JP2014014027A - Optical transceiver device - Google Patents

Optical transceiver device Download PDF

Info

Publication number
JP2014014027A
JP2014014027A JP2012150974A JP2012150974A JP2014014027A JP 2014014027 A JP2014014027 A JP 2014014027A JP 2012150974 A JP2012150974 A JP 2012150974A JP 2012150974 A JP2012150974 A JP 2012150974A JP 2014014027 A JP2014014027 A JP 2014014027A
Authority
JP
Japan
Prior art keywords
signal
circuit
light
optical
baseband
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012150974A
Other languages
Japanese (ja)
Other versions
JP5896415B2 (en
Inventor
Katsumi Iwatsuki
岩月  勝美
Naoto Yoshimoto
直人 吉本
Tadao Nagatsuma
忠夫 永妻
Masayuki Fujita
誠之 冨士田
Shintaro Hisatake
信太郎 久武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Osaka University NUC
Original Assignee
Nippon Telegraph and Telephone Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Osaka University NUC filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012150974A priority Critical patent/JP5896415B2/en
Publication of JP2014014027A publication Critical patent/JP2014014027A/en
Application granted granted Critical
Publication of JP5896415B2 publication Critical patent/JP5896415B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To establish a common wireless/wired (optical) high-speed communication technique in WDM-PON with reduced ONU cost to economically achieve a broadband ubiquitous network.SOLUTION: Each of a wired colorless ONU 101 and a wireless colorless ONU 102 includes: an O/E 13 for converting downlink signal light modulated by a frequency of a millimeter wave band into an electric signal; a common circuit 12 for converting the electric signal from the O/E 13 into a baseband signal to demodulate the downlink signal, and for transmitting uplink signal light modulated by an uplink signal; and a MUX/DMX 15 for demultiplexing downlink signal light input from an external terminal to output to the O/E 13, and for outputting the uplink signal light input from the common circuit 12 from an external terminal.

Description

本発明は、ブロードバンドアクセスシステムにおける光及び無線の送受信技術に関するものである。   The present invention relates to optical and wireless transmission / reception technologies in a broadband access system.

光アクセスシステムの高速化は著しく、この5年程度の間に、100倍の高速・広帯域化が進み、ギガクラスのブロードバンドサービスが、GE−PON(Gigabit Ethernet(登録商標)−Passive Optical Network)システムの商用導入で経済的に提供されている。2009年には、10GE−PONの標準化が完了し、現在、10Gを超える高速化・広帯域化に向けた次世代PONがIEEE(Institute of Electrical and Electronics Engineers)やFSAN(Full Service Access Network)等の標準化団体で議論されている。一方、無線の高速化に関しても、IEEE802.11n規格で、100Mbpsを超える無線LANが実現されている。また、第三世代の携帯電話では、下り7.2MbpsのHSDPA(High Speed Downlink Packet Access)サービスが、2010年末には、10Mbpsを超えるLTE(Long Term Evolution)データ通信サービスが提供されている。さらに、4Gに向けた標準化や技術開発が進められており、ギガクラスを超える次世代の高速サービス実現への期待が高まってきている。   The speed of optical access systems has been remarkably increased, and in the past five years, the speed and bandwidth have increased by a factor of 100. Giga-class broadband services are now available in the GE-PON (Gigabit Ethernet (registered trademark) -Passive Optical Network) system. Provided economically with commercial introduction. In 2009, standardization of 10GE-PON was completed, and the next-generation PON for speeding up and widening beyond 10G is currently being implemented by Institute of Electrical and Electronics Engineers (FSAN) and Full Service Access (FSAN) Network etc. Discussed in a standards body. On the other hand, with regard to speeding up of wireless communication, a wireless LAN exceeding 100 Mbps is realized according to the IEEE 802.11n standard. Further, in the third generation mobile phone, a high speed downlink packet access (HSDPA) service of 7.2 Mbps is provided, and a LTE (Long Term Evolution) data communication service exceeding 10 Mbps is provided at the end of 2010. Furthermore, standardization and technology development for 4G are being promoted, and there are increasing expectations for the realization of next-generation high-speed services that exceed the giga class.

今後、タブレットPCやスマートフォン等の新たなモバイル端末とクラウドコンピューティングを用いて、時と場所によらず、3D高精細映像、リッチコンテンツ等の大容量情報にストレスなくアクセスするには、無線と有線(光)を活用したギガクラスを超えるブロードバンド・ユビキタスネットワークが重要な役割を担うこととなると予想される。   In the future, wireless and wired to access large-capacity information such as 3D high-definition video and rich content without stress using new mobile terminals such as tablet PCs and smartphones and cloud computing, regardless of time and place. Broadband and ubiquitous networks that make use of (Hikari) are expected to play an important role.

10Gを超える高速化・広帯域化に向けた次世代PON技術のアプローチとしては、これまでの延長技術である時間軸上でユーザ多重を行う時間多重(TDM:Time Division Multiplexing)方式と波長軸上でユーザ多重を行う波長多重(WDM:Wavelength Division Multiplexing)方式があり、後者をWDM−PON(Wavelength Division Multiplexing−Passive Optical Network)と呼んでいる。   The next-generation PON technology approach for speeding up and widening beyond 10G includes the time division multiplexing (TDM: Time Division Multiplexing) method that performs user multiplexing on the time axis, which is a conventional extension technology, and the wavelength axis. There is a wavelength division multiplexing (WDM) system that performs user multiplexing, and the latter is called WDM-PON (Wavelength Division Multiplexing-Passive Optical Network).

図8及び図9は、WDM−PONの構成図である。図8及び図9は、それぞれ、複数のONU(Optical Network Unit)91とOLT(Optical Line Terminal)92を接続するスプリッタが、波長スプリッタ93及びパワースプリッタ94である場合を表している。ONU91は、UNI(User Network Interface)からの信号を送信するTx(Transmitter)82と、OLT92からの信号を受信するRx(Receiver)83と、上り下り信号用の波長多重分離回路として機能するMUX/DMX(Multiplexer/Demultiplexer)81と、を備える。OLT92は、SNI(Service Node Interface)からの信号を送信するTx82と、ONU91からの信号を受信するRx83と、上り下り信号用の波長多重分離回路として機能するMUX/DMX81に加え、複数の異なる波長の上り信号用の波長多重分離回路として機能するMUX/DMX84Tと、複数の異なる波長の下り信号用の波長多重分離回路として機能するMUX/DMX84Rと、を備える。   8 and 9 are configuration diagrams of the WDM-PON. FIG. 8 and FIG. 9 show the case where the splitter that connects a plurality of ONUs (Optical Network Units) 91 and OLTs (Optical Line Terminals) 92 is a wavelength splitter 93 and a power splitter 94, respectively. The ONU 91 includes a Tx (Transmitter) 82 that transmits a signal from a UNI (User Network Interface), an Rx (Receiver) 83 that receives a signal from the OLT 92, and a MUX / MUX / WUX that functions as a wavelength demultiplexing circuit for upstream and downstream signals. A DMX (Multiplexer / Demultiplexer) 81. The OLT 92 includes a plurality of different wavelengths in addition to a Tx 82 that transmits a signal from an SNI (Service Node Interface), an Rx 83 that receives a signal from the ONU 91, and a MUX / DMX 81 that functions as a wavelength demultiplexing circuit for upstream and downstream signals. MUX / DMX84T functioning as an upstream signal wavelength demultiplexing circuit and a MUX / DMX84R functioning as a wavelength demultiplexing circuit for a plurality of downstream signals of different wavelengths.

WDM−PONの物理的なトポロジーはパッシブダブルスターであるため、伝送路である光ファイバを複数ユーザで共用しているが、ユーザごとに異なる波長を割り当てているため、論理的なトポロジーはシングルスターとなっている。このため、伝送路をユーザで共用しながら、他のユーザに影響を与えることなく、ユーザごとに独立にサービスを設定し変更することができる。このため、無線と有線のサービスを波長毎に設定することができ、上述した無線と有線(光)を活用したギガクラスを超えるブロードバンド・ユビキタスネットワークを構築する有望な技術として注目されている。   Since the physical topology of WDM-PON is passive double star, the optical fiber that is the transmission path is shared by multiple users, but since different wavelengths are assigned to each user, the logical topology is single star. It has become. For this reason, it is possible to set and change the service independently for each user without affecting other users while sharing the transmission path with the user. For this reason, wireless and wired services can be set for each wavelength, and it has been attracting attention as a promising technology for constructing a broadband ubiquitous network exceeding the gigaclass utilizing the wireless and wired (light) described above.

WDM−PONでは、各ONUに波長が固定的に割り当てられるため、ユーザごとに送信波長の異なるONUを用意しなければならず、ユーザの利便性や保守運用性に欠けることになる。このため、波長を意識することなく「使いやすい」ONUを実現するには、ONUを単一品種化し、OLT側からONUの送信波長を設定できるようにする必要があり、このような機能を実現する技術をONUのカラーレス技術と呼んでいる。   In WDM-PON, since a wavelength is fixedly assigned to each ONU, it is necessary to prepare ONUs having different transmission wavelengths for each user, and user convenience and maintenance operability are lacking. For this reason, in order to realize an “easy-to-use” ONU without being aware of the wavelength, it is necessary to make the ONU a single product and set the ONU transmission wavelength from the OLT side. This technology is called ONU's colorless technology.

カラーレス技術は、自発光方式と波長供給方式に大別でき(例えば、非特許文献1参照。)、前者は、図10に示すように、ONU91自身に波長選択性をもつ光源等が搭載されており、各ONU91の送信波長は、開通時にOLT92側から設定する。後者は、図11に示すように、ONU91に光変調器と光増幅器が搭載されており、OLT92側の光源から各ONUに供給される連続光を変調することで、上り信号光を作り出している。   The colorless technology can be broadly divided into a self-light-emitting method and a wavelength supply method (see, for example, Non-Patent Document 1). As shown in FIG. 10, the former is equipped with a light source having wavelength selectivity on the ONU 91 itself. The transmission wavelength of each ONU 91 is set from the OLT 92 side at the time of opening. In the latter, as shown in FIG. 11, an optical modulator and an optical amplifier are mounted on the ONU 91, and upstream signal light is generated by modulating continuous light supplied from the light source on the OLT 92 side to each ONU. .

これまで、無線と有線(光)は、それぞれ独立にブロードバンド技術が進展してきたが、WDM−PONにおいて、無線及び有線(光)における共通の高速通信技術を開発し、併せて、ONUのカラーレス技術を実現することで、量産効果を出すことで、ブロードバンド・ユビキタスネットワークを経済的に実現することが可能となる。本発明では、自発光方式における、無線と有線(光)の共通の高速通信技術を提案する。   Up until now, wireless and wired (optical) broadband technologies have progressed independently. However, in WDM-PON, a common high-speed communication technology for wireless and wired (optical) has been developed. By realizing the technology, it will be possible to economically realize a broadband ubiquitous network by producing a mass production effect. The present invention proposes a common high-speed communication technique for wireless and wired (light) in the self-luminous system.

無線と有線(光)の融合技術として、これまでに以下の提案がなされている。
図12は、125GHz帯の無線を用いた10Gbps伝送の構成図である(例えば、非特許文献2参照。)。125GHzの無線周波数は、光周波数コム発生回路(Optical MMW signal generator)71から光周波数の異なる2つの連続光を光フィルタで抜き出し、そのビート信号として発生させている。
図13は、OADM(Optical Add−Drop Multiplexer)にRoF(Radio on Fiber)技術を適用した例である(例えば、非特許文献3参照。)。WDM光源である各LDからの光をそれぞれ異なるミリ波帯のRF周波数f〜fで直接変調して連続光にFM変調を施し、外部変調により各連続光にdata1〜dataNの信号を重畳した後、WDMフィルタで合波し、マッハツエンダフィルタでFM−IM変換し、OADMリングネットワークを用いて、波長毎に設定されたノードに伝送する。PD(Photo Diode)で受光後、IM変換されたRF周波数成分の各ビート信号から、所望のビート周波数をBPF(Band−pass Filter)で抜き出し、無線信号として送信している。
The following proposals have been made as a fusion technology of wireless and wired (optical).
FIG. 12 is a configuration diagram of 10 Gbps transmission using 125 GHz band radio (for example, see Non-Patent Document 2). A radio frequency of 125 GHz is generated as a beat signal by extracting two continuous lights having different optical frequencies from an optical frequency comb generator 71 (Optical MMW signal generator) 71 using an optical filter.
FIG. 13 shows an example in which RoF (Radio on Fiber) technology is applied to OADM (Optical Add-Drop Multiplexer) (see, for example, Non-Patent Document 3). The light from each LD, which is a WDM light source, is directly modulated at different millimeter-wave band RF frequencies f 1 to f N to perform FM modulation on the continuous light, and signals 1 to data N are superimposed on each continuous light by external modulation. After that, they are multiplexed by the WDM filter, FM-IM converted by the Mach-Zehnder filter, and transmitted to the node set for each wavelength using the OADM ring network. After receiving light by PD (Photo Diode), a desired beat frequency is extracted by BPF (Band-pass Filter) from each beat signal of the RF frequency component subjected to IM conversion, and transmitted as a radio signal.

K. Iwatsuki, J. Kani, H. Suzuki, and M. Fujiwara, “Access and Metro Networks based on WDM Technologies”, IEEE J. Lightwave Technol., Vol.22, No.11, pp.2623−2630 (2004)K. Iwatuki, J. et al. Kani, H .; Suzuki, and M.M. Fujiwara, “Access and Metro Networks based on WDM Technologies”, IEEE J. et al. Lightwave Technol. , Vol. 22, no. 11, pp. 2623-2630 (2004) A. Hirata, et.al, “120−GHz−Band Millimeter−Wave Photonic Wireless Link for 10−Gb/s Data Transmission”, IEEE Trans. Microwave Theory and Tech., Vol.54, No.5, pp.1937−1944 (2006)A. Hirata, et. al, “120-GHz-Band Millimeter-Wave Photonic Wireless Link for 10-Gb / s Data Transmission”, IEEE Trans. Microwave Theory and Tech. , Vol. 54, no. 5, pp. 1937-1944 (2006) A.M.J. Koonen, et al., “Perspectives of Radio over Fiber Technologies”, OFC/NFOEC 2008, OThP3 (2008)A. M.M. J. et al. Koonen, et al. , “Perspectives of Radio over Fiber Technologies”, OFC / NFOEC 2008, OThP3 (2008) M. Fujiwara, et al, “Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation”, IEEE. J. Lightwave Technol., Vol.21, No.11, pp 2705−2714 (2003)M.M. Fujiwara, et al, “Optical carrier supplied modular flattened optical multicarrier generation based on sinusoidal amplification and phase. J. et al. Lightwave Technol. , Vol. 21, no. 11, pp 2705-2714 (2003) T. Nagatsuma, “Continuous−wave terahertz spectroscopy system based on photodiodes”, PIERS Online, Vol. 6, No. 4, pp.390−394 (2010)T.A. Nagatsuma, “Continuous-wave terhertz spectroscopy system based on photodiodes”, PIERS Online, Vol. 6, no. 4, pp. 390-394 (2010)

図12及び図13に示すように、無線と有線(光)でそれぞれ構成が異なるため、無線及び有線(光)を収容した場合のWDM−PONにおいては、無線であるか有線(光)であるかによってONUの仕様が異なる。このため、無線及び有線(光)を収容した場合のWDM−PONに用いられるONUは、量産化による経済化が困難であった。   As shown in FIG. 12 and FIG. 13, since the configuration differs between wireless and wired (light), in the WDM-PON when accommodating wireless and wired (light), it is wireless or wired (light). The specifications of ONU differ depending on For this reason, it is difficult for the ONU used for WDM-PON when accommodating wireless and wired (light) to be economically produced by mass production.

そこで、本発明は、WDM−PONにおける無線及び有線(光)における共通の高速通信技術を確立することで、ONUのコスト低減をはかり、ブロードバンド・ユビキタスネットワークを経済的に実現することを目的とする。   Therefore, the present invention aims to reduce the cost of ONUs by establishing a common high-speed communication technology in wireless and wired (optical) in WDM-PON, and to economically realize a broadband ubiquitous network. .

本願発明の光送受信装置は、ミリ波帯の周波数で変調された下り信号光を電気信号に変換する光電気変換回路と、前記光電気変換回路からの電気信号をベースバンド信号に変換して下り信号を復調するとともに、上り信号で変調された上り信号光を送信する共通回路と、外部端子から入力された下り信号光を分波して前記光電気変換回路に出力するとともに、前記共通回路から入力された上り信号光を前記外部端子から出力する波長多重分離回路と、を備える。   An optical transceiver according to the present invention includes a photoelectric conversion circuit that converts a downstream signal light modulated at a millimeter-wave band frequency into an electrical signal, and converts the electrical signal from the photoelectric conversion circuit into a baseband signal for downstream transmission. The common circuit that demodulates the signal and transmits the upstream signal light modulated by the upstream signal, and the downstream signal light that is input from the external terminal are demultiplexed and output to the photoelectric conversion circuit. A wavelength demultiplexing circuit for outputting the input upstream signal light from the external terminal.

本願発明の光送受信装置では、前記光電気変換回路からの電気信号を無線信号に変換して送信するとともに、無線信号を受信するアンテナをさらに備え、前記共通回路は、前記アンテナの受信する無線信号をベースバンド信号に変換して下り信号を復調してもよい。   In the optical transmission / reception apparatus according to the present invention, the electrical signal from the photoelectric conversion circuit is converted into a radio signal and transmitted, and further includes an antenna for receiving the radio signal, and the common circuit receives the radio signal received by the antenna. May be converted into a baseband signal to demodulate the downlink signal.

本願発明の光送受信装置では、前記共通回路は、2以上の波長の連続光を出力する光周波数コム発生回路と、前記光周波数コム発生回路からの連続光を波長ごとに分離する波長分離回路と、前記波長分離回路で分離された光の少なくとも1つを上り信号で変調して上り信号光を生成する光変調回路と、前記光変調回路からの上り信号光と前記波長分離回路で分離された光の1つを合波する波長合波回路と、前記波長分離回路で分離された光の2つを合波して、前記光電気変換回路からの電気信号をベースバンド信号に変換可能な周波数を有するローカル光を生成するローカル光生成回路と、前記ローカル光生成回路からのローカル光を用いて、前記光電気変換回路からの電気信号をベースバンド信号に変換するベースバンド変換回路と、前記ベースバンド変換回路からのベースバンド信号を復調する信号処理回路と、を備えていてもよい。   In the optical transceiver of the present invention, the common circuit includes an optical frequency comb generation circuit that outputs continuous light having two or more wavelengths, and a wavelength separation circuit that separates the continuous light from the optical frequency comb generation circuit for each wavelength. An optical modulation circuit that generates upstream signal light by modulating at least one of the lights separated by the wavelength separation circuit with an upstream signal, and the upstream signal light from the light modulation circuit and the wavelength separation circuit A frequency that can combine a wavelength multiplexing circuit that combines one of the light and the light separated by the wavelength separation circuit, and convert an electrical signal from the photoelectric conversion circuit into a baseband signal A local light generation circuit that generates local light, a baseband conversion circuit that converts an electric signal from the photoelectric conversion circuit into a baseband signal using local light from the local light generation circuit, and A signal processing circuit for demodulating a baseband signal from the baseband converter circuit may comprise a.

本願発明の光送受信装置では、前記光電気変換回路からの電気信号を無線信号に変換して送信するとともに、無線信号を受信するアンテナをさらに備え、前記ローカル光生成回路は、さらに、前記波長分離回路で分離された光の2つを合波して、前記アンテナの受信する無線信号をベースバンド信号に変換可能な周波数を有するローカル光を生成し、前記ベースバンド変換回路は、さらに、前記アンテナの受信する無線信号をベースバンド信号に変換してもよい。   In the optical transmission / reception apparatus according to the present invention, an electrical signal from the photoelectric conversion circuit is converted into a radio signal and transmitted, and an antenna for receiving the radio signal is further provided, and the local light generation circuit further includes the wavelength separation Two of the lights separated by the circuit are combined to generate local light having a frequency capable of converting a radio signal received by the antenna into a baseband signal, and the baseband conversion circuit further includes the antenna The radio signal received may be converted into a baseband signal.

本発明によれば、本発明は、WDM−PONにおける無線及び有線(光)における共通の高速通信技術を確立することで、ONUのコスト低減をはかり、ブロードバンド・ユビキタスネットワークを経済的に実現することができる。   According to the present invention, the present invention establishes a common high-speed communication technology in wireless and wired (optical) in WDM-PON, thereby reducing the cost of ONU and economically realizing a broadband ubiquitous network. Can do.

本実施形態における無線と有線(光)を収容したWDM−PONの構成の一例を示す。An example of the structure of the WDM-PON which accommodated the radio | wireless and the wire (light) in this embodiment is shown. WDM−PONの共通部分の第1例を示す。The 1st example of the common part of WDM-PON is shown. 共通回路における信号の一例を示す。An example of the signal in a common circuit is shown. WDM−PONの共通部分の第2例を示す。The 2nd example of the common part of WDM-PON is shown. 波長配置の一例を示す。An example of wavelength arrangement is shown. ベースバンド変換回路の第1例を示す。1 shows a first example of a baseband conversion circuit. ベースバンド変換回路の第2例を示す。2 shows a second example of a baseband conversion circuit. WDM−PONの構成の第1例を示す。The 1st example of a structure of WDM-PON is shown. WDM−PONの構成の第2例を示す。The 2nd example of a structure of WDM-PON is shown. カラーレスONUを用いたWDM−PONの第1例を示す。The 1st example of WDM-PON using a colorless ONU is shown. カラーレスONUを用いたWDM−PONの第2例を示す。The 2nd example of WDM-PON using a colorless ONU is shown. 125GHz帯無線での10Gbps伝送の一例を示す。An example of 10 Gbps transmission with 125 GHz band radio is shown. RoFを用いたアクセスネットワークの一例を示す。An example of the access network using RoF is shown.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

本実施形態に係る通信システムは、OLT、ONUに搭載された光トランシーバの光送信部が、光周波数コム(例えば、非特許文献4参照。)から発生させた複数の光キャリアの一部を各々変調してRF信号を生成し、これらを波長多重化して送信する。一方、OLT、ONUに搭載された光トランシーバの光受信部が、光周波数コムから発生させた複数の光キャリアから任意の2つの光キャリアを選択し、これを合波して得られたビート信号を用いて、送信されたRF信号をベースバンド信号に変換し、これをディジタル信号処理することで復調する。   In the communication system according to the present embodiment, the optical transmitters of the optical transceivers mounted on the OLT and the ONU each part of a plurality of optical carriers generated from an optical frequency comb (see, for example, Non-Patent Document 4). An RF signal is generated by modulation, and these are wavelength-multiplexed and transmitted. On the other hand, the optical receiving unit of the optical transceiver mounted on the OLT or ONU selects any two optical carriers from a plurality of optical carriers generated from the optical frequency comb and combines them to obtain a beat signal. Is used to convert the transmitted RF signal into a baseband signal, which is demodulated by digital signal processing.

図1は、本実施形態に係る光送受信装置を備えるWDM−PONの構成図である。ONU101は有線のカラーレスONUであり、ONU102は無線のカラーレスONUである。OLT103、ONU101、ONU102は共通回路12を備える。このように、OLT103、ONU101及びONU102が共通部分(図2で詳細を後述)を備えるため、本実施形態に係る通信システムは部品を共通化することができる。   FIG. 1 is a configuration diagram of a WDM-PON including an optical transmission / reception apparatus according to this embodiment. The ONU 101 is a wired colorless ONU, and the ONU 102 is a wireless colorless ONU. The OLT 103, the ONU 101, and the ONU 102 include a common circuit 12. As described above, since the OLT 103, the ONU 101, and the ONU 102 include a common part (details will be described later in FIG. 2), the communication system according to the present embodiment can share components.

有線のカラーレスONU101及び無線のカラーレスONU102は、光電気変換器であるO/E13と、複数の異なる波長の上りあるいは下り信号用の波長多重分離回路であるMUX/DMX15と、波長可変フィルタ14(所外に配置するスプリッタが波長スプリッタである場合は不要)と、並列直列変換回路であるS/P11と、を備える。無線のカラーレスONU102は、これらに加えてアンテナ17を備える。MUX/DMX15の外部端子にスプリッタ104からの下り信号光が入力され、MUX/DMX15の外部端子から上り信号光がスプリッタ104に向けて出力される。本構成では、無線と有線(光)で異なる部分は、アンテナ17の有無のみであり、無線と有線(光)で共通した光送受信器を用いることができ、量産化による経済化が可能となる。   The wired colorless ONU 101 and the wireless colorless ONU 102 are an O / E 13 that is a photoelectric converter, a MUX / DMX 15 that is a wavelength demultiplexing circuit for upstream or downstream signals of different wavelengths, and a wavelength tunable filter 14. (Not required when the splitter disposed outside the facility is a wavelength splitter) and S / P11 which is a parallel-serial conversion circuit. In addition to these, the wireless colorless ONU 102 includes an antenna 17. Downstream signal light from the splitter 104 is input to the external terminal of the MUX / DMX 15, and upstream signal light is output from the external terminal of the MUX / DMX 15 toward the splitter 104. In this configuration, the only difference between wireless and wired (light) is the presence / absence of the antenna 17, and a common optical transmitter / receiver can be used for wireless and wired (light). .

図2は、共通回路12の構成の一例である。共通回路12は、光周波数コム発生回路41と、光フィルタとしてのAWG(Arrayed Waveguide Grating)42と、光変調回路43と、光合波回路44と、ローカル光発生回路としての光合波回路45と、ベースバンド変換回路46と、信号処理回路47と、を備える。   FIG. 2 is an example of the configuration of the common circuit 12. The common circuit 12 includes an optical frequency comb generation circuit 41, an AWG (Arrayed Waveguide Grating) 42 as an optical filter, an optical modulation circuit 43, an optical multiplexing circuit 44, an optical multiplexing circuit 45 as a local light generation circuit, A baseband conversion circuit 46 and a signal processing circuit 47 are provided.

送信部分については、光周波数コム発生回路41(例えば、非特許文献4参照。)で発生した光キャリア(図3(a)を参照)のなかから、複数の光キャリアと1つの光キャリアをAWG42で抜き出し、前者を光変調回路43で各々変調し、変調された複数の光キャリアと1つの光キャリアを光合波回路44で合波し、上り信号光を生成する(図3(b)を参照)。   For the transmission part, a plurality of optical carriers and one optical carrier are assigned to the AWG 42 from the optical carriers (see FIG. 3A) generated by the optical frequency comb generation circuit 41 (see, for example, Non-Patent Document 4). The former is modulated by the optical modulation circuit 43, and a plurality of modulated optical carriers and one optical carrier are multiplexed by the optical multiplexing circuit 44 to generate upstream signal light (see FIG. 3B). ).

光キャリアの周波数間隔fと光変調回路43の変調信号のシンボルレートを等しく設定することで、上り信号光としてOFDM信号を作り出すことができる。一方、光キャリアの周波数間隔fよりも光変調回路43の変調信号のシンボルレートが小さい場合は、上り信号光はWDM信号となる。その場合の共通回路12の構成を図4に示す。   By setting the frequency interval f of the optical carrier equal to the symbol rate of the modulation signal of the optical modulation circuit 43, an OFDM signal can be created as upstream signal light. On the other hand, when the symbol rate of the modulation signal of the optical modulation circuit 43 is smaller than the frequency interval f of the optical carrier, the upstream signal light becomes a WDM signal. The configuration of the common circuit 12 in that case is shown in FIG.

伝送用の光ファイバから、MUX/DMX15や波長可変フィルタ14(ONUの場合)を通して導かれた下り信号光は、O/E13により光OFDM信号をRFのOFDM信号に変換された後、有線のカラーレスONU101の場合は共通回路12に導かれる。ここで、O/E13は、例えばUTC−PD(Uni−Traveling−Carrier Photodiode)である。無線のカラーレスONU102の場合は、このRFのOFDM信号をアンテナ17に導き、空間に伝送する。アンテナ17で受信されたRFのOFDM信号は共通回路12に導かれる。   Downstream signal light guided from the transmission optical fiber through the MUX / DMX 15 and the wavelength tunable filter 14 (in the case of ONU) is converted into an optical OFDM signal by the O / E 13 and then wired. In the case of the less ONU 101, it is guided to the common circuit 12. Here, the O / E 13 is, for example, a UTC-PD (Uni-Traveling-Carrier Photodiode). In the case of the wireless colorless ONU 102, the RF OFDM signal is guided to the antenna 17 and transmitted to the space. The RF OFDM signal received by the antenna 17 is guided to the common circuit 12.

共通回路12に導かれたRFのOFDM信号は、ベースバンド変換回路46に導かれ、有線の場合、S/P11を通じて出力される。無線の場合、S/P11の出力と入力を直結し、共通回路12に入力される。   The RF OFDM signal guided to the common circuit 12 is guided to the baseband conversion circuit 46, and in the case of wired, is output through the S / P11. In the case of radio, the output and input of S / P 11 are directly connected and input to the common circuit 12.

ベースバンド変換回路46には、光周波数コム発生回路41から発生した光キャリア(周波数間隔f)から周波数がmf(mは正数)離れた2つの光キャリア(図3(c))を合波して得られる周波数mfの光ビート信号をローカル信号LOとして用いることで、RFのOFDM信号をベースバンドOFDM信号にビートダウンし、これを信号処理回路47において離散フーリエ変換(DFT:Discrete Fourier Transform)によりディジタル信号処理することで復調する。   The baseband conversion circuit 46 multiplexes two optical carriers (FIG. 3C) whose frequency is mf (m is a positive number) away from the optical carrier (frequency interval f) generated from the optical frequency comb generation circuit 41. By using the optical beat signal of the frequency mf obtained as a local signal LO, the RF OFDM signal is beat down to a baseband OFDM signal, and this is subjected to discrete Fourier transform (DFT: Discrete Fourier Transform) in the signal processing circuit 47. Is demodulated by digital signal processing.

図5は、WDM−PONの上り信号光と下り信号光の波長配置の一例を示す。光周波数コム発生回路41の種光源を波長可変光源とすることで、共通回路12をカラーレスにして、MUX/DMX15にて上り信号光と下り信号光とを分離可能な波長配置を実現する。   FIG. 5 shows an example of the wavelength arrangement of upstream signal light and downstream signal light in WDM-PON. By using a wavelength tunable light source as the seed light source of the optical frequency comb generating circuit 41, the common circuit 12 is made colorless, and a wavelength arrangement that can separate the upstream signal light and the downstream signal light by the MUX / DMX 15 is realized.

図6は、ベースバンド変換回路46の構成例である。図6では、ローカル信号光LOである光ビート信号を光電気変換器であるPD(Photo Diode)で周波数mfのビート信号に変換後、ミキサ462を用いてRFのOFDM信号をベースバンドOFDM信号にビートダウンする。図7では、UTC−PD463を用いて、PD461とミキサ462の機能を同時に実現する(例えば、非特許文献5参照。)ことで、ベースバンドOFDM信号を得ることができる。   FIG. 6 is a configuration example of the baseband conversion circuit 46. In FIG. 6, an optical beat signal that is the local signal light LO is converted into a beat signal having a frequency mf by a PD (Photo Diode) that is an optoelectric converter, and then an RF OFDM signal is converted into a baseband OFDM signal using a mixer 462. Beat down. In FIG. 7, the baseband OFDM signal can be obtained by simultaneously implementing the functions of the PD 461 and the mixer 462 using the UTC-PD 463 (see, for example, Non-Patent Document 5).

本発明は、情報通信産業に適用することができる。   The present invention can be applied to the information communication industry.

11:S/P
12:共通回路
13:O/E
14:波長可変フィルタ
15、15T、15R:MUX/DMX
16:E/O
17:アンテナ
41:光周波数コム発生回路
42、48:AWG
43:光変調回路
44、45:光カプラ
46:ベースバンド変換回路
461:PD
462:ミキサ
463:UTC−PD
47:ディジタル信号処理回路
61:LD
62:光変調器
63:波長多重化装置
64:OADM制御部
65:MZI(Mach−Zehnder interferometer)
66:OADM(Optical add−drop multiplexer)
67:PD(Photo Diode)
68:BPF
69:増幅器
71:光周波数コム
72:ベースバンド増幅器
73:光変調回路
74:PD付増幅回路
75、76:アンテナ
77:受信回路
78:ベースバンド増幅器
81、84、84R、84T:MUX/DMX
82:Tx
83:Rx
85:Tx/Rx
86:光源
88:E/O
91:ONU
92:OLT
93:波長スプリッタ
94:パワースプリッタ
95:OLT
101:カラーレスONU(有線)
102:カラーレスONU(無線)
103:OLT
104:スプリッタ
11: S / P
12: Common circuit 13: O / E
14: Wavelength tunable filters 15, 15T, 15R: MUX / DMX
16: E / O
17: Antenna 41: Optical frequency comb generation circuit 42, 48: AWG
43: Optical modulation circuit 44, 45: Optical coupler 46: Baseband conversion circuit 461: PD
462: Mixer 463: UTC-PD
47: Digital signal processing circuit 61: LD
62: Optical modulator 63: Wavelength multiplexing device 64: OADM control unit 65: MZI (Mach-Zehnder interferometer)
66: OADM (Optical add-drop multiplexer)
67: PD (Photo Diode)
68: BPF
69: Amplifier 71: Optical frequency comb 72: Baseband amplifier 73: Optical modulation circuit 74: Amplifier circuit 75 with PD, 76: Antenna 77: Reception circuit 78: Baseband amplifiers 81, 84, 84R, 84T: MUX / DMX
82: Tx
83: Rx
85: Tx / Rx
86: Light source 88: E / O
91: ONU
92: OLT
93: Wavelength splitter 94: Power splitter 95: OLT
101: Colorless ONU (wired)
102: Colorless ONU (wireless)
103: OLT
104: Splitter

Claims (4)

ミリ波帯の周波数で変調された下り信号光を電気信号に変換する光電気変換回路と、
前記光電気変換回路からの電気信号をベースバンド信号に変換して下り信号を復調するとともに、上り信号で変調された上り信号光を送信する共通回路と、
外部端子から入力された下り信号光を分波して前記光電気変換回路に出力するとともに、前記共通回路から入力された上り信号光を前記外部端子から出力する波長多重分離回路と、
を備える光送受信装置。
A photoelectric conversion circuit that converts downstream signal light modulated at a millimeter-wave frequency into an electrical signal;
A common circuit for demodulating a downstream signal by converting an electrical signal from the photoelectric conversion circuit into a baseband signal, and transmitting upstream signal light modulated by the upstream signal;
Demultiplexing the downstream signal light input from the external terminal and outputting it to the photoelectric conversion circuit, and the wavelength demultiplexing circuit for outputting the upstream signal light input from the common circuit from the external terminal;
An optical transceiver comprising:
前記光電気変換回路からの電気信号を無線信号に変換して送信するとともに、無線信号を受信するアンテナをさらに備え、
前記共通回路は、前記アンテナの受信する無線信号をベースバンド信号に変換して下り信号を復調する
ことを特徴とする請求項1に記載の光送受信装置。
An electrical signal from the photoelectric conversion circuit is converted into a radio signal and transmitted, and further includes an antenna that receives the radio signal,
The optical transceiver according to claim 1, wherein the common circuit demodulates a downlink signal by converting a radio signal received by the antenna into a baseband signal.
前記共通回路は、
2以上の波長の連続光を出力する光周波数コム発生回路と、
前記光周波数コム発生回路からの連続光を波長ごとに分離する波長分離回路と、
前記波長分離回路で分離された光の少なくとも1つを上り信号で変調して上り信号光を生成する光変調回路と、
前記光変調回路からの上り信号光と前記波長分離回路で分離された光の1つを合波する波長合波回路と、
前記波長分離回路で分離された光の2つを合波して、前記光電気変換回路からの電気信号をベースバンド信号に変換可能な周波数を有するローカル光を生成するローカル光生成回路と、
前記ローカル光生成回路からのローカル光を用いて、前記光電気変換回路からの電気信号をベースバンド信号に変換するベースバンド変換回路と、
前記ベースバンド変換回路からのベースバンド信号を復調する信号処理回路と、
を備えることを特徴とする請求項1に記載の光送受信装置。
The common circuit is:
An optical frequency comb generating circuit that outputs continuous light of two or more wavelengths;
A wavelength separation circuit for separating continuous light from the optical frequency comb generation circuit for each wavelength;
An optical modulation circuit that generates upstream signal light by modulating at least one of the lights separated by the wavelength separation circuit with an upstream signal;
A wavelength multiplexing circuit that combines one of the upstream signal light from the light modulation circuit and the light separated by the wavelength separation circuit;
A local light generation circuit that combines two of the lights separated by the wavelength separation circuit and generates local light having a frequency capable of converting an electric signal from the photoelectric conversion circuit into a baseband signal;
A baseband conversion circuit that converts an electrical signal from the photoelectric conversion circuit into a baseband signal using local light from the local light generation circuit;
A signal processing circuit for demodulating a baseband signal from the baseband conversion circuit;
The optical transmission / reception apparatus according to claim 1, comprising:
前記光電気変換回路からの電気信号を無線信号に変換して送信するとともに、無線信号を受信するアンテナをさらに備え、
前記ローカル光生成回路は、さらに、前記波長分離回路で分離された光の2つを合波して、前記アンテナの受信する無線信号をベースバンド信号に変換可能な周波数を有するローカル光を生成し、
前記ベースバンド変換回路は、さらに、前記アンテナの受信する無線信号をベースバンド信号に変換することを特徴とする請求項3に記載の光送受信装置。
An electrical signal from the photoelectric conversion circuit is converted into a radio signal and transmitted, and further includes an antenna that receives the radio signal,
The local light generation circuit further combines two of the lights separated by the wavelength separation circuit to generate local light having a frequency capable of converting a radio signal received by the antenna into a baseband signal. ,
The optical transmission / reception apparatus according to claim 3, wherein the baseband conversion circuit further converts a radio signal received by the antenna into a baseband signal.
JP2012150974A 2012-07-05 2012-07-05 Optical transceiver Expired - Fee Related JP5896415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012150974A JP5896415B2 (en) 2012-07-05 2012-07-05 Optical transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012150974A JP5896415B2 (en) 2012-07-05 2012-07-05 Optical transceiver

Publications (2)

Publication Number Publication Date
JP2014014027A true JP2014014027A (en) 2014-01-23
JP5896415B2 JP5896415B2 (en) 2016-03-30

Family

ID=50109465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012150974A Expired - Fee Related JP5896415B2 (en) 2012-07-05 2012-07-05 Optical transceiver

Country Status (1)

Country Link
JP (1) JP5896415B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025395A (en) * 2014-07-16 2016-02-08 Kddi株式会社 Optical transmission device, wireless transmission device, and wireless reception device
JP2020048160A (en) * 2018-09-21 2020-03-26 Kddi株式会社 Radio device and processing device of mobile communication network
WO2022143776A1 (en) * 2020-12-30 2022-07-07 华为技术有限公司 Optical receiving device and communication system
CN115514413A (en) * 2022-07-22 2022-12-23 西安空间无线电技术研究所 Multichannel millimeter wave communication system based on optical frequency comb

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818596A (en) * 1994-07-05 1996-01-19 Oki Electric Ind Co Ltd Multiplex start communication system
JP2003115842A (en) * 2001-10-03 2003-04-18 Nippon Telegr & Teleph Corp <Ntt> Wired/wireless integrated type terminal device and wired /wireless integrated network
JP2005086782A (en) * 2003-09-11 2005-03-31 Central Res Inst Of Electric Power Ind Combined modulation method, method for demultiplexing optical signals subjected to combined modulation and combined modulation type radio base station
EP2071752A1 (en) * 2006-09-30 2009-06-17 Huawei Technologies Co Ltd A method,system of dada transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818596A (en) * 1994-07-05 1996-01-19 Oki Electric Ind Co Ltd Multiplex start communication system
JP2003115842A (en) * 2001-10-03 2003-04-18 Nippon Telegr & Teleph Corp <Ntt> Wired/wireless integrated type terminal device and wired /wireless integrated network
JP2005086782A (en) * 2003-09-11 2005-03-31 Central Res Inst Of Electric Power Ind Combined modulation method, method for demultiplexing optical signals subjected to combined modulation and combined modulation type radio base station
EP2071752A1 (en) * 2006-09-30 2009-06-17 Huawei Technologies Co Ltd A method,system of dada transmission

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025395A (en) * 2014-07-16 2016-02-08 Kddi株式会社 Optical transmission device, wireless transmission device, and wireless reception device
JP2020048160A (en) * 2018-09-21 2020-03-26 Kddi株式会社 Radio device and processing device of mobile communication network
JP7145709B2 (en) 2018-09-21 2022-10-03 Kddi株式会社 Radio equipment for mobile communication networks
WO2022143776A1 (en) * 2020-12-30 2022-07-07 华为技术有限公司 Optical receiving device and communication system
CN115514413A (en) * 2022-07-22 2022-12-23 西安空间无线电技术研究所 Multichannel millimeter wave communication system based on optical frequency comb

Also Published As

Publication number Publication date
JP5896415B2 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
Grobe et al. PON in adolescence: from TDMA to WDM-PON
Cvijetic et al. 100 Gb/s optical access based on optical orthogonal frequency-division multiplexing
EP3169010B1 (en) Twdm passive network with extended reach and capacity
Abbas et al. The next generation of passive optical networks: A review
US9124368B2 (en) Transceiver for use in fibre network
KR100875922B1 (en) Downlink optical transmitter and method using wavelength independent light source in WDM passive optical subscriber network, and optical line termination system using the same
KR100975882B1 (en) Time division multiple access over wavelength division multiplexed passive optical network
US9608760B2 (en) Integrated access network
EP2285019B1 (en) Optical communication system, apparatus and method
WO2009043272A1 (en) Optical line terminal, passive optical network and radio frequency signal transmission method
JP5204024B2 (en) Optical / wireless transmission equipment
WO2011032597A1 (en) Passive optical network
EP2920901B1 (en) Remote node device, optical network unit and system and communication method thereof
JP5896415B2 (en) Optical transceiver
Liu et al. Emerging optical communication technologies for 5G
JP2010245987A (en) Optical/radio access system
Cheng Flexible TWDM PONs
JP5122498B2 (en) Optical signal transmission method, optical communication system, optical transmitter and optical receiver
JP5665130B2 (en) Information transmitting / receiving device and information receiving device
JP2010114621A (en) Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu
JP2014014028A (en) Optical communication method, optical transmitter, optical receiver, and optical communication system
US20150372758A1 (en) Transmitting and receiving apparatus using wavelength-tunable filter and method thereof
Breuer et al. Requirements and solutions for next-generation access
JP2008244847A (en) Wavelength multiplexing apparatus
Segarra et al. Access-metro versatile coherent dual optical network providing integrated services

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160224

R150 Certificate of patent or registration of utility model

Ref document number: 5896415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees