JP2014016060A - 熱回収システム - Google Patents

熱回収システム Download PDF

Info

Publication number
JP2014016060A
JP2014016060A JP2012152038A JP2012152038A JP2014016060A JP 2014016060 A JP2014016060 A JP 2014016060A JP 2012152038 A JP2012152038 A JP 2012152038A JP 2012152038 A JP2012152038 A JP 2012152038A JP 2014016060 A JP2014016060 A JP 2014016060A
Authority
JP
Japan
Prior art keywords
heat
heat storage
floating body
heat recovery
stored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012152038A
Other languages
English (en)
Inventor
Sadaaki Kitamura
禎章 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2012152038A priority Critical patent/JP2014016060A/ja
Publication of JP2014016060A publication Critical patent/JP2014016060A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

【課題】熱媒体として同一系内を循環する流体に蓄熱された熱を、流路を変更することなく、必要な時に、必要な量だけ回収することができる熱回収システムを提供する。
【解決手段】蓄熱部10にて蓄熱された熱を回収する熱回収システムであって、前記蓄熱部にて熱が蓄熱される熱媒体として同一系内を循環する蓄熱流体40と、前記同一系内に設けられて前記蓄熱流体に蓄熱された熱を回収する熱回収部60と、を具備し、前記蓄熱流体には、磁界により磁化する材料からなる浮遊体51と、前記浮遊体に付着されて熱を蓄熱可能に形成される蓄熱材52と、からなり、前記蓄熱流体中を浮遊可能に形成される蓄熱浮遊体50が混合され、前記熱回収部は、磁界を発生させる磁石部61を具備し、前記蓄熱浮遊体は、前記磁石部が発生させた磁界により磁化して前記熱回収部に吸着され、前記熱回収部は、前記吸着された蓄熱浮遊体から熱伝導により熱を回収する。
【選択図】図3

Description

本発明は、蓄熱部にて蓄熱された熱を回収する熱回収システムの技術に関する。
従来、蓄熱部にて蓄熱された熱を回収する熱回収システムの技術は公知となっている。例えば、特許文献1に記載の如くである。
特許文献1に記載の熱回収システムは、蓄熱部にて熱が蓄熱される熱媒体として同一系内を循環する流体と、前記流体が循環する貯湯槽内に設けられて前記流体に蓄熱された熱を回収する熱交換部(熱回収部)と、を具備する。このような構成によって、熱回収システムは、熱交換部により流体に蓄熱された熱を熱交換(回収)して、貯湯槽内の水を沸騰させることができる。
しかしながら、特許文献1に記載の熱回収システムは、例えば貯湯槽内の水が既に沸騰している場合等では、流体に蓄熱された熱を熱交換(回収)することができなかった。したがって、このような場合には、流体の温度が上がり過ぎて熱回収システムが損傷することを防止するため、当該流体を外部に排出する必要が有った。そして、流体を排出した場合には、流体を排出した分だけ補充する必要が有り、コスト増加となる点で不利であった。
また、前述の如きコスト増加を抑制するためには、例えば前記熱交換部とは別の(系外の)熱交換部により流体に蓄熱された熱を熱交換する構成とする必要が有った。しかしながら、そのような構成とするためには、前記流体の流路を変更する配管や方向制御弁等を別途設ける必要が有り、熱回収システムの構成が複雑となる点で不利であった。すなわち、前記熱回収システムは、熱媒体として同一系内を循環する流体に蓄熱された熱を、流路を変更することなく、必要な時に、必要な量だけ回収することができない点で不利であった。
特開2008−309456号公報
本発明は上記の如き状況を鑑みてなされたものであり、その解決しようとする課題は、熱媒体として同一系内を循環する流体に蓄熱された熱を、流路を変更することなく、必要な時に、必要な量だけ回収することができる熱回収システムを提供するものである。
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
即ち、請求項1においては、蓄熱部にて蓄熱された熱を回収する熱回収システムであって、前記蓄熱部にて熱が蓄熱される熱媒体として同一系内を循環する蓄熱流体と、前記同一系内に設けられて前記蓄熱流体に蓄熱された熱を回収する熱回収部と、を具備し、前記蓄熱流体には、磁界により磁化する材料からなる浮遊体と、前記浮遊体に付着されて熱を蓄熱可能に形成される蓄熱材と、からなり、前記蓄熱流体中を浮遊可能に形成される蓄熱浮遊体が混合され、前記熱回収部は、磁界を発生させる磁石部を具備し、前記蓄熱浮遊体は、前記磁石部が発生させた磁界により磁化して前記熱回収部に吸着され、前記熱回収部は、前記吸着された蓄熱浮遊体から熱伝導により熱を回収するものである。
請求項2においては、前記磁石部による磁界の発生を制御する制御手段を具備し、前記制御手段は、前記磁石部による磁界の発生を制御することにより前記熱回収部への前記蓄熱浮遊体の吸着を任意に調節するものである。
請求項3においては、前記熱回収部の温度を検出する温度検出手段を具備し、前記制御手段は、前記温度検出手段により検出された熱回収部の温度に基づいて前記磁石部による磁界の発生を制御するものである。
請求項4においては、前記熱回収部は複数設けられ、前記複数設けられた熱回収部には、前記蓄熱流体に蓄熱されて不必要となった熱を排出する熱排出用の熱回収部が含まれるものである。
請求項5においては、前記浮遊体は、磁性粉体からなるものである。
本発明の効果として、以下に示すような効果を奏する。
本発明においては、熱媒体として同一系内を循環する流体に蓄熱された熱を、流路を変更することなく、必要な時に、必要な量だけ回収することができる。
本発明の一実施形態に係る熱回収システムの概略構成を示す図。 同じく、熱回収部の周囲の構成を示す模式図。 (a)図2にて、磁石部のコイルをONに切り替えた直後の状態を示す模式図。(b)図2にて、磁石部のコイルをONに切り替えてから所定時間が経過した後の状態を示す模式図。(c)図2にて、磁石部のコイルをOFFに切り替えた直後の状態を示す模式図。 蓄熱流体に蓄熱された熱の回収状態を時系列的に示すグラフ。 (a)コイルのON・OFFを比較的遅い速度にて複数回数切り替えた場合に回収する熱量を示すグラフ。(b)コイルのON・OFFを比較的早い速度にて複数回数切り替えた場合に回収する熱量を示すグラフ。 (a)磁石部による蓄熱浮遊体の吸着パターンの一例を示す循環配管の展開図。(b)図6(a)とは異なる磁石部による蓄熱浮遊体の吸着パターンの一例を示す循環配管の展開図。(c)図6(a)及び(b)とは異なる磁石部による蓄熱浮遊体の吸着パターンの一例を示す循環配管の展開図。
図1及び図2を用いて、本発明に係る熱回収システムの一実施形態である熱回収システム1の全体構成について説明する。
熱回収システム1は、蓄熱部10にて蓄熱された熱を回収するシステムである。熱回収システム1は、主として循環配管20と、ポンプ30と、蓄熱流体40と、蓄熱浮遊体50と、熱回収部60と、制御装置70と、により構成される。
図1に示す蓄熱部10は、本発明に係る蓄熱部の一実施形態である。蓄熱部10は、本実施形態では所謂ソーラーシステムを構成する一部材であり、後述する蓄熱流体40に熱を蓄熱させる部材である。蓄熱部10は、本実施形態では、主としてソーラーパネル11と、当該ソーラーパネル11の略全面に亘って延設される熱交換配管12と、により構成される。熱交換配管12には、熱媒体としての蓄熱流体40が流通する。蓄熱部10は、ソーラーパネル11が受けた太陽熱により、熱交換配管12を流通する蓄熱流体40の温度が上がるように(蓄熱流体40に熱が蓄熱されるように)構成される。
図1及び図2に示す循環配管20は、蓄熱流体40が流通する中空の略円筒状の部材である。循環配管20の一端部は、蓄熱部10の熱交換配管12の他端部に連通接続される。また、循環配管20の他端部は、蓄熱部10の熱交換配管12の一端部に連通接続される。すなわち、循環配管20は、熱交換配管12と併せて、蓄熱流体40が同一系内を繰り返し循環する(終端の無い)流通経路を形成している。
なお、循環配管20には、複数(本実施形態では、4つ)の配管(以下では、「分岐配管100」と称する。)の一側が接続される。分岐配管100の他側は、回収した熱を利用する設備(本実施形態では、給湯設備111、床暖房設備112、温風設備113)や、回収した熱を排出する設備(本実施形態では、放熱フィンである排熱設備114)に接続される。なお、分岐配管100は、循環配管20と連通されない。すなわち、循環配管20を流通する蓄熱流体40は、分岐配管100を流通することが無いように構成される。
なお、分岐配管100には、循環配管20との接続部に、中空の略円筒状に形成された分岐配管接続部101が設けられる。また、循環配管20には、分岐配管100との接続部に、中空の略円筒状に形成された循環配管接続部21が設けられる。循環配管接続部21は、分岐配管接続部101により外嵌される。そして、分岐配管接続部101の内周面は、循環配管20の外周面に密着するように形成される。分岐配管接続部101及び循環配管接続部21は、熱伝導性の高い材料により構成される。
なお、循環配管接続部21は、その内周面に後述する蓄熱浮遊体50が吸着されるものであり、本発明に係る「熱回収部」を構成する一部材である。
図1に示すポンプ30は、蓄熱流体40を圧送し、循環配管20及び蓄熱部10の熱交換配管12に流通させる部材である。ポンプ30は、循環配管20に配設される。
図2に示す蓄熱流体40は、本発明に係る蓄熱流体の一実施形態である。蓄熱流体40は、循環配管20及び蓄熱部10の熱交換配管12を流通し、熱媒体として蓄熱部10にて熱が蓄熱される流体である。蓄熱流体40は、主として水等からなる流体に、後述する蓄熱浮遊体50が混合されて構成される。蓄熱流体40は、同一系内(より詳細には、循環配管20及び蓄熱部10の熱交換配管12)を繰り返し循環するように構成される。換言すれば、蓄熱流体40は、循環配管20及び蓄熱部10の熱交換配管12により形成される流通経路から外部に排出されることが無いように構成される。
図2に示す蓄熱浮遊体50は、本発明に係る蓄熱浮遊体の一実施形態である。蓄熱浮遊体50は、蓄熱流体40に混合される物質である。蓄熱浮遊体50は、蓄熱流体40中を浮遊可能に構成される。つまり、蓄熱浮遊体50は、循環配管20及び蓄熱部10の熱交換配管12を流通する蓄熱流体40の流れに追従し、当該循環配管20及び蓄熱部10の熱交換配管12を繰り返し循環するように構成される。蓄熱浮遊体50は、主として浮遊体51と、蓄熱材52と、により構成される。
図2に示す浮遊体51は、本発明に係る浮遊体の一実施形態である。浮遊体51は、磁界により磁化する材料からなる物質である。本実施形態では、浮遊体51は、磁性粉体により構成される。なお、磁性粉体としては、鉄、ニッケル、コバルト、及びこれらの合金等の強磁性を示す強磁性体が挙げられる。
なお、本発明に係る浮遊体は、磁性粉体に限らない。例えば、本発明に係る浮遊体は、磁性流体等、磁界により磁化する材料からなる物質であれば良い。
図2に示す蓄熱材52は、本発明に係る蓄熱材の一実施形態である。蓄熱材52は、顕熱利用による熱交換によって、熱を蓄熱可能に構成される物質である。本実施形態では、蓄熱材52は、アルミニウム合金により構成される。蓄熱材52は、浮遊体51に付着される。より詳細には、蓄熱材52は、浮遊体51(磁性粉体の粉体)の表面に凝着され、バインダ(不図示)により被覆される。
なお、本発明に係る蓄熱材は、アルミニウム合金に限らないが、比熱が高く、且つ柔軟性を有する材料からなる物質が望ましい。
また、本発明に係る蓄熱材は、顕熱利用による熱交換によって、熱を蓄熱可能に構成される物質に限らない。すなわち、本発明に係る蓄熱材は、潜熱利用による熱交換によって、熱を蓄熱可能に構成される物質であっても良い。より詳細には、本発明に係る蓄熱材は、相変化物質(PCM:Phase Change Material)であっても良い。
また、蓄熱材52の浮遊体51への付着方法は、前述の如く、バインダ(不図示)により被覆させる方法に限らない。すなわち、蓄熱材52の浮遊体51への付着方法は、蓄熱材52が浮遊体と一体化して蓄熱流体40中を浮遊可能とする方法であれば良い。
このような構成によって、ソーラーパネル11が受けた太陽熱により蓄熱部10の熱交換配管12を流通する蓄熱流体40の温度が上がると、蓄熱流体40中を浮遊する蓄熱浮遊体50(より詳細には、蓄熱材52)に熱が蓄熱されることになる。そして、蓄熱浮遊体50は、蓄熱材52に熱が蓄熱されたまま、循環配管20及び蓄熱部10の熱交換配管12を流通する蓄熱流体40の流れに追従し、当該循環配管20及び蓄熱部10の熱交換配管12を繰り返し循環することになる。
図1及び図2に示す熱回収部60は、本発明に係る熱回収部の一実施形態である。熱回収部60は、蓄熱流体40に蓄熱された熱(より詳細には、蓄熱流体40中を浮遊する蓄熱浮遊体50の蓄熱材52に蓄熱された熱)を回収する部材である。熱回収部60は、循環配管20に複数(本実施形態では、4つ)配設される。より詳細には、熱回収部60は、循環配管20と分岐配管100との複数設けられた接続部にそれぞれ配設される。熱回収部60は、主として磁石部61と、温度センサ62と、前述の如く循環配管20の循環配管接続部21と、により構成される。
図2に示す磁石部61は、本発明に係る磁石部の一実施形態である。磁石部61は、磁界を発生させる部材である。磁石部61は、主として鉄心64と、コイル65と、筐体66と、により構成される。
鉄心64は、その長手方向を循環配管20の軸心方向に対して垂直方向へ向けて配置される。また、鉄心64の一端部(図2では、下端部)は、循環配管20に近接して配置される。
コイル65は、鉄心64に巻装される。コイル65は、後述する制御装置70により電流が供給可能に構成される。
筐体66は、鉄心64及びコイル65を内部に収納する部材である。筐体66は、中空の略箱状に形成される。筐体66は、分岐配管100の分岐配管接続部101に当接した状態で固定される。なお、筐体66は、分岐配管100を流通する流体が、当該筐体66の内部に流入しないように構成される。
このような構成によって、磁石部61は、コイル65に電流が供給されると、鉄心64の一端部側がN極となり他端部側がS極となり、磁界を発生させることができる。なお、磁石部61により発生される磁界(磁力)は、コイル65に供給される電流の量に応じて強くなり、又は弱くなるように構成される。
図1及び図2に示す温度センサ62は、本発明に係る温度検出手段の一実施形態である。温度センサ62は、熱回収部60の温度、すなわち分岐配管100の内部の温度を検出するものである。温度センサ62は、磁石部61の筐体66に配設される。
図1に示す制御装置70は、本発明に係る制御手段の一実施形態である。制御装置70は、種々の情報に基づいて、コイル65への電流の供給等を制御するものである。制御装置70は、RAMやROM等の記憶部や、CPU等の演算処理部等により構成される。
制御装置70は、磁石部61に接続される。制御装置70は、磁石部61のコイル65のON・OFFの切り替え(電流の供給の入り切り)や、コイル65に供給される電流の量を制御することができる。
制御装置70は、温度センサ62に接続される。制御装置70は、温度センサ62により検出された温度に関する情報を取得することができる。
次に、図2から図5を用いて、前述の如く構成された熱回収システム1において、磁石部61のコイル65のON・OFFを切り替えた場合の、蓄熱部10にて蓄熱された熱を回収する態様について説明する。
なお、図4中のグラフは、蓄熱流体40に蓄熱された熱の回収状態(分岐配管100の内部の温度)を時系列的に示している。
また、以下の説明では、蓄熱流体40中を浮遊する蓄熱浮遊体50(より詳細には、蓄熱材52)は、蓄熱部10にて熱が蓄熱された状態であるものとする。
図2に示すように、制御装置70により磁石部61のコイル65がOFFとされている状態、すなわちコイル65に電流が供給されていない状態では、磁石部61は磁界を発生させていない。したがって、蓄熱流体40中を浮遊する蓄熱浮遊体50は、蓄熱材52に熱が蓄熱されたまま、循環配管20及び蓄熱部10の熱交換配管12を流通する蓄熱流体40の流れに追従し、当該循環配管20及び蓄熱部10の熱交換配管12を繰り返し循環することになる。
なお、かかる状態は、図4に示すグラフにおいて、時間T0までの状態に該当する。すなわち、蓄熱浮遊体50に蓄熱された熱は回収されておらず、分岐配管100の内部の温度は変化していない(上がっていない)。
そして、図3(a)に示すように、制御装置70により磁石部61のコイル65がONとされると、コイル65への電流の供給が開始される。これによって、磁石部61は、磁界を発生させる。そして、磁石部61により発生された磁界により、蓄熱流体40中を浮遊する蓄熱浮遊体50(より詳細には、浮遊体51)が磁化される。そして、浮遊体51が磁化された蓄熱浮遊体50は、磁石部61の鉄心64側へ向けての力を受けて当該方向へ向けての移動を開始する。そして、当該移動を開始した蓄熱浮遊体50は、循環配管20の循環配管接続部21の内周面に衝突すると、当該内周面に吸着される。
そして、図3(b)に示すように、制御装置70により磁石部61のコイル65がONとされた状態が継続する間、コイル65への電流の供給が継続される。そして、循環配管20の循環配管接続部21の内周面に吸着された蓄熱浮遊体50の量が時間の経過と共に増加し、蓄熱浮遊体50が山状に堆積した状態(蓄熱浮遊体50の量が最も多い状態)となる。
そして、循環配管接続部21の内周面に吸着された蓄熱浮遊体50に蓄熱された熱が、当該循環配管接続部21に伝導される。そして、当該循環配管接続部21に伝導された熱は、分岐配管100の分岐配管接続部101に伝導され、当該分岐配管100の内部に放熱される。すなわち、蓄熱部10にて蓄熱された熱が回収されることになる。そして、循環配管接続部21の内周面に吸着された蓄熱浮遊体50が山状に堆積した状態では、回収する熱の量が最も多くなる(図3(b)中の黒色矢印参照)。
なお、かかる状態は、図4に示すグラフにおいて、時間T0から時間T3までの状態に該当する。
すなわち、図4に示す時間T0にて、磁石部61により発生された磁界により循環配管接続部21の内周面への蓄熱浮遊体50の吸着が開始されると、蓄熱浮遊体50に蓄熱された熱の回収が開始され、分岐配管100の内部の温度が上がり始める。そして、循環配管接続部21の内周面に吸着された蓄熱浮遊体50の量が増加するに従って、分岐配管100の内部の温度が上がることになる。
そして、図4に示す時間T1に到達すると、循環配管接続部21の内周面に吸着された蓄熱浮遊体50が山状に堆積した状態となる。すなわち、時間T1以降は、循環配管接続部21の内周面に吸着された蓄熱浮遊体50の量がそれ以上増加しないため、分岐配管100の内部の温度は上がったまま一定となる。
そして、図4に示す時間T2に到達すると、山状に堆積した状態の蓄熱浮遊体50は熱の回収が継続して行われているため、回収可能な熱が減少する。すなわち、時間T2から時間T3に到達するまで、蓄熱浮遊体50が循環配管接続部21の内周面に山状に堆積した状態のまま、分岐配管100の内部の温度は(比較的少ない割合で)下がり始める。
そして、図3(c)に示すように、制御装置70により磁石部61のコイル65がOFFとされると、コイル65への電流の供給が停止される。これによって、磁石部61は、磁界を発生させなくなる。そして、山状に堆積した状態の蓄熱浮遊体50(より詳細には、浮遊体51)の磁化が解除される。そして、浮遊体51の磁化が解除された蓄熱浮遊体50は、磁石部61の鉄心64側へ向けての力を受けなくなる。すなわち、蓄熱浮遊体50は、循環配管20の循環配管接続部21の内周面に吸着されず、再び蓄熱流体40の流れに追従することになり、当該循環配管20の循環配管接続部21の内周面から徐々に離間していく。
なお、かかる状態は、図4に示すグラフにおいて、時間T3から時間T4までの状態に該当する。
すなわち、図4に示す時間T3にて蓄熱浮遊体50が循環配管20の循環配管接続部21の内周面から離間していくと、分岐配管100の内部の温度は(比較的大きな割合で)下がり始める。そして、時間T4に到達すると、循環配管20の循環配管接続部21の内周面には、吸着された蓄熱浮遊体50が無くなる。すなわち、蓄熱浮遊体50に蓄熱された熱は回収されず、分岐配管100の内部の温度は下がって時間T0までの状態と同一になる。
なお、コイル65のON・OFFを切り替えた場合に、蓄熱浮遊体50に蓄熱された熱の回収可能な量(熱量)は、上限がある。そこで、コイル65のON・OFFを繰り返し行う(複数回切り替える)ことによって、蓄熱浮遊体50に蓄熱された熱の回収可能な量(熱量)を増加させることができる。
より詳細には、コイル65のON・OFFを1回切り替えた後に、再度コイル65をONに切り替えることで、蓄熱材52に熱が蓄熱された状態の(まだ熱が回収されていない)蓄熱浮遊体50が、循環配管20の循環配管接続部21の内周面に吸着され、山状に堆積した状態となる。すなわち、蓄熱部10にて蓄熱された熱が、再び回収されることになる。
なお、図5では、熱回収システム1において、コイル65のON・OFFを複数回切り替えた場合に回収する熱量を示している。
より詳細には、図5(a)中のグラフは、コイル65のON・OFFを比較的遅い速度にて複数回切り替えた場合(OFFからONに切り替えるまでの時間が比較的長い場合)に回収する熱量を示している。また、図5(b)中のグラフは、コイル65のON・OFFを比較的早い速度にて複数回切り替えた場合(OFFからONに切り替えるまでの時間が比較的短い場合)に回収する熱量を示している。
なお、図5(a)及び(b)において、コイル65をONからOFFに切り替えるまでの時間は、同一であるものとする。
図5(a)及び(b)に示すように、コイル65のON・OFFを1回切り替えた場合に回収する熱量は同一である。したがって、OFFからONに切り替えるまでの時間が比較的短い場合(図5(b)中のグラフ)の方が、OFFからONに切り替えるまでの時間が比較的長い場合(図5(a)中のグラフ)よりも、回収する熱量が多いことになる。
このように、熱回収システム1は、コイル65のON・OFFを複数回切り替えると共に、OFFからONに切り替えるまでの時間を調整することにより、回収する熱量を調整することができる。
以上のような態様により、熱回収システム1において回収した熱は、前述の如く、回収した熱を利用する設備である給湯設備111、床暖房設備112、温風設備113や、回収した熱を排出する設備である排熱設備114に伝導される。
そして、回収した熱を、給湯設備111、床暖房設備112、温風設備113に伝導すれば、当該回収した熱を利用することにより、例えば使用電力量やガス量を削減できる等の省エネ効果を得ることができる。他方、回収した熱を排熱設備114に伝導すれば、当該回収した熱を外部へ排出することができる。
なお、回収した熱を、どの設備に伝導するのかは、複数(本実施形態では、4つ)設けられた熱回収部60のうち、何れの熱回収部60により蓄熱部10にて蓄熱された熱を回収するのかに基づいて決定される。そして、複数設けられた熱回収部60のうち、何れの熱回収部60により蓄熱部10にて蓄熱された熱を回収するのかは、制御装置70による選択に基づいて決定される。制御装置70による選択は、当該制御装置70に予め設定された条件に基づいて行われる構成であっても、又は人の操作に基づいて行われる構成であっても良い。
なお、複数設けられた熱回収部60のうち、排熱設備114に伝導される熱を回収する熱回収部60(図1では、右端の熱回収部60)は、本発明に係る熱排出用の熱回収部の一実施形態である。
このように、熱回収システム1は、蓄熱流体40の流通経路を変更せずに(同一系内に蓄熱流体40を循環させたまま)、蓄熱部10にて蓄熱された熱を、同一系内に配設された複数の熱回収部60のうち1又は2以上の熱回収部60を選択的に使用して回収することができる。
このような構成によって、例えば給湯設備111、床暖房設備112、温風設備113にて、回収した熱を利用する必要が無い場合(すなわち、蓄熱流体40に蓄熱されて不必要となった熱がある場合)には、排熱設備114に熱を伝導するための熱回収部60を選択し、当該選択した熱回収部60のコイル65をONに切り替えれば、回収した熱を外部へ排出することができる。すなわち、回収した熱を利用する必要が無い場合であっても、(蓄熱流体40を流通経路から排出せずに)蓄熱流体40に蓄熱された熱を回収し、これによって、当該蓄熱流体40の温度を下げることができる。つまり、蓄熱流体40の温度が上がり過ぎて熱回収システム1が損傷することを、蓄熱流体40を流通経路から排出せずに防止することができる。その結果、蓄熱流体40を補充する必要が無いため、コスト増加を防止することができる。
また、前述の如く、蓄熱流体40に蓄熱された熱を回収する熱回収部60は、同一系内に複数設けられている。すなわち、複数の熱回収部60のうち1又は2以上の熱回収部60を選択的に使用する場合であっても、蓄熱流体40は同一系内に循環させたままであり、系外に流通させる必要がない。すなわち、熱回収システム1は、熱媒体として同一系内を循環する蓄熱流体40に蓄熱された熱を、流路を変更することなく、必要な時に、必要な量だけ回収することができる。そのため、例えば別途配管や方向制御弁等を設ける必要が無く、システムの簡略化を図ることができる。
また、前述の如く、本実施形態では、コイル65をONからOFFに切り替えるのは、図4に示す時間T3に到達したときであるが、時間T3では無く、任意の時間に到達したときにコイル65をOFFに切り替える構成とすることができる。例えば、図4に示す時間T2に到達したときに、コイル65をONからOFFに切り替える構成とすることができる。
このような構成によって、循環配管20の循環配管接続部21の内周面に吸着された蓄熱浮遊体50を、回収可能な熱が減少している状態のものから、回収可能な熱が減少しておらず蓄熱材52に熱が蓄熱された(まだ熱が回収されていない)状態のものに効率良く変更することができる。その結果、蓄熱部10にて蓄熱された熱を、効率良く回収することができる。
また、コイル65をONからOFFに切り替えるタイミングは、分岐配管100の内部の温度に基づいて、制御装置70により判断される構成とすることができる。例えば、コイル65をONとした後、分岐配管100の内部の温度が上がったまま一定となった後に下がり始めたとき(すなわち、時間で示すと、図4に示す時間T2に到達したとき)、制御装置70によりコイル65がOFFに切り替えられる構成とすることができる。
このような構成によって、制御装置70により、循環配管20の循環配管接続部21の内周面に吸着される蓄熱浮遊体50を、回収可能な熱が減少している状態のものから、回収可能な熱が減少しておらず蓄熱材52に熱が蓄熱された(まだ熱が回収されていない)状態のものに効率良く変更することができる。その結果、蓄熱部10にて蓄熱された熱を、効率良く回収することができる。
次に、図6を用いて、磁石部61による蓄熱浮遊体50の吸着パターンについて説明する。
なお、図6(a)から(c)は、循環配管20の展開図であり、それぞれ磁石部61による蓄熱浮遊体50の吸着パターンの一例を示している。
図6(a)から(c)に示すように、循環配管20の循環配管接続部21の内周面は、3つの領域(以下では、当該3つの領域を、「第一領域67」、「第二領域68」、「第三領域69」と称する。)に区分される。そして、3つの領域67・68・69は、それぞれ対応する磁石部61を有し、当該対応する磁石部61のコイル65がONとされることにより、浮遊体51が磁化された蓄熱浮遊体50を吸着可能に構成される。その一方で、3つの領域67・68・69は、それぞれ対応する磁石部61以外の磁石部61のコイル65がONとされた場合には、浮遊体51が磁化された蓄熱浮遊体50を吸着不能に構成される。
そして、磁石部61による蓄熱浮遊体50の吸着パターン、すなわち3つの領域67・68・69のうち何れの領域が、浮遊体51が磁化された蓄熱浮遊体50を吸着可能(不能)であるか(3つの領域67・68・69のうち何れの領域に対応する磁石部61のコイル65をONとするか)は、制御装置70に予め設定されるように構成される。
このような構成において、まず、第一領域67を浮遊体51が磁化された蓄熱浮遊体50を吸着可能とし、第二領域68及び第三領域69を浮遊体51が磁化された蓄熱浮遊体50を吸着不能する(以下では、「第一パターン」と称する。)。
これによって、第一領域67だけに、浮遊体51が磁化された蓄熱浮遊体50が吸着される。そして、当該吸着された蓄熱浮遊体50から第一領域67に熱が伝導され、蓄熱部10にて蓄熱された熱が回収されることになる。
次に、第一領域67を浮遊体51が磁化された蓄熱浮遊体50を吸着不能とすると共に、第二領域68を浮遊体51が磁化された蓄熱浮遊体50を吸着可能とする(以下では、「第二パターン」と称する。)。なお、第三領域69は、浮遊体51が磁化された蓄熱浮遊体50を吸着不能のままである。
これによって、第一領域67に吸着されていた蓄熱浮遊体50、すなわち回収可能な熱が減少している状態の蓄熱浮遊体50が当該第一領域67から離間し始めると共に、回収可能な熱が減少しておらず蓄熱材52に熱が蓄熱された(まだ熱が回収されていない)状態の蓄熱浮遊体50が、浮遊体51が磁化されて第二領域68に吸着され始める。すなわち、第一領域67においては蓄熱浮遊体50が完全に離間するまで熱が回収され、第二領域68においては吸着し始めている蓄熱浮遊体50から熱が回収される。したがって、第二パターンにおいて、回収する熱量は、第一パターンの場合と比較して大きく変化しないことになる。
次に、第二領域68に浮遊体51が磁化された蓄熱浮遊体50を吸着不能とすると共に、第三領域69に浮遊体51が磁化された蓄熱浮遊体50を吸着可能とする(以下では、「第三パターン」と称する。)。なお、第一領域67は、浮遊体51が磁化された蓄熱浮遊体50が吸着不能のままであり、吸着されていた蓄熱浮遊体50は完全に離間される。
これによって、第二領域68に吸着されていた蓄熱浮遊体50、すなわち回収可能な熱が減少している状態の蓄熱浮遊体50が当該第二領域68から離間し始めると共に、回収可能な熱が減少しておらず蓄熱材52に熱が蓄熱された(まだ熱が回収されていない)状態の蓄熱浮遊体50が、浮遊体51が磁化されて第三領域69に吸着され始める。すなわち、第二領域68においては蓄熱浮遊体50が完全に離間するまで熱が回収され、第三領域69においては吸着し始めている蓄熱浮遊体50から熱が回収される。したがって、第三パターンにおいて、回収する熱量は、第二パターンの場合と比較して大きく変化しないことになる。
このように、熱回収システム1は、蓄熱部10にて蓄熱された熱を、第一パターンから第三パターンに移行して回収することにより、循環配管20の循環配管接続部21の内周面に蓄熱浮遊体50を絶えず吸着させ、当該吸着された蓄熱浮遊体50から蓄熱された熱を回収することができるように構成される。すなわち、蓄熱部10にて蓄熱された熱を、無駄無く、効率良く回収することができる。なお、熱回収システム1は、第一パターンから第三パターンへの移行を1セットとし、これを複数セット繰り返すことにより、蓄熱部10にて蓄熱された熱を回収する構成とすることもできる。
以上のように、熱回収システム1においては、
蓄熱部10にて蓄熱された熱を回収する熱回収システムであって、
前記蓄熱部にて熱が蓄熱される熱媒体として同一系内を循環する蓄熱流体40と、
前記同一系内に設けられて前記蓄熱流体に蓄熱された熱を回収する熱回収部60と、を具備し、
前記蓄熱流体には、磁界により磁化する材料からなる浮遊体51と、前記浮遊体に付着されて熱を蓄熱可能に形成される蓄熱材52と、からなり、前記蓄熱流体中を浮遊可能に形成される蓄熱浮遊体50が混合され、
前記熱回収部は、磁界を発生させる磁石部61を具備し、
前記蓄熱浮遊体は、前記磁石部が発生させた磁界により磁化して前記熱回収部に吸着され、
前記熱回収部は、前記吸着された蓄熱浮遊体から熱伝導により熱を回収するものである。
また、熱回収システム1においては、
前記磁石部による磁界の発生を制御する制御手段(制御装置70)を具備し、
前記制御手段は、前記磁石部による磁界の発生を制御することにより前記熱回収部への前記蓄熱浮遊体の吸着を任意に調節するものである。
また、熱回収システム1においては、
前記熱回収部の温度を検出する温度検出手段(温度センサ62)を具備し、
前記制御手段は、前記温度検出手段により検出された熱回収部の温度に基づいて前記磁石部による磁界の発生を制御するものである。
また、熱回収システム1においては、
前記熱回収部は複数設けられ、
前記複数設けられた熱回収部には、前記蓄熱流体に蓄熱されて不必要となった熱を排出する熱排出用の熱回収部が含まれるものである。
また、熱回収システム1においては、
前記浮遊体は、磁性粉体からなるものである。
このような構成によって、熱回収システム1は、熱媒体として同一系内を循環する蓄熱流体40に蓄熱された熱を、流路を変更することなく、必要な時に、必要な量だけ回収することができる。
なお、前述の如く、磁石部61により発生される磁界(磁力)は、コイル65に供給される電流の量に応じて強くなり、又は弱くなるように構成される。すなわち、コイル65に供給される電流の量を調整することにより、循環配管20の循環配管接続部21の内周面に吸着される蓄熱浮遊体50の量を調整することができる。換言すれば、コイル65に供給される電流の量を調整することにより、蓄熱部10にて蓄熱された熱の回収の量を調整することができる。
また、熱回収システム1は、家電設備や給湯設備111等の建築物内のエネルギー消費設備をネットワーク化してこれらのエネルギーデータを集約しているHEMS(Home Energy Management System)に連結し、当該HEMSのエネルギーデータに基づいて制御装置70により制御される構成とすることもできる。
また、熱回収システム1は、蓄熱流体40に蓄熱された熱を回収するための熱回収部として、本実施形態における4つ全ての熱回収部に熱回収部60を用いる構成としているが、これに限定するものでは無い。例えば、熱回収システム1は、蓄熱流体40に蓄熱された熱を回収するための熱回収部として、本実施形態における4つの熱回収部のうち少なくとも1つ以上の熱回収部に熱回収部60を用いる構成であっても良い。
1 熱回収システム
10 蓄熱部
40 蓄熱流体
50 蓄熱浮遊体
51 浮遊体
52 蓄熱材
60 熱回収部
61 磁石部
62 温度センサ
70 制御装置

Claims (5)

  1. 蓄熱部にて蓄熱された熱を回収する熱回収システムであって、
    前記蓄熱部にて熱が蓄熱される熱媒体として同一系内を循環する蓄熱流体と、
    前記同一系内に設けられて前記蓄熱流体に蓄熱された熱を回収する熱回収部と、を具備し、
    前記蓄熱流体には、磁界により磁化する材料からなる浮遊体と、前記浮遊体に付着されて熱を蓄熱可能に形成される蓄熱材と、からなり、前記蓄熱流体中を浮遊可能に形成される蓄熱浮遊体が混合され、
    前記熱回収部は、磁界を発生させる磁石部を具備し、
    前記蓄熱浮遊体は、前記磁石部が発生させた磁界により磁化して前記熱回収部に吸着され、
    前記熱回収部は、前記吸着された蓄熱浮遊体から熱伝導により熱を回収する、
    ことを特徴とする熱回収システム。
  2. 前記磁石部による磁界の発生を制御する制御手段を具備し、
    前記制御手段は、前記磁石部による磁界の発生を制御することにより前記熱回収部への前記蓄熱浮遊体の吸着を任意に調節する、
    ことを特徴とする請求項1に記載の熱回収システム。
  3. 前記熱回収部の温度を検出する温度検出手段を具備し、
    前記制御手段は、前記温度検出手段により検出された熱回収部の温度に基づいて前記磁石部による磁界の発生を制御する、
    ことを特徴とする請求項2に記載の熱回収システム。
  4. 前記熱回収部は複数設けられ、
    前記複数設けられた熱回収部には、前記蓄熱流体に蓄熱されて不必要となった熱を排出する熱排出用の熱回収部が含まれる、
    ことを特徴とする請求項1から請求項3までのいずれか一項に記載の熱回収システム。
  5. 前記浮遊体は、磁性粉体からなる、
    ことを特徴とする請求項1から請求項4までのいずれか一項に記載の熱回収システム。
JP2012152038A 2012-07-06 2012-07-06 熱回収システム Pending JP2014016060A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012152038A JP2014016060A (ja) 2012-07-06 2012-07-06 熱回収システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012152038A JP2014016060A (ja) 2012-07-06 2012-07-06 熱回収システム

Publications (1)

Publication Number Publication Date
JP2014016060A true JP2014016060A (ja) 2014-01-30

Family

ID=50110915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012152038A Pending JP2014016060A (ja) 2012-07-06 2012-07-06 熱回収システム

Country Status (1)

Country Link
JP (1) JP2014016060A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019113285A (ja) * 2017-12-26 2019-07-11 矢崎エナジーシステム株式会社 潜熱蓄熱建具

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019113285A (ja) * 2017-12-26 2019-07-11 矢崎エナジーシステム株式会社 潜熱蓄熱建具
JP6991854B2 (ja) 2017-12-26 2022-01-13 矢崎エナジーシステム株式会社 潜熱蓄熱建具
US11313629B2 (en) * 2017-12-26 2022-04-26 Yazaki Energy System Corporation Latent heat storage building element

Similar Documents

Publication Publication Date Title
US6297483B2 (en) Induction heating of heating element
JP2011238449A (ja) 電磁誘導加熱装置及びそれを用いた暖房・給湯装置
CN201715691U (zh) 活塞式电热水器
CN100572968C (zh) 一种节能电磁热水器
CN201053742Y (zh) 片式电磁加热装置
JP2014016060A (ja) 熱回収システム
KR20130020088A (ko) 히트 파이프를 이용한 열교환기 구조의 고효율 전극, 전기 보일러.
KR101602105B1 (ko) 난방 온수 겸용 인덕션 보일러
JPH11235276A (ja) 加熱装置
JP2004361074A (ja) 太陽熱を利用した暖房及び給湯用ボイラーシステム
CN110579023A (zh) 壁挂炉水路循环的控制方法、装置及系统
CN202432670U (zh) 商用即热式开水器
KR20120074170A (ko) 인덕션 가열장치를 구비한 보일러
JP2011089502A (ja) 太陽エネルギーを用いた発電システム
CN205505165U (zh) 直接电加热的相变储能换热器
CN204987461U (zh) 一种高效节能空气能热水器
CN210740689U (zh) 一种直热式电磁能采暖热水炉
CN204535059U (zh) 电磁热水器
CN208478512U (zh) 一种智能化新能源车动力电池温控结构
CN108800543A (zh) 热水器及热水器的控制方法
JP2013057435A (ja) 熱供給システム
JP2010270942A (ja) コジェネレーションシステム
KR101258059B1 (ko) 보일러 시스템
JP4784824B2 (ja) 貯留型熱源装置
CN210463555U (zh) 一种带电磁加热的热水器