut member is tightened, a tensile force and a compressive force can be applied to the main body piece via the arm piece. At this time, it is possible to adjust the tensile force and the compressive force only by adjusting the nut member to generate an arbitrary multiaxial stress on the test piece.
In addition, since the annular member has flexibility, for example, when a thermal deformation or the like occurs in the test piece during the test, the annular member is elastically deformed so as to counter the thermal deformation, thereby generating relaxation. Can be prevented.

また、前記環状部材と前記ナット部材との間に、前記環状部材の径方向への変形に抗するように該環状部材に付勢力を与えるバネ部材をさらに備えていてもよい。   Further, a spring member that applies a biasing force to the annular member so as to resist deformation in the radial direction of the annular member may be further provided between the annular member and the nut member.

このようなバネ部材によって、例えば試験中に試験片に熱変形等が発生した場合には、環状部材がこの熱応力に対抗するとともに、このバネ部材によっても対抗することができ、さらなるリラクゼーション発生の防止を図ることができる。   With such a spring member, for example, when a thermal deformation or the like occurs in a test piece during a test, the annular member can counter this thermal stress and can also counter this spring member, and further relaxation occurs. Prevention can be achieved.

さらに、本発明に係る応力腐食割れの予測方法は、可撓性を有する材料からなる環状部材と、前記環状部材の径方向内側に配置される本体片、及び、周方向に間隔をあけて複数設けられて前記本体片から前記環状部材の径方向外側に延在するアーム片を有する試験片と、各前記アーム片に外嵌されて、前記環状部材に対して径方向に向かって押圧しながら該アーム片を固定するナット部材とを備える多軸応力負荷試験装置を用いた応力腐食割れの予測方法であって、多軸応力場で前記応力腐食割れの試験を行い、試験データを取得する第一工程と、単軸応力場での前記応力腐食割れの試験データを準備する第二工程と、前記第一工程の試験データと前記第二工程の試験データとの比較を行い、相関関係を算出する第三工程とを備えることを特徴とする。   Furthermore, the method for predicting stress corrosion cracking according to the present invention includes an annular member made of a flexible material, a main body piece arranged radially inside the annular member, and a plurality of pieces spaced apart in the circumferential direction. A test piece having an arm piece that is provided and extends radially outward of the annular member from the main body piece, while being externally fitted to the arm piece and pressing the annular member in the radial direction A method for predicting stress corrosion cracking using a multiaxial stress load test apparatus comprising a nut member for fixing the arm piece, wherein the stress corrosion cracking test is performed in a multiaxial stress field and test data is acquired. Compare the test data of the first process with the test data of the first process and the test data of the second process by preparing the test data of the stress corrosion cracking in one process and the uniaxial stress field, and calculate the correlation And a third process To.

このような応力腐食割れの予測方法によると、多軸応力場での試験を多く行うことなく、第二工程で準備した単軸応力場での試験データと、第三工程での相関関係とから、さまざまな条件の多軸応力でのデータを得ることが可能となる。単軸応力場での試験はこれまで多く行われており試験データは豊富にあるため、これらの豊富な試験データを有効利用して信頼性の高いデータを得ることができ、応力腐食割れの予測が可能となる。   According to such a stress corrosion cracking prediction method, from the test data in the uniaxial stress field prepared in the second process and the correlation in the third process, without performing many tests in the multiaxial stress field. It becomes possible to obtain data on multiaxial stress under various conditions. Since uniaxial stress field tests have been carried out many times and there is abundant test data, it is possible to obtain reliable data by effectively using these abundant test data, and to predict stress corrosion cracking. Is possible.

本発明の多軸応力付加試験装置、及び応力腐食割れの予測方法によると、アーム片をナット部材によって環状部材に固定する構成としたことで、多軸応力場での試験結果の信頼性向上を図ることが可能となる。   According to the multiaxial stress application test apparatus and the stress corrosion cracking prediction method of the present invention, the arm piece is fixed to the annular member by the nut member, thereby improving the reliability of the test result in the multiaxial stress field. It becomes possible to plan.

本発明の実施形態に係る多軸応力負荷試験装置の全体図であって、試験片に引張り応力を生じさせる場合を示す。1 is an overall view of a multiaxial stress load test apparatus according to an embodiment of the present invention, and shows a case where tensile stress is generated on a test piece. 本発明の実施形態に係る多軸応力負荷試験装置の全体図であって、図1の矢視Aを示すものである。1 is an overall view of a multiaxial stress load test apparatus according to an embodiment of the present invention, and shows an arrow A in FIG. 本発明の実施形態に係る多軸応力負荷試験装置の全体図であって、試験片に圧縮応力を生じさせる場合を示す。1 is an overall view of a multiaxial stress load test apparatus according to an embodiment of the present invention, and shows a case where compressive stress is generated on a test piece. 本発明の実施形態の第一変形例に係る多軸応力負荷試験装置の全体図である。It is a general view of the multiaxial stress load testing apparatus which concerns on the 1st modification of embodiment of this invention. 本発明の実施形態の第二変形例に係る多軸応力負荷試験装置の全体図である。It is a general view of the multiaxial stress load testing apparatus which concerns on the 2nd modification of embodiment of this invention. 本発明の実施形態の第三変形例に係る多軸応力負荷試験装置の全体図である。It is a general view of the multiaxial stress load testing apparatus which concerns on the 3rd modification of embodiment of this invention. 本発明の実施形態の第四変形例に係る多軸応力負荷試験装置の全体図である。It is a general view of the multiaxial stress load testing apparatus which concerns on the 4th modification of embodiment of this invention. 本発明の実施形態の第五変形例に係る多軸応力負荷試験装置の環状部材の全体図であって、(a)は軸線方向から見た図、(b)は(a)のB−B断面を示すものである。It is a whole figure of the cyclic | annular member of the multiaxial stress load testing apparatus which concerns on the 5th modification of embodiment of this invention, Comprising: (a) is the figure seen from the axial direction, (b) is BB of (a). A cross section is shown. 本発明の実施形態の第六変形例に係る多軸応力負荷試験装置の環状部材の全体図であって、(a)は軸線方向から見た図、(b)は(a)のC−C断面を示すものである。It is a whole figure of the cyclic | annular member of the multiaxial stress load testing apparatus which concerns on the 6th modification of embodiment of this invention, Comprising: (a) is the figure seen from the axial direction, (b) is CC of (a). A cross section is shown. 本発明の実施形態の第七変形例に係る多軸応力負荷試験装置の環状部材の全体図であって、(a)は軸線方向から見た図、(b)は(a)のD−D断面を示すものである。It is a general view of the cyclic | annular member of the multiaxial stress load testing apparatus which concerns on the 7th modification of embodiment of this invention, Comprising: (a) is the figure seen from the axial direction, (b) is DD of (a). A cross section is shown. 本発明の実施形態の第八変形例に係る多軸応力負荷試験装置の環状部材の全体図であって、(a)は軸線方向から見た図、(b)は(a)のE−E断面を示すものである。It is a general view of the cyclic | annular member of the multiaxial stress load testing apparatus which concerns on the 8th modification of embodiment of this invention, Comprising: (a) is the figure seen from the axial direction, (b) is EE of (a). A cross section is shown. 本発明の実施形態の第九変形例に係る多軸応力負荷試験装置の環状部材の全体図であって、(a)は軸線方向から見た図、(b)は(a)のF−F断面を示すものである。It is a whole figure of the cyclic | annular member of the multiaxial stress load testing apparatus which concerns on the 9th modification of embodiment of this invention, (a) is the figure seen from the axial direction, (b) is FF of (a). A cross section is shown. 本発明の実施形態に係る多軸応力負荷試験装置に関し、単軸応力場及び多軸応力場における応力σと応力腐食割れ発生時間tとの関係を示すグラフである。It is a graph which shows the relationship between the stress (sigma) in a uniaxial stress field and a multiaxial stress field, and the stress corrosion crack generation time t regarding the multiaxial stress load test apparatus which concerns on embodiment of this invention.

以下、本発明の第一実施形態に係る多軸応力負荷試験装置1について説明する。
多軸応力負荷試験装置1は、試験片6に二軸以上の荷重を同時に付与した状態で高温環境下や水中などに設置して、応力腐食割れの試験を行う装置である。
Hereinafter, the multiaxial stress load testing apparatus 1 according to the first embodiment of the present invention will be described.
The multiaxial stress load test apparatus 1 is an apparatus for testing stress corrosion cracking by installing it in a high-temperature environment or under water with two or more axes applied to the test piece 6 at the same time.

図1及び図2に示すように、多軸応力負荷試験装置1は、軸線Pを中心に環状をなす環状部材5と、この環状部材5に支持される試験片6と、試験片6を環状部材5に固定するナット部材14と、ナット部材14と環状部材5との間に設けられるバネ部材15とを備えている。   As shown in FIGS. 1 and 2, the multiaxial stress load test apparatus 1 includes an annular member 5 having an annular shape around an axis P, a test piece 6 supported by the annular member 5, and an annular test piece 6. A nut member 14 fixed to the member 5 and a spring member 15 provided between the nut member 14 and the annular member 5 are provided.

環状部材5は、可撓性を有する材料よりなり、例えばステンレス、ニッケル合金等の金属や、可撓性を有する樹脂等が用いられる。そしてこれらの材料以外にも、試験片6の熱膨張・熱収縮に対抗するように弾性変形可能な材料であれば様々な材料が適用可能である。   The annular member 5 is made of a flexible material. For example, a metal such as stainless steel or nickel alloy, a flexible resin, or the like is used. In addition to these materials, various materials can be used as long as they are elastically deformable so as to resist the thermal expansion / contraction of the test piece 6.

そしてこの環状部材5には、図2に示すように径方向から見た場合には、周方向にわたって間隔をあけて、径方向に貫通する貫通孔5aが形成されている。   As shown in FIG. 2, the annular member 5 is formed with through holes 5a penetrating in the radial direction at intervals in the circumferential direction when viewed from the radial direction.

試験片6は、環状部材5の径方向内側に配置される本体片11と、本体片11から径方向外側に延びる複数のアーム片12とを有している。   The test piece 6 includes a main body piece 11 disposed on the radially inner side of the annular member 5 and a plurality of arm pieces 12 extending radially outward from the main body piece 11.

アーム片12は、本体片11の外周において、本実施形態では周方向に互いに90度の間隔をあけて四本が設けられている。そして、径方向外側の端部は棒状をなし、外周面に雄ネジが形成された雄ネジ部12aとされている。そして、この雄ネジ部12aとされた径方向外側の端部が環状部材5の貫通孔5aに挿通されている。   In the present embodiment, four arm pieces 12 are provided on the outer periphery of the main body piece 11 at intervals of 90 degrees in the circumferential direction. The radially outer end has a rod shape and is a male screw portion 12a having a male screw formed on the outer peripheral surface. The end portion on the radially outer side which is the male screw portion 12 a is inserted into the through hole 5 a of the annular member 5.

本体片11は、略菱形状をなし、環状部材5の径方向内側のちょうど中央部に配置されて、外周に各アーム片12が結合されている。本実施形態では本体片11での応力を生じさせ易くするよう、アーム片12に比べて環状部材5の軸線P方向の厚さ寸法が小さくなっている。
なお、この本体片11の厚さ寸法は、アーム片12の厚さ寸法に比べて必ずしも小さくなくてもよい。
The main body piece 11 has a substantially rhombus shape, and is arranged at the central portion on the radially inner side of the annular member 5, and the arm pieces 12 are coupled to the outer periphery. In the present embodiment, the thickness dimension in the direction of the axis P of the annular member 5 is smaller than that of the arm piece 12 so as to make it easier to generate stress in the main body piece 11.
Note that the thickness dimension of the main body piece 11 is not necessarily smaller than the thickness dimension of the arm piece 12.

ナット部材14は、各アーム片12に環状部材5の径方向外側から設けられ、環状部材5の貫通孔5aに挿入されたアーム片12の雄ネジ部12aに螺合されて、アーム片12を環状部材5に固定している。そしてこのナット部材14の締め付けによって、バネ部材15を介して環状部材5を押圧するとともに、アーム片12に対して径方向外側に向かって引張り力を作用させるようにしている。   The nut member 14 is provided on each arm piece 12 from the outer side in the radial direction of the annular member 5, and is screwed into a male screw portion 12 a of the arm piece 12 inserted into the through hole 5 a of the annular member 5. It is fixed to the annular member 5. By tightening the nut member 14, the annular member 5 is pressed through the spring member 15, and a tensile force is applied to the arm piece 12 toward the radially outer side.

バネ部材15は、ナット部材14と環状部材5との間において、各々のアーム片12に外周側から嵌め込まれて環状部材5を径方向に付勢するコイルバネである。   The spring member 15 is a coil spring that is fitted into each arm piece 12 from the outer peripheral side between the nut member 14 and the annular member 5 to urge the annular member 5 in the radial direction.

このような多軸応力負荷試験装置においては、ナット部材14の締め込むことによって、アーム片12を環状部材5に対して径方向外側に引っ張ることができる。より具体的には、雄ネジ部12a及びナット部材14が右ネジである場合には、径方向外側から見て、ナット部材14を右回りに回転させる。このようにして、アーム片12を介して試験片6に引張り力を作用させることができる。   In such a multiaxial stress load test apparatus, the arm piece 12 can be pulled radially outward with respect to the annular member 5 by tightening the nut member 14. More specifically, when the male screw portion 12a and the nut member 14 are right-hand screws, the nut member 14 is rotated clockwise as viewed from the outside in the radial direction. In this way, a tensile force can be applied to the test piece 6 via the arm piece 12.

またこの際、ナット部材14の締め付け量によって、試験片6に作用させる引張り力を調節することができる。即ちナット部材14の調節のみで引張り力の調節を行い、試験片6に任意の多軸(本実施形態では二軸)の引張り応力を生じさせることが可能となる。   At this time, the tensile force applied to the test piece 6 can be adjusted by the tightening amount of the nut member 14. That is, it is possible to adjust the tensile force only by adjusting the nut member 14 and to generate an arbitrary multiaxial (biaxial in this embodiment) tensile stress on the test piece 6.

ここで、例えば、試験を行う前に、試験片6にひずみゲージを設置して、ナットの締め付け量と試験片6に発生するひずみとの関係を予め取得して、校正曲線を作成しておいてもよい。このようにすることで、試験時にひずみゲージを設置して応力管理を行う必要がなくなり、試験作業の効率化を図ることができる。   Here, for example, before performing the test, a strain gauge is installed on the test piece 6, and the relationship between the tightening amount of the nut and the strain generated on the test piece 6 is acquired in advance to create a calibration curve. May be. By doing in this way, it becomes unnecessary to install a strain gauge at the time of testing and perform stress management, and the efficiency of testing work can be improved.

さらに、アーム片12毎に引張り力を調節することが可能となるため、応力条件を容易に変更でき、さまざまな多軸応力場の試験条件に対応することができる。   Furthermore, since the tensile force can be adjusted for each arm piece 12, the stress condition can be easily changed, and the test conditions for various multiaxial stress fields can be accommodated.

また、例えばオートクレーブ内において試験を行う場合など、過酷な温度条件での試験中には試験片6の熱変形が想定される。この点、環状部材5は可撓性を有しているため、環状部材5の弾性による復元力によって試験片6の熱変形を抑制でき、即ち環状部材5が試験片6の熱変形に対抗することで、試験片6に生じるリラクゼーションを防止できる。   In addition, for example, when a test is performed in an autoclave, thermal deformation of the test piece 6 is assumed during a test under severe temperature conditions. In this respect, since the annular member 5 has flexibility, the thermal deformation of the test piece 6 can be suppressed by the restoring force due to the elasticity of the annular member 5, that is, the annular member 5 resists the thermal deformation of the test piece 6. Thereby, the relaxation which arises in the test piece 6 can be prevented.

さらに、例えば試験中に試験片6に熱変形等が発生した場合には、環状部材5によってこの熱変形に対抗するとともにこのバネ部材15によっても対抗することができ、さらなるリラクゼーション発生の防止を図ることができる。   Further, for example, when thermal deformation or the like occurs in the test piece 6 during the test, it can be countered by the annular member 5 and also by the spring member 15, thereby further preventing the occurrence of relaxation. be able to.

ここで、図3に示すように、ナット部材14を環状部材5の径方向内側からアーム片12の雄ネジ部12aに締結することによって、アーム片12を径方向内側に向けて圧縮することができる。より具体的には、雄ネジ部12a及びナット部材14が右ネジである場合には、径方向内側から見て、ナット部材14を右回りに回転させる。このようにして、アーム片12を介して試験片6に圧縮力を作用させることができる。   Here, as shown in FIG. 3, the nut member 14 is fastened to the male screw portion 12 a of the arm piece 12 from the radially inner side of the annular member 5, thereby compressing the arm piece 12 toward the radially inner side. it can. More specifically, when the male screw portion 12a and the nut member 14 are right-hand screws, the nut member 14 is rotated clockwise as viewed from the inside in the radial direction. In this way, a compressive force can be applied to the test piece 6 via the arm piece 12.

そして、引張り力を試験片6に作用させる場合と同様に、ナット部材14の締め付け量によって圧縮力を調節でき、さらに、ナット部材14の締結位置をアーム片12毎に異ならせることで、引張り力と圧縮力とを同時に試験片6に作用させることも可能となる。   Then, similarly to the case where the tensile force is applied to the test piece 6, the compression force can be adjusted by the tightening amount of the nut member 14, and the fastening position of the nut member 14 is made different for each arm piece 12, thereby pulling the tensile force. And the compressive force can be applied to the test piece 6 at the same time.

さらに、試験片6に引張り力及び圧縮力を作用させる際には、ナット部材14の締め付けによって応力調節を行っており、大掛かりな装置は不要となる。この結果、試験片6を含めた装置全体のコンパクト化が可能となり、コストを抑えることができる。従って、多くの試験片6を作成して一度に多くの応力腐食割れ試験を行うことができ、一度に多くの試験データを取得することが可能となる。   Furthermore, when a tensile force and a compressive force are applied to the test piece 6, the stress is adjusted by tightening the nut member 14, so that a large-scale device is unnecessary. As a result, the entire apparatus including the test piece 6 can be made compact, and the cost can be suppressed. Therefore, many test pieces 6 can be created and many stress corrosion cracking tests can be performed at once, and a lot of test data can be acquired at one time.

本実施形態の多軸応力負荷試験装置によると、環状部材5にナット部材14を用いて試験片6を固定して保持することで、試験片6にさまざまな条件の多軸応力を生じさせ、リラクゼーションの発生を防止でき、試験結果の信頼性の向上を図ることが可能となる。   According to the multiaxial stress load test apparatus of the present embodiment, the test piece 6 is fixed and held on the annular member 5 using the nut member 14, thereby causing the test piece 6 to generate multiaxial stress under various conditions. The occurrence of relaxation can be prevented, and the reliability of the test results can be improved.

なお、必ずしもバネ部材15は設けられていなくともよい。この場合にはナット部材14は環状部材5に接触して設けられて、試験片6からの反力は環状部材5のみによって受けることとなる。   The spring member 15 is not necessarily provided. In this case, the nut member 14 is provided in contact with the annular member 5, and the reaction force from the test piece 6 is received only by the annular member 5.

また、環状部材5に形成された貫通孔5aは、少なくともアーム片12が貫通可能となっていればよく、周方向の開口寸法は、上述の実施形態に限定されない。例えば、アーム片12の雄ネジ部12aと比べて開口寸法が周方向に大きくなっていてもよい。   Moreover, the through-hole 5a formed in the annular member 5 should just be able to penetrate at least the arm piece 12, and the opening dimension of the circumferential direction is not limited to the above-mentioned embodiment. For example, the opening dimension may be larger in the circumferential direction than the male threaded portion 12a of the arm piece 12.

また、図4及び図5に示すように、環状部材20、30は円環状に限定されず、例えば外形が四角形、三角形等の多角形状であってもよい。この場合には、環状部材20、30の各辺の中央部で、ナット部材14によって試験片21、31のアーム片22、32が固定されていることが好ましく、即ち、最も撓み易い位置で固定されていることが好ましい。なお、環状部材20、30の各頂点にアーム片22、32を固定することも可能である。   Further, as shown in FIGS. 4 and 5, the annular members 20 and 30 are not limited to an annular shape, and the outer shape may be a polygonal shape such as a quadrangle and a triangle, for example. In this case, it is preferable that the arm pieces 22 and 32 of the test pieces 21 and 31 are fixed by the nut member 14 at the center of each side of the annular members 20 and 30, that is, fixed at the position where the bending is most easy. It is preferable that In addition, it is also possible to fix the arm pieces 22 and 32 to each vertex of the annular members 20 and 30.

さらに、図6及び図7に示すように、試験片41、51のアーム片42、52は必ずしも周方向に90度の間隔をあけて設けられていなくともよく、試験条件に応じてアーム片42、52の数量、アーム片42、52同士の周方向の間隔は適宜変更可能である。   Further, as shown in FIGS. 6 and 7, the arm pieces 42 and 52 of the test pieces 41 and 51 do not necessarily have to be provided at an interval of 90 degrees in the circumferential direction, and the arm pieces 42 according to the test conditions. , 52 and the interval between the arm pieces 42, 52 in the circumferential direction can be appropriately changed.

また、図8に示すように、環状部材60は、軸線P方向に二つに分割されて第一部材61と第二部材62とから構成されていてもよい。この場合、貫通孔5a(図1参照)に代えて、第一部材61及び第二部材62には表面から軸線P方向に凹む凹部61a、62aが設けられており、これら凹部61a、62a同士を対向させて試験片6のアーム片12がこれら凹部61a、62a内に位置するように挟み込まれて固定可能となっている。このようにすることで、より試験片6を環状部材60に設置し易くすることができ、試験を容易に行うことが可能となる。   Further, as shown in FIG. 8, the annular member 60 may be divided into two in the direction of the axis P and may be constituted by a first member 61 and a second member 62. In this case, instead of the through hole 5a (see FIG. 1), the first member 61 and the second member 62 are provided with recesses 61a and 62a that are recessed from the surface in the direction of the axis P, and the recesses 61a and 62a are connected to each other. The arm piece 12 of the test piece 6 is sandwiched and fixed so as to be positioned in the recesses 61a and 62a. By doing in this way, it can make it easier to install the test piece 6 in the annular member 60, and it becomes possible to perform a test easily.

なお、図9に示すように、環状部材70は第一部材71と第二部材72とから構成され、第二部材72のみに凹部72aが設けられていてもよい。そしてこの凹部72aの形状は、アーム片12を挿入可能であればよく、例えば図9に示す半円状とすることも可能である。   As shown in FIG. 9, the annular member 70 includes a first member 71 and a second member 72, and the recess 72 a may be provided only in the second member 72. And the shape of this recessed part 72a should just be able to insert the arm piece 12, for example, can also be made into the semicircle shape shown in FIG.

そして第一部材61、71と第二部材62、72とは互いにボルト65、ナット66等によって固定されている。ここで、図10に示す環状部材80のように、例えば第一部材81の軸線P方向を向く表面に突起部81bを設け、第二部材82の軸線P方向を向く表面から軸線P方向に凹む溝部82bを、突起部81bが嵌合可能となるように設けてもよい。   The first members 61 and 71 and the second members 62 and 72 are fixed to each other by bolts 65, nuts 66, and the like. Here, as in the annular member 80 shown in FIG. 10, for example, a protrusion 81 b is provided on the surface of the first member 81 facing the axis P direction, and the second member 82 is recessed in the axis P direction from the surface facing the axis P direction. The groove 82b may be provided so that the protrusion 81b can be fitted.

このようにすることで、第一部材81と第二部材82との位置合わせ、及び凹部81aと凹部82aの位置合わせがより確実に可能となり、試験片6を確実に挟み込んで固定することができる。なお、この突起部81b及び溝部82bは周方向全域にわたって設けられている場合に限定されず、第一部材81及び第二部材82の上記表面の一部に設けられていてもよい。そして、突起部81bが溝部82bに嵌合可能となっていれば、これら突起部81b及び溝部82bの形状は適宜選択可能である。   By doing in this way, position alignment with the 1st member 81 and the 2nd member 82 and position alignment with the recessed part 81a and the recessed part 82a are attained more reliably, and the test piece 6 can be pinched | interposed reliably and fixed. . In addition, this protrusion part 81b and the groove part 82b are not limited to when provided over the whole circumferential direction, You may be provided in a part of said surface of the 1st member 81 and the 2nd member 82. FIG. And if the projection part 81b can be fitted in the groove part 82b, the shape of these projection part 81b and the groove part 82b can be selected suitably.

さらに、図11に示すように、環状部材90は、軸線P方向に複数の部材91、92、93、94をボルト95、ナット66等で結合して構成されることで円柱状をなしていてもよい。このような環状部材90によって、同時に複数の試験片6を固定することができ、試験片6毎に異なる引張り力及び圧縮力を作用させることができる。また、凹部91a、92a、92b、93a、93b、94aの形状を適宜選択することで、試験片6自体の形状も異なったものを環状部材90にセットして同時に試験を行うことも可能である。即ち、より複雑な条件下での試験を行うことができる。   Further, as shown in FIG. 11, the annular member 90 is formed in a columnar shape by connecting a plurality of members 91, 92, 93, 94 with bolts 95, nuts 66, etc. in the direction of the axis P. Also good. With such an annular member 90, a plurality of test pieces 6 can be fixed simultaneously, and different tensile and compressive forces can be applied to each test piece 6. In addition, by appropriately selecting the shape of the recesses 91a, 92a, 92b, 93a, 93b, and 94a, it is possible to set a test piece 6 having a different shape on the annular member 90 and perform a test at the same time. . That is, the test can be performed under more complicated conditions.

また、図12に示すように、環状部材100において、上記貫通孔5a(図1参照)に代えて、環状部材100の軸線P方向を向く表面から軸線P方向に向かって凹む凹部100a、100bが設けられ、これら凹部100a、100bに試験片6のアーム片12が嵌まり込んで固定されていてもよい。   Further, as shown in FIG. 12, in the annular member 100, in place of the through hole 5a (see FIG. 1), concave portions 100a and 100b that are recessed from the surface facing the axis P direction of the annular member 100 toward the axis P direction. It may be provided and the arm piece 12 of the test piece 6 may be fitted and fixed to the recesses 100a and 100b.

具体的には、本実施形態のようにアーム片12が四本となっている場合には、周方向に隣り合う二本のアーム片12が嵌まり込む二つの凹部100aが軸線P方向の一方側を向く表面に設けられ、残りの二つの凹部100bが軸線P方向の他方側を向く表面である裏面に設けられていることが好ましい。なお、これら凹部100a、100bが一方側と他方側のいずれの表面に設けられるかはアーム片12の数量、設置位置によって適宜変更可能である。   Specifically, when the number of the arm pieces 12 is four as in the present embodiment, the two concave portions 100a into which the two arm pieces 12 adjacent in the circumferential direction are fitted have one of the axis P directions. It is preferable that the remaining two concave portions 100b are provided on the back surface which is the surface facing the other side in the axis P direction. It should be noted that whether the concave portions 100a and 100b are provided on one surface or the other surface can be appropriately changed depending on the number of arm pieces 12 and the installation position.

このようにすることで、試験片6を環状部材100に捩じ込むように取り付けて固定することができる。   By doing in this way, the test piece 6 can be attached and fixed so as to be screwed into the annular member 100.

次に、上述の実施形態の多軸応力負荷試験装置を用いた応力腐食割れの予測方法について説明する。   Next, a method for predicting stress corrosion cracking using the multiaxial stress load test apparatus of the above-described embodiment will be described.

応力腐食割れの予測方法は、多軸応力負荷試験装置によって多軸応力場での試験データを取得する多軸データ取得工程(第一工程)と、予め蓄積されている単軸応力場での試験データを準備する単軸データ準備工程(第二工程)と、これらの試験データを比較して相関関係を算出する割れ予測工程(第三工程)とを備えている。   The stress corrosion cracking prediction method includes a multiaxial data acquisition step (first step) in which test data in a multiaxial stress field is acquired by a multiaxial stress load test device, and a test in a prestored uniaxial stress field. A single-axis data preparation step (second step) for preparing data, and a crack prediction step (third step) for calculating a correlation by comparing these test data.

多軸データ取得工程は、代表的な複数の多軸応力場での試験を行って、試験片6、21、31、41、51に生じる応力σと、応力腐食割れの発生時間tとの関係についての試験データを取得し、近似曲線を作成する。   In the multi-axis data acquisition process, a test is performed in a plurality of representative multi-axis stress fields, and the relationship between the stress σ generated in the test pieces 6, 21, 31, 41, 51 and the occurrence time t of stress corrosion cracking. Obtain test data for and create an approximate curve.

単軸データ取得工程は、単軸応力場での応力腐食割れの発生時間との関係について、既に得られた試験データを準備する。なお、単軸応力場での試験は過去に多く行われており、試験データも豊富に存在している。   In the uniaxial data acquisition step, already obtained test data is prepared for the relationship with the occurrence time of stress corrosion cracking in a uniaxial stress field. In addition, many tests in the uniaxial stress field have been performed in the past, and there are abundant test data.

割れ予測工程は、多軸データ取得工程での試験データと、単軸データ取得工程での試験データとを比較する。そして図13に示すように、単軸応力場の試験データと多軸応力場の試験データとの間の相関関係βを算出する。   In the crack prediction process, test data in the multi-axis data acquisition process is compared with test data in the single-axis data acquisition process. And as shown in FIG. 13, correlation (beta) between the test data of a uniaxial stress field and the test data of a multiaxial stress field is calculated.

このようにすることで、条件を変えて多軸応力場での膨大な量の試験を行うことなく、既に蓄積されている単軸応力場での試験データに相関関係βを適用して、多くの多軸応力場の条件下での応力腐食割れを予測することが可能となる。このようにして信頼性の高いデータを得ることができ、応力腐食割れの予測が可能となる。   By doing this, the correlation β can be applied to already accumulated uniaxial stress field test data without changing the conditions and performing a huge amount of tests in the multiaxial stress field. It is possible to predict stress corrosion cracking under the multiaxial stress field conditions. In this way, highly reliable data can be obtained, and stress corrosion cracking can be predicted.

以上、本発明の実施形態について詳細を説明したが、本発明の技術的思想を逸脱しない範囲内において、多少の設計変更も可能である。
例えば、上述の実施形態及び変形例で示した試験片、環状部材等は適宜組み合わせても構わない。
Although the embodiment of the present invention has been described in detail above, some design changes can be made without departing from the technical idea of the present invention.
For example, you may combine suitably the test piece, annular member, etc. which were shown by the above-mentioned embodiment and modification.

1…多軸応力負荷試験装置 5…環状部材 5a…貫通孔 6…試験片 11…本体片 12…アーム片 12a…雄ネジ部 14…ナット部材 15…バネ部材 P…軸線 20…環状部材 21…試験片 22…アーム片 30…環状部材 31…試験片 32…アーム片 41…試験片 42…アーム片 51…試験片 52…アーム片 60…環状部材 61…第一部材 62…第二部材 65…ボルト 66…ナット 70…環状部材 71…第一部材 80…環状部材 81…第一部材 81b…突起部 82…第二部材 82b…溝部 90…環状部材 95…ボルト 100…環状部材 DESCRIPTION OF SYMBOLS 1 ... Multiaxial stress load test apparatus 5 ... Ring member 5a ... Through-hole 6 ... Test piece 11 ... Main body piece 12 ... Arm piece 12a ... Male screw part 14 ... Nut member 15 ... Spring member P ... Axis 20 ... Ring member 21 ... Test piece 22 ... Arm piece 30 ... Ring member 31 ... Test piece 32 ... Arm piece 41 ... Test piece 42 ... Arm piece 51 ... Test piece 52 ... Arm piece 60 ... Ring member 61 ... First member 62 ... Second member 65 ... Bolt 66 ... Nut 70 ... annular member 71 ... first member 80 ... annular member 81 ... first member 81b ... projection part 82 ... second member 82b ... groove part 90 ... annular member 95 ... bolt 100 ... annular member

Claims (3)

可撓性を有する材料からなる環状部材と、
前記環状部材の径方向内側に配置される本体片、及び、周方向に間隔をあけて複数設けられて前記本体片から前記環状部材の径方向外側に延在するアーム片を有する試験片と、
各前記アーム片に外嵌されて、前記環状部材に対して径方向に向かって押圧しながら該アーム片を固定するナット部材と、を備えることを特徴とする多軸応力負荷試験装置。
An annular member made of a flexible material;
A main body piece disposed radially inward of the annular member, and a test piece having a plurality of arm pieces extending from the main body piece to the radially outer side of the annular member provided at intervals in the circumferential direction;
And a nut member that is fitted onto each arm piece and fixes the arm piece while pressing the annular member in a radial direction.
前記環状部材と前記ナット部材との間に、前記環状部材の径方向への変形に抗するように該環状部材に付勢力を与えるバネ部材をさらに備えることを特徴とする請求項1に記載の多軸応力負荷試験装置。   The spring member which provides a biasing force to the annular member so as to resist deformation in the radial direction of the annular member is further provided between the annular member and the nut member. Multiaxial stress load test equipment. 可撓性を有する材料からなる環状部材と、前記環状部材の径方向内側に配置される本体片、及び、周方向に間隔をあけて複数設けられて前記本体片から前記環状部材の径方向外側に延在するアーム片を有する試験片と、各前記アーム片に外嵌されて、該アーム片を前記環状部材に対して径方向に向かって押圧しながら固定するナット部材とを備える多軸応力負荷試験装置を用いた応力腐食割れの予測方法であって、
多軸応力場で前記応力腐食割れの試験を行い、試験データを取得する第一工程と、
単軸応力場での前記応力腐食割れの試験データを準備する第二工程と、
前記第一工程の試験データと前記第二工程の試験データとの比較を行い、相関関係を算出する第三工程とを備えることを特徴とする応力腐食割れの予測方法。
An annular member made of a material having flexibility, a main body piece arranged radially inside the annular member, and a plurality of circumferentially spaced gaps from the main body piece to the radially outer side of the annular member A multi-axial stress comprising: a test piece having an arm piece extending in the direction; and a nut member that is externally fitted to each of the arm pieces and fixes the arm piece against the annular member in a radial direction. A method for predicting stress corrosion cracking using a load testing device,
A first step of performing a test of the stress corrosion cracking in a multiaxial stress field and obtaining test data;
A second step of preparing test data of the stress corrosion cracking in a uniaxial stress field;
A method for predicting stress corrosion cracking, comprising: a third step of comparing the test data of the first step and the test data of the second step and calculating a correlation.
JP2012152856A 2012-07-06 2012-07-06 Prediction method of stress corrosion cracking Expired - Fee Related JP6012306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012152856A JP6012306B2 (en) 2012-07-06 2012-07-06 Prediction method of stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012152856A JP6012306B2 (en) 2012-07-06 2012-07-06 Prediction method of stress corrosion cracking

Publications (2)

Publication Number Publication Date
JP2014016200A true JP2014016200A (en) 2014-01-30
JP6012306B2 JP6012306B2 (en) 2016-10-25

Family

ID=50111020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012152856A Expired - Fee Related JP6012306B2 (en) 2012-07-06 2012-07-06 Prediction method of stress corrosion cracking

Country Status (1)

Country Link
JP (1) JP6012306B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388003A (en) * 2015-10-16 2016-03-09 西安航空动力股份有限公司 Engine guiding blade assembly screw cap thrust force measuring tool and measuring method thereof
CN114813337A (en) * 2022-04-06 2022-07-29 北京科技大学 Stress corrosion test device and method for duct piece under continuous stress
CN117804890A (en) * 2024-02-29 2024-04-02 上海核工程研究设计院股份有限公司 Pipe fitting stress corrosion test device and method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767843A (en) * 1980-10-14 1982-04-24 Tokyo Koki Seizosho:Kk Constant load imposing device in stress corrosion cracking test
JPS5767842A (en) * 1980-10-14 1982-04-24 Tokyo Koki Seizosho:Kk Constant load imposing device in stress corrosion cracking test
JPS5979833A (en) * 1982-10-30 1984-05-09 Shimadzu Corp Cross tensile and compression testing machine
JPS59117952U (en) * 1983-01-31 1984-08-09 株式会社東京衡機製造所 Constant load loading device
JPS63293441A (en) * 1987-05-27 1988-11-30 Fuji Electric Co Ltd Method for testing stress corrosion cracking
JPH01213550A (en) * 1988-02-22 1989-08-28 Hitachi Ltd Fault occurrence forecasting device
JPH01152239U (en) * 1988-04-14 1989-10-20
JPH05297181A (en) * 1992-04-16 1993-11-12 Hitachi Ltd Method for estimating stress corrosive cracking life of structure, and test device therefor
JPH06241968A (en) * 1993-02-12 1994-09-02 Mitsubishi Heavy Ind Ltd Applying apparatus for cross load
JP2000180323A (en) * 1998-12-10 2000-06-30 Ohbayashi Corp Constant-load giving apparatus
JP2002296161A (en) * 2001-03-29 2002-10-09 Toshiba Corp Multi axial stress load test system
JP2012185042A (en) * 2011-03-04 2012-09-27 Yokohama Rubber Co Ltd:The Simulation method and material parameter identification method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767843A (en) * 1980-10-14 1982-04-24 Tokyo Koki Seizosho:Kk Constant load imposing device in stress corrosion cracking test
JPS5767842A (en) * 1980-10-14 1982-04-24 Tokyo Koki Seizosho:Kk Constant load imposing device in stress corrosion cracking test
JPS5979833A (en) * 1982-10-30 1984-05-09 Shimadzu Corp Cross tensile and compression testing machine
JPS59117952U (en) * 1983-01-31 1984-08-09 株式会社東京衡機製造所 Constant load loading device
JPS63293441A (en) * 1987-05-27 1988-11-30 Fuji Electric Co Ltd Method for testing stress corrosion cracking
JPH01213550A (en) * 1988-02-22 1989-08-28 Hitachi Ltd Fault occurrence forecasting device
JPH01152239U (en) * 1988-04-14 1989-10-20
JPH05297181A (en) * 1992-04-16 1993-11-12 Hitachi Ltd Method for estimating stress corrosive cracking life of structure, and test device therefor
JPH06241968A (en) * 1993-02-12 1994-09-02 Mitsubishi Heavy Ind Ltd Applying apparatus for cross load
JP2000180323A (en) * 1998-12-10 2000-06-30 Ohbayashi Corp Constant-load giving apparatus
JP2002296161A (en) * 2001-03-29 2002-10-09 Toshiba Corp Multi axial stress load test system
JP2012185042A (en) * 2011-03-04 2012-09-27 Yokohama Rubber Co Ltd:The Simulation method and material parameter identification method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6016031449; 永田孝弘: '一軸試験による二軸伸長ゴム材料モデルの推定' 日本機会学会第14回計算力学講演会講演論文集 , 20011130, p. 55-56 *
JPN6016031451; H. Scholten: 'Weakest-link Failure Prediction for Ceramics II: Design and Analysis of Uniaxial and Biaxial Bend Te' Journal of the European Ceramic Society 10, 1992, p. 33-40 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388003A (en) * 2015-10-16 2016-03-09 西安航空动力股份有限公司 Engine guiding blade assembly screw cap thrust force measuring tool and measuring method thereof
CN114813337A (en) * 2022-04-06 2022-07-29 北京科技大学 Stress corrosion test device and method for duct piece under continuous stress
CN117804890A (en) * 2024-02-29 2024-04-02 上海核工程研究设计院股份有限公司 Pipe fitting stress corrosion test device and method

Also Published As

Publication number Publication date
JP6012306B2 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
JP6012306B2 (en) Prediction method of stress corrosion cracking
US7699556B2 (en) Bolted flanged connection on a basis of shape memory effect and inverse flexion flange design
Pavlović et al. Connections in towers for wind converters, part I: Evaluation of down-scaled experiments
Zhu et al. Analytical evaluation of elastic interaction in bolted flange joints
JP2009092662A (en) Jet pump sensing line t-bolt clamp assembly
JP5920851B2 (en) FIXING DEVICE FOR TURBINE AND METHOD FOR PROVIDING FIXING
CN108247574B (en) Adjustable corrugated pipe mounting and dismounting method
JP2014163795A (en) Multi-axial stress load test device, multi-axial stress load test method, and method for predicting stress corrosion cracking
Zhang et al. Invention of smart tightening tool for directly controlling the preload of bolted joints
Han et al. Relation between ASTM E606 specimen geometry and misalignment in strain-controlled fatigue testing
Hu et al. Analytical studies of full-scale steel T-stub connections using delicate 3D finite element methods
RU155574U1 (en) DEVICE FOR MOUNTING A BLANKET MODULE ON A VACUUM CASE OF A THERMONUCLEAR REACTOR
Sánchez et al. Mechanical analyses of the waveguide flange coupling for the first confinement system of the ITER electron cyclotron upper launcher
Adhreena et al. A Review on the Application of Fiber Bragg Grating Sensors in Bolted Joints Health Monitoring
WO2015198464A1 (en) Apparatus for testing and evaluating pipe joint
Richardson Study of Simplified Assembly Patterns With Load-Based Feedback and Preemptive Elastic Interaction Compensation
Grzejda Impact of nonlinearity of the contact layer between elements joined in a preloaded bolted flange joint on operational forces in the bolts
RU19166U1 (en) ELECTROHYDRAULIC INSTALLATION FOR TESTING FLEXIBLE SUPPORTS
CN210375675U (en) Clamp for plastic corrugated pipe drawing force test
JP2020046039A (en) Pipeline support device
Grzejda Determination of the Preload Distribution in Bolts during the Assembly of a Multi-Bolted System
Yang et al. Clamp load loss in a bolted joint model with plastic bolt elongation and eccentric service load
Moslehi et al. Embedded Multiplexed Fiber-Optic Sensing for Turbine Control & Prognostic Health Management (PHM)-Phase I Final Report
Kiselev et al. The analysis of a steam generator PGV-1000 failure possibility due to destruction of studs of a collector cover
Athmanathan et al. Experimental Study on Biaxial Ratcheting of SS316LN Steel Pipes Used in Fast Breeder Reactor Structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160920

R151 Written notification of patent or utility model registration

Ref document number: 6012306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees