JP2014014739A - Method of manufacturing composite semipermeable membrane element and composite semipermeable membrane element - Google Patents

Method of manufacturing composite semipermeable membrane element and composite semipermeable membrane element Download PDF

Info

Publication number
JP2014014739A
JP2014014739A JP2012152179A JP2012152179A JP2014014739A JP 2014014739 A JP2014014739 A JP 2014014739A JP 2012152179 A JP2012152179 A JP 2012152179A JP 2012152179 A JP2012152179 A JP 2012152179A JP 2014014739 A JP2014014739 A JP 2014014739A
Authority
JP
Japan
Prior art keywords
semipermeable membrane
composite semipermeable
membrane element
pressure
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012152179A
Other languages
Japanese (ja)
Inventor
Kazuya Sugita
和弥 杉田
Koji Fujiwara
浩二 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012152179A priority Critical patent/JP2014014739A/en
Publication of JP2014014739A publication Critical patent/JP2014014739A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a composite semipermeable membrane element for reducing a change in a separation characteristic of a membrane when processing high concentration raw water such as seawater, and reducing a change with time of performance when operated under high pressure.SOLUTION: The composite semipermeable membrane element includes a composite semipermeable membrane composed of a porous support and a thin film supported by it, and the composite semipermeable membrane is provided by performing consolidation processing for two hours or more by using liquid in which the temperature T[°C] and pressure P[MPa] satisfy all of the formulas (1) to formula (3). In the composite semipermeable membrane element, T × P ≤ 300 ... the formula (1), 6.0 ≤ P ≤ 8.3 ... the formula (2) and 30 ≤ T ≤ 50 ... the formula (3).

Description

本発明は、高圧下で使用しても経時的な性能変化が少なく、安定運転可能な複合半透膜エレメントおよびその製造方法に関する。   The present invention relates to a composite semipermeable membrane element that can be stably operated with little change in performance over time even when used under high pressure, and a method for producing the same.

現在、工業的に広く利用されている半透膜には非対称膜型の酢酸セルロース膜と多孔性支持体上に活性な分離機能層を形成した複合半透膜が知られている。しかし、前者の酢酸セルロース膜は耐加水分解性、耐微生物性などに問題があり、塩排除率、水透過性も十分ではないことから、一部の用途には使用されているものの広範囲の用途に実用化されるには至っていない。   Currently, an asymmetric membrane type cellulose acetate membrane and a composite semipermeable membrane in which an active separation functional layer is formed on a porous support are known as semipermeable membranes widely used industrially. However, the former cellulose acetate membrane has problems in hydrolysis resistance, microbial resistance, etc., and the salt rejection rate and water permeability are not sufficient. It has not yet been put to practical use.

これに対し複合半透膜では、分離機能層と多孔性支持体の各々に最適な素材を選択する事が可能であり、製膜技術も種々の方法を選択できる。   On the other hand, in the composite semipermeable membrane, it is possible to select an optimal material for each of the separation functional layer and the porous support, and various methods can be selected for the film forming technique.

現在市販されている複合半透膜は多孔性支持体上でモノマーを界面重縮合した分離機能層を有するものが主流となっている。これらの複合半透膜では酢酸セルロース非対称膜よりも高い脱塩性能が得られ、さらにこれらの膜は殺菌に用いられる塩素、過酸化水素に対する耐久性も向上されつつあり用途が広がってきている。   Currently, commercially available composite semipermeable membranes have a separation functional layer obtained by interfacial polycondensation of monomers on a porous support. These composite semipermeable membranes have higher desalting performance than cellulose acetate asymmetric membranes, and these membranes are also being improved in durability against chlorine and hydrogen peroxide used for sterilization, and their applications are expanding.

半透膜による分離を行うに際しては、供給水側の浸透圧と透過水側の浸透圧の差以上の圧力を供給水側にかけることが必要であり、特に供給水の溶質濃度が高く、浸透圧が高い場合には高い圧力を操作圧力として必要とする。さらに、供給水に対する透過水の量の割合(これを回収率という)が高くなると濃縮水の溶質濃度が高くなるため高い圧力を操作圧力として必要とする。例えば海水淡水化の場合、濃度3.5重量%の海水の浸透圧は2.5MPaであり、回収率40%で淡水化を行うと濃縮水の濃度は約6重量%で、その濃縮水の浸透圧(約4.4MPa)以上の操作圧力が必要である。透過水の水質と水量を十分に得るためには、実際には濃縮水の浸透圧よりも約2MPa(この圧力を有効圧力と呼ぶ)程度高めの圧力を濃縮水側に加えることが必要である。従来の一般的な海水淡水化では6〜6.5MPa程度の圧力をかけて回収率40%程度の条件で運転されている。一方、高濃度溶液の分離・濃縮の場合など7MPa以上の圧力で半透膜装置が運転されている場合もある。   When performing separation with a semipermeable membrane, it is necessary to apply a pressure higher than the difference between the osmotic pressure on the supply water side and the osmotic pressure on the permeate side to the supply water side. When the pressure is high, a high pressure is required as the operation pressure. Further, when the ratio of the amount of permeated water to the supply water (this is called the recovery rate) increases, the solute concentration of the concentrated water increases, so a high pressure is required as the operating pressure. For example, in the case of seawater desalination, the osmotic pressure of seawater having a concentration of 3.5% by weight is 2.5 MPa. When desalination is performed at a recovery rate of 40%, the concentration of concentrated water is about 6% by weight. An operating pressure higher than the osmotic pressure (about 4.4 MPa) is required. In order to obtain sufficient quality and quantity of permeated water, it is actually necessary to apply a pressure about 2 MPa higher than the osmotic pressure of concentrated water (this pressure is called effective pressure) to the concentrated water side. . Conventional conventional seawater desalination is operated under conditions of a recovery rate of about 40% under a pressure of about 6 to 6.5 MPa. On the other hand, the semipermeable membrane device may be operated at a pressure of 7 MPa or more, such as when separating and concentrating a high concentration solution.

一般的に半透膜に圧力をかけると半透膜は圧密化を起こすが、圧力を除くともとの形態に戻る。しかし、限界圧力以上の圧力を加えると非対称膜あるいは微多孔質膜のボイドが潰れたり、分離機能層がさらに緻密化したりして膜形態、膜性能が変化するおそれがある。具体的には半透膜の膜透過係数が小さくなることで、透過流束が低下し安定運転ができないおそれがある。   Generally, when pressure is applied to the semipermeable membrane, the semipermeable membrane is consolidated, but returns to its original form when the pressure is removed. However, when a pressure higher than the limit pressure is applied, the voids of the asymmetric membrane or the microporous membrane may be crushed or the separation functional layer may be further densified, thereby changing the membrane form and membrane performance. Specifically, when the membrane permeability coefficient of the semipermeable membrane is reduced, the permeation flux may be reduced and stable operation may not be possible.

通常、スペック通りの半透膜エレメントを使って設計されたプラントで、圧密化により設計流量が得られなくなった場合には、生産水量を確保するために、さらに圧力を大きくする場合が多いため、半透膜エレメントの破損や、配管、機器類の故障を引き起こす可能性がある。   Normally, when a design flow rate cannot be obtained due to consolidation in a plant that is designed using semi-permeable membrane elements as specified, the pressure is often increased further to secure the production water volume. It may cause damage to the semipermeable membrane element and failure of piping and equipment.

また、長期運転での圧密化を見込んで初期の透過流束が高い半透膜エレメントを採用することも可能であるが、この場合、圧密化が完了していない初期の運転では、圧密化後の期待値に比べ、運転圧力が低くなり、生産水質も悪くなる。高圧ポンプは圧密化後の圧力に対応可能な大型のものであるため、バルブによる圧力調整が必要となり、配管の振動や騒音等で装置自体や、周りの環境への影響が非常に大きくなる。   It is also possible to adopt a semipermeable membrane element with a high initial permeation flux in anticipation of consolidation during long-term operation, but in this case, in the initial operation where consolidation has not been completed, Compared with the expected value, the operating pressure becomes lower and the quality of the produced water also deteriorates. Since the high-pressure pump is a large-sized pump that can cope with the pressure after consolidation, it is necessary to adjust the pressure by a valve, and the influence on the apparatus itself and the surrounding environment becomes very large due to vibration and noise of the piping.

このような問題を解決するため、多孔性支持体の構造を変更したもの(特許文献1)や透過水流路材の構造を変えたもの(特許文献2,3)、あらかじめ半透膜に高圧力をかけて圧密化させたもの(特許文献4,5)も提案されているが、いずれも充分な耐圧性を有しておらず、操業にしたがい初期の性能に変化が生じるなど安定な運転ができなかった。   In order to solve such problems, the structure of the porous support is changed (Patent Document 1), the structure of the permeate flow channel material is changed (Patent Documents 2 and 3), and a high pressure is applied to the semipermeable membrane in advance. (Patent Documents 4 and 5) are also proposed, but none of them has sufficient pressure resistance, and stable operation such as changes in initial performance according to operation could not.

特開平8−168658号公報JP-A-8-168658 特開平9−141060号公報Japanese Patent Laid-Open No. 9-14060 特開平9−141067号公報JP-A-9-141067 特開2000−288368号公報JP 2000-288368 A 特開2002−95941号公報Japanese Patent Laid-Open No. 2002-95941

本発明の目的は、このような従来技術の課題を解決するためになされたものであって、高圧、特に6MPa以上の高圧下でも安定した運転が可能な複合半透膜を組み込んだ複合半透膜エレメントを提供することにある。   An object of the present invention is to solve such problems of the prior art, and is a composite semipermeable membrane incorporating a composite semipermeable membrane capable of stable operation even under high pressure, particularly 6 MPa or higher. It is to provide a membrane element.

上記課題を解決するための本発明は、以下の(1)〜(6)の実施態様に関する。   The present invention for solving the above problems relates to the following embodiments (1) to (6).

(1)多孔性支持体及びそれに支持された薄膜からなる複合半透膜を含む複合半透膜エレメントの製造方法であって、前記複合半透膜を、温度T[℃]と圧力P[MPa]が式(1)から式(3)の全てを満たす液体を用いて、2時間以上圧密化処理を行う工程を含むことを特徴とする複合半透膜エレメントの製造方法。   (1) A method for producing a composite semipermeable membrane element comprising a porous support and a composite semipermeable membrane comprising a thin film supported thereon, wherein the composite semipermeable membrane is subjected to a temperature T [° C.] and a pressure P [MPa. Includes a step of performing a consolidation treatment for 2 hours or more using a liquid satisfying all of the formulas (1) to (3).

T×P≦300 ・・・式(1)
6.0≦P≦8.3 ・・・式(2)
30≦T≦50 ・・・式(3)
(2)前記液体の浸透圧が3MPa以上である前記(1)に記載の複合半透膜エレメントの製造方法。
T × P ≦ 300 (1)
6.0 ≦ P ≦ 8.3 Expression (2)
30 ≦ T ≦ 50 Formula (3)
(2) The method for producing a composite semipermeable membrane element according to (1), wherein the osmotic pressure of the liquid is 3 MPa or more.

(3)前記多孔性支持体が基材上に多孔質層を設けてなり、圧密化処理後の前記多孔質層の厚みが、圧密化処理前の前記多孔質層の厚みと比べて10%以上減少するまで圧密化処理を行うことを特徴とする前記(1)または(2)に記載の複合半透膜エレメントの製造方法。   (3) The porous support is provided with a porous layer on a substrate, and the thickness of the porous layer after the consolidation treatment is 10% compared to the thickness of the porous layer before the consolidation treatment The method for producing a composite semipermeable membrane element according to the above (1) or (2), wherein the consolidation treatment is performed until it is reduced as described above.

(4)多孔性支持体及びそれに支持された薄膜からなる複合半透膜を含む複合半透膜エレメントであって、前記複合半透膜は、温度T[℃]と圧力P[MPa]が式(1)から式(3)の全てを満たす液体を用いて、2時間以上圧密化処理が行われたものであることを特徴とする複合半透膜エレメント。   (4) A composite semipermeable membrane element including a porous support and a composite semipermeable membrane comprising a thin film supported by the porous support, wherein the composite semipermeable membrane has a temperature T [° C.] and a pressure P [MPa]. A composite semipermeable membrane element characterized by being subjected to consolidation for 2 hours or more using a liquid satisfying all of the formulas (3) to (1).

T×P≦300 ・・・式(1)
6.0≦P≦8.3 ・・・式(2)
30≦T≦50 ・・・式(3)
(5)前記液体の浸透圧が3MPa以上である前記(4)に記載の複合半透膜エレメント。
T × P ≦ 300 (1)
6.0 ≦ P ≦ 8.3 Expression (2)
30 ≦ T ≦ 50 Formula (3)
(5) The composite semipermeable membrane element according to (4), wherein the osmotic pressure of the liquid is 3 MPa or more.

(6)前記多孔性支持体が基材上に多孔質層を設けてなり、圧密化処理後の前記多孔質層の厚みが、圧密化処理前の前記多孔質層の厚みと比べて10%以上減少したものであることを特徴とする前記(4)または(5)に記載の複合半透膜エレメント。   (6) The porous support is provided with a porous layer on a substrate, and the thickness of the porous layer after the consolidation treatment is 10% compared to the thickness of the porous layer before the consolidation treatment The composite semipermeable membrane element according to (4) or (5), wherein the composite semipermeable membrane element is reduced as described above.

本発明の複合半透膜は高圧で使用する場合にも優れた耐圧性を有し、運転中の透過水量の低下を抑制し、安定して透過水量を維持することができる。特に、海水などの高濃度の原液を処理する場合に適しており、安定した運転をすることができる。さらには、装置の振動等を抑制するとともに、設計段階で予想された水質よりも水質の改善も期待できる。   The composite semipermeable membrane of the present invention has excellent pressure resistance even when used at high pressure, can suppress a decrease in the amount of permeate during operation, and can stably maintain the amount of permeate. In particular, it is suitable for processing high-concentration stock solutions such as seawater, and can be operated stably. Furthermore, while suppressing the vibration of the apparatus and the like, it is possible to expect an improvement in water quality from that expected at the design stage.

実施例で用いた複合半透膜エレメントの概略構成図である。It is a schematic block diagram of the composite semipermeable membrane element used in the Example.

本発明で用いられる多孔性支持体は、複合半透膜の分離機能層を支持するものであり、基材と多孔質層からなる。基材としてはポリエステルなどの織布あるいは不織布が用いられ、製膜原液である重合体の有機溶媒を基材上に流延し、前記重合体に対して非溶媒性の凝固浴に浸漬することによって基材上に多孔質層が設けられた多孔性支持体が得られる。   The porous support used in the present invention supports the separation functional layer of the composite semipermeable membrane and comprises a base material and a porous layer. A woven or non-woven fabric such as polyester is used as a base material, and an organic solvent of a polymer that is a film-forming stock solution is cast on the base material and immersed in a non-solvent coagulation bath with respect to the polymer. By this, a porous support having a porous layer provided on a substrate is obtained.

多孔質層の素材は特に限定されるものではないが、例えば、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、ポリイミド、ポリフッ化ビニリデンなどのホモポリマーあるいはブレンドしたものが挙げられるが、化学的、機械的、熱的に安定であるポリスルホン、ポリエーテルスルホンが好ましく用いられる。   The material of the porous layer is not particularly limited, and examples thereof include homopolymers or blends such as polysulfone, polyethersulfone, polyphenylene sulfide sulfone, polyphenylene sulfone, polyimide, and polyvinylidene fluoride. Polysulfone and polyethersulfone which are mechanically and thermally stable are preferably used.

多孔質層を形成するための製膜原液は、重合体を溶解させることのできる溶媒であればよく、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、ピリジン等の含窒素化合物、ジエチレングリコール、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等の多価アルコールおよびその誘導体、1,4−ジオキサン、テトラヒドロフラン、エチルブチルエーテル等のエーテル、アセタール類などを用いることができる。これらの溶媒は単独で用いてもよく、また、2種以上を混合して用いてもよい。さらに貧溶媒である水やメタノール、エタノール等のアルコールや、塩化ナトリウム、塩化マグネシウム、塩化リチウム等の無機塩を添加しても良い。   The stock solution for forming the porous layer may be any solvent that can dissolve the polymer. For example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide , Nitrogen-containing compounds such as dimethyl sulfoxide and pyridine, polyhydric alcohols such as diethylene glycol, diethylene glycol dimethyl ether and diethylene glycol diethyl ether and derivatives thereof, ethers such as 1,4-dioxane, tetrahydrofuran and ethyl butyl ether, acetals and the like can be used. . These solvents may be used alone or in combination of two or more. Further, an alcohol such as water, methanol, ethanol or the like as a poor solvent, or an inorganic salt such as sodium chloride, magnesium chloride or lithium chloride may be added.

これらの溶媒の重合体の濃度は30重量%以下であることが好ましい。さらに好ましくは10〜20重量%である。重合体濃度がこの範囲より高いと透水性が著しく低下してしまう。逆に低いと製膜原液がゲル化したり、多孔質層内に欠点が発生したりし、膜性能が不安定になりやすい。   The concentration of the polymer in these solvents is preferably 30% by weight or less. More preferably, it is 10 to 20% by weight. If the polymer concentration is higher than this range, the water permeability is remarkably lowered. On the other hand, if it is low, the film-forming stock solution gels or defects are generated in the porous layer, and the membrane performance tends to become unstable.

製膜原液の基材への塗布方法は、製膜原液が基材上に均一かつ連続的にぬれれば良いが、例えばコーターを用いて製膜原液を基材にコーティングする方法が挙げられる。基材上に一定の厚みでコーティングするために、基材とコーターの隙間が一定になるように調整する。   The method for applying the film-forming stock solution to the substrate may be a method in which the film-forming stock solution is uniformly and continuously wet on the substrate, and examples include a method of coating the film-forming stock solution on the substrate using a coater. In order to coat the substrate with a constant thickness, the gap between the substrate and the coater is adjusted to be constant.

基材にコーティングされた製膜原液は凝固浴に浸漬させることにより多孔質層を形成する。使用する凝固浴としては、通常水が使われるが、重合体を溶解しないものであれば良い。凝固浴の組成によって多孔質層の膜形態が変化し、それによって複合半透膜の膜形成性も変化する。   The film-forming stock solution coated on the substrate is immersed in a coagulation bath to form a porous layer. As the coagulation bath to be used, water is usually used, but any water that does not dissolve the polymer may be used. The film form of the porous layer changes depending on the composition of the coagulation bath, thereby changing the film forming property of the composite semipermeable membrane.

次にこのようにして得られた多孔性支持体を、膜中に存在する製膜溶媒を除去するために熱水洗浄を行う。このときの熱水の温度は50〜100℃が好ましく、さらに好ましくは60〜95℃である。この範囲より高いと、多孔性支持体の収縮度が大きくなり、透水性が低下してしまう。逆に低いと洗浄効果が小さくなる。   Next, the porous support thus obtained is washed with hot water in order to remove the film-forming solvent present in the film. The temperature of the hot water at this time is preferably 50 to 100 ° C, more preferably 60 to 95 ° C. When it is higher than this range, the degree of shrinkage of the porous support increases, and the water permeability decreases. Conversely, if it is low, the cleaning effect becomes small.

上記の多孔性支持体の厚みおよび基材の厚みは、複合半透膜の強度およびそれをエレメントにしたときの充填密度に影響を与える。十分な機械的強度および充填密度を得るためには、多孔性支持体の厚みは50〜300μmの範囲内にあることが好ましく、より好ましくは100〜250μmの範囲内である。また、多孔性支持体における多孔質層の厚みは、20〜120μmの範囲内にあることが好ましく、より好ましくは30〜100μmの範囲内である。   The thickness of the porous support and the thickness of the substrate influence the strength of the composite semipermeable membrane and the packing density when it is used as an element. In order to obtain sufficient mechanical strength and packing density, the thickness of the porous support is preferably in the range of 50 to 300 μm, more preferably in the range of 100 to 250 μm. Moreover, it is preferable that the thickness of the porous layer in a porous support body exists in the range of 20-120 micrometers, More preferably, it exists in the range of 30-100 micrometers.

次に、本発明に係る複合半透膜を製造する方法について説明する。   Next, a method for producing the composite semipermeable membrane according to the present invention will be described.

複合半透膜を構成する分離機能層は、逆浸透膜の素材としては、酢酸セルロース系ポリマー、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材が、一般的に使用されているが、その他にも、多官能アミン水溶液と、多官能酸ハロゲン化物とを微多孔性支体の表面で界面重縮合させることによりその骨格を形成させてなるものであり、即ち、微多孔性支持体上に多官能アミン水溶液を接触させた後、多官能酸ハロゲン化物の、水と非混和性の有機溶媒溶液を接触させ、界面重縮合を生じさせることによって形成される架橋ポリアミド分離機能層を挙げることができる。   The separation functional layer constituting the composite semipermeable membrane is generally used as a reverse osmosis membrane material such as cellulose acetate polymer, polyester, polyimide, vinyl polymer, etc. The skeleton is formed by interfacial polycondensation of the polyfunctional amine aqueous solution and the polyfunctional acid halide on the surface of the microporous support, that is, the polyfunctional amine is formed on the microporous support. An example is a cross-linked polyamide separation functional layer formed by contacting an aqueous amine solution and then bringing a polyfunctional acid halide into contact with a water-immiscible organic solvent solution to cause interfacial polycondensation.

ここで、多官能アミンとは、一分子中に少なくとも2個の一級および/または二級アミノ基を有するアミンをいい、たとえば、2個のアミノ基がオルト位やメタ位、パラ位のいずれかの位置関係でベンゼンに結合したフェニレンジアミン、キシリレンジアミン、1,3,5−トリアミノベンゼン、1,2,4−トリアミノベンゼン、3,5−ジアミノ安息香酸などの芳香族多官能アミン、エチレンジアミン、プロピレンジアミンなどの脂肪族アミン、1,2−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、ピペラジン、1,3−ビスピペリジルプロパン、4−アミノメチルピペラジンなどの脂環式多官能アミン等を挙げることができる。中でも、膜の選択分離性や透過性、耐熱性を考慮すると芳香族多官能アミンであることが好ましく、このような多官能芳香族アミンとしては、m−フェニレンジアミン、p−フェニレンジアミン、1,3,5−トリアミノベンゼンが好適に用いられる。中でも、入手の容易性や取り扱いのしやすさから、m−フェニレンジアミン(以下、m−PDAと記す)を用いることがより好ましい。これらの多官能アミンは、単独で用いても良いし、混合して用いてもよい。   Here, the polyfunctional amine refers to an amine having at least two primary and / or secondary amino groups in one molecule. For example, two amino groups are any of ortho, meta, and para positions. Aromatic polyfunctional amines such as phenylenediamine, xylylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene and 3,5-diaminobenzoic acid bonded to benzene in the positional relationship of Aliphatic amines such as ethylenediamine and propylenediamine, alicyclic polyfunctional amines such as 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 1,3-bispiperidylpropane and 4-aminomethylpiperazine be able to. Of these, aromatic polyfunctional amines are preferred in view of selective separation, permeability, and heat resistance of the membrane. Examples of such polyfunctional aromatic amines include m-phenylenediamine, p-phenylenediamine, 1, 3,5-triaminobenzene is preferably used. Among these, it is more preferable to use m-phenylenediamine (hereinafter referred to as m-PDA) from the standpoint of availability and ease of handling. These polyfunctional amines may be used alone or in combination.

また、多官能酸ハロゲン化物とは、一分子中に少なくとも2個のハロゲン化カルボニル基を有する酸ハロゲン化物をいう。例えば、3官能酸ハロゲン化物では、トリメシン酸クロリド、1,3,5−シクロヘキサントリカルボン酸トリクロリド、1,2,4−シクロブタントリカルボン酸トリクロリドなどを挙げることができ、2官能酸ハロゲン化物では、ビフェニルジカルボン酸ジクロリド、ビフェニレンカルボン酸ジクロリド、アゾベンゼンジカルボン酸ジクロリド、テレフタル酸クロリド、イソフタル酸クロリド、ナフタレンジカルボン酸クロリドなどの芳香族2官能酸ハロゲン化物、アジポイルクロリド、セバコイルクロリドなどの脂肪族2官能酸ハロゲン化物、シクロペンタンジカルボン酸ジクロリド、シクロヘキサンジカルボン酸ジクロリド、テトラヒドロフランジカルボン酸ジクロリドなどの脂環式2官能酸ハロゲン化物を挙げることができる。多官能アミンとの反応性を考慮すると、多官能酸ハロゲン化物は多官能酸塩化物であることが好ましく、また、膜の選択分離性、耐熱性を考慮すると、多官能芳香族酸塩化物であることが好ましい。中でも、入手の容易性や取り扱いのしやすさの観点から、トリメシン酸クロリドを用いるとより好ましい。これらの多官能酸ハロゲン化物は、単独で用いても良いし、混合して用いてもよい。   The polyfunctional acid halide refers to an acid halide having at least two carbonyl halide groups in one molecule. Examples of trifunctional acid halides include trimesic acid chloride, 1,3,5-cyclohexanetricarboxylic acid trichloride, 1,2,4-cyclobutanetricarboxylic acid trichloride, and bifunctional acid halides include biphenyl dicarboxylic acid. Aromatic difunctional acid halides such as acid dichloride, biphenylene carboxylic acid dichloride, azobenzene dicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride, naphthalene dicarboxylic acid chloride, aliphatic difunctional acid such as adipoyl chloride, sebacoyl chloride Mention may be made of alicyclic bifunctional acid halides such as halides, cyclopentane dicarboxylic acid dichloride, cyclohexane dicarboxylic acid dichloride, tetrahydrofuran dicarboxylic acid dichloride. Considering the reactivity with the polyfunctional amine, the polyfunctional acid halide is preferably a polyfunctional acid chloride, and considering the selective separation property and heat resistance of the membrane, the polyfunctional aromatic acid chloride is preferable. Preferably there is. Among them, it is more preferable to use trimesic acid chloride from the viewpoint of easy availability and easy handling. These polyfunctional acid halides may be used alone or in combination.

ここで、多官能アミン水溶液における多官能アミンの濃度は2.5〜10重量%の範囲内であることが好ましく、さらに好ましくは3〜5重量%の範囲内である。この範囲であると十分な塩除去性能および透水性を得ることができる。多官能アミン水溶液には、多官能アミンと多官能酸ハロゲン化物との反応を妨害しないものであれば、界面活性剤や有機溶媒、アルカリ性化合物、酸化防止剤などが含まれていてもよい。界面活性剤は、多孔性支持体表面の濡れ性を向上させ、アミン水溶液と非極性溶媒との間の界面張力を減少させる効果があり、有機溶媒は界面重縮合反応の触媒として働くことがあり、添加することにより界面重宿合反応を効率よく行える場合がある。   Here, the concentration of the polyfunctional amine in the polyfunctional amine aqueous solution is preferably in the range of 2.5 to 10% by weight, more preferably in the range of 3 to 5% by weight. In this range, sufficient salt removal performance and water permeability can be obtained. As long as the polyfunctional amine aqueous solution does not interfere with the reaction between the polyfunctional amine and the polyfunctional acid halide, a surfactant, an organic solvent, an alkaline compound, an antioxidant, or the like may be contained. The surfactant has the effect of improving the wettability of the porous support surface and reducing the interfacial tension between the aqueous amine solution and the nonpolar solvent, and the organic solvent may act as a catalyst for the interfacial polycondensation reaction. In some cases, the interfacial double reaction can be efficiently performed by adding them.

界面重縮合を多孔性支持体上で行うために、まず、上述の多官能アミン水溶液を多孔性支持体に接触させる。接触は、多孔性支持体表面に均一にかつ連続的に行うことが好ましい。具体的には、たとえば、多官能アミン水溶液を多孔性支持体にコーティングする方法や多孔性支持体を多官能アミン水溶液に浸漬する方法を挙げることができる。多孔性支持体と多官能アミン水溶液との接触時間は、1〜10分間の範囲内であることが好ましく、1〜3分間の範囲内であるとさらに好ましい。   In order to perform interfacial polycondensation on the porous support, first, the above-mentioned polyfunctional amine aqueous solution is brought into contact with the porous support. The contact is preferably performed uniformly and continuously on the surface of the porous support. Specific examples include a method of coating a porous support with a polyfunctional amine aqueous solution and a method of immersing the porous support in a polyfunctional amine aqueous solution. The contact time between the porous support and the polyfunctional amine aqueous solution is preferably within a range of 1 to 10 minutes, and more preferably within a range of 1 to 3 minutes.

多官能アミン水溶液を多孔性支持体に接触させたあとは、表面に液滴が残らないように十分に液切りする。十分に液切りすることで、膜形成後に液滴残存部分が膜欠点となって膜性能が低下することを防ぐことができる。液切りの方法としては、たとえば、特開平2−78428号公報に記載されているように、多官能アミン水溶液接触後の多孔性支持体を垂直方向に把持して過剰の水溶液を自然流下させる方法や、エアーノズルから窒素などの風を吹き付け、強制的に液切りする方法などを用いることができる。また、液切り後、膜面を乾燥させ、水溶液の水の一部を除去することもできる。   After the polyfunctional amine aqueous solution is brought into contact with the porous support, the liquid is sufficiently drained so that no droplets remain on the surface. By sufficiently draining the liquid, it is possible to prevent the remaining portion of the liquid droplet from becoming a film defect after the film is formed and deteriorating the film performance. As a method of draining, for example, as described in JP-A-2-78428, a method of allowing an excess aqueous solution to naturally flow down by vertically gripping the porous support after contacting with the polyfunctional amine aqueous solution. Alternatively, a method of forcibly draining by blowing air such as nitrogen from an air nozzle can be used. In addition, after draining, the membrane surface can be dried to remove part of the water in the aqueous solution.

次いで、多官能アミン水溶液接触後の支持膜に、多官能酸ハロゲン化物を含む有機溶媒溶液を接触させ、界面重縮合により架橋ポリアミド分離機能層の骨格を形成させる。   Next, an organic solvent solution containing a polyfunctional acid halide is brought into contact with the support film after contact with the polyfunctional amine aqueous solution, and a skeleton of a crosslinked polyamide separation functional layer is formed by interfacial polycondensation.

有機溶媒溶液中の多官能酸ハロゲン化物の濃度は、0.01〜10重量%の範囲内であると好ましく、0.02〜2.0重量%の範囲内であるとさらに好ましい。この範囲であると、十分な反応速度が得られ、また副反応の発生を抑制することができる。さらに、この有機溶媒溶液にN,N−ジメチルホルムアミドのようなアシル化触媒を含有させると、界面重縮合が促進され、さらに好ましい。   The concentration of the polyfunctional acid halide in the organic solvent solution is preferably in the range of 0.01 to 10% by weight, and more preferably in the range of 0.02 to 2.0% by weight. Within this range, a sufficient reaction rate can be obtained, and the occurrence of side reactions can be suppressed. Further, it is more preferable that an acylation catalyst such as N, N-dimethylformamide is contained in the organic solvent solution because interfacial polycondensation is promoted.

有機溶媒としては、水と非混和性の有機溶媒を用いる。水と非混和性の有機溶媒の中でも、酸ハロゲン化物を溶解し多孔性支持体を破壊しない有機溶媒が望ましく、アミノ化合物および酸ハロゲン化物に対して不活性であるものであればよい。好ましい例としては、たとえば、n−ヘキサン、n−オクタン、n−デカンなどの炭化水素化合物が挙げられる。   As the organic solvent, an organic solvent immiscible with water is used. Among organic solvents that are immiscible with water, an organic solvent that dissolves the acid halide and does not destroy the porous support is desirable, and any solvent that is inert to amino compounds and acid halides may be used. Preferable examples include hydrocarbon compounds such as n-hexane, n-octane, and n-decane.

多官能酸ハロゲン化物の有機溶媒溶液のアミノ化合物水溶液相への接触の方法は、多官能アミン水溶液の多孔性支持体への被覆方法と同様に行えばよい。   The method of contacting the organic solvent solution of the polyfunctional acid halide with the amino compound aqueous solution phase may be performed in the same manner as the method of coating the porous support with the polyfunctional amine aqueous solution.

上述したように、酸ハロゲン化物の有機溶媒溶液を接触させて界面重縮合を行い、多孔性支持体上に架橋ポリアミドを含む分離機能層を形成したあとは、余剰の溶媒を液切りするとよい。液切りの方法は、たとえば、膜を垂直方向に把持して過剰の有機溶媒を自然流下して除去する方法を用いることができる。この場合、垂直方向に把持する時間としては、1〜5分間の間にあることが好ましく、1〜3分間であるとより好ましい。この範囲であれば、分離機能層が完全に形成し、有機溶媒の過乾燥による欠点発生も起こしにくくなる。   As described above, after the interface polycondensation is performed by bringing the acid halide organic solvent solution into contact with each other and the separation functional layer containing the crosslinked polyamide is formed on the porous support, the excess solvent may be drained. As a method for draining, for example, a method in which a film is held in a vertical direction and excess organic solvent is allowed to flow down and removed can be used. In this case, the time for gripping in the vertical direction is preferably 1 to 5 minutes, more preferably 1 to 3 minutes. Within this range, the separation functional layer is completely formed, and defects due to overdrying of the organic solvent are less likely to occur.

上述の方法により得られた複合半透膜は、50〜150℃の範囲内、好ましくは70〜130℃の範囲内で1〜10分間、より好ましくは2〜8分間、熱水処理する工程などを経ることにより、複合半透膜の排除性能や透水性をより一層向上させてもよい。   The composite semipermeable membrane obtained by the above-mentioned method is a process of hydrothermal treatment in the range of 50 to 150 ° C, preferably in the range of 70 to 130 ° C for 1 to 10 minutes, more preferably 2 to 8 minutes, etc. By passing through, the exclusion performance and water permeability of the composite semipermeable membrane may be further improved.

このような複合半透膜面上に、有機物、及び/又は有機重合体、好適には、非イオン系の親水性基を有する有機物、及び/又は有機重合体の溶液を塗布し、その後に乾燥させて複合半透膜を得ることも、耐汚染性等の改善に際し有効である。   An organic substance and / or an organic polymer, preferably, an organic substance having a nonionic hydrophilic group and / or an organic polymer solution is applied onto such a composite semipermeable membrane surface, and then dried. Obtaining a composite semipermeable membrane is also effective in improving stain resistance and the like.

上では本発明に係る複合半透膜を構成する分離機能層として、架橋ポリアミド分離機能層について詳述したが、例えば、酢酸セルロース系の素材では、膜の少なくとも片側に緻密層を持ち、該緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜を作ることで半透膜を形成することができる。   In the above, the crosslinked polyamide separation functional layer has been described in detail as the separation functional layer constituting the composite semipermeable membrane according to the present invention. For example, a cellulose acetate-based material has a dense layer on at least one side of the membrane. A semipermeable membrane can be formed by forming an asymmetric membrane having micropores with a large pore diameter gradually from the layer toward the inside of the membrane or the other surface.

本発明に用いられる複合半透膜エレメントとは、上記半透膜を実際に使用するために形態化したものであり、半透膜の膜形態が平膜の場合は、スパイラル、チューブラー、プレート・アンド・フレームのモジュールに組み込んで使用することができるが、本発明はこれらの形態に左右されるものではない。   The composite semipermeable membrane element used in the present invention is formed in order to actually use the semipermeable membrane. When the semipermeable membrane is a flat membrane, spiral, tubular, plate Although it can be used by being incorporated in an and frame module, the present invention is not affected by these forms.

また、半透膜エレメントとして、前記スパイラル形状を用いる場合、供給水の流路材、透過水の流路材などの部材が当該モジュールに組み込まれており、特に、高濃度用、高圧用に設計された半透膜エレメントとして好ましく用いられる。   In addition, when the spiral shape is used as a semipermeable membrane element, members such as a channel material for supply water and a channel material for permeate water are incorporated in the module, and particularly designed for high concentration and high pressure. It is preferably used as a semi-permeable membrane element.

本発明は、このようにして製造される複合半透膜エレメントについて、複合半透膜エレメントに組み込まれる複合半透膜に対して圧密化処理を行うことを特徴とする。圧密化処理の方法としては、高濃度の液体を用いて6MPa以上の圧力および30℃以上の温度にて、水などの液体を媒体として2時間以上行う方法であれば特に限定されない。この時の圧密化処理方法としては、複合半透膜エレメントを構成する前の複合半透膜に対して圧密化処理を行っても構わないし、複合半透膜エレメントを構成した後に組み込まれた複合半透膜について所望の圧密化処理がなされるように処理を行うことで本発明の複合半透膜エレメントを得る方法でも構わない。   The present invention is characterized in that the composite semipermeable membrane element manufactured as described above is subjected to consolidation treatment on the composite semipermeable membrane incorporated in the composite semipermeable membrane element. The method for consolidation treatment is not particularly limited as long as it is a method in which a liquid such as water is used for 2 hours or more at a pressure of 6 MPa or more and a temperature of 30 ° C. or more using a high-concentration liquid. As a consolidation treatment method at this time, the composite semipermeable membrane before constituting the composite semipermeable membrane element may be subjected to consolidation treatment, or the composite incorporated after constituting the composite semipermeable membrane element. A method of obtaining the composite semipermeable membrane element of the present invention by performing treatment so that a desired consolidation treatment is performed on the semipermeable membrane may be used.

複合半透膜エレメント構成後に行う圧密化処理は、耐圧性の容器に複合半透膜あるいは複合半透膜エレメントを入れ密閉し、その中に気体、または液体を封入していき温度、圧力を上昇させて一定時間処理を行う。一定時間経過後、温度、圧力を常温、常圧に戻し、耐圧容器を開けて、中から圧密化処理された複合半透膜、あるいは複合半透膜エレメントを取り出す。   Consolidation after the composite semipermeable membrane element is configured, the composite semipermeable membrane or composite semipermeable membrane element is sealed in a pressure-resistant container and sealed, and gas or liquid is sealed in it to raise the temperature and pressure. And processing for a certain period of time. After a certain period of time, the temperature and pressure are returned to normal temperature and normal pressure, the pressure vessel is opened, and the compacted composite semipermeable membrane or composite semipermeable membrane element is taken out from the inside.

複合半透膜エレメント作製の効率化という観点から、圧密化処理は複合半透膜エレメント構成後に圧密化処理を行うほうが好ましく、この場合は、水などの液体を媒体として行うのが好ましい。   From the viewpoint of improving the efficiency of producing the composite semipermeable membrane element, the consolidation treatment is preferably performed after the composite semipermeable membrane element is formed, and in this case, it is preferable to perform liquid such as water as a medium.

本発明において、圧密化処理を行うときの温度T[℃]と圧力P[MPa]は、式(1)から式(3)を満たす範囲内で適宜選択される。   In the present invention, the temperature T [° C.] and the pressure P [MPa] when performing the consolidation treatment are appropriately selected within a range satisfying the formulas (1) to (3).

T×P≦300 ・・・式(1)
6.0≦P≦8.3 ・・・式(2)
30≦T≦50 ・・・式(3)
圧密化処理では特に温度と圧力の設定が重要であるが、圧力と温度の両方とも高い条件で実施した場合、複合半透膜への影響が大きいばかりで無く、複合半透膜エレメントの構成部材にも変形等の影響を及ぼす可能性があるため、本発明では式(1)で示す関係を満たす条件で処理することを特徴とする。
T × P ≦ 300 (1)
6.0 ≦ P ≦ 8.3 Expression (2)
30 ≦ T ≦ 50 Formula (3)
The setting of temperature and pressure is particularly important in the consolidation process, but not only has a great effect on the composite semipermeable membrane, but is also a component of the composite semipermeable membrane element when both pressure and temperature are high. Therefore, the present invention is characterized in that processing is performed under conditions that satisfy the relationship represented by the expression (1).

圧密化処理を行うときの圧力は高い方が好ましいが、あまり高いと圧密化処理により透過水量の低下が大きくなりすぎて好ましくない。本発明では圧密化処理を6MPa以上8.3MPa以下で行うことを特徴とする。6MPa未満では圧密化の効果が小さく、8.3MPaを超えると、複合半透膜エレメント自体が変形等を起こす可能性がある。   The pressure at the time of the consolidation treatment is preferably high, but if it is too high, the reduction in the amount of permeated water becomes too large due to the consolidation treatment. In the present invention, the consolidation treatment is performed at 6 MPa or more and 8.3 MPa or less. If the pressure is less than 6 MPa, the consolidation effect is small, and if it exceeds 8.3 MPa, the composite semipermeable membrane element itself may be deformed.

また、圧密化処理を行うときの温度は、媒体の液体が揮発しない程度の範囲が好ましく、特に複合半透膜エレメントを構成した後に圧密化処理を行う場合、複合半透膜エレメントに影響を与えない観点から、本発明では30℃以上50℃以下の範囲で行うことを特徴とする。30℃未満では圧密化の効果が小さく、50℃を超えると複合半透膜エレメントの各種部材への影響が大きく、変形や破損等が発生する可能性がある。   The temperature at which the consolidation process is performed is preferably in a range where the liquid of the medium does not volatilize. In particular, when the consolidation process is performed after the composite semipermeable membrane element is configured, the composite semipermeable membrane element is affected. From the point of view, the present invention is characterized in that it is carried out in the range of 30 ° C. or more and 50 ° C. or less. If the temperature is less than 30 ° C., the consolidation effect is small. If the temperature exceeds 50 ° C., the composite semipermeable membrane element has a great influence on various members, and deformation or breakage may occur.

なお、本発明における圧密化処理は、圧密化処理後の多孔質層の厚みが、圧密化処理前の多孔質層の厚みと比べて10%以上減少するまで実施することが好ましい。   In addition, it is preferable to implement the consolidation process in this invention until the thickness of the porous layer after a consolidation process reduces 10% or more compared with the thickness of the porous layer before a consolidation process.

また、多孔質層の厚みの減少率が次式を満たすように減少率を設定することが好ましい。   Moreover, it is preferable to set the reduction rate so that the reduction rate of the thickness of the porous layer satisfies the following formula.

減少率[%]≦40×Ln(圧密化処理前の多孔質層厚さ[μm])−102・・・式(4)
これより減少率が大きくなると、透水性の低下が大きくなってしまう。
Reduction rate [%] ≦ 40 × Ln (porous layer thickness before consolidation treatment [μm]) − 102 (4)
If the reduction rate is greater than this, the water permeability will be greatly reduced.

多孔質層はその中にスポンジ状の隙間を有しているため、高圧運転の継続により圧縮変形を受けるとともに、透水性の低下を引き起こすが、圧密化処理を実施し、多孔質層が初期の10%以上減少することで、多孔質層の隙間が減少し、その後の高圧運転でも透水性の低下を小さくし、安定運転することが可能となる。   Since the porous layer has a spongy gap in the porous layer, it undergoes compressive deformation due to continuation of high-pressure operation and causes a decrease in water permeability. By reducing it by 10% or more, the gap between the porous layers is reduced, and the reduction in water permeability can be reduced even in the subsequent high-pressure operation, and stable operation can be achieved.

また、多孔質層の厚みは、走査型電子顕微鏡や透過型電子顕微鏡で、断面を観察することによって、求めることができる。例えば走査型電子顕微鏡の断面写真の場合は、膜サンプルを液体窒素に漬けて凍結させたものを、製膜原液を流延させた方向に対して垂直に割断して乾燥させた後、膜断面に白金/パラジウムまたは四酸化ルテニウム、好ましくは四酸化ルテニウムを薄くコーティングして1〜6kVの加速電圧で高分解能電界放射型走査電子顕微鏡(UHR−FE−SEM)で観察する。最適な観察倍率は膜断面全体が観察できる倍率であればよいが、例えば多孔質層の膜厚が60μmであれば、100〜5,000倍が好ましい。   The thickness of the porous layer can be determined by observing a cross section with a scanning electron microscope or a transmission electron microscope. For example, in the case of a cross-sectional photograph of a scanning electron microscope, a membrane sample immersed in liquid nitrogen and frozen is cleaved perpendicularly to the direction in which the film-forming stock solution was cast and dried, and then the membrane cross-section Then, platinum / palladium or ruthenium tetroxide, preferably ruthenium tetroxide, is coated thinly and observed with a high resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 1 to 6 kV. Although the optimal observation magnification should just be a magnification which can observe the whole film cross section, for example, if the film thickness of a porous layer is 60 micrometers, 100-5,000 times are preferable.

圧密化処理で使用する液体は複合半透膜に影響を与えないものであれば適宜選択されるが、水、あるいはNaCl、KClなどの無機塩の水溶液や、メタノール、エタノール等のアルコール水溶液などを使用するのが好ましい。   The liquid used in the consolidation treatment is appropriately selected as long as it does not affect the composite semipermeable membrane. However, water or an aqueous solution of an inorganic salt such as NaCl or KCl, or an aqueous alcohol solution such as methanol or ethanol can be used. It is preferred to use.

圧密化処理では6MPa以上の圧力で液体を複合半透膜エレメントに供給するが、使用する液体の濃度が低すぎると複合半透膜エレメントを透過する液体の量が多くなり、複合半透膜エレメントが装置内の不純物により性能低下してしまう可能性がある。   In the consolidation process, liquid is supplied to the composite semipermeable membrane element at a pressure of 6 MPa or more. However, if the concentration of the liquid used is too low, the amount of liquid that passes through the composite semipermeable membrane element increases, and the composite semipermeable membrane element However, there is a possibility that the performance deteriorates due to impurities in the apparatus.

これを防ぐ1つの方法として、圧密化処理で使用する液体の濃度を増加させることが有効であり、圧密化処理で使用する液体の浸透圧は3MPa以上であることが好ましい。   As one method for preventing this, it is effective to increase the concentration of the liquid used in the consolidation treatment, and the osmotic pressure of the liquid used in the consolidation treatment is preferably 3 MPa or more.

浸透圧はファントホッフの式で計算され、液体の浸透圧と濃度は相関関係があり、3MPa以上の浸透圧にするには液体の濃度を高濃度にする必要がある。3MPaの浸透圧として、例えば3.8%NaCl水溶液や4.9%KCl水溶液等が挙げられる。   The osmotic pressure is calculated by the Phanto-Hoff equation, and the osmotic pressure and the concentration of the liquid are correlated, and it is necessary to increase the concentration of the liquid in order to obtain an osmotic pressure of 3 MPa or more. Examples of the osmotic pressure of 3 MPa include a 3.8% NaCl aqueous solution and a 4.9% KCl aqueous solution.

通常圧密化処理は、エレメントから出てきた透過水と濃縮水を原水に戻して循環系で実施されるが、すべて循環で圧密化処理を行うことができない場合には、あらかじめ濁質等の不純物が除去された海水等の高濃度の液体を使って、濃縮水を一部循環させて実施することもできる。通常3.5%濃度の海水の浸透圧は2.4MPa程度であるが、エレメントを通った濃縮水の一部を原水側に循環して戻すことで、エレメント内に流入する原水の濃度を増加させ、3MPa以上の浸透圧に増加させることができる。この時の濃度の調節方法は、循環させる濃縮水の量を適宜調整することで実施することができる。   Normally, the consolidation process is performed in the circulation system by returning the permeated water and concentrated water from the element to the raw water. However, if all the consolidation processes cannot be performed by circulation, impurities such as turbidity are in advance. It is also possible to carry out by partially circulating the concentrated water using a high-concentration liquid such as seawater from which water has been removed. Normally, the osmotic pressure of seawater with a concentration of 3.5% is about 2.4 MPa, but the concentration of raw water flowing into the element is increased by circulating part of the concentrated water that has passed through the element back to the raw water side. And the osmotic pressure can be increased to 3 MPa or more. The concentration adjustment method at this time can be carried out by appropriately adjusting the amount of concentrated water to be circulated.

圧密化処理で使用する液体のSDIは3.0以下であることが好ましい。このSDIは、ASTM(American Standard Test Method)がD4189−95で定めている水質指標で、細孔径0.45μmの精密濾過フィルターに一定圧力30psi(207kPa)で通水して、一定時間経過後に透水性の低下度合いを次式で示される数値として表すものである。   The SDI of the liquid used in the consolidation process is preferably 3.0 or less. This SDI is a water quality index determined by ASTM (American Standard Test Method) according to D4189-95. Water is passed through a microfiltration filter having a pore diameter of 0.45 μm at a constant pressure of 30 psi (207 kPa), and the water permeability is measured after a certain time. The degree of deterioration of the property is expressed as a numerical value represented by the following formula.

Figure 2014014739
Figure 2014014739

ここで、tは濾過開始直後から500mlの濾過水を得るまでの時間(秒)であり、tは濾過開始s秒後から500mlの濾過水を得るまでの時間(秒)である。 Here, t i is the time immediately after the start filtered to obtain filtered water 500 ml (sec), the t s is the time from the start of filtration s seconds to obtain a filtered water 500 ml (sec).

SDIが高いと液体中の不純物の量が多いと判断でき、SDIが3.0を超える液体を使った場合、エレメントが汚れて性能低下してしまう。   If the SDI is high, it can be determined that the amount of impurities in the liquid is large, and if a liquid having an SDI of more than 3.0 is used, the element becomes dirty and the performance deteriorates.

圧密化処理は少なくとも2時間以上実施することが好ましい。2時間以下では処理が不十分であり、運転中の性能変化が大きくなる可能性がある。   The consolidation treatment is preferably carried out for at least 2 hours. If it is 2 hours or less, the treatment is insufficient, and the performance change during operation may become large.

このようにして得られたROエレメントは高圧が必要とされる海水等の淡水化において、性能低下が少なく安定運転への寄与が期待されるが、運転の継続に伴い、例えば塩素による酸化劣化や強いアルカリ性液体によるアルカリ加水分解によって、長期継続的もしくは突発的に膜劣化を引き起こし、除去率が低下する場合がある。   The RO element thus obtained is expected to contribute to stable operation with little decrease in performance in desalination of seawater and the like where high pressure is required. Due to alkaline hydrolysis with a strong alkaline liquid, the film may be deteriorated continuously or suddenly for a long time, and the removal rate may be lowered.

このような場合に除去率を向上させる性能回復方法として、例えば運転開始後の半透膜に対し、ノニオン系界面活性剤やカチオン系界面活性剤を接触させることで除去率を改善させる方法や、半透膜に対しヨウ素を接触させる方法、さらに、分子量4000〜50000のポリエチレングリコールを接触させる方法、さらに、タンニン酸を半透膜に接触させる方法が挙げられる。   As a performance recovery method for improving the removal rate in such a case, for example, a method for improving the removal rate by bringing a nonionic surfactant or a cationic surfactant into contact with the semipermeable membrane after the start of operation, Examples thereof include a method in which iodine is brought into contact with the semipermeable membrane, a method in which polyethylene glycol having a molecular weight of 4000 to 50000 is brought into contact, and a method in which tannic acid is brought into contact with the semipermeable membrane.

以下に、具体的実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。   The present invention will be described below with reference to specific examples, but the present invention is not limited to these examples.

(実施例1)
多孔性支持体として厚さ95μmのポリエステル不織布(通気度0.5〜1cc/cm/sec)上に、ポリスルホンの15.7重量%ジメチルホルムアミド(DMF)溶液を200μmの厚みで室温(25℃)にてキャストし、ただちに純水凝固液中に浸漬して5分間放置することによって多孔性支持体(多孔質層厚さ60μm)を作製した。このようにして得られた多孔性支持体をm−フェニレンジアミン3.8重量%水溶液中に2分間浸漬した。次に多孔性支持体を引き上げ、窒素を吹き付け多孔性支持体表面から余分な水溶液を取り除いた後、トリメシン酸クロリド0.175重量%のn-デカン溶液を表面が完全に濡れるように塗布して静置し、その後、膜から余分な溶液を除去するために、膜を垂直に立てて液切りした。その後、90℃の熱水で2分間洗浄することで複合半透膜を得た。
Example 1
As a porous support, a 15.7 wt% dimethylformamide (DMF) solution of polysulfone on a polyester nonwoven fabric having a thickness of 95 μm (air permeability 0.5 to 1 cc / cm 2 / sec) as a porous support at a thickness of 200 μm at room temperature (25 ° C. ), And immediately immersed in a pure water coagulant and left for 5 minutes to prepare a porous support (porous layer thickness 60 μm). The porous support thus obtained was immersed in a 3.8% by weight aqueous solution of m-phenylenediamine for 2 minutes. Next, the porous support was pulled up, nitrogen was blown off to remove excess aqueous solution from the surface of the porous support, and then an n-decane solution of trimesic acid chloride 0.175 wt% was applied so that the surface was completely wetted. The membrane was left standing and then drained to remove excess solution from the membrane. Thereafter, the composite semipermeable membrane was obtained by washing with hot water at 90 ° C. for 2 minutes.

得られた複合半透膜を用いて、これを袋状にスパイラル型に巻囲して複合半透膜エレメントとした。図1は、本発明の複合半透膜エレメントを示している。複合半透膜エレメント1は、集水孔2を有する集水管3の周りに、複合半透膜4と透過液流路材5と原液流路材6とを含む膜ユニット7がスパイラル状に巻回されており、その膜ユニット7の外側に外装体8が形成されて流体分離素子9が構成されている。この流体分離素子9の端面には流体分離素子9がテレスコープ状に変形することを防止するためのテレスコープ防止板10が装着され、複合半透膜エレメント1となる。   Using the obtained composite semipermeable membrane, this was wrapped in a bag shape in a spiral shape to obtain a composite semipermeable membrane element. FIG. 1 shows a composite semipermeable membrane element of the present invention. In the composite semipermeable membrane element 1, a membrane unit 7 including a composite semipermeable membrane 4, a permeate channel material 5, and a stock solution channel material 6 is spirally wound around a water collection pipe 3 having a water collection hole 2. The exterior body 8 is formed outside the membrane unit 7 to form a fluid separation element 9. A telescope prevention plate 10 for preventing the fluid separation element 9 from being deformed into a telescope shape is attached to the end face of the fluid separation element 9, thereby forming the composite semipermeable membrane element 1.

この複合半透膜エレメントの性能は圧力5.5MPa、原水3.2%食塩水、回収率8%、温度25℃、pH7のときに脱塩率99.8%、造水量30m3/dであった。このときの多孔質層の厚さは60μmであった。 The performance of this composite semipermeable membrane element was as follows: the pressure was 5.5 MPa, the raw water was 3.2% saline, the recovery was 8%, the temperature was 25 ° C., the pH was 7, and the desalination rate was 99.8%, and the water production was 30 m 3 / d. At this time, the thickness of the porous layer was 60 μm.

この複合半透膜エレメントを濃度5.3%の食塩水(浸透圧4.2MPa)を用いて温度35℃、圧力8MPa(温度T[℃]×圧力P[MPa]=280≦300)で3hr圧密化処理を行った後、再度同条件で性能評価を行ったところ、脱塩率99.8%、造水量25m3/dであった。また、圧密化処理後の多孔質層の厚さは35μmであり、圧密化処理前の多孔質層の厚みと比べて42%減少していた。 This composite semipermeable membrane element is consolidated for 3 hours at a temperature of 35 ° C. and a pressure of 8 MPa (temperature T [° C.] × pressure P [MPa] = 280 ≦ 300) using a saline solution having a concentration of 5.3% (osmotic pressure 4.2 MPa). Then, the performance was evaluated again under the same conditions. As a result, the desalination rate was 99.8% and the amount of water produced was 25 m 3 / d. Further, the thickness of the porous layer after the consolidation treatment was 35 μm, which was 42% smaller than the thickness of the porous layer before the consolidation treatment.

このエレメントを使って海水を原水として5.5MPa、25℃で約1ヶ月の連続運転を行ったところ、1ヶ月後の性能は脱塩率99.7%、造水量24m3/dで性能に大きな変化は見られなかった。結果を表1に示す。 When this element was used for continuous operation for about 1 month at 5.5MPa and 25 ° C using seawater as raw water, the performance after 1 month was 99.7% with a desalination rate of 24m 3 / d. I couldn't see it. The results are shown in Table 1.

Figure 2014014739
Figure 2014014739

(実施例2)
圧密化処理時の圧力を6.0MPaに変化させた以外は実施例1と同条件で行った(温度T[℃]×圧力P[MPa]=210≦300)。結果を表1に示す。この時の多孔質層の厚さは38μmであり、圧密化処理前の多孔質層の厚みと比べて37%減少していた。
(Example 2)
The test was performed under the same conditions as in Example 1 except that the pressure during the consolidation treatment was changed to 6.0 MPa (temperature T [° C.] × pressure P [MPa] = 210 ≦ 300). The results are shown in Table 1. At this time, the thickness of the porous layer was 38 μm, which was 37% less than the thickness of the porous layer before the consolidation treatment.

(比較例1)
圧密化処理時の圧力を4.0MPaに変化させた以外は実施例1と同条件で行った(温度T[℃]×圧力P[MPa]=140≦300)。結果を表1に示す。この時の多孔質層の厚さは55μmであり、圧密化処理前の多孔質層の厚みと比べて8%しか減少していなかった。
(Comparative Example 1)
The test was performed under the same conditions as in Example 1 except that the pressure during the consolidation treatment was changed to 4.0 MPa (temperature T [° C.] × pressure P [MPa] = 140 ≦ 300). The results are shown in Table 1. At this time, the thickness of the porous layer was 55 μm, which was only 8% less than the thickness of the porous layer before the consolidation treatment.

(実施例3)
圧密化処理時の温度を30℃に変化させた以外は実施例1と同条件で行った(温度T[℃]×圧力P[MPa]=240≦300)。結果を表1に示す。この時の多孔質層の厚さは41μmであり、圧密化処理前の多孔質層の厚みと比べて32%減少していた。
(Example 3)
The test was performed under the same conditions as in Example 1 except that the temperature during the consolidation treatment was changed to 30 ° C. (temperature T [° C.] × pressure P [MPa] = 240 ≦ 300). The results are shown in Table 1. At this time, the thickness of the porous layer was 41 μm, which was 32% less than the thickness of the porous layer before the consolidation treatment.

(実施例4)
圧密化処理時の温度を45℃に変化させ、圧力を6.0MPaに変更させた以外は実施例1と同条件で行った(温度T[℃]×圧力P[MPa]=270≦300)。結果を表1に示す。この時の多孔質層の厚さは40μmであり、圧密化処理前の多孔質層の厚みと比べて33%減少していた。
Example 4
The conditions were the same as in Example 1 except that the temperature during the consolidation treatment was changed to 45 ° C. and the pressure was changed to 6.0 MPa (temperature T [° C.] × pressure P [MPa] = 270 ≦ 300). The results are shown in Table 1. At this time, the thickness of the porous layer was 40 μm, which was 33% less than the thickness of the porous layer before the consolidation treatment.

(比較例2)
圧密化処理時の温度を25℃に変化させた以外は実施例1と同条件で行った(温度T[℃]×圧力P[MPa]=200≦300)。結果を表1に示す。この時の多孔質層の厚さは56μmであり、圧密化処理前の多孔質層の厚みと比べて7%しか減少していなかった。
(Comparative Example 2)
The test was performed under the same conditions as in Example 1 except that the temperature during the consolidation treatment was changed to 25 ° C. (temperature T [° C.] × pressure P [MPa] = 200 ≦ 300). The results are shown in Table 1. At this time, the thickness of the porous layer was 56 μm, which was only 7% less than the thickness of the porous layer before the consolidation treatment.

(実施例5)
圧密化処理時のNaCl濃度を4.0%(浸透圧3.2MPa)に変化させた以外は実施例1と同条件で行った(温度T[℃]×圧力P[MPa]=280≦300)。結果を表1に示す。この時の多孔質層の厚さは39μmであり、圧密化処理前の多孔質層の厚みと比べて35%減少していた。
(Example 5)
The test was carried out under the same conditions as in Example 1 except that the NaCl concentration during the consolidation treatment was changed to 4.0% (osmotic pressure 3.2 MPa) (temperature T [° C.] × pressure P [MPa] = 280 ≦ 300). The results are shown in Table 1. At this time, the thickness of the porous layer was 39 μm, which was reduced by 35% compared to the thickness of the porous layer before the consolidation treatment.

(比較例3)
圧密化処理時の処理時間が0.5hrである以外は実施例1と同条件で行った(温度T[℃]×圧力P[MPa]=280≦300)。結果を表1に示す。この時の多孔質層の厚さは56μmであり、圧密化処理前の多孔質層の厚みと比べて7%しか減少していなかった。
(Comparative Example 3)
The conditions were the same as in Example 1 except that the treatment time during the consolidation treatment was 0.5 hr (temperature T [° C.] × pressure P [MPa] = 280 ≦ 300). The results are shown in Table 1. At this time, the thickness of the porous layer was 56 μm, which was only 7% less than the thickness of the porous layer before the consolidation treatment.

1:複合半透膜エレメント
2:集水孔
3:集水管
4:複合半透膜
5:透過液流路材
6:原液流路材
7:膜ユニット
8:外装体
9:流体分離素子
10:テレスコープ防止板
1: Composite semipermeable membrane element 2: Water collecting hole 3: Water collecting pipe 4: Composite semipermeable membrane 5: Permeate flow channel material 6: Stock solution flow channel material 7: Membrane unit 8: Exterior body 9: Fluid separation element 10: Telescope prevention plate

Claims (6)

多孔性支持体及びそれに支持された薄膜からなる複合半透膜を含む複合半透膜エレメントの製造方法であって、前記複合半透膜を、温度T[℃]と圧力P[MPa]が式(1)から式(3)の全てを満たす液体を用いて、2時間以上圧密化処理を行う工程を含むことを特徴とする複合半透膜エレメントの製造方法。
T×P≦300 ・・・式(1)
6.0≦P≦8.3 ・・・式(2)
30≦T≦50 ・・・式(3)
A method for producing a composite semipermeable membrane element comprising a porous support and a composite semipermeable membrane comprising a thin film supported by the porous support, wherein the composite semipermeable membrane is expressed by a temperature T [° C.] and a pressure P [MPa]. The manufacturing method of the composite semipermeable membrane element characterized by including the process of performing a compaction process for 2 hours or more using the liquid which satisfy | fills all of Formula (3) from (1).
T × P ≦ 300 (1)
6.0 ≦ P ≦ 8.3 Expression (2)
30 ≦ T ≦ 50 Formula (3)
前記液体の浸透圧が3MPa以上である請求項1に記載の複合半透膜エレメントの製造方法。 The method for producing a composite semipermeable membrane element according to claim 1, wherein the osmotic pressure of the liquid is 3 MPa or more. 前記多孔性支持体が基材上に多孔質層を設けてなり、圧密化処理後の前記多孔質層の厚みが、圧密化処理前の前記多孔質層の厚みと比べて10%以上減少するまで圧密化処理を行うことを特徴とする請求項1または2に記載の複合半透膜エレメントの製造方法。 The porous support is provided with a porous layer on a substrate, and the thickness of the porous layer after the consolidation treatment is reduced by 10% or more compared to the thickness of the porous layer before the consolidation treatment. The method for producing a composite semipermeable membrane element according to claim 1, wherein the compaction treatment is performed until the material is compacted. 多孔性支持体及びそれに支持された薄膜からなる複合半透膜を含む複合半透膜エレメントであって、前記複合半透膜は、温度T[℃]と圧力P[MPa]が式(1)から式(3)の全てを満たす液体を用いて、2時間以上圧密化処理が行われたものであることを特徴とする複合半透膜エレメント。
T×P≦300 ・・・式(1)
6.0≦P≦8.3 ・・・式(2)
30≦T≦50 ・・・式(3)
A composite semipermeable membrane element including a porous support and a composite semipermeable membrane comprising a thin film supported by the porous support, wherein the composite semipermeable membrane has a temperature T [° C.] and a pressure P [MPa] of formula (1). To a composite semipermeable membrane element that has been subjected to consolidation for 2 hours or more using a liquid that satisfies all of the formula (3).
T × P ≦ 300 (1)
6.0 ≦ P ≦ 8.3 Expression (2)
30 ≦ T ≦ 50 Formula (3)
前記液体の浸透圧が3MPa以上である請求項4に記載の複合半透膜エレメント。 The composite semipermeable membrane element according to claim 4, wherein the osmotic pressure of the liquid is 3 MPa or more. 前記多孔性支持体が基材上に多孔質層を設けてなり、圧密化処理後の前記多孔質層の厚みが、圧密化処理前の前記多孔質層の厚みと比べて10%以上減少したものであることを特徴とする請求項4または5に記載の複合半透膜エレメント。 The porous support is provided with a porous layer on a substrate, and the thickness of the porous layer after the consolidation treatment is reduced by 10% or more compared to the thickness of the porous layer before the consolidation treatment The composite semipermeable membrane element according to claim 4 or 5, wherein the composite semipermeable membrane element is.
JP2012152179A 2012-07-06 2012-07-06 Method of manufacturing composite semipermeable membrane element and composite semipermeable membrane element Pending JP2014014739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012152179A JP2014014739A (en) 2012-07-06 2012-07-06 Method of manufacturing composite semipermeable membrane element and composite semipermeable membrane element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012152179A JP2014014739A (en) 2012-07-06 2012-07-06 Method of manufacturing composite semipermeable membrane element and composite semipermeable membrane element

Publications (1)

Publication Number Publication Date
JP2014014739A true JP2014014739A (en) 2014-01-30

Family

ID=50109927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012152179A Pending JP2014014739A (en) 2012-07-06 2012-07-06 Method of manufacturing composite semipermeable membrane element and composite semipermeable membrane element

Country Status (1)

Country Link
JP (1) JP2014014739A (en)

Similar Documents

Publication Publication Date Title
JP5978998B2 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for producing composite semipermeable membrane
EP1820566B1 (en) Prosses for producing a semipermeable composite membrane
JP5696361B2 (en) Composite semipermeable membrane and method for producing the same
JP6197649B2 (en) Composite semipermeable membrane
EP1806174B1 (en) Process for producing semipermeable composite membrane
JP2008093543A (en) Manufacturing method of dry composite semipermeable membrane
US11148102B2 (en) Thin film composite membrane with nano-sized bubbles having enhanced membrane permeability, preparation methods and uses thereof
JP2012250192A (en) Composite semipermeable membrane and manufacturing method thereof
KR101114668B1 (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
WO2012112123A1 (en) Forward osmosis membrane and method of manufacture
JP2009226320A (en) Composite semi-permeable membrane and its manufacturing method
KR101659122B1 (en) Polyamide water-treatment membranes having properies of high salt rejection and high flux and manufacturing method thereof
JPH09313905A (en) Polysulfone porous separating membrane
KR102041657B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
WO2021085600A1 (en) Composite semipermeable membrane and manufacturing method therefor
JP2009262089A (en) Manufacturing method of composite semi-permeable membrane
JP4923913B2 (en) Composite semipermeable membrane and method for producing the same
JP2007253109A (en) Method for manufacturing dry composite semipermeable membrane
JP2014014739A (en) Method of manufacturing composite semipermeable membrane element and composite semipermeable membrane element
KR101526080B1 (en) Non-woven fabric for a pressure retarded osmosis membrane support and pressure retarded osmosis membrane comprising thereof
JPH10174852A (en) Composite reverse osmotic film
KR20170060342A (en) Water-treatment membrane, method for manufacturing thereof and water-treatment module comprising membrane
KR20150087579A (en) Manufacturing method for polyamide-based reverse osmosis membrane
JP2005137964A (en) Liquid separation membrane and its manufacturing method
EP3202487B1 (en) Method for manufacturing polyamide-based water-treatment separator having excellent permeation flux characteristics