JP2014013828A - Manufacturing system of ic card and manufacturing method - Google Patents

Manufacturing system of ic card and manufacturing method Download PDF

Info

Publication number
JP2014013828A
JP2014013828A JP2012150646A JP2012150646A JP2014013828A JP 2014013828 A JP2014013828 A JP 2014013828A JP 2012150646 A JP2012150646 A JP 2012150646A JP 2012150646 A JP2012150646 A JP 2012150646A JP 2014013828 A JP2014013828 A JP 2014013828A
Authority
JP
Japan
Prior art keywords
substrate
mounting
wiring pattern
external terminal
card
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012150646A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Wada
義之 和田
Tadahiko Sakai
忠彦 境
Koji Motomura
耕治 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012150646A priority Critical patent/JP2014013828A/en
Publication of JP2014013828A publication Critical patent/JP2014013828A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing system of an IC card and a manufacturing method capable of reducing manufacturing cost of the IC card.SOLUTION: The manufacturing system of an IC card includes: a wiring formation material supply unit that forms a photocurable pattern for an antenna circuit by supplying a photocurable wiring forming material having fluidity to an area which includes a terminal joint position on a first plane of a circuit board for the IC card having the first plane and a second plane opposite to the same; a mounting unit that mounts a bare chip component having external terminals to a mounting position on the first plane so that the external terminals land on the terminal joint position; and a light irradiation device that irradiates light to the photocurable pattern to cure the same and to form an antenna circuit, and joints the external terminal to the antenna circuit at the terminal joint position.

Description

本発明は、光硬化性の配線形成材料を利用したICカードの製造システム、および製造方法に関する。   The present invention relates to an IC card manufacturing system and a manufacturing method using a photocurable wiring forming material.

携帯電話、フラットパネルディスプレイ、デジタルスチルカメラ、DVDレコーダなどのデジタル家電製品が急速に普及しており、これらの機器の小型化及び薄型化が望まれている。これらの機器の小型化及び薄型化のためには、機器に含まれる基板のフレキシブル化が有効であり、フレキシブルプリント配線板(FPC:Flexible Printed Circuit)の使用が急速に拡大している。そして、FPCは、単なる配線板として使用されるだけではなく、半導体デバイス、微小チップ部品、コネクタなどが実装された機能モジュールとしての用途が増えている.   Digital home appliances such as mobile phones, flat panel displays, digital still cameras, DVD recorders, etc. are rapidly spreading, and it is desired to reduce the size and thickness of these devices. In order to reduce the size and thickness of these devices, it is effective to make the substrates included in the devices flexible, and the use of flexible printed circuit (FPC) is rapidly expanding. And FPC is not only used as a wiring board, but is also used as a functional module on which semiconductor devices, microchip components, connectors and the like are mounted.

FPCと、硬質プリント配線板(RPC:Rigid Printed Circuit)とを含めたプリント配線板にベアチップ等のチップ部品や様々な電子部品(以下、チップ部品を例として説明する)を実装するための技術として、表面実装技術(SMT:Surface Mount Technology)が多く使用されている。SMTにおいては、一般的には、はんだペーストをプリント配線板に印刷した後、チップ部品がプリント配線板に搭載される。そして、最終的には、リフロー工程によりはんだが溶融され、それを固化することで、チップ部品の電極端子と、基板の配線とが電気的に接続される(例えば、特許文献1参照)。あるいは、例えばICカードであれば、熱圧着工程により電子部品をプリント配線板に実装することも行われる。その場合、例えばボンダーにより電子部品を通して端子が加熱されるとともに、超音波振動が印加され、電子部品の外部端子とプリント配線板の配線電極とが金属接合される。その接合部は接着剤により補強することができる。   As a technology for mounting chip components such as bare chips and various electronic components (hereinafter, chip components will be described as examples) on printed wiring boards including FPCs and rigid printed circuit boards (RPCs). Surface mount technology (SMT) is often used. In SMT, generally, after a solder paste is printed on a printed wiring board, a chip component is mounted on the printed wiring board. Finally, the solder is melted and solidified by the reflow process, whereby the electrode terminals of the chip component and the wiring of the substrate are electrically connected (for example, see Patent Document 1). Alternatively, for example, in the case of an IC card, an electronic component is also mounted on a printed wiring board by a thermocompression bonding process. In this case, for example, the terminal is heated through the electronic component by a bonder, and ultrasonic vibration is applied, so that the external terminal of the electronic component and the wiring electrode of the printed wiring board are metal-bonded. The joint can be reinforced with an adhesive.

ここで、上記の熱圧着工程(あるいはリフロー工程)のような加熱工程によりICカードを製造する場合には、プリント配線板等が高温にさらされることがある。このため、プリント配線板に耐熱性の低い基板を使用すると、熱によりプリント配線板が変形することがある。その結果、基板に別の電子部品を正しく実装できなくなることがある。したがって、ICカードを製造するためのプリント配線板の基板には、耐熱性の高い、ポリイミド樹脂やガラス繊維樹脂を使用することが望まれる。   Here, when an IC card is manufactured by a heating process such as the above-described thermocompression bonding process (or reflow process), a printed wiring board or the like may be exposed to a high temperature. For this reason, when a board with low heat resistance is used for the printed wiring board, the printed wiring board may be deformed by heat. As a result, another electronic component may not be correctly mounted on the board. Therefore, it is desired to use a polyimide resin or glass fiber resin having high heat resistance for the substrate of the printed wiring board for manufacturing the IC card.

特開2010−245309号公報JP 2010-245309 A

しかしながら、そのような樹脂は、一般に価格が高いために、そのような樹脂を、ICカード用のプリント配線板に使用することは、電子機器の製造コストを増大させる要因となり得る。   However, since such a resin is generally high in price, using such a resin for a printed wiring board for an IC card may increase the manufacturing cost of an electronic device.

上記に鑑み、本発明は、ICカードの製造コストを低減することが可能である、ICカードの製造システム、および製造方法を提供することを目的としている。   In view of the above, an object of the present invention is to provide an IC card manufacturing system and a manufacturing method that can reduce the manufacturing cost of an IC card.

本発明の一局面は、第1表面およびその反対側の第2表面を有するICカード用の基板の前記第1表面の端子接合位置を含む領域に、流動性を有する光硬化性の配線形成材料を供給することにより、アンテナ回路用の光硬化性配線パターンを形成する配線形成材料供給装置と、
外部端子を有するベアチップ部品を、前記外部端子が前記端子接合位置に着地するように、前記第1表面の搭載位置に搭載する搭載装置と、
前記光硬化性配線パターンに光を照射して硬化させ、前記アンテナ回路を形成するとともに、前記外部端子を前記端子接合位置で前記アンテナ回路と接合する光照射装置と、を含む部品実装基板の製造システムに関する。
One aspect of the present invention is a photocurable wiring forming material having fluidity in a region including a terminal bonding position on the first surface of a substrate for an IC card having a first surface and a second surface opposite to the first surface. A wiring forming material supply device for forming a photocurable wiring pattern for an antenna circuit,
A mounting device for mounting a bare chip component having an external terminal at a mounting position on the first surface such that the external terminal lands at the terminal joining position;
Manufacturing of a component mounting board including: a light irradiation device that irradiates and cures the light-curable wiring pattern to form the antenna circuit and joins the external terminal to the antenna circuit at the terminal joint position. About the system.

本発明の他の局面は、第1表面およびその反対側の第2表面を有するICカード用の基板の前記第1表面の端子接合位置を含む領域に、流動性を有する光硬化性の配線形成材料を供給することにより、光硬化性配線パターンを形成する工程と、
外部端子を有するベアチップ部品を、前記外部端子が前記端子接合位置に着地するように、前記第1表面の搭載位置に搭載する工程と、
前記光硬化性配線パターンに光を照射して硬化させ、前記アンテナ回路を形成するとともに、前記外部端子を前記端子接合位置で前記アンテナ回路と接合する工程と、を含む部品実装基板の製造方法に関する。
Another aspect of the present invention is to form a photocurable wiring having fluidity in a region including a terminal bonding position on the first surface of a substrate for an IC card having a first surface and a second surface opposite to the first surface. Forming a photocurable wiring pattern by supplying a material; and
Mounting a bare chip component having an external terminal at a mounting position on the first surface such that the external terminal lands at the terminal joining position;
A method of manufacturing a component mounting board, comprising: irradiating and curing the light curable wiring pattern to form the antenna circuit, and joining the external terminal to the antenna circuit at the terminal joining position. .

本発明によれば、ICカード用の基板に配線パターンを形成する配線形成工程と、その配線パターンにベアチップ部品の端子を接合する接合工程とが、アンテナ回路用の光硬化性配線パターンに光を照射して硬化させることで、同時的に行える。これにより、上記の接合工程で、熱圧着工程等の加熱工程が省略できるので、ICカード用の基板に耐熱性の高い素材(例えばポリイミド樹脂)を使用する必要性がなくなる。さらに、基板の材料に対する制約が小さくなるので、例えば比較的安価な材料の基板を使用してICカードを製造することができる。その結果、ICカードの製造コストを低減することもできる。   According to the present invention, a wiring forming process for forming a wiring pattern on a substrate for an IC card and a bonding process for bonding a terminal of a bare chip component to the wiring pattern emit light to the photocurable wiring pattern for an antenna circuit. It can be done simultaneously by irradiation and curing. This eliminates the need for using a highly heat-resistant material (for example, polyimide resin) for the substrate for the IC card because a heating step such as a thermocompression bonding step can be omitted in the above-described bonding step. Furthermore, since the restrictions on the material of the substrate are reduced, for example, an IC card can be manufactured using a substrate of a relatively inexpensive material. As a result, the manufacturing cost of the IC card can be reduced.

本発明の一実施形態に係るICカードの製造システムである表面実装ラインの全体像を示すブロック図である。It is a block diagram which shows the whole image of the surface mounting line which is a manufacturing system of the IC card which concerns on one Embodiment of this invention. キャリア搬送方式の表面実装ラインにおいて、移動手段であるコンベアにより基板が搬送される様子を示す正面図である。It is a front view which shows a mode that a board | substrate is conveyed by the conveyor which is a moving means in the surface mounting line of a carrier conveyance system. キャリア搬送方式の表面実装ラインにおいて、移動手段であるコンベアにより基板が搬送される様子を示す上面図である。It is a top view which shows a mode that a board | substrate is conveyed by the conveyor which is a moving means in the surface mounting line of a carrier conveyance system. ICカード用のアンテナ回路と対応する光硬化性配線パターンを、アンテナ回路基板に形成した様子を示す上面図である。It is a top view which shows a mode that the photocurable wiring pattern corresponding to the antenna circuit for IC cards was formed in the antenna circuit board. ICカード用のICチップ(ベアチップ部品)を、基板の搭載位置に搭載した様子を示す側面図である。It is a side view which shows a mode that the IC chip (bare chip component) for IC cards was mounted in the mounting position of a board | substrate. 先端の径を大きくした電子部品の外部端子を、光硬化性配線パターンが形成された基板の端子接合位置に着地させた状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which landed the external terminal of the electronic component which enlarged the diameter of the front-end | tip at the terminal joint position of the board | substrate with which the photocurable wiring pattern was formed. 基板の搭載位置にICチップが搭載された状態の一例を示す上面図である。It is a top view which shows an example in the state where the IC chip was mounted in the mounting position of a board | substrate. 光照射ユニットにより光硬化性配線パターンを硬化させる工程を模式的に示す図である。It is a figure which shows typically the process of hardening a photocurable wiring pattern by a light irradiation unit. 光硬化性配線パターンを硬化させることで形成された導電性配線パターンと外部端子との接合部の詳細を示す断面図である。It is sectional drawing which shows the detail of the junction part of the conductive wiring pattern formed by hardening a photocurable wiring pattern, and an external terminal.

配線形成材料の一例である導電性インクの硬化の過程を模式的に示す一部断面図であり、(a)は硬化前の状態を示し、(b)は硬化開始時の状態を示し、(c)は硬化終了時の状態を示す。It is a partial cross section figure which shows typically the process of hardening of the conductive ink which is an example of wiring formation material, (a) shows the state before hardening, (b) shows the state at the time of hardening start, c) shows the state at the end of curing. ICチップ実装アンテナ回路基板を使用した最終製品の一例である、非接触式のICカードの構造を示す断面図である。It is sectional drawing which shows the structure of the non-contact-type IC card which is an example of the final product which uses an IC chip mounting antenna circuit board. 本発明の他の実施形態に係るICカードの製造システムである表面実装ラインの全体像を示す正面図である。It is a front view which shows the whole image of the surface mounting line which is a manufacturing system of the IC card which concerns on other embodiment of this invention. COFパッケージ用の複数の基板を含む基板素材の上面図である。It is a top view of a substrate material including a plurality of substrates for a COF package. ICカード用の複数の基板を含む基板素材の上面図である。It is a top view of the board | substrate raw material containing the some board | substrate for IC cards. 図12Aの基板素材に含まれる複数の基板のそれぞれに接続回路と対応する光硬化性配線パターンを形成した様子を示す上面図である。It is a top view which shows a mode that the photocurable wiring pattern corresponding to a connection circuit was formed in each of the some board | substrate contained in the board | substrate raw material of FIG. 12A. 図12Bの基板素材に含まれる複数の基板のそれぞれにアンテナ回路と対応する光硬化性配線パターンを形成した様子を示す上面図である。It is a top view which shows a mode that the photocurable wiring pattern corresponding to an antenna circuit was formed in each of the some board | substrate contained in the board | substrate raw material of FIG. 12B. 図12Aの基板素材に含まれる複数の基板のそれぞれに液晶ドライバである電子部品を搭載した様子を示す上面図である。It is a top view which shows a mode that the electronic component which is a liquid crystal driver was mounted in each of the some board | substrate contained in the board | substrate raw material of FIG. 12A. 図12Bの基板素材に含まれる複数の基板のそれぞれにICカード用のICチップである電子部品を搭載した様子を示す上面図である。It is a top view which shows a mode that the electronic component which is an IC chip for IC cards was mounted in each of the some board | substrate contained in the board | substrate raw material of FIG. 12B. 電子部品の外部端子が光硬化性配線パターンに没入している状態を示す断面図である。It is sectional drawing which shows the state in which the external terminal of an electronic component is immersed in the photocurable wiring pattern. 図11の表面実装ラインにより製造される液晶ドライバおよび液晶パネルを含むCOFパッケージ(液晶表示モジュール)の一部分の上面図である。FIG. 12 is a top view of a part of a COF package (liquid crystal display module) including a liquid crystal driver and a liquid crystal panel manufactured by the surface mounting line of FIG. 11. 液晶ドライバおよび液晶パネルを含むCOFパッケージの上面図である。It is a top view of a COF package including a liquid crystal driver and a liquid crystal panel. 本発明のさらに他の実施形態に係るICカードの製造システムである表面実装ラインの全体像を示す正面図である。It is a front view which shows the whole image of the surface mounting line which is a manufacturing system of the IC card which concerns on further another embodiment of this invention. 図17の表面実装ラインで使用される遮光板の変形例を示す正面図である。It is a front view which shows the modification of the light shielding plate used with the surface mounting line of FIG. 図18の遮光板の動作原理を示す、遮光板および基板素材の正面図である。It is a front view of a light-shielding plate and a board | substrate material which shows the principle of operation of the light-shielding plate of FIG. 積層半導体およびガラスインターポーザを含む部品実装基板を、他の基板に実装した様子を示す、部品実装基板および他の基板の正面図である。It is a front view of a component mounting board | substrate and another board | substrate which shows a mode that the component mounting board | substrate containing a laminated semiconductor and a glass interposer was mounted in the other board | substrate. 図20の部品実装基板をキャリア搬送方式の表面実装ラインで製造する場合の製造手順を概略的に示すコンベアの上面図である。It is a top view of the conveyor which shows schematically the manufacture procedure in the case of manufacturing the component mounting board | substrate of FIG. 20 with the surface mounting line of a carrier conveyance system.

本発明のICカードの製造システムは、第1表面およびその反対側の第2表面を有するICカード用の基板の第1表面の端子接合位置を含む領域に、流動性を有する光硬化性の配線形成材料を供給することにより、アンテナ回路用の光硬化性配線パターンを形成する配線形成材料供給装置を備えている。配線形成材料には、例えば、導電体の微粒子(例えば金属ナノフィラー)と、所定の分散剤とを含むインク(以下、導電性インクともいう)を使用することができる。供給装置は、例えば、そのような導電性インクを塗布装置により塗布したり、そのような導電性インクを印刷したりすることで、基板の第1表面の上記の領域に配線形成材料を供給し、光硬化性配線パターンを形成する。なお、端子接合位置とは、電子部品の外部端子が、光硬化性配線パターンから形成される導電性配線パターンと接合される、第1表面上の位置である。   In the IC card manufacturing system of the present invention, a photocurable wiring having fluidity is provided in a region including a terminal bonding position on a first surface of a substrate for an IC card having a first surface and a second surface opposite to the first surface. A wiring forming material supply device is provided that forms a photocurable wiring pattern for an antenna circuit by supplying a forming material. As the wiring forming material, for example, an ink containing conductive fine particles (for example, metal nanofiller) and a predetermined dispersant (hereinafter also referred to as conductive ink) can be used. The supply device supplies the wiring forming material to the above-described region on the first surface of the substrate by, for example, applying such conductive ink by a coating device or printing such conductive ink. A photocurable wiring pattern is formed. The terminal bonding position is a position on the first surface where the external terminal of the electronic component is bonded to the conductive wiring pattern formed from the photocurable wiring pattern.

本発明のICカードの製造システムは、さらに、外部端子を有するベアチップ部品を、外部端子が端子接合位置に着地するように、第1表面の搭載位置に搭載する搭載装置を含む。このとき、例えば上記のインクは、流動性を有するか、または変形が可能なままの状態とされる。これにより、外部端子を、端子接合位置で、光硬化性配線パターンの中に没入させた状態で、ベアチップ部品を第1表面の搭載位置に搭載することができる。   The IC card manufacturing system of the present invention further includes a mounting device for mounting a bare chip component having an external terminal at the mounting position on the first surface so that the external terminal lands at the terminal bonding position. At this time, for example, the ink described above is in a state where it has fluidity or can be deformed. Thereby, a bare chip component can be mounted in the mounting position of the 1st surface in the state where the external terminal was immersed in the photocurable wiring pattern at the terminal bonding position.

そして、本発明のICカードの製造システムは、光硬化性配線パターンに光を照射して硬化させ、導電性を有するアンテナ回路を形成するとともに、ベアチップ部品の外部端子を端子接合位置でアンテナ回路と接合する光照射装置を含む。例えば、光硬化性配線パターンを形成している上記のインクに、端子接合位置で、ベアチップ部品の外部端子を没入させた状態で、パルス状の光等を照射する。これにより、例えば分散剤が、金属ナノフィラーの周囲から取り除かれて、金属ナノフィラーが凝集し、これによりインクが硬化し、アンテナ回路が形成される。このとき、同時に、外部端子のインクに没入している部分が、端子接合位置で、アンテナ回路と接合される。   Then, the IC card manufacturing system of the present invention irradiates and cures the light-curable wiring pattern to form a conductive antenna circuit, and connects the external terminal of the bare chip component to the antenna circuit at the terminal joint position. Includes a light irradiation device to be joined. For example, pulsed light or the like is irradiated on the ink forming the photocurable wiring pattern in a state where the external terminal of the bare chip component is immersed at the terminal bonding position. Thereby, for example, the dispersant is removed from the periphery of the metal nanofiller, and the metal nanofiller aggregates, whereby the ink is cured and an antenna circuit is formed. At the same time, the portion of the external terminal immersed in the ink is joined to the antenna circuit at the terminal joining position.

以上のように、本発明のICカードの製造システムによれば、ICカード用の基板にアンテナ回路を形成する工程と、アンテナ回路にベアチップ部品の外部端子を接合する工程とを、同時的に実行することができる。これにより、配線パターンの形成工程と、ベアチップ部品の実装工程とを、総体的に合理化することができ、生産性を向上させることができる。   As described above, according to the IC card manufacturing system of the present invention, the step of forming the antenna circuit on the substrate for the IC card and the step of bonding the external terminal of the bare chip component to the antenna circuit are executed simultaneously. can do. Thereby, the formation process of a wiring pattern and the mounting process of a bare chip component can be rationalized generally, and productivity can be improved.

さらに、アンテナ回路にベアチップ部品の外部端子を接合する工程において、加熱工程を省略することができることから、ベアチップ部品や基板を加熱せずに、アンテナ回路にベアチップ部品の外部端子を接合することができる。したがって、ベアチップ部品や基板に対する加熱の悪影響を防止することができる。また、ICカード用の基板に耐熱性の高い素材(例えばポリイミド樹脂)を使用する必要性がないことから、比較的安価であるが耐熱性のあまり高くない素材(例えばPET(ポリエチレンテレフタラート)、PEN(ポリエチレンナフタレート))を使用して、ICカードを製造することができる。したがって、ICカードの製造コストを低減することができる。また、ポリイミド樹脂の色が例えば銅箔の色と似ていることに起因する、部品実装の困難性を解消することもできる。   Further, since the heating step can be omitted in the step of joining the external terminal of the bare chip component to the antenna circuit, the external terminal of the bare chip component can be joined to the antenna circuit without heating the bare chip component or the substrate. . Therefore, the adverse effect of heating on the bare chip component or the substrate can be prevented. In addition, since there is no need to use a material having high heat resistance (for example, polyimide resin) for the substrate for IC card, a material that is relatively inexpensive but not very heat resistant (for example, PET (polyethylene terephthalate), An IC card can be manufactured using PEN (polyethylene naphthalate). Therefore, the manufacturing cost of the IC card can be reduced. Moreover, the difficulty of component mounting resulting from the color of a polyimide resin resembling the color of a copper foil, for example, can be eliminated.

さらに、加熱工程を省略することができることから、システムに何らかのトラブルが発生したときにラインを止めても、部品および基板素材が加熱工程で過剰に加熱されるのを防止することができる。したがって、システムにトラブルが発生したときに直ちにラインを止めることができ、トラブルの悪影響が多くのベアチップ部品に及ぶのを防止することができる。その結果、歩留まりを改善することもできる。   Furthermore, since the heating step can be omitted, even if the line is stopped when some trouble occurs in the system, it is possible to prevent the component and the substrate material from being excessively heated in the heating step. Therefore, when a trouble occurs in the system, the line can be stopped immediately, and the adverse effects of the trouble can be prevented from reaching many bare chip components. As a result, the yield can be improved.

本発明は、特にフリップチップ実装技術などのSMTに適している。このため、ベアチップ部品は、基板との対向面に外部端子を有するものを好適に使用することができる。外部端子は、通常、基板に予め形成された電極との接触を確保するために、外部端子が形成されているベアチップ部品の主面から突出していることが好ましいからである。一方、本発明を適用する場合、基板に塗布された光硬化性配線パターンが流動性を有し、かつ変形可能な状態で、ベアチップ部品が基板に搭載される。従って、外部端子がベアチップ部品の主面から突出していなくても、光硬化性配線パターンの流動により、外部端子と光硬化性配線パターンとの接触が達成される。よって、外部端子を突出させる必要がなく、ベアチップ部品の製造コストを低減することができる。   The present invention is particularly suitable for SMT such as flip chip mounting technology. For this reason, what has an external terminal in the surface facing a board | substrate can be used conveniently for a bare chip component. This is because it is preferable that the external terminal normally protrudes from the main surface of the bare chip component on which the external terminal is formed in order to ensure contact with the electrode previously formed on the substrate. On the other hand, when the present invention is applied, the bare chip component is mounted on the substrate in a state where the photocurable wiring pattern applied to the substrate has fluidity and can be deformed. Therefore, even if the external terminal does not protrude from the main surface of the bare chip component, the contact between the external terminal and the photocurable wiring pattern is achieved by the flow of the photocurable wiring pattern. Therefore, it is not necessary to project the external terminal, and the manufacturing cost of the bare chip component can be reduced.

外部端子は、酸化被膜の形成を防止し得る点で、金を少なくとも表面に含むのが好ましい。ただし、本発明では、電子部品を基板に接合するためにリフロー装置などで加熱する必要がない。このため、加熱による外部端子の酸化が防止されるので、外部端子は、銅、銅合金、錫、および錫合金などにより形成することもできる。これにより、製造コストをさらに抑えることができる。また、酸化被膜への対策をとる場合には、基板との対向面にはんだバンプ(電極)を備えるBGA(Ball grid Array)型の電子部品に、本発明を適用することもできる。   The external terminal preferably contains gold at least on the surface in terms of preventing formation of an oxide film. However, in the present invention, it is not necessary to heat with a reflow apparatus or the like in order to join the electronic component to the substrate. For this reason, since the oxidation of the external terminal by heating is prevented, the external terminal can also be formed of copper, copper alloy, tin, tin alloy, or the like. Thereby, manufacturing cost can be further suppressed. When taking measures against the oxide film, the present invention can also be applied to BGA (Ball grid Array) type electronic components having solder bumps (electrodes) on the surface facing the substrate.

本発明の一形態においては、ICカードの製造システムに、ICカード用の基板を載せるキャリアと、キャリアに載せられた基板を、配線形成材料供給装置から、ベアチップ部品の搭載装置を経由して、光照射装置まで搬送する搬送手段と、を含ませることができる。キャリア、ないしはキャリアボードには、耐熱テープで基板を固定することができる。あるいは、微粘着タイプの粘着材をキャリアボードに塗布することで、基板を固定できる。この場合には、基板の裏面全体がキャリアボードに固定されるために、フレキシブルな基板であっても、うねりなどによる高さのばらつきを低減することができる。キャリアボードの素材としては、一般的には、Al、Mg、ステンレス鋼、及び耐熱ガラスエポキシ材などが選定される。本発明によれば、キャリアボードに対する加熱も抑えられるために、耐熱性の高い材料に限られず、様々な特徴を有する材料をキャリアボードの素材として選定することができる。   In one embodiment of the present invention, a carrier on which an IC card substrate is placed in an IC card manufacturing system, and a substrate placed on the carrier from a wiring forming material supply device via a bare chip component mounting device, Conveying means for conveying to the light irradiation device. The substrate can be fixed to the carrier or carrier board with heat-resistant tape. Alternatively, the substrate can be fixed by applying a slightly adhesive type adhesive material to the carrier board. In this case, since the entire back surface of the substrate is fixed to the carrier board, even if it is a flexible substrate, variation in height due to undulation or the like can be reduced. Generally, Al, Mg, stainless steel, heat-resistant glass epoxy material, and the like are selected as the material for the carrier board. According to the present invention, since heating to the carrier board can be suppressed, the material is not limited to a material having high heat resistance, and a material having various characteristics can be selected as a material for the carrier board.

本発明の一形態においては、ICカード用の基板及びキャリアは光透過性を有し、光照射装置は、基板の第2表面(裏面)側から、第1表面に形成された光硬化性配線パターンに、基板及びキャリアを透過させた光を照射する。SMTの主要な実装方法であるフリップチップ実装では、電子部品の外部端子は、基板との対向面に設けられる。このため、光硬化性配線パターンの端子接合位置は、電子部品本体により覆われることが多い。さらに、チップ部品のように、部品の両端に外部端子が形成されている電子部品であっても、光硬化性配線パターンの端子接合位置は外部端子により大部分が覆われる。したがって、光硬化性配線パターンの端子接合位置に光を照射することが困難となることもあり得る。   In one embodiment of the present invention, the substrate for IC card and the carrier are light transmissive, and the light irradiation device is a photocurable wiring formed on the first surface from the second surface (back surface) side of the substrate. The pattern is irradiated with light transmitted through the substrate and the carrier. In flip chip mounting, which is the main mounting method of SMT, external terminals of electronic components are provided on the surface facing the substrate. For this reason, the terminal bonding position of the photocurable wiring pattern is often covered with the electronic component body. Further, even in the case of an electronic component in which external terminals are formed at both ends of the component, such as a chip component, the terminal bonding position of the photocurable wiring pattern is mostly covered by the external terminals. Therefore, it may be difficult to irradiate light to the terminal bonding position of the photocurable wiring pattern.

基板及びキャリアに光透過性を有するものを使用することで、光を、基板及びキャリアを透過させて、光硬化性配線パターンに照射することが可能となる。基板には、光透過性樹脂等を好適に使用できる。これにより、ベアチップ部品等により覆われることが多い、光硬化性配線パターンの端子接合位置にも光を確実に照射することが可能となる。その結果、端子接合位置で、アンテナ回路にベアチップ部品の外部端子を確実に接合することができる。この場合には、キャリアは、石英ガラス、光透過性樹脂等の透明な素材から形成することができる。または、キャリアは、光透過孔等の光透過部分を有する非透明の板材から形成することもできる。例えば、上記のAl等の通常の素材からなるボードに、光透過孔を開けたり、一部分に透明な素材を埋め込んだりして、非透明の板材に光透過部分を形成することができる。   By using a substrate and a carrier having light transparency, it is possible to irradiate the photocurable wiring pattern with light transmitted through the substrate and the carrier. A light-transmitting resin or the like can be suitably used for the substrate. This makes it possible to reliably irradiate light to the terminal bonding position of the photocurable wiring pattern that is often covered with bare chip components or the like. As a result, the external terminal of the bare chip component can be reliably bonded to the antenna circuit at the terminal bonding position. In this case, the carrier can be formed of a transparent material such as quartz glass or light transmissive resin. Alternatively, the carrier can be formed of a non-transparent plate material having a light transmission portion such as a light transmission hole. For example, a light transmission portion can be formed on a non-transparent plate material by opening a light transmission hole or embedding a transparent material in a part of a board made of a normal material such as Al.

配線形成材料は、より具体的には、平均粒子径が1〜10nmの金属ナノ粒子を含むことが好ましい。金属ナノ粒子は、特にCu粒子(以下、Cuナノフィラーともいう)を含むのが、コストを低減でき、かつ良好な導電性が得られるので好ましい。そのような金属ナノ粒子を、分散剤により、有機溶媒や水に分散させたインクを、配線形成材料として使用することができる。このようなインクは、金属ナノ粒子の表面から分散剤が除去されると、金属ナノ粒子同士が凝集し、直接的に接触し、融合して、バルク金属が形成される。その結果、インクが硬化して、良好な導電性を発揮するようになる。   More specifically, the wiring forming material preferably contains metal nanoparticles having an average particle diameter of 1 to 10 nm. It is preferable that the metal nanoparticles include Cu particles (hereinafter also referred to as Cu nanofillers) because the cost can be reduced and good conductivity can be obtained. An ink in which such metal nanoparticles are dispersed in an organic solvent or water with a dispersant can be used as a wiring forming material. In such an ink, when the dispersant is removed from the surface of the metal nanoparticles, the metal nanoparticles aggregate, directly contact, and fuse to form a bulk metal. As a result, the ink is cured and exhibits good conductivity.

分散剤には、様々なイオン性ポリマーまたは非イオン性ポリマーを用いることができる。イオン性ポリマーまたは非イオン性ポリマーは、ポリアミン、ポリビニルピロリドン、ポリエチレングリコール、イソステアリルエチルイミダゾリニウムエトサルフェート、オレイルエチルイミダゾリニウムエトサルフェート、リン酸変性ホスフェートポリエステルコポリマー、スルホン化スチレン無水マレイン酸エステル等を含む。   Various ionic or nonionic polymers can be used as the dispersant. Examples of the ionic polymer or nonionic polymer include polyamine, polyvinyl pyrrolidone, polyethylene glycol, isostearyl ethyl imidazolinium etsulfate, oleyl ethyl imidazolinium etsulfate, phosphoric acid modified phosphate polyester copolymer, sulfonated styrene maleic anhydride ester, etc. including.

上記のようなCuナノフィラーを含むインクを配線形成材料として使用する場合には、電子部品の外部端子は、少なくとも最表面にAuを含むのが好ましい。これにより、酸化被膜の形成が抑えられて、Cuナノフィラー同士が融合して形成される導電性配線パターンと、Auを最表面に含む外部端子とが容易に金属結合するので、外部端子と導電性配線パターンとの結合強度を大きくすることができ、接合の信頼性を向上させることができる。なお、本発明では、上述したように外部端子を加熱する必要性がないことから、電子部品の外部端子の最表面にCuやSnを使用した場合にも酸化物の生成が抑えられる。したがって、接合の信頼性を損なうことなく外部端子の最表面をCuやSnで形成することもできる。これにより、コストの低減と接合の信頼性とを両立させることもできる。   When the ink containing the Cu nanofiller as described above is used as the wiring forming material, it is preferable that the external terminal of the electronic component contains Au at least on the outermost surface. As a result, the formation of an oxide film is suppressed, and the conductive wiring pattern formed by the fusion of Cu nanofillers and the external terminal containing Au on the outermost surface are easily metal-bonded. The bonding strength with the conductive wiring pattern can be increased, and the bonding reliability can be improved. In addition, in this invention, since there is no need to heat an external terminal as mentioned above, when Cu or Sn is used for the outermost surface of the external terminal of an electronic component, the production | generation of an oxide is suppressed. Therefore, the outermost surface of the external terminal can be formed of Cu or Sn without impairing the bonding reliability. Thereby, both cost reduction and bonding reliability can be achieved.

また、本発明は、第1表面およびその反対側の第2表面を有する基板の第1表面の端子接合位置を含む領域に、流動性を有する光硬化性の配線形成材料を供給することにより、光硬化性配線パターンを形成する工程と、外部端子を有するベアチップ部品を、外部端子が端子接合位置に着地するように、第1表面の搭載位置に搭載する工程と、光硬化性配線パターンに光を照射して硬化させ、アンテナ回路を形成するとともに、外部端子を端子接合位置でアンテナ回路と接合する工程と、を含むICカードの製造方法に関する。   The present invention also provides a photocurable wiring forming material having fluidity to a region including a terminal bonding position on the first surface of the substrate having the first surface and the second surface opposite to the first surface, A step of forming a photocurable wiring pattern; a step of mounting a bare chip component having an external terminal at a mounting position on the first surface so that the external terminal lands at the terminal bonding position; and a step of applying light to the photocurable wiring pattern. And a step of forming an antenna circuit and bonding an external terminal to the antenna circuit at a terminal bonding position.

次に、図面を参照しながら、本発明の実施形態を詳細に説明する。
(実施形態1)
図1に、本発明の一実施形態に係るICカードの製造システムである表面実装ラインをブロック図により示す。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
(Embodiment 1)
FIG. 1 is a block diagram showing a surface mounting line which is an IC card manufacturing system according to an embodiment of the present invention.

図示例の表面実装ライン10は、基板を供給する基板供給ユニット1と、配線形成材料供給ユニット2と、電子部品搭載ユニット3と、光照射ユニット4と、部品実装基板回収ユニット5と、各ユニットの間で基板を搬送または移動させる移動装置6と、を含んでいる。   The surface mounting line 10 in the illustrated example includes a substrate supply unit 1 for supplying a substrate, a wiring forming material supply unit 2, an electronic component mounting unit 3, a light irradiation unit 4, a component mounting substrate recovery unit 5, and each unit. And a moving device 6 for transferring or moving the substrate between them.

ライン10は、1セットの電子部品が実装される1つの基板を、それぞれ独立したキャリアボードに載せ、それを、移動装置6としてのコンベアにより各ユニットの間で搬送するキャリア搬送方式の表面実装ラインであり得る。この場合には、基板供給ユニット1には、例えば、マガジン式の基板ローダを使用することができ、部品実装基板回収ユニット5には、例えば、マガジン式の基板アンローダを使用することができる。   The line 10 is a surface-mounting line of a carrier transport system in which one substrate on which a set of electronic components is mounted is placed on each independent carrier board and transported between the units by a conveyor as the moving device 6. It can be. In this case, for example, a magazine type substrate loader can be used for the substrate supply unit 1, and a magazine type substrate unloader can be used for the component mounting substrate recovery unit 5, for example.

あるいは、ライン10は、複数の基板を含む、例えば、長尺のテープ状のフィルムからなる基板素材に、複数セットの電子部品を、所定の間隔を開けて、基板毎に実装するような表面実装ラインであり得る。この場合には、基板供給ユニット1には、例えば、基板素材を巻出す巻き出しロールを使用することができ、部品実装基板回収ユニット5には、例えば、電子部品が実装された基板素材を巻き取る巻き取りロールを使用することができる。つまり、ライン10は、ロールツーロール方式の表面実装ラインであり得る。なお、「基板素材」は、それを裁断することで複数の独立した基板が形成されるという意味の用語である。つまり、本明細書では、基板素材は、一体的に連結された複数の基板を含んでいる。   Alternatively, the line 10 includes a plurality of substrates, for example, a surface mounting that mounts a plurality of sets of electronic components on a substrate material made of a long tape-like film, with a predetermined interval, for each substrate. Can be a line. In this case, for example, an unwinding roll for unwinding the substrate material can be used for the substrate supply unit 1, and for example, the substrate material on which electronic components are mounted is wound on the component mounting substrate recovery unit 5. A take-up roll can be used. That is, the line 10 can be a roll-to-roll surface mount line. The “substrate material” is a term that means that a plurality of independent substrates are formed by cutting the substrate material. That is, in this specification, the substrate material includes a plurality of substrates connected together.

なお、実施形態1では、ライン10が、キャリア搬送方式の表面実装ラインである場合を主に説明する。   In the first embodiment, the case where the line 10 is a carrier-mounted surface mounting line will be mainly described.

図2A及び図2Bに、それぞれ、図1のライン10がキャリア搬送方式の表面実装ラインである場合に、移動手段であるコンベア6Aにより、基板14が搬送される様子を正面図及び上面図により示す。コンベア6Aは、平行に設置された、長尺の、一対のボード支持部7を有している。基板14は、複数のキャリアボード12に1つずつ載置されている。複数のキャリアボード12は、搬送方向(図に矢印で示している)と垂直な方向の両端部をそれぞれボード支持部7により支持されて、所定の間隔で、コンベア6Aの上に設置されている。一対のボード支持部7によりキャリアボード12の両端部を支持することで、キャリアボード12の下面は、コンベア6Aにより覆われることなく、少なくとも基板14で配線パターンが形成されるべき部分(以下、配線形成領域ともいう)と対応する部分が、下方に向かって露出している。   FIGS. 2A and 2B respectively show a front view and a top view of a state in which the substrate 14 is transported by the conveyor 6A, which is a moving means, when the line 10 in FIG. 1 is a surface transport line of a carrier transport system. . The conveyor 6A has a pair of long board support portions 7 installed in parallel. One substrate 14 is placed on each of the plurality of carrier boards 12. The plurality of carrier boards 12 are installed on the conveyor 6A at predetermined intervals, with both ends in the direction perpendicular to the transport direction (indicated by arrows in the figure) supported by the board support parts 7, respectively. . By supporting both ends of the carrier board 12 by the pair of board support portions 7, the lower surface of the carrier board 12 is not covered by the conveyor 6A, and at least a portion where a wiring pattern is to be formed on the substrate 14 (hereinafter referred to as wiring) A portion corresponding to “formation region” is exposed downward.

キャリアボード12には、耐熱テープで基板14を固定することができる。あるいは、微粘着タイプの粘着材をキャリアボード12の基板14との対向面に塗布することで、基板14を固定できる。この場合には、基板14の裏面(第2面)全体がキャリアボード12に固定されるために、フレキシブルな基板14であっても、基板14のうねりなどによる高さのばらつきを低減することができる。   The substrate 14 can be fixed to the carrier board 12 with heat-resistant tape. Alternatively, the substrate 14 can be fixed by applying a slightly adhesive type adhesive material to the surface of the carrier board 12 facing the substrate 14. In this case, since the entire back surface (second surface) of the substrate 14 is fixed to the carrier board 12, even if the substrate 14 is flexible, variations in height due to waviness of the substrate 14 can be reduced. it can.

キャリアボード12には、後述する理由で、光透過性を有する素材を使用することができる。そのような素材の例としては、石英ガラス、光透過性樹脂等の透明な素材が挙げられる。ただし、キャリアボード12は、光を透過しないAl等の非透明の素材から形成することもできる。この場合には、光硬化性配線パターンと対応する部分に光透過孔をあけたり、透明な部材を嵌め込んだりすることで光を透過ないしは通過させることができる。また、同様の理由で、基板14にも光透過性を有する素材、好ましくは、光透過樹脂を使用することができる。光透過性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリブチレンテレフタレート、ポリフェニルスルフィド、ポリエーテルエーテルケトン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネイト、液晶ポリマー、ポリスチレン、アクリル樹脂、ポリアセタール、ポリフェニルエーテル、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合樹脂が挙げられる。これらの樹脂は、単独で用いてもよく、複数種を組み合わせて用いてもよい。例えば、複数種の樹脂のポリマーアロイであってもよい。   For the carrier board 12, a material having optical transparency can be used for the reason described later. Examples of such materials include transparent materials such as quartz glass and light transmissive resin. However, the carrier board 12 can also be formed from a non-transparent material such as Al that does not transmit light. In this case, light can be transmitted or passed by forming a light transmission hole in a portion corresponding to the photocurable wiring pattern or by inserting a transparent member. For the same reason, the substrate 14 can be made of a light-transmitting material, preferably a light-transmitting resin. Examples of the light transmissive resin include polyethylene, polypropylene, polybutylene terephthalate, polyphenyl sulfide, polyether ether ketone, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate, liquid crystal polymer, polystyrene, acrylic resin, and polyacetal. , Polyphenyl ether, acrylonitrile-styrene copolymer, and acrylonitrile-butadiene-styrene copolymer resin. These resins may be used alone or in combination of two or more. For example, it may be a polymer alloy of plural kinds of resins.

配線形成材料供給ユニット2には、例えば、ニードルまたはノズルを有する塗布ヘッドと、ディスペンサとを備えた塗布装置を含ませることができる。そのような塗布装置を使用して、基板14の部品実装面(第1表面)に、所望の配線パターンを描くように、後述する光硬化性配線材料としてのインクを塗布する。これにより、光硬化性配線パターンが形成される。あるいは、配線形成材料供給ユニット2には、基板14の第1表面に、上記インクで光硬化性配線パターンを印刷する印刷装置を含ませることができる。そのような印刷装置としては、スクリーン印刷装置、インクジェットプリンタなどを使用することができる。   The wiring forming material supply unit 2 can include, for example, a coating apparatus including a coating head having a needle or a nozzle and a dispenser. Using such an applicator, ink as a photocurable wiring material to be described later is applied to the component mounting surface (first surface) of the substrate 14 so as to draw a desired wiring pattern. Thereby, a photocurable wiring pattern is formed. Alternatively, the wiring forming material supply unit 2 can include a printing device that prints a photocurable wiring pattern on the first surface of the substrate 14 with the ink. As such a printing apparatus, a screen printing apparatus, an inkjet printer, or the like can be used.

図3に、ICカード用のアンテナ回路と対応する光硬化性配線パターンを、アンテナ回路基板に形成した様子を上面図により示す。光硬化性配線パターン16Aは、コイル状のパターンであり、端子接合位置18は、導線の両端部に配置されている。端子接合位置18は、基板14Aの第1表面(紙面で表側になっている面)における電子部品が搭載される搭載位置20に含まれている。   FIG. 3 is a top view showing a state in which a photocurable wiring pattern corresponding to an IC card antenna circuit is formed on an antenna circuit board. The photocurable wiring pattern 16A is a coil-shaped pattern, and the terminal joint positions 18 are arranged at both ends of the conducting wire. The terminal bonding position 18 is included in the mounting position 20 where the electronic component is mounted on the first surface of the substrate 14A (the surface on the front side of the paper).

搭載ユニット3には、テープフィーダ、バルクフィーダ、及びトレイフィーダ等の電子部品供給装置と、それらの電子部品供給装置により供給される電子部品を基板の上に配置する、例えば吸着ノズルを有するチップマウンタとを含ませることができる。   The mounting unit 3 includes an electronic component supply device such as a tape feeder, a bulk feeder, and a tray feeder, and a chip mounter having, for example, a suction nozzle that arranges electronic components supplied by the electronic component supply device on a substrate. Can be included.

図4に、搭載ユニット3により、ICカード用のICチップ22Aを、搭載位置20に搭載した様子を側面図により模式的に示す。ICチップ22Aは、下面に複数の外部端子24Aを有している。外部端子24Aは、端子接合位置18で、それぞれ、光硬化性配線パターン16Aと接触している。   FIG. 4 schematically shows a side view of how the IC card 22A for IC card is mounted at the mounting position 20 by the mounting unit 3. FIG. The IC chip 22A has a plurality of external terminals 24A on the lower surface. The external terminals 24A are in contact with the photocurable wiring pattern 16A at the terminal bonding positions 18, respectively.

図示例の状態では、光硬化性配線パターン16Aが未だ硬化していないために、外部端子24Aは、流動性ないしは変形性を有する光硬化性配線パターン16Aの中に没入している。これにより、後の光照射工程により光硬化性配線パターン16Aが硬化して、導電性配線パターン(アンテナ回路)が形成されると、アンカー効果により、外部端子24Aが、アンテナ回路と端子接合位置で強固に結合される。   In the state of the illustrated example, since the photocurable wiring pattern 16A has not yet been cured, the external terminal 24A is immersed in the photocurable wiring pattern 16A having fluidity or deformability. As a result, when the photocurable wiring pattern 16A is cured by a subsequent light irradiation process and a conductive wiring pattern (antenna circuit) is formed, the external terminal 24A is connected to the antenna circuit and the terminal joint position by the anchor effect. Tightly coupled.

なお、通常、基板との対向面に設けられる電子部品の外部端子は、先端に向かって細くされたり、先端に丸みが付けられたりすることが多い。これに対して、図示例の外部端子24Aは、その根元から先端まで断面形状を変えないように形成することができる。これにより、十分なアンカー効果を得ることができ、結合強度をより大きくすることができるとともに、外部端子24Aの形成を容易にすることができる。   In general, external terminals of electronic components provided on the surface facing the substrate are often narrowed toward the tip or rounded at the tip. On the other hand, the external terminal 24A in the illustrated example can be formed so as not to change the cross-sectional shape from the root to the tip. Thereby, a sufficient anchor effect can be obtained, the bonding strength can be further increased, and the formation of the external terminal 24A can be facilitated.

なお、図5に示すように、より大きなアンカー効果と結合強度を得るために、ICチップ等の電子部品の外部端子として、先端の径だけを大きくした外部端子24Bを使用することもできる。図6に、搭載ユニットにより、基板の第1表面の搭載位置にICチップが搭載された状態の一例を上面図により示す。図示例では、搭載ユニット3により、アンテナ回路基板14Aの部品実装面の搭載位置20にICチップ22Aが搭載されている。   As shown in FIG. 5, in order to obtain a larger anchor effect and coupling strength, an external terminal 24B having only a large diameter at the tip can be used as an external terminal of an electronic component such as an IC chip. FIG. 6 is a top view showing an example of a state in which the IC chip is mounted at the mounting position on the first surface of the substrate by the mounting unit. In the illustrated example, the IC chip 22A is mounted on the mounting position 20 on the component mounting surface of the antenna circuit board 14A by the mounting unit 3.

図7に示すように、光照射ユニット4は、光硬化性配線パターン16を硬化させるための光源26を含む。光源26の例としては、フラッシュシランプ、ショートパルス発光ユニット及びパルスレーザ発振器が挙げられる。   As shown in FIG. 7, the light irradiation unit 4 includes a light source 26 for curing the photocurable wiring pattern 16. Examples of the light source 26 include a flash lamp, a short pulse light emitting unit, and a pulse laser oscillator.

光源26は、コンベア6Aの下方に配置することができる。つまり、光源26Aは基板の第2表面側に配置することができる。このとき、光透過性(ないしは通過性)を有するキャリアボード12及び基板14を使用することで、光源26から発せられた光は、コンベア6Aの下から、キャリアボード12及び基板14を透過して、ICチップやチップ部品等の電子部品22が搭載された基板14の上面(第1表面)に到達する。これにより、光硬化性配線パターン16に光が照射され、図8に示すように、光硬化性配線パターン16が硬化して、導電性配線パターン28が形成される。このとき、同時に、各電子部品22の外部端子24が端子接合位置で導電性配線パターン28と接合される。   The light source 26 can be disposed below the conveyor 6A. That is, the light source 26A can be disposed on the second surface side of the substrate. At this time, by using the carrier board 12 and the substrate 14 having optical transparency (or transmission), the light emitted from the light source 26 passes through the carrier board 12 and the substrate 14 from below the conveyor 6A. Then, it reaches the upper surface (first surface) of the substrate 14 on which the electronic component 22 such as an IC chip or a chip component is mounted. Thereby, light is irradiated to the photocurable wiring pattern 16, and as shown in FIG. 8, the photocurable wiring pattern 16 is hardened and the conductive wiring pattern 28 is formed. At the same time, the external terminal 24 of each electronic component 22 is bonded to the conductive wiring pattern 28 at the terminal bonding position.

次に、配線形成材料を説明する。配線形成材料には、金属ナノ粒子と、ポリマー分散剤と、溶媒とを含む導電性インクを使用するのが好ましい。導電性インクには、必要に応じて、接着促進剤、表面張力調整剤、消泡剤、レベリング添加剤、レオロジー調整剤、及びイオン強度調整剤等を含ませることができる。金属ナノ粒子は、インクに、約10〜60質量%含ませることができる。ポリマー分散剤は、インクに、約0.5〜20質量%含ませることができる。インクは、硬化したときに、約200μΩ・cm未満の抵抗率を有する皮膜を形成するのが好ましい。   Next, the wiring forming material will be described. As the wiring forming material, it is preferable to use a conductive ink containing metal nanoparticles, a polymer dispersant, and a solvent. The conductive ink can contain an adhesion promoter, a surface tension adjusting agent, an antifoaming agent, a leveling additive, a rheology adjusting agent, an ionic strength adjusting agent, and the like as necessary. The metal nanoparticles can be contained in the ink in an amount of about 10 to 60% by mass. The polymer dispersant can be contained in the ink in an amount of about 0.5 to 20% by mass. The ink preferably forms a film having a resistivity of less than about 200 μΩ · cm when cured.

金属ナノ粒子には、例えば、銅、銀、ニッケル、鉄、コバルト、アルミニウム、パラジウム、金、スズ、亜鉛、及びカドミウムを単独、または組み合わせて使用することができる。特に銅が好ましい。ナノ粒子は、直径が約0.1μm(100nm)以下であり得る。分散剤としては、例えば、ポリアミン、ポリビニルピロリドン、ポリエチレングリコール、イソステアリルエチルイミダゾリニウムエトサルフェート、及びオレイルエチルイミダゾリニウムエトサルフェートを単独、または組み合わせて使用することができる。または、分散剤は、リン酸変性ホスフェートポリエステルコポリマー、及びスルホン化スチレン無水マレイン酸エステルを単独、または組み合わせて使用することができる。溶媒には、水または各種有機溶媒を使用することができる。   For the metal nanoparticles, for example, copper, silver, nickel, iron, cobalt, aluminum, palladium, gold, tin, zinc, and cadmium can be used alone or in combination. Copper is particularly preferable. Nanoparticles can have a diameter of about 0.1 μm (100 nm) or less. As the dispersant, for example, polyamine, polyvinyl pyrrolidone, polyethylene glycol, isostearyl ethyl imidazolinium etsulfate, and oleyl ethyl imidazolinium etsulfate can be used alone or in combination. Alternatively, the dispersant may be a phosphoric acid-modified phosphate polyester copolymer and a sulfonated styrene maleic anhydride ester, alone or in combination. As the solvent, water or various organic solvents can be used.

上記のような導電性インクでは、図9(a)に示すように、金属ナノ粒子32が、分散剤34により表面を覆われた状態で、溶媒(ないしは液状媒体)の中を浮遊している。分散剤34は、適宜の量の光が照射されることで、温度が上昇する。これにより、分散剤34は、例えば軟化することで、金属ナノ粒子32の表面から離脱する。その結果、金属ナノ粒子32同士が直接的に触れ合う状態となり、そのような状態で金属ナノ粒子32が、図9(b)に示すように、互いに接触するように集まることで、自動的に焼結プロセスが進行する。これにより、多数の金属ナノ粒子32が結合することで、図9(c)に示すようなバルク金属36が生成される。   In the conductive ink as described above, as shown in FIG. 9A, the metal nanoparticles 32 are suspended in the solvent (or liquid medium) with the surface covered with the dispersant 34. . The temperature of the dispersant 34 rises when irradiated with an appropriate amount of light. Thereby, the dispersing agent 34 is detached from the surface of the metal nanoparticles 32 by, for example, softening. As a result, the metal nanoparticles 32 come into direct contact with each other, and in such a state, the metal nanoparticles 32 are brought into contact with each other as shown in FIG. The freezing process proceeds. As a result, a large number of metal nanoparticles 32 are bonded to generate a bulk metal 36 as shown in FIG.

導電性インクが、Cuナノフィラーを含む場合には、外部端子24は、少なくとも最表面にAuを含むのが好ましい。これにより、外部端子24と、導電性配線パターン28との金属結合が容易となり、より大きな結合強度を得ることができる。   When the conductive ink contains Cu nanofiller, the external terminal 24 preferably contains Au at least on the outermost surface. As a result, metal bonding between the external terminal 24 and the conductive wiring pattern 28 is facilitated, and higher bonding strength can be obtained.

次に、図1のシステムによりICカードを製造する製造方法を説明する。   Next, a manufacturing method for manufacturing an IC card using the system of FIG. 1 will be described.

図10に、非接触式のICカードの構造を断面図により模式的に示す。図示例のICカード40は層状構造を有している。なお、図10では、視認性を確保するために、ICカード40の各層を、厚み方向に拡大している。また、図10に示す各層の厚みは、必ずしも実際の各層の厚みの比と一致していない。また、図10では、電子部品は、断面ではなく、輪郭を単純化して示している。   FIG. 10 schematically shows the structure of a non-contact type IC card with a cross-sectional view. The IC card 40 in the illustrated example has a layered structure. In FIG. 10, each layer of the IC card 40 is enlarged in the thickness direction in order to ensure visibility. Further, the thickness of each layer shown in FIG. 10 does not necessarily match the actual ratio of the thickness of each layer. In FIG. 10, the electronic component is not a cross section but a simplified outline.

図示例のICカード40は、ICチップ22Aが実装される、樹脂製のアンテナ回路基板14Aと、アンテナ回路基板14Aの実装面を被覆する、樹脂製の被覆層42と、被覆層42の上を覆う、樹脂製の第1表層43と、アンテナ回路基板14Aの裏面(実装面の反対側の面)を覆う、樹脂製の第2表層44とを含んでいる。アンテナ回路基板14AのICチップ実装面には、アンテナ回路28Aである導電性配線パターンが形成されている。被覆層42のICチップ22Aと対応する部分には、ICチップ22Aを収納する、孔状のチップ収納部45が形成されている。以下、図示例のICカード40のアンテナ回路基板14AにICチップ22Aを実装する場合を説明する。   An IC card 40 in the illustrated example includes a resin antenna circuit board 14A on which an IC chip 22A is mounted, a resin coating layer 42 that covers the mounting surface of the antenna circuit board 14A, and a coating layer 42. A resin-made first surface layer 43 and a resin-made second surface layer 44 covering the back surface (the surface opposite to the mounting surface) of the antenna circuit board 14A are included. A conductive wiring pattern that is the antenna circuit 28A is formed on the IC chip mounting surface of the antenna circuit board 14A. In a portion corresponding to the IC chip 22 </ b> A of the covering layer 42, a hole-shaped chip storage portion 45 that stores the IC chip 22 </ b> A is formed. Hereinafter, a case where the IC chip 22A is mounted on the antenna circuit board 14A of the IC card 40 in the illustrated example will be described.

(1)未だアンテナ回路28Aが形成されていないアンテナ回路基板14Aを、基板供給ユニット1において、図示しない基板ローダーにより、コンベア6Aの上に設置されたキャリアボード12の上に載置する。このとき、少なくともアンテナ回路基板14Aの配線形成領域(図3及び図6の光硬化性配線パターン16Aの外形)の投影形状が、コンベア6Aのボード支持部7と重ならないように、アンテナ回路基板14Aをキャリアボード12の上に載置する。   (1) The antenna circuit board 14A in which the antenna circuit 28A is not yet formed is placed on the carrier board 12 installed on the conveyor 6A by the board loader (not shown) in the board supply unit 1. At this time, the antenna circuit board 14A is arranged so that at least the projected shape of the wiring formation region of the antenna circuit board 14A (the outer shape of the photocurable wiring pattern 16A in FIGS. 3 and 6) does not overlap the board support portion 7 of the conveyor 6A. Is placed on the carrier board 12.

(2)コンベア6Aにより、アンテナ回路基板14Aを基板供給ユニット1から配線形成材料供給ユニット2まで搬送し、アンテナ回路基板14AのICチップ実装面にアンテナ回路28Aと対応する光硬化性配線パターン16Aを形成する。このとき、必要に応じて、キャリアボード12上のアンテナ回路基板14Aの位置及び姿勢を、カメラ画像等により検知することができる。   (2) The conveyer 6A conveys the antenna circuit board 14A from the board supply unit 1 to the wiring forming material supply unit 2, and the photocurable wiring pattern 16A corresponding to the antenna circuit 28A is provided on the IC chip mounting surface of the antenna circuit board 14A. Form. At this time, the position and orientation of the antenna circuit board 14A on the carrier board 12 can be detected from a camera image or the like as necessary.

光硬化性配線パターン16Aは、上述した塗布装置を使用して、アンテナ回路基板14Aのチップ実装面に配線形成材料(例えば上述の導電性インク)を塗布することで形成することができる。あるいは、光硬化性配線パターン16Aは、上述した各種印刷装置を使用して、配線形成材料で印刷することで、形成することができる。これにより、図3に示したような、光硬化性配線パターン16Aがアンテナ回路基板14Aのチップ実装面に形成される。このとき、カメラ画像等により検知したアンテナ回路基板14Aの位置及び姿勢に基づいて、塗布装置のニードルの位置決めをしたり、スクリーン印刷装置のマスクの位置決めをしたり、インクジェットプリンタのノズルの位置決めをしたりすることができる。   The photocurable wiring pattern 16A can be formed by applying a wiring forming material (for example, the above-described conductive ink) to the chip mounting surface of the antenna circuit board 14A using the above-described coating apparatus. Alternatively, the photocurable wiring pattern 16A can be formed by printing with a wiring forming material using the above-described various printing apparatuses. Thereby, the photocurable wiring pattern 16A as shown in FIG. 3 is formed on the chip mounting surface of the antenna circuit board 14A. At this time, based on the position and orientation of the antenna circuit board 14A detected by the camera image or the like, the needle of the coating device is positioned, the mask of the screen printing device is positioned, or the nozzle of the inkjet printer is positioned. Can be.

(3)コンベア6Aにより、光硬化性配線パターン16Aが形成されたアンテナ回路基板14Aを配線形成材料供給ユニット2から搭載ユニット3まで搬送し、例えば図示しないチップマウンタにより、外部端子24Aが端子接合位置18で光硬化性配線パターン16Aの上に乗るように、ICチップ22Aを、アンテナ回路基板14Aのチップ実装面の搭載位置20に搭載する(図6参照)。これにより、図4に示すように、ICチップ22Aの各外部端子24Aの少なくとも先端が光硬化性配線パターン16Aの中に没入される。このとき、必要に応じて、キャリアボード12上のアンテナ回路基板14Aの位置及び姿勢、または、光硬化性配線パターン16Aの形状及び姿勢を、カメラ画像等により検知することができ、その検知結果により、チップマウンタの搭載ヘッドの位置決めをすることができる。   (3) The conveyor circuit 6A transports the antenna circuit board 14A on which the photocurable wiring pattern 16A is formed from the wiring forming material supply unit 2 to the mounting unit 3, and the external terminal 24A is connected to the terminal joining position by a chip mounter (not shown), for example. The IC chip 22A is mounted at the mounting position 20 on the chip mounting surface of the antenna circuit board 14A so as to ride on the photo-curable wiring pattern 16A (see FIG. 6). Thereby, as shown in FIG. 4, at least the tip of each external terminal 24A of the IC chip 22A is immersed in the photo-curable wiring pattern 16A. At this time, the position and orientation of the antenna circuit board 14A on the carrier board 12 or the shape and orientation of the photocurable wiring pattern 16A can be detected from a camera image or the like as necessary. The mounting head of the chip mounter can be positioned.

(4)コンベア6Aにより、ICチップ22Aが搭載されたアンテナ回路基板14Aを、搭載ユニット3から光照射ユニット4まで搬送し、光照射ユニット4で光硬化性配線パターン16Aに光を照射することで硬化させる。これにより、アンテナ回路28Aを形成するとともに、同時に、アンテナ回路28Aと外部端子24Aとを接合する。このとき、図7に示したように、コンベア6Aの下方に配置された光源26により、アンテナ回路基板14Aの下面(第2表面)側から、キャリアボード12及びアンテナ回路基板14Aを透過させた光を光硬化性配線パターン16Aに照射する。   (4) The conveyor circuit 6A conveys the antenna circuit board 14A on which the IC chip 22A is mounted from the mounting unit 3 to the light irradiation unit 4, and the light irradiation unit 4 irradiates the photocurable wiring pattern 16A with light. Harden. Thus, the antenna circuit 28A is formed, and at the same time, the antenna circuit 28A and the external terminal 24A are joined. At this time, as shown in FIG. 7, light transmitted through the carrier board 12 and the antenna circuit board 14A from the lower surface (second surface) side of the antenna circuit board 14A by the light source 26 arranged below the conveyor 6A. Is applied to the photocurable wiring pattern 16A.

以上のように、実施形態1の製造方法によれば、アンテナ回路28Aの形成と、アンテナ回路28Aと外部端子24Aとの接合とが、一つの工程(光照射工程)により同時に行えるので、ICカード用の基板(例えば、ICカード用のICチップ実装アンテナ回路基板)の製造時間を短縮することが可能となり、ICカードの生産性を向上させることができる。   As described above, according to the manufacturing method of the first embodiment, the formation of the antenna circuit 28A and the joining of the antenna circuit 28A and the external terminal 24A can be performed simultaneously in one process (light irradiation process). The manufacturing time of a circuit board (for example, an IC chip mounting antenna circuit board for an IC card) can be shortened, and the productivity of the IC card can be improved.

さらに、アンテナ回路28Aと外部端子24Aとの接合が、リフロー工程等の加熱工程なしに行えるので、アンテナ回路基板14Aに耐熱性の高い材料を使用する必要性がなくなる。その結果、耐熱性は低いが、他の点で優位な特性を有する様々な材料をアンテナ回路基板14Aの素材として使用することが可能となる。例えば、ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリカーボネート等の比較的安価な材料をICカード用のアンテナ回路基板14Aの素材として使用することができる。したがって、ICカードの製造コストを低減することができる。あるいは、光透過率が高く、かつ絶縁破壊電圧が高い、アクリル樹脂、およびポリスチレン等の材料をICカード用のアンテナ回路基板14Aの素材として好適に使用することができる。   Further, since the antenna circuit 28A and the external terminal 24A can be joined without a heating process such as a reflow process, it is not necessary to use a material having high heat resistance for the antenna circuit board 14A. As a result, various materials having low heat resistance but having other advantageous characteristics can be used as the material of the antenna circuit board 14A. For example, a relatively inexpensive material such as polyethylene terephthalate, polyethylene naphthalate, or polycarbonate can be used as a material for the antenna circuit board 14A for an IC card. Therefore, the manufacturing cost of the IC card can be reduced. Alternatively, materials such as acrylic resin and polystyrene having high light transmittance and high dielectric breakdown voltage can be suitably used as the material of the antenna circuit board 14A for IC card.

そして、外部端子24Aが没入された状態で光硬化性配線パターン16Aが硬化することで、アンカー効果により、外部端子24Aをアンテナ回路28Aと端子接合位置で強固に結合することができる。これにより、例えばICチップ22Aとアンテナ回路基板14Aとの間にアンダーフィル材や、異方導電性ペースト(ACP:Anisotropic Conductive Paste)、および異方導電性フィルム(ACF:Anisotropic Conductive Film)を供給して接合を補強するような補強工程を実行する必要もなくなる。これにより、さらに生産性を向上させることができる。   Then, the photocurable wiring pattern 16A is cured while the external terminal 24A is immersed, whereby the external terminal 24A can be firmly coupled to the antenna circuit 28A at the terminal joint position by the anchor effect. Accordingly, for example, an underfill material, an anisotropic conductive paste (ACP), and an anisotropic conductive film (ACF) are supplied between the IC chip 22A and the antenna circuit board 14A. Thus, it is not necessary to perform a reinforcing process for reinforcing the joint. Thereby, productivity can be further improved.

なお、ICチップ22Aの外部端子24Aの個数が少なく、十分な接合強度が得られないような場合には、図10に示すように、ICチップ22Aの基板対向面に適宜個数のダミー電極24Dを設け、それを光硬化性配線パターン16Aに没入させた状態で光硬化性配線パターン16Aを硬化させることで、所望の接合強度を得ることもできる。この場合にも、特に工程の数は増大しないので、容易に生産性を向上させることができる。  When the number of external terminals 24A of the IC chip 22A is small and sufficient bonding strength cannot be obtained, an appropriate number of dummy electrodes 24D are provided on the substrate facing surface of the IC chip 22A as shown in FIG. The desired bonding strength can also be obtained by providing the photocurable wiring pattern 16A in a state where the photocurable wiring pattern 16A is provided and immersed in the photocurable wiring pattern 16A. Also in this case, since the number of processes is not particularly increased, productivity can be easily improved.

(実施形態2)
図11に、本発明の他の実施形態に係るICカードの製造システムである表面実装ラインを簡略化した正面図により示す。
(Embodiment 2)
FIG. 11 shows a simplified front view of a surface mounting line which is an IC card manufacturing system according to another embodiment of the present invention.

図示例のライン10Aは、基板を供給する基板供給ユニット1Aと、配線形成材料供給ユニット2Aと、電子部品搭載ユニット3Aと、光照射ユニット4Aと、部品実装基板回収ユニット5Aと、各ユニットの間で基板を移動する、移動手段6としての送り装置6Bと、を含んでいる。   The illustrated line 10A includes a substrate supply unit 1A for supplying a substrate, a wiring forming material supply unit 2A, an electronic component mounting unit 3A, a light irradiation unit 4A, a component mounting substrate recovery unit 5A, And a feeding device 6B as moving means 6 for moving the substrate.

ライン10Aは、長尺のフィルム状の基板素材50に、複数セットのベアチップ部品等の電子部品22を、所定の間隔を開けて実装する表面実装ラインである。図11中の光硬化性配線パターン16、電子部品22、および外部端子24は、図7で示したものと同じである。このとき、基板供給ユニット1Aには、フィルム状の基板素材50を巻出す巻き出しロール52を含ませることができる。一方、部品実装基板回収ユニット5Aには、電子部品が実装されたフィルム状の基板素材50を巻き取る巻き取りロール54を含ませることができる。このように、ライン10Aは、ロールツーロール方式の表面実装ラインとして構成される。   The line 10 </ b> A is a surface mounting line for mounting a plurality of sets of electronic components 22 such as bare chip components on a long film-like substrate material 50 at a predetermined interval. The photocurable wiring pattern 16, the electronic component 22, and the external terminal 24 in FIG. 11 are the same as those shown in FIG. At this time, the substrate supply unit 1 </ b> A can include an unwinding roll 52 that unwinds the film-like substrate material 50. On the other hand, the component mounting board recovery unit 5A can include a take-up roll 54 that winds up the film-like board material 50 on which electronic parts are mounted. Thus, the line 10A is configured as a roll-to-roll surface mount line.

送り装置6Bには、一対のスプロケット56を含ませることができる。これと対応して、基板素材50の幅方向の両側には、所定の間隔で複数のスプロケット孔を形成することができる。一対のスプロケット56がスプロケット孔と係合しながら図の矢印の向きに回転することで、基板素材50が、基板供給ユニット1Aから、配線形成材料供給ユニット2A、搭載ユニット3A、及び光照射ユニット4Aを経て、部品実装基板回収ユニット5Aまで送られる。   A pair of sprockets 56 can be included in the feeding device 6B. Correspondingly, a plurality of sprocket holes can be formed at predetermined intervals on both sides of the substrate material 50 in the width direction. By rotating the pair of sprockets 56 in the direction of the arrows in the figure while engaging with the sprocket holes, the substrate material 50 is transferred from the substrate supply unit 1A to the wiring forming material supply unit 2A, the mounting unit 3A, and the light irradiation unit 4A. And then sent to the component mounting board recovery unit 5A.

基板素材50は、実施形態1と同じ理由で、光透過性樹脂により形成するのが好ましい。光透過性樹脂としては、実施形態1で挙げたのと同じ樹脂、つまり、ポリエチレン、ポリプロピレン、ポリブチレンテレフタレート、ポリフェニルスルフィド、ポリエーテルエーテルケトン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネイト、液晶ポリマー、ポリスチレン、アクリル樹脂、ポリアセタール、ポリフェニルエーテル、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合樹脂が挙げられる。これらの樹脂は、単独で用いてもよく、複数種を組み合わせて用いてもよい。例えば、複数種の樹脂のポリマーアロイであってもよい。   The substrate material 50 is preferably formed of a light transmissive resin for the same reason as in the first embodiment. As the light transmissive resin, the same resin as described in Embodiment 1, that is, polyethylene, polypropylene, polybutylene terephthalate, polyphenyl sulfide, polyether ether ketone, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), Examples thereof include polycarbonate, liquid crystal polymer, polystyrene, acrylic resin, polyacetal, polyphenyl ether, acrylonitrile-styrene copolymer, and acrylonitrile-butadiene-styrene copolymer resin. These resins may be used alone or in combination of two or more. For example, it may be a polymer alloy of plural kinds of resins.

図12Aに、テープ状のフィルムからなる基板素材の参考例を上面図により示す。図示例の基板素材50Aは、液晶ドライバおよび液晶パネルを含む部品実装基板(COF(Chip On Film) パッケージ)用の基板素材であり、幅方向(X軸に平行な方向)の両端部には、長手方向(Y軸に平行な方向)に所定の間隔で並ぶように複数のスプロケット孔51が形成されている。基板素材50Aが一定の張力を保つように、スプロケット孔51を一対のスプロケット56と係合させ、その状態で、一対のスプロケット56を回転させることで、基板素材50が、基板供給ユニット1Aから、配線形成材料供給ユニット2A、搭載ユニット3A、及び光照射ユニット4Aを経て、部品実装基板回収ユニット5Aまで長手方向に送られる。   FIG. 12A is a top view showing a reference example of a substrate material made of a tape-like film. The substrate material 50A in the illustrated example is a substrate material for a component mounting substrate (COF (Chip On Film) package) including a liquid crystal driver and a liquid crystal panel, and at both ends in the width direction (direction parallel to the X axis), A plurality of sprocket holes 51 are formed so as to be arranged at predetermined intervals in the longitudinal direction (direction parallel to the Y axis). The substrate material 50 is moved from the substrate supply unit 1A by engaging the sprocket holes 51 with the pair of sprockets 56 and rotating the pair of sprockets 56 in that state so that the substrate material 50A maintains a constant tension. The wiring forming material supply unit 2A, the mounting unit 3A, and the light irradiation unit 4A are sent to the component mounting board recovery unit 5A in the longitudinal direction.

また、基板素材50Aには、基板素材50Aを裁断して、液晶ドライバを実装したCOFパッケージを基板素材50Aから切り出すための基板輪郭58Aが所定の間隔で設置されている。基板素材50の基板輪郭58Aで囲まれた部分がそれぞれ回路基板14Bである。基板輪郭58Aは、基板素材50Aに予め塗料で印刷して形成することができる。配線形成材料供給ユニット2Aにおける配線材料の供給(塗布、印刷)は、カメラ画像等により例えば基板輪郭58を認識することで位置決めをすることができる。   The substrate material 50A is provided with substrate contours 58A at predetermined intervals for cutting the substrate material 50A and cutting out the COF package on which the liquid crystal driver is mounted from the substrate material 50A. The portions surrounded by the board outline 58A of the board material 50 are the circuit boards 14B. The substrate contour 58A can be formed by printing in advance on the substrate material 50A with a paint. The supply (application and printing) of the wiring material in the wiring forming material supply unit 2A can be positioned by recognizing, for example, the substrate outline 58 from a camera image or the like.

図12Bに、テープ状のフィルムからなるICカード用の複数の基板を含む基板素材の一例を上面図により示す。図示例の基板素材50Bは、ICカードのアンテナ回路用の基板素材であり、幅方向(X軸に平行な方向)の両端部には、長手方向(Y軸に平行な方向)に所定の間隔で並ぶように複数のスプロケット孔51が形成されている。基板素材50Bも一定の張力を保つように、スプロケット孔51を一対のスプロケット56と係合させ、その状態で、一対のスプロケット56を回転させることで、基板供給ユニット1Aから、配線形成材料供給ユニット2A、搭載ユニット3A、及び光照射ユニット4Aを経て、部品実装基板回収ユニット5Aまで長手方向に送られる。   FIG. 12B shows a top view of an example of a substrate material including a plurality of substrates for an IC card made of a tape-shaped film. The substrate material 50B in the illustrated example is a substrate material for an antenna circuit of an IC card, and has a predetermined interval in the longitudinal direction (direction parallel to the Y axis) at both ends in the width direction (direction parallel to the X axis). A plurality of sprocket holes 51 are formed so as to line up with each other. The substrate material 50B is engaged with the pair of sprockets 56 so that the substrate material 50B maintains a constant tension, and in this state, the pair of sprockets 56 is rotated, so that the wiring forming material supply unit is supplied from the substrate supply unit 1A. 2A, the mounting unit 3A, and the light irradiation unit 4A are sent to the component mounting board recovery unit 5A in the longitudinal direction.

また、基板素材50Bにも、基板素材50Bを裁断して、ICチップを実装したアンテナ回路基板を基板素材50Bから切り出すための基板輪郭58Bが所定の間隔で設置されている。基板素材50Bの基板輪郭58Bで囲まれた部分がそれぞれ図3等で示したアンテナ回路基板14Aである。基板輪郭58Aは、基板素材50Aに予め塗料で印刷して形成することができる。配線形成材料供給ユニット2Aにおける配線材料の供給(塗布、印刷)は、カメラ画像等により例えば基板輪郭58を認識することで位置決めをすることができる。   The substrate material 50B is also provided with substrate contours 58B at predetermined intervals for cutting the substrate material 50B and cutting out the antenna circuit substrate on which the IC chip is mounted from the substrate material 50B. The portions surrounded by the board outline 58B of the board material 50B are the antenna circuit boards 14A shown in FIG. The substrate contour 58A can be formed by printing in advance on the substrate material 50A with a paint. The supply (application and printing) of the wiring material in the wiring forming material supply unit 2A can be positioned by recognizing, for example, the substrate outline 58 from a camera image or the like.

配線形成材料供給ユニット2Aには、実施形態1と同様の塗布装置または印刷装置を含ませることができる。   The wiring forming material supply unit 2A can include the same coating apparatus or printing apparatus as in the first embodiment.

図13Aに、配線形成材料供給ユニットにより、基板素材の参考例に所定の間隔で、1つの電子部品(第1電子部品)を他の1つの電子部品(第2電子部品)と接続するための接続回路と対応する光硬化性配線パターンを、基板毎に形成した様子を上面図により示す。光硬化性配線パターン16Bは、互いに絶縁された、基板14Bの中央寄りの端部と、外周側の端部とを有する、複数の接続ラインと対応するパターンである。各接続ラインの端子接合位置18Aは、接続ラインの中央寄りの端部に配置されている。端子接合位置18Aは、基板14Bの第1表面(紙面で表側になっている面)における電子部品が搭載される搭載位置20Aに含まれている。   In FIG. 13A, a wiring forming material supply unit connects one electronic component (first electronic component) to another electronic component (second electronic component) at a predetermined interval in a reference example of a substrate material. A top view shows a state in which a photocurable wiring pattern corresponding to a connection circuit is formed for each substrate. The photocurable wiring pattern 16B is a pattern corresponding to a plurality of connection lines that are insulated from each other and have an end near the center of the substrate 14B and an end on the outer peripheral side. The terminal joint position 18A of each connection line is disposed at the end near the center of the connection line. The terminal bonding position 18A is included in the mounting position 20A where the electronic component is mounted on the first surface (the surface that is the front side in the drawing) of the substrate 14B.

なお、図13Aに示すように、基板素材50Aの各基板14Bの内部には、光硬化性配線パターン16Bとは別に、上記の1つの電子部品と外部機器とを接続するための接続回路と対応する光硬化性配線パターン16Cを配線形成材料供給ユニット2Aにより形成することもできる。   As shown in FIG. 13A, in each substrate 14B of the substrate material 50A, in addition to the photocurable wiring pattern 16B, it corresponds to a connection circuit for connecting the one electronic component and the external device. The photocurable wiring pattern 16C to be formed can also be formed by the wiring forming material supply unit 2A.

図13Bに、配線形成材料供給ユニットにより、ICカード用の複数の基板を含む基板素材の一例に所定の間隔で、アンテナ回路用の光硬化性配線パターンを、基板毎に形成した様子を上面図により示す。図13B中の基板14A、光硬化性配線パターン16A、端子接合位置18および搭載位置20は、図6で示したものと同じであり、光硬化性配線パターン16Aは、基板14Aの第1表面(紙面で表側になっている面)に形成されている。   FIG. 13B is a top view showing a state in which a photocurable wiring pattern for an antenna circuit is formed for each substrate on an example of a substrate material including a plurality of substrates for IC cards by a wiring forming material supply unit at a predetermined interval. Indicated by The substrate 14A, the photocurable wiring pattern 16A, the terminal bonding position 18 and the mounting position 20 in FIG. 13B are the same as those shown in FIG. 6, and the photocurable wiring pattern 16A is the first surface ( It is formed on the front side of the paper).

搭載ユニット3Aには、実施形態1と同様の電子部品供給装置と、ベアチップ部品等の電子部品を基板の上に配置するチップマウンタとを含ませることができる。   The mounting unit 3A can include an electronic component supply apparatus similar to that of the first embodiment and a chip mounter that arranges electronic components such as bare chip components on a substrate.

図14Aに、搭載ユニット3Aにより、電子部品の参考例である液晶ドライバ22Bを、基板素材50Aの各搭載位置20Aに搭載した様子を上面図により示す。
このとき、図15に示すように、液晶ドライバ22Bの下面に設けられた複数の外部端子24Cは、各端子接合位置18Aで、それぞれ、光硬化性配線パターン16B、または、ここでは図示していない光硬化性配線パターン16Cと接触している。
FIG. 14A is a top view showing a state where a liquid crystal driver 22B, which is a reference example of an electronic component, is mounted on each mounting position 20A of the substrate material 50A by the mounting unit 3A.
At this time, as shown in FIG. 15, the plurality of external terminals 24C provided on the lower surface of the liquid crystal driver 22B are each at the terminal bonding positions 18A, respectively, and are not shown here. It is in contact with the photocurable wiring pattern 16C.

図示例の状態では、光硬化性配線パターン16B(及び光硬化性配線パターン16C、以下同じ)が未だ硬化していないために、外部端子24Cは、流動性ないしは変形性を有する光硬化性配線パターン16Bの中に没入している。これにより、後の光照射工程により光硬化性配線パターン16Bが硬化して、導電性配線パターン(接続回路)が形成されると、アンカー効果により、外部端子24Cが、導電性配線パターンと端子接合位置18Aで強固に結合される。   In the state of the illustrated example, since the photocurable wiring pattern 16B (and the photocurable wiring pattern 16C, hereinafter the same) has not yet been cured, the external terminal 24C has a photocurable wiring pattern having fluidity or deformability. I am immersed in 16B. As a result, when the photocurable wiring pattern 16B is cured by a subsequent light irradiation process and a conductive wiring pattern (connection circuit) is formed, the external terminal 24C is bonded to the conductive wiring pattern and the terminal by an anchor effect. It is firmly joined at position 18A.

なお、外部端子24Cの根元から先端まで断面形状を変えないように形成することで十分なアンカー効果が得られること、並びに、より大きなアンカー効果と結合強度を得るために、先端の径だけを大きくした外部端子を使用できることは上述した通りである。   In order to obtain a sufficient anchor effect by forming the external terminal 24C from the base to the tip so as not to change the cross-sectional shape, and to obtain a larger anchor effect and coupling strength, only the tip diameter is increased. As described above, the external terminal can be used.

図14Bに、搭載ユニット3Aにより、図6に示したのと同じICチップ22Aを、基板素材50Bの各搭載位置20に搭載した様子を上面図により示す。このとき、ICチップ22Aの下面に設けられた複数の外部端子24Aは、各端子接合位置18で、それぞれ、光硬化性配線パターン16Aと接触している。そして、光硬化性配線パターン16Aが未だ硬化していないために、外部端子24Aは、図15の場合と同様に、流動性ないしは変形性を有する光硬化性配線パターン16Aの中に没入している。   FIG. 14B is a top view showing a state where the same IC chip 22A as shown in FIG. 6 is mounted at each mounting position 20 of the substrate material 50B by the mounting unit 3A. At this time, the plurality of external terminals 24 </ b> A provided on the lower surface of the IC chip 22 </ b> A are in contact with the photocurable wiring pattern 16 </ b> A at each terminal bonding position 18. And since the photocurable wiring pattern 16A is not yet cured, the external terminal 24A is immersed in the photocurable wiring pattern 16A having fluidity or deformability as in the case of FIG. .

なお、外部端子24Aの根元から先端まで断面形状を変えないように形成することで十分なアンカー効果が得られること、並びに、より大きなアンカー効果と結合強度を得るために、先端の径だけを大きくした外部端子を使用できることは実施形態1と同様である。   In order to obtain a sufficient anchor effect by forming the external terminal 24A from the base to the tip so as not to change the cross-sectional shape, and to obtain a larger anchor effect and coupling strength, only the tip diameter is increased. Similar to the first embodiment, the external terminal can be used.

図11の光照射ユニット4Aも、実施形態1と同様の光源26Aを含んでいる。光源26Aは、送り装置6Bにより送られる基板素材50の下方(第2表面側)に配置することができる。このとき、光透過性を有する基板素材50を使用することで、光源26Aから発せられた光は、基板素材50を透過して、基板素材50の上面に設置された光硬化性配線パターン16に到達する。これにより、光硬化性配線パターン16が硬化して、接続回路が形成される。このとき、同時に、外部端子24が接続回路と端子接合位置で接合される。配線形成材料には、実施形態1と同様の導電性インクを使用することができる。   The light irradiation unit 4A in FIG. 11 also includes a light source 26A similar to that of the first embodiment. The light source 26A can be disposed below (on the second surface side) the substrate material 50 fed by the feeding device 6B. At this time, by using the substrate material 50 having optical transparency, the light emitted from the light source 26 </ b> A is transmitted through the substrate material 50 to the photocurable wiring pattern 16 installed on the upper surface of the substrate material 50. To reach. Thereby, the photocurable wiring pattern 16 is cured and a connection circuit is formed. At the same time, the external terminal 24 is joined to the connection circuit at the terminal joining position. As the wiring forming material, the same conductive ink as in the first embodiment can be used.

次に、図11のシステムにより部品実装基板を製造する製造方法の参考例を説明する。以下の例では、液晶ドライバを含むCOFパッケージを製造している。   Next, a reference example of a manufacturing method for manufacturing a component mounting board using the system of FIG. 11 will be described. In the following example, a COF package including a liquid crystal driver is manufactured.

図16Aに、液晶ドライバおよび液晶パネルを含むCOFパッケージ(液晶表示モジュール)の一部分(以下、便宜的に、その一部分を「COFパッケージ40A」という)を上面図により模式的に示す。図16Bには、液晶ドライバおよび液晶パネルを含むCOFパッケージ(COFパッケージ40B)の全体を示す。図16Aに示すCOFパッケージ40Aは樹脂フィルムからなる回路基板14Bと、回路基板14Bの実装面を被覆する、樹脂製の被覆層42Aとを含んでいる。なお、被覆層42Aは省略することができる。回路基板14Bの液晶ドライバ22Bの実装面には、液晶ドライバ22Bと図示しない液晶パネルとを接続する複数の接続ラインからなる接続回路28Bが形成されている。さらに、回路基板14Bの液晶ドライバ22Bの実装面には、液晶ドライバ22Bと外部機器とを接続するための複数のより太い接続ラインからなる接続回路28Cが形成されている。   FIG. 16A schematically shows a part of a COF package (liquid crystal display module) including a liquid crystal driver and a liquid crystal panel (hereinafter, a part thereof is referred to as “COF package 40A” for convenience) by a top view. FIG. 16B shows an entire COF package (COF package 40B) including a liquid crystal driver and a liquid crystal panel. A COF package 40A shown in FIG. 16A includes a circuit board 14B made of a resin film, and a resin coating layer 42A that covers the mounting surface of the circuit board 14B. The covering layer 42A can be omitted. A connection circuit 28B composed of a plurality of connection lines for connecting the liquid crystal driver 22B and a liquid crystal panel (not shown) is formed on the mounting surface of the liquid crystal driver 22B on the circuit board 14B. Further, a connection circuit 28C including a plurality of thicker connection lines for connecting the liquid crystal driver 22B and an external device is formed on the mounting surface of the liquid crystal driver 22B of the circuit board 14B.

液晶ドライバ22Bの周囲は、被覆層42Aにより覆われておらず回路基板14Bの実装面が露出している。以下、図示例のCOFパッケージ40Aを製造する場合を説明する。   The periphery of the liquid crystal driver 22B is not covered with the covering layer 42A, and the mounting surface of the circuit board 14B is exposed. Hereinafter, a case where the illustrated COF package 40A is manufactured will be described.

(1)未だ接続回路28B及び28Cが形成されていない基板素材50Aを、基板供給ユニット1Aにおいて、巻き出しロール52に巻き付けた状態でセットする。そして、巻き出しロール52から巻出した基板素材50Aを、一対のスプロケット56に、十分な張力を与えながら掛け渡し、その状態でさらに一対のスプロケット56を回転させながら、基板素材50の先端を巻き取りロール54に所定長さだけ巻き取らせる。   (1) The substrate material 50A on which the connection circuits 28B and 28C are not yet formed is set in a state of being wound around the unwinding roll 52 in the substrate supply unit 1A. Then, the substrate material 50A unwound from the unwinding roll 52 is passed over the pair of sprockets 56 while applying sufficient tension, and the tip of the substrate material 50 is wound while further rotating the pair of sprockets 56 in this state. The take-up roll 54 is wound by a predetermined length.

(2)基板素材50の1つの基板輪郭58Aを配線形成材料供給ユニット2Aでカメラ画像等により認識し、その基板輪郭58が配線形成材料供給ユニット2Aにおける材料供給位置に到達すると、基板素材50Aの送りを止める。   (2) One substrate outline 58A of the substrate material 50 is recognized by the wiring formation material supply unit 2A by a camera image or the like, and when the substrate outline 58 reaches the material supply position in the wiring formation material supply unit 2A, Stop feeding.

配線形成材料供給ユニット2Aにおいては、光硬化性配線パターン16Bおよび16Cを、上述した塗布装置や各種印刷装置を使用して形成することができる。これにより、図13に示したような、光硬化性配線パターン16Bおよび16Cが、基板素材50Aの実装面に配された基板輪郭58の内部に、基板14B毎に形成される。光硬化性配線パターン16Bおよび16Cが形成されると基板素材50Aの送りが再開される。このとき、カメラ画像等により検知した基板輪郭58の位置及び姿勢に基づいて、塗布装置のニードルの位置決めをしたり、スクリーン印刷装置のマスクの位置決めをしたり、インクジェットプリンタのノズルの位置決めをしたりすることができる。   In the wiring forming material supply unit 2A, the photocurable wiring patterns 16B and 16C can be formed using the above-described coating apparatus and various printing apparatuses. As a result, the photocurable wiring patterns 16B and 16C as shown in FIG. 13 are formed for each substrate 14B within the substrate contour 58 disposed on the mounting surface of the substrate material 50A. When the photocurable wiring patterns 16B and 16C are formed, the feeding of the substrate material 50A is resumed. At this time, based on the position and orientation of the substrate contour 58 detected by the camera image or the like, the needle of the coating device is positioned, the mask of the screen printing device is positioned, or the nozzle of the inkjet printer is positioned. can do.

また、光硬化性配線パターン16Bおよび16Cは、1セットずつ形成してもよいし、例えば、スクリーン印刷装置による場合は、複数セットの光硬化性配線パターン16Bおよび16Cを、複数の基板14Bに対応して、1回の印刷で同時に形成することもできる。あるいは、塗布装置やインクジェットプリンタにより、所定セットの光硬化性配線パターン16Bおよび16Cを順次形成した後で、基板素材50Aの送りを再開することもできる。   Moreover, the photocurable wiring patterns 16B and 16C may be formed one by one. For example, when a screen printing apparatus is used, a plurality of sets of the photocurable wiring patterns 16B and 16C correspond to the plurality of substrates 14B. And it can also form simultaneously by one printing. Alternatively, the feeding of the substrate material 50A can be resumed after a predetermined set of photocurable wiring patterns 16B and 16C are sequentially formed by a coating apparatus or an ink jet printer.

(3)光硬化性配線パターン16Bおよび16Cの1セット、または複数セットの形成が終了すると、一対のスプロケット56を回転させることで、基板素材50Aの光硬化性配線パターン16Bおよび16Cが形成された部分を、搭載ユニット3Aまで送る。そして、例えば図示しないチップマウンタにより、外部端子24Cが端子接合位置18Aで光硬化性配線パターン16Bおよび16Cの上に乗るように、液晶ドライバ22Bを、基板素材50Aのチップ実装面の搭載位置20に搭載する(図14および図15参照)。このとき、複数セットの光硬化性配線パターン16Bおよび16Cの搭載位置20に順次液晶ドライバ22Bを搭載することができる。   (3) When one or more sets of the photocurable wiring patterns 16B and 16C are formed, the pair of sprockets 56 are rotated to form the photocurable wiring patterns 16B and 16C of the substrate material 50A. The part is sent to the mounting unit 3A. Then, for example, by a chip mounter (not shown), the liquid crystal driver 22B is placed at the mounting position 20 on the chip mounting surface of the substrate material 50A so that the external terminal 24C is placed on the photocurable wiring patterns 16B and 16C at the terminal bonding position 18A. It is mounted (see FIG. 14 and FIG. 15). At this time, the liquid crystal driver 22B can be sequentially mounted at the mounting position 20 of the plurality of sets of the photocurable wiring patterns 16B and 16C.

これにより、液晶ドライバ22Bの各外部端子24Cの少なくとも先端が光硬化性配線パターン16Bおよび16Cの中に没入される。このとき、必要に応じて、基板輪郭58の位置及び姿勢、または、光硬化性配線パターン16Bおよび16Cの形状及び姿勢を、カメラ画像等により検知することができ、その検知結果により、チップマウンタの搭載ヘッドの位置決めをすることができる。   Thereby, at least the tip of each external terminal 24C of the liquid crystal driver 22B is immersed in the photocurable wiring patterns 16B and 16C. At this time, the position and posture of the substrate contour 58 or the shape and posture of the photocurable wiring patterns 16B and 16C can be detected by a camera image or the like as necessary, and the detection result of the chip mounter can be detected. The mounting head can be positioned.

(4)1または複数の液晶ドライバ22Bの基板素材50Aへの搭載が終了すると、一対のスプロケット56を回転させることで、基板素材50Aの光硬化性配線パターン16Bおよび16Cが形成された部分を光照射ユニット4まで送る。光照射ユニット4で1または複数セットの光硬化性配線パターン16Bおよび16Cに光を照射することで、1または複数セットの光硬化性配線パターン16Bおよび16Cを硬化させる。これにより、接続回路28B及び28Cを形成するとともに、同時に、接続回路28B及び28Cと外部端子24Cとを接合する。このとき、図11に示したように、一対のスプロケット56の間に張り渡された基板素材50Aの下面(第2表面)側から、基板素材50Aを透過させた光を光硬化性配線パターン16Bおよび16Cに照射する。   (4) When the mounting of the one or more liquid crystal drivers 22B on the substrate material 50A is completed, the pair of sprockets 56 are rotated to light the portions of the substrate material 50A where the photocurable wiring patterns 16B and 16C are formed. Send to irradiation unit 4. By irradiating one or more sets of photocurable wiring patterns 16B and 16C with the light irradiation unit 4, one or more sets of photocurable wiring patterns 16B and 16C are cured. Thereby, the connection circuits 28B and 28C are formed, and at the same time, the connection circuits 28B and 28C and the external terminal 24C are joined. At this time, as shown in FIG. 11, light transmitted through the substrate material 50A from the lower surface (second surface) side of the substrate material 50A stretched between the pair of sprockets 56 is photocurable wiring pattern 16B. And 16C.

(5)巻き取りロール54により、基板14B毎に接続回路28B及び28Cが形成され、液晶ドライバ22Bが実装された基板素材50Aを巻き取る。そして、一巻きの基板素材50Aへの処理が終了すると、基板素材50Aを図示しない切断装置の巻き出しロールから巻き出し、各基板輪郭58Aにより基板素材50Aを切断することで、複数のCOFパッケージ40Aを得る。   (5) The connection circuit 28B and 28C are formed for each substrate 14B by the winding roll 54, and the substrate material 50A on which the liquid crystal driver 22B is mounted is wound. When the processing for one roll of substrate material 50A is completed, the substrate material 50A is unwound from an unwinding roll of a cutting device (not shown), and the substrate material 50A is cut by each substrate contour 58A, thereby providing a plurality of COF packages 40A. Get.

(6)図示しない実装装置により、図16Bに示すように、複数のCOFパッケージ40Aのそれぞれの接続回路28Bに、液晶パネル22Cを接続することで、複数のCOFパッケージ40Bが完成される。   (6) The plurality of COF packages 40B are completed by connecting the liquid crystal panel 22C to the connection circuits 28B of the plurality of COF packages 40A as shown in FIG.

以上のように、上記の製造方法によれば、接続回路パターン28B及び28Cの形成と、接続回路パターン28B及び28Cと外部端子24Cとの接合とが、一つの工程(光照射工程)により同時に行えるので、液晶ドライバおよび液晶パネルを含むCOFパッケージ(または、電子部品実装構造体)の製造時間を短縮することが可能となり、生産性を向上させることができる。   As described above, according to the above manufacturing method, the formation of the connection circuit patterns 28B and 28C and the connection of the connection circuit patterns 28B and 28C and the external terminal 24C can be performed simultaneously in one process (light irradiation process). Therefore, the manufacturing time of the COF package (or electronic component mounting structure) including the liquid crystal driver and the liquid crystal panel can be shortened, and the productivity can be improved.

さらに、接続回路28B及び28Cと外部端子24Cとの接合が、加熱工程なしに行えるので、回路基板14Bに耐熱性の高い材料を使用する必要性がなくなる。その結果、耐熱性は低いが、他の点で優位な特性を有する様々な材料を回路基板14Bの素材として使用することが可能となる。例えば、ポリエチレンテレフタラート、ポリエチレンナフタレート、およびポリカーボネート等の比較的安価な材料をCOFパッケージ用の回路基板14Bの素材として使用することができる。あるいは、光透過率が高く、かつ絶縁破壊電圧が高い、アクリル樹脂、およびポリスチレン等の材料をICカード用のアンテナ回路基板14Aの素材として好適に使用することができる。   Furthermore, since the connection circuits 28B and 28C and the external terminal 24C can be joined without a heating step, it is not necessary to use a material having high heat resistance for the circuit board 14B. As a result, various materials that have low heat resistance but have other advantageous characteristics can be used as the material of the circuit board 14B. For example, relatively inexpensive materials such as polyethylene terephthalate, polyethylene naphthalate, and polycarbonate can be used as the material of the circuit board 14B for the COF package. Alternatively, materials such as acrylic resin and polystyrene having high light transmittance and high dielectric breakdown voltage can be suitably used as the material of the antenna circuit board 14A for IC card.

そして、外部端子24Cが没入された状態で光硬化性配線パターン16Bおよび16Cが硬化することで、アンカー効果により、外部端子24Cを接続回路28B及び28Cと端子接合位置で強固に結合することができる。これにより、例えばICチップ22Aとアンテナ回路基板14Aとの間にアンダーフィル材や、異方導電性ペースト(ACP:Anisotropic Conductive Paste)、および異方導電性フィルム(ACF:Anisotropic Conductive Film)を供給して接合を補強するような補強工程を実行する必要もなくなる。これにより、さらに生産性を向上させることができる。   Then, the photocurable wiring patterns 16B and 16C are cured while the external terminal 24C is immersed, whereby the external terminal 24C can be firmly coupled to the connection circuits 28B and 28C at the terminal joint position by the anchor effect. . Accordingly, for example, an underfill material, an anisotropic conductive paste (ACP), and an anisotropic conductive film (ACF) are supplied between the IC chip 22A and the antenna circuit board 14A. Thus, it is not necessary to perform a reinforcing process for reinforcing the joint. Thereby, productivity can be further improved.

なお、液晶ドライバ22Bの外部端子24Cの個数が少なく、十分な接合強度が得られないような場合には、液晶ドライバ22Bの基板対向面に適宜個数のダミー電極を設け、それを光硬化性配線パターン16Bおよび16Cに没入させた状態で光硬化性配線パターン16Bおよび16Cを硬化させることで、所望の接合強度を得ることもできる。この場合にも、特に工程の数は増大しないので、容易に生産性を向上させることができる。  When the number of external terminals 24C of the liquid crystal driver 22B is small and sufficient bonding strength cannot be obtained, an appropriate number of dummy electrodes are provided on the substrate facing surface of the liquid crystal driver 22B, and this is used as a photocurable wiring. Desirable bonding strength can be obtained by curing the photocurable wiring patterns 16B and 16C in a state of being immersed in the patterns 16B and 16C. Also in this case, since the number of processes is not particularly increased, productivity can be easily improved.

さらに、キャリア搬送方式と比較すると、キャリアボードを使用することなくCOFパッケージ(または電子部品実装構造体)を製造できるので、製造コストを抑えることができる。また、キャリアボード12に1つずつ基板を固定する工程、及びキャリアボード12から1つずつ基板を剥がす工程が省略できるので、工数を削減することが可能となり、製造時間の短縮と製造コストを低減することが容易となる。そして、トラブルが発生すると直ちにラインを止めることができるので、部品のロスがなく、歩留まりを向上させることができる。   Furthermore, compared with the carrier transport method, the COF package (or electronic component mounting structure) can be manufactured without using a carrier board, so that the manufacturing cost can be reduced. Further, the process of fixing the substrates one by one to the carrier board 12 and the process of peeling the substrates one by one from the carrier board 12 can be omitted, so that the number of steps can be reduced, and the manufacturing time and the manufacturing cost can be reduced. Easy to do. And since a line can be stopped immediately when a trouble occurs, there is no loss of parts, and the yield can be improved.

次に、図11のシステムによりICカードを製造する場合を説明する。以下の例では、ICチップが実装されたアンテナ回路基板であるICチップ実装アンテナ回路基板を製造している。   Next, a case where an IC card is manufactured using the system shown in FIG. 11 will be described. In the following example, an IC chip mounting antenna circuit board, which is an antenna circuit board on which an IC chip is mounted, is manufactured.

(1)未だアンテナ回路28Aが形成されていない基板素材50Bを、基板供給ユニット1Aにおいて、巻き出しロール52に巻き付けた状態でセットする。そして、巻き出しロール52から巻出した基板素材50Bを、一対のスプロケット56に、十分な張力を与えながら掛け渡し、その状態でさらに一対のスプロケット56を回転させながら、基板素材50Bの先端を巻き取りロール54に所定長さだけ巻き取らせる。   (1) The substrate material 50B on which the antenna circuit 28A is not yet formed is set in a state of being wound around the unwinding roll 52 in the substrate supply unit 1A. Then, the substrate material 50B unwound from the unwinding roll 52 is passed over the pair of sprockets 56 while applying sufficient tension, and the tip of the substrate material 50B is wound while further rotating the pair of sprockets 56 in this state. The take-up roll 54 is wound by a predetermined length.

(2)基板素材50Bの1つの基板輪郭58Bを配線形成材料供給ユニット2Aでカメラ画像等により認識し、その基板輪郭58Bが配線形成材料供給ユニット2Aにおける材料供給位置に到達すると、基板素材50Bの送りを止める。   (2) When one substrate outline 58B of the substrate material 50B is recognized by the wiring formation material supply unit 2A by a camera image or the like and the substrate outline 58B reaches the material supply position in the wiring formation material supply unit 2A, the substrate material 50B Stop feeding.

配線形成材料供給ユニット2Aにおいては、光硬化性配線パターン16Aを、上述した塗布装置や各種印刷装置を使用して形成することができる。これにより、図13に示したような、光硬化性配線パターン16Aが、基板素材50Bの実装面に配された基板輪郭58Bの内部に、基板14A毎に形成される。光硬化性配線パターン16Aが形成されると基板素材50Bの送りが再開される。このとき、カメラ画像等により検知した基板輪郭58Bの位置及び姿勢に基づいて、塗布装置のニードルの位置決めをしたり、スクリーン印刷装置のマスクの位置決めをしたり、インクジェットプリンタのノズルの位置決めをしたりすることができる。   In the wiring forming material supply unit 2A, the photocurable wiring pattern 16A can be formed using the above-described coating apparatus and various printing apparatuses. As a result, the photocurable wiring pattern 16A as shown in FIG. 13 is formed for each substrate 14A inside the substrate contour 58B disposed on the mounting surface of the substrate material 50B. When the photocurable wiring pattern 16A is formed, the feeding of the substrate material 50B is resumed. At this time, based on the position and orientation of the substrate contour 58B detected by a camera image or the like, the needle of the coating device is positioned, the mask of the screen printing device is positioned, or the nozzle of the inkjet printer is positioned. can do.

また、光硬化性配線パターン16Aは、1セットずつ形成してもよいし、例えば、スクリーン印刷装置による場合は、複数セットの光硬化性配線パターン16Aを、複数の基板14Aに対応して、1回の印刷で同時に形成することもできる。あるいは、塗布装置やインクジェットプリンタにより、所定セットの光硬化性配線パターン16Aを順次形成した後で、基板素材50Bの送りを再開することもできる。   Further, the photocurable wiring pattern 16A may be formed one set at a time. For example, in the case of using a screen printing apparatus, a plurality of sets of the photocurable wiring pattern 16A are associated with a plurality of substrates 14A. It can also be formed simultaneously by printing once. Alternatively, the feeding of the substrate material 50B can be resumed after sequentially forming a predetermined set of the photocurable wiring pattern 16A by a coating apparatus or an ink jet printer.

(3)光硬化性配線パターン16Aの1セット、または複数セットの形成が終了すると、一対のスプロケット56を回転させることで、基板素材50Bの光硬化性配線パターン16Aが形成された部分を、搭載ユニット3Aまで送る。そして、例えば図示しないチップマウンタにより、外部端子24Aが端子接合位置18で光硬化性配線パターン16Aの上に乗るように、ICチップ22Aを、基板素材50Bのチップ実装面の搭載位置20に搭載する。このとき、複数セットの光硬化性配線パターン16Aの搭載位置20に順次ICチップ22Aを搭載することができる。   (3) When the formation of one set or a plurality of sets of the photocurable wiring pattern 16A is completed, the pair of sprockets 56 are rotated to mount the portion of the substrate material 50B where the photocurable wiring pattern 16A is formed. Send to unit 3A. Then, for example, by a chip mounter (not shown), the IC chip 22A is mounted on the mounting position 20 on the chip mounting surface of the substrate material 50B so that the external terminal 24A is placed on the photocurable wiring pattern 16A at the terminal bonding position 18. . At this time, the IC chips 22A can be sequentially mounted at the mounting positions 20 of the plurality of sets of photocurable wiring patterns 16A.

これにより、ICチップ22Aの各外部端子24Aの少なくとも先端が光硬化性配線パターン16Aの中に没入される。このとき、必要に応じて、基板輪郭58Bの位置及び姿勢、または、光硬化性配線パターン16Aの形状及び姿勢を、カメラ画像等により検知することができ、その検知結果により、チップマウンタの搭載ヘッドの位置決めをすることができる。   Thereby, at least the tip of each external terminal 24A of the IC chip 22A is immersed in the photocurable wiring pattern 16A. At this time, the position and orientation of the substrate outline 58B or the shape and orientation of the photocurable wiring pattern 16A can be detected by a camera image or the like as necessary, and the mounting head of the chip mounter is determined based on the detection result. Can be positioned.

(4)1または複数のICチップ22Aの基板素材50Bへの搭載が終了すると、一対のスプロケット56を回転させることで、基板素材50Bの光硬化性配線パターン16Aが形成された部分を光照射ユニット4まで送る。光照射ユニット4で1または複数セットの光硬化性配線パターン16Aに光を照射することで、1または複数セットの光硬化性配線パターン16Aを硬化させる。これにより、アンテナ回路28Aを形成するとともに、同時に、アンテナ回路28Aと外部端子24Aとを接合する。このとき、図11に示したように、一対のスプロケット56の間に張り渡された基板素材50Bの下面(第2表面)側から、基板素材50Bを透過させた光を光硬化性配線パターン16Aに照射する。   (4) When one or more IC chips 22A are mounted on the substrate material 50B, the pair of sprockets 56 are rotated so that the portion of the substrate material 50B where the photocurable wiring pattern 16A is formed is exposed to the light irradiation unit. Send up to 4. By irradiating one or more sets of photocurable wiring patterns 16A with the light irradiation unit 4, one or more sets of photocurable wiring patterns 16A are cured. Thus, the antenna circuit 28A is formed, and at the same time, the antenna circuit 28A and the external terminal 24A are joined. At this time, as shown in FIG. 11, light transmitted through the substrate material 50B from the lower surface (second surface) side of the substrate material 50B stretched between the pair of sprockets 56 is photocured wiring pattern 16A. Irradiate.

(5)巻き取りロール54により、基板14A毎にアンテナ回路28Aが形成され、ICチップ22Aが実装された基板素材50Bを巻き取る。そして、一巻きの基板素材50Bへの処理が終了すると、基板素材50Bを図示しない切断装置の巻き出しロールから巻き出し、各基板輪郭58Bにより基板素材50Bを切断することで、複数のICチップ実装構造体を得る。   (5) An antenna circuit 28A is formed for each substrate 14A by the winding roll 54, and the substrate material 50B on which the IC chip 22A is mounted is wound. When the processing for one roll of the substrate material 50B is completed, the substrate material 50B is unwound from an unwinding roll of a cutting device (not shown), and the substrate material 50B is cut by each substrate contour 58B, thereby mounting a plurality of IC chips. Get a structure.

以上のように、上記の製造方法によれば、アンテナ回路28Aの形成と、アンテナ回路28Aと外部端子24Aとの接合とが、一つの工程(光照射工程)により同時に行えるので、ICカード用のICチップ実装回路基板の製造時間を短縮することが可能となり、ICカードの生産性を向上させることができる。   As described above, according to the above manufacturing method, the formation of the antenna circuit 28A and the joining of the antenna circuit 28A and the external terminal 24A can be performed simultaneously in one process (light irradiation process). The manufacturing time of the IC chip mounting circuit board can be shortened, and the productivity of the IC card can be improved.

さらに、アンテナ回路28Aと外部端子24Aとの接合が、リフロー工程等の加熱工程なしに行えるので、アンテナ回路基板14Aに耐熱性の高い材料を使用する必要性がなくなる。その結果、耐熱性は低いが、他の点で優位な特性を有する様々な材料をアンテナ回路基板14Aの素材として使用することが可能となる。例えば、ポリエチレンテレフタラート、ポリエチレンナフタレート、およびポリカーボネート等の比較的安価な材料をICカード用のアンテナ回路基板14Aの素材として使用することができる。あるいは、光透過率が高く、かつ絶縁破壊電圧が高い、アクリル樹脂、およびポリスチレン等の材料をICカード用のアンテナ回路基板14Aの素材として好適に使用することができる。   Further, since the antenna circuit 28A and the external terminal 24A can be joined without a heating process such as a reflow process, it is not necessary to use a material having high heat resistance for the antenna circuit board 14A. As a result, various materials having low heat resistance but having other advantageous characteristics can be used as the material of the antenna circuit board 14A. For example, a relatively inexpensive material such as polyethylene terephthalate, polyethylene naphthalate, and polycarbonate can be used as the material of the antenna circuit board 14A for the IC card. Alternatively, materials such as acrylic resin and polystyrene having high light transmittance and high dielectric breakdown voltage can be suitably used as the material of the antenna circuit board 14A for IC card.

そして、外部端子24Aが没入された状態で光硬化性配線パターン16Aが硬化することで、アンカー効果により、外部端子24Aをアンテナ回路28Aと端子接合位置で強固に結合することができる。これにより、例えばICチップ22Aと回路基板14Aとの間にアンダーフィル材や、異方導電性ペースト(ACP:Anisotropic Conductive Paste)、および異方導電性フィルム(ACF:Anisotropic Conductive Film)を供給して接合を補強するような補強工程を実行する必要もなくなる。これにより、さらに生産性を向上させることができる。   Then, the photocurable wiring pattern 16A is cured while the external terminal 24A is immersed, whereby the external terminal 24A can be firmly coupled to the antenna circuit 28A at the terminal joint position by the anchor effect. Thereby, for example, an underfill material, an anisotropic conductive paste (ACP) and an anisotropic conductive film (ACF) are supplied between the IC chip 22A and the circuit board 14A. There is no need to perform a reinforcing step to reinforce the joint. Thereby, productivity can be further improved.

なお、ICチップ22Aの外部端子24Aの個数が少なく、十分な接合強度が得られないような場合には、ICチップ22Aの基板対向面に適宜個数のダミー電極を設け、それを光硬化性配線パターン16Aに没入させた状態で光硬化性配線パターン16Aを硬化させることで、所望の接合強度を得ることもできる。この場合にも、特に工程の数は増大しないので、容易に生産性を向上させることができる。  When the number of the external terminals 24A of the IC chip 22A is small and sufficient bonding strength cannot be obtained, an appropriate number of dummy electrodes are provided on the substrate facing surface of the IC chip 22A, and the photocurable wiring is provided. Desirable bonding strength can be obtained by curing the photo-curable wiring pattern 16A while being immersed in the pattern 16A. Also in this case, since the number of processes is not particularly increased, productivity can be easily improved.

さらに、キャリア搬送方式と比較すると、キャリアボードを使用することなく電子部品実装回路基板を製造できるので、製造コストを抑えることができる。また、キャリアボード12に1つずつ基板を固定する工程、及びキャリアボード12から1つずつ基板を剥がす工程が省略できるので、工数を削減することが可能となり、製造時間の短縮と製造コストを低減することが容易となる。そして、トラブルが発生すると直ちにラインを止めることができるので、部品のロスがなく、歩留まりを向上させることができる。   Furthermore, as compared with the carrier transport method, the electronic component mounting circuit board can be manufactured without using the carrier board, so that the manufacturing cost can be suppressed. Further, the process of fixing the substrates one by one to the carrier board 12 and the process of peeling the substrates one by one from the carrier board 12 can be omitted, so that the number of steps can be reduced, and the manufacturing time and the manufacturing cost can be reduced. Easy to do. And since a line can be stopped immediately when a trouble occurs, there is no loss of parts, and the yield can be improved.

(実施形態3)
図17に、本発明のさらに他の実施形態に係る部品実装基板を製造するための製造システムである表面実装ラインを簡略化した正面図により示す。
(Embodiment 3)
FIG. 17 is a simplified front view showing a surface mounting line which is a manufacturing system for manufacturing a component mounting board according to still another embodiment of the present invention.

図示例のライン10Bは、一対の遮光板60Aおよび60Bが、搭載ユニット3Aと、光照射ユニット4Aとの間に配置されている点で、図11のライン10Aと異なっている。以下、主に、その異なる点を、上述の各図面および符号を流用して説明する。   The line 10B in the illustrated example is different from the line 10A in FIG. 11 in that a pair of light shielding plates 60A and 60B are disposed between the mounting unit 3A and the light irradiation unit 4A. Hereinafter, the different points will be mainly described with reference to the above-described drawings and reference numerals.

ライン10Bは、長尺のテープ状のフィルムからなる基板素材に、複数セットの電子部品を、所定の間隔を開けて実装するロールツーロール方式の表面実装ラインとして構成される。基板素材は、実施形態1と同じ理由で、実施形態1と同様の光透過性樹脂により形成するのが好ましい。また、配線形成材料には、上記と同様の導電性インクを使用することができる。なお、図17に例示する基板素材、光硬化性配線パターン、および電子部品は、図11などで示したのと同じ基板素材50、光硬化性配線パターン16、並びに、電子部品22である。   The line 10B is configured as a roll-to-roll surface mounting line for mounting a plurality of sets of electronic components on a substrate material made of a long tape-like film with a predetermined interval. The substrate material is preferably formed of the same light-transmitting resin as in the first embodiment for the same reason as in the first embodiment. Moreover, the conductive ink similar to the above can be used for the wiring forming material. The substrate material, the photocurable wiring pattern, and the electronic component illustrated in FIG. 17 are the same substrate material 50, the photocurable wiring pattern 16, and the electronic component 22 shown in FIG.

配線形成材料供給ユニット2A、電子部品搭載ユニット3Aおよび光照射ユニット4Aが、それぞれ、例えば内部と外部とを光学的に完全に分離するような筐体を備えている場合には、未だ電子部品が搭載されていない基板の光硬化性配線パターンに光を照射させずに基板を光照射ユニット4Aまで移動させることができる。しかしながら、そのような筐体を各ユニットに備えさせることはコストアップの要因となり得る。そこで、ユニット毎に筐体を設けるのではなく、例えば搭載ユニット3Aと光照射ユニット4Aとの間に遮光手段を設けることで、未だ電子部品が搭載されていない基板の光硬化性配線パターンに光が照射されるのを防止することができる。これにより、コストアップを抑えながら、アンテナ回路等の導電性配線パターンの形成、並びに、導電性配線パターンと、ベアチップ部品等の電子部品の外部端子との接合を同時に実行することが可能となる。   If each of the wiring forming material supply unit 2A, the electronic component mounting unit 3A, and the light irradiation unit 4A has a housing that optically completely separates the inside and the outside, for example, the electronic components are still The substrate can be moved to the light irradiation unit 4A without irradiating light to the photocurable wiring pattern of the substrate that is not mounted. However, providing such a housing in each unit can be a factor in increasing costs. Therefore, instead of providing a housing for each unit, for example, by providing a light shielding means between the mounting unit 3A and the light irradiation unit 4A, light is applied to the photocurable wiring pattern of the board on which no electronic components are yet mounted. Can be prevented from being irradiated. As a result, it is possible to simultaneously perform formation of a conductive wiring pattern such as an antenna circuit and joining of the conductive wiring pattern and an external terminal of an electronic component such as a bare chip component while suppressing an increase in cost.

より具体的には、ライン10Bは、送り装置6Bにより送られる基板素材50Aを間に挟むように、基板素材50Aの送りの方向と垂直に配置された一対の遮光板60Aおよび60Bと、少なくとも、一方の遮光板60Aを基板素材50Aの送りの方向と垂直に移動させる遮光板移動装置62とを備えている。一対の遮光板60Aおよび60Bは、搭載ユニット3Aと光照射ユニット4Aとの間に配置されている。   More specifically, the line 10B includes at least a pair of light shielding plates 60A and 60B arranged perpendicular to the feeding direction of the substrate material 50A so as to sandwich the substrate material 50A sent by the feeding device 6B. A light shielding plate moving device 62 for moving one light shielding plate 60A perpendicularly to the feeding direction of the substrate material 50A is provided. The pair of light shielding plates 60A and 60B is disposed between the mounting unit 3A and the light irradiation unit 4A.

遮光板60Aは、基板素材50Aの電子部品実装面の側に配置され、遮光板60Bはその反対側に配置されている。遮光板移動装置62は、例えば遮光板60Aを間に挟んで回転する1または複数対のローラから構成することができる。遮光板60Aは、遮光板移動装置62により、図に二点鎖線で示す遮蔽位置と、図に実線で示す開放位置との間で移動される。一方、遮光板60Bは、上端部が基板素材50Aの下面と接触する位置に固定することができる。   The light shielding plate 60A is disposed on the electronic component mounting surface side of the substrate material 50A, and the light shielding plate 60B is disposed on the opposite side. The light shielding plate moving device 62 can be composed of, for example, one or a plurality of pairs of rollers that rotate with the light shielding plate 60A interposed therebetween. The light shielding plate 60A is moved by the light shielding plate moving device 62 between a shielding position indicated by a two-dot chain line in the figure and an open position indicated by a solid line in the figure. On the other hand, the light shielding plate 60B can be fixed at a position where the upper end portion contacts the lower surface of the substrate material 50A.

以下、ライン10Bにより、図16Aに示したCOFパッケージ40Aを製造する場合を参考として説明する。   Hereinafter, the case where the COF package 40A shown in FIG.

(1)未だ接続回路28B及び28Cが形成されていない基板素材50Aを、基板供給ユニット1Aにおいて、巻き出しロール52に巻き付けた状態でセットする。そして、巻き出しロール52から巻出した基板素材50Aを、一対のスプロケット56に、十分な張力を与えながら掛け渡し、その状態でさらに一対のスプロケット56を回転させながら、基板素材50Aの先端を巻き取りロール54に所定長さだけ巻き取らせる。   (1) The substrate material 50A on which the connection circuits 28B and 28C are not yet formed is set in a state of being wound around the unwinding roll 52 in the substrate supply unit 1A. Then, the substrate material 50A unwound from the unwinding roll 52 is passed over the pair of sprockets 56 while applying sufficient tension, and the tip of the substrate material 50A is wound while further rotating the pair of sprockets 56 in this state. The take-up roll 54 is wound by a predetermined length.

(2)基板素材50Aの1つの基板輪郭58Aを配線形成材料供給ユニット2Aでカメラ画像等により認識し、その基板輪郭58Aが配線形成材料供給ユニット2Aにおける材料供給位置に到達すると、基板素材50Aの送りを止める。   (2) When one board outline 58A of the board material 50A is recognized by the wiring formation material supply unit 2A by a camera image or the like and the board outline 58A reaches the material supply position in the wiring formation material supply unit 2A, the board material 50A Stop feeding.

配線形成材料供給ユニット2Aにおいては、光硬化性配線パターン16Bおよび16Cを、上述した塗布装置や各種印刷装置を使用して形成することができる。これにより、図13Aに示したような、光硬化性配線パターン16Bおよび16Cが基板素材50Aの実装面に配された基板輪郭58Aの内部に基板14B毎に形成される。光硬化性配線パターン16Bおよび16Cが形成されると基板素材50Aの送りが再開される。このとき、カメラ画像等により検知した基板輪郭58Aの位置及び姿勢に基づいて、塗布装置のニードルの位置決めをしたり、スクリーン印刷装置のマスクの位置決めをしたり、インクジェットプリンタのノズルの位置決めをしたりすることができる。   In the wiring forming material supply unit 2A, the photocurable wiring patterns 16B and 16C can be formed using the above-described coating apparatus and various printing apparatuses. As a result, the photocurable wiring patterns 16B and 16C as shown in FIG. 13A are formed for each substrate 14B inside the substrate contour 58A disposed on the mounting surface of the substrate material 50A. When the photocurable wiring patterns 16B and 16C are formed, the feeding of the substrate material 50A is resumed. At this time, based on the position and orientation of the substrate contour 58A detected by the camera image or the like, the needle of the coating device is positioned, the mask of the screen printing device is positioned, or the nozzle of the inkjet printer is positioned. can do.

また、光硬化性配線パターン16Bおよび16Cは、1セットずつ形成してもよいし、例えば、スクリーン印刷装置による場合は、複数セットの光硬化性配線パターン16Bおよび16Cを、複数の基板14Bに対応して、1回の印刷で同時に形成することもできる。あるいは、塗布装置やインクジェットプリンタにより、所定セットの光硬化性配線パターン16Bおよび16Cを順次形成した後で、基板素材50Aの送りを再開することもできる。   Moreover, the photocurable wiring patterns 16B and 16C may be formed one by one. For example, when a screen printing apparatus is used, a plurality of sets of the photocurable wiring patterns 16B and 16C correspond to the plurality of substrates 14B. And it can also form simultaneously by one printing. Alternatively, the feeding of the substrate material 50A can be resumed after a predetermined set of photocurable wiring patterns 16B and 16C are sequentially formed by a coating apparatus or an ink jet printer.

(3)光硬化性配線パターン16Bおよび16Cの1セット、または複数セットの形成が終了すると、一対のスプロケット56を回転させることで、基板素材50Aの光硬化性配線パターン16Bおよび16Cが形成された部分を、搭載ユニット3Aまで送る。そして、例えば図示しないチップマウンタにより、外部端子24Cが端子接合位置18Aで光硬化性配線パターン16Bおよび16Cの上に乗るように、液晶ドライバ22Bを、基板素材50Aのチップ実装面の搭載位置20Aに搭載する(図14Aおよび図15参照)。このとき、複数セットの光硬化性配線パターン16Bおよび16Cの搭載位置20Aに順次液晶ドライバ22Bを搭載することができる。   (3) When one or more sets of the photocurable wiring patterns 16B and 16C are formed, the pair of sprockets 56 are rotated to form the photocurable wiring patterns 16B and 16C of the substrate material 50A. The part is sent to the mounting unit 3A. Then, for example, by a chip mounter (not shown), the liquid crystal driver 22B is moved to the mounting position 20A on the chip mounting surface of the substrate material 50A so that the external terminal 24C is placed on the photocurable wiring patterns 16B and 16C at the terminal bonding position 18A. It is mounted (see FIG. 14A and FIG. 15). At this time, the liquid crystal driver 22B can be sequentially mounted at the mounting position 20A of the plurality of sets of the photocurable wiring patterns 16B and 16C.

これにより、液晶ドライバ22Bの各外部端子24Cの少なくとも先端が光硬化性配線パターン16Bおよび16Cの中に没入される。このとき、必要に応じて、基板輪郭58Aの位置及び姿勢、または、光硬化性配線パターン16Bおよび16Cの形状及び姿勢を、カメラ画像等により検知することができ、その検知結果により、チップマウンタの搭載ヘッドの位置決めをすることができる。搭載ユニット3Aで液晶ドライバ22Bの搭載をしている間に、同時に、配線形成材料供給ユニット2Aでは、上述した光硬化性配線パターンの形成工程を行う。   Thereby, at least the tip of each external terminal 24C of the liquid crystal driver 22B is immersed in the photocurable wiring patterns 16B and 16C. At this time, the position and posture of the substrate outline 58A or the shapes and postures of the photocurable wiring patterns 16B and 16C can be detected from the camera image or the like as necessary. The mounting head can be positioned. While the liquid crystal driver 22B is mounted in the mounting unit 3A, the wiring forming material supply unit 2A simultaneously performs the above-described photocurable wiring pattern forming process.

(4)1または複数の液晶ドライバ22Bの基板素材50Aへの搭載が終了すると、遮光板60Aが遮光位置にある場合は、遮光板移動装置62により遮光板60Aを、遮光位置から開放位置に移動させる。その後、一対のスプロケット56を回転させることで、基板素材50Aの光硬化性配線パターン16Bおよび16Cが形成された部分を光照射ユニット4まで送る。なお、遮光板60Aが開放位置にある場合は、そのままの状態で基板素材50Bを送る。   (4) When one or more liquid crystal drivers 22B are mounted on the substrate material 50A, when the light shielding plate 60A is in the light shielding position, the light shielding plate moving device 62 moves the light shielding plate 60A from the light shielding position to the open position. Let Thereafter, by rotating the pair of sprockets 56, the portion of the substrate material 50A where the photocurable wiring patterns 16B and 16C are formed is sent to the light irradiation unit 4. If the light shielding plate 60A is in the open position, the substrate material 50B is sent as it is.

次に、遮光板移動装置62により遮光板60Aを、開放位置から遮光位置に移動させる。その後、光照射ユニット4で1または複数セットの光硬化性配線パターン16Bおよび16Cに光を照射することで、1または複数セットの光硬化性配線パターン16Bおよび16Cを硬化させる。これにより、接続回路28B及び28Cを形成するとともに、同時に、接続回路28B及び28Cと外部端子24Cとを接合する。   Next, the light shielding plate 60A is moved from the open position to the light shielding position by the light shielding plate moving device 62. Thereafter, the light irradiation unit 4 irradiates one or more sets of the photocurable wiring patterns 16B and 16C with light, thereby curing the one or more sets of the photocurable wiring patterns 16B and 16C. Thereby, the connection circuits 28B and 28C are formed, and at the same time, the connection circuits 28B and 28C and the external terminal 24C are joined.

このとき、図17に示したように、一対のスプロケット56の間に張り渡された基板素材50Aの下面(第2表面)側から、基板素材50Aを透過させた光を光硬化性配線パターン16Bおよび16Cに照射する。光照射ユニット4で接続回路28B及び28Cを形成している間に、同時に、搭載ユニット3Aでは、上述した液晶ドライバ22Bの搭載工程を行う。   At this time, as shown in FIG. 17, light transmitted through the substrate material 50A from the lower surface (second surface) side of the substrate material 50A stretched between the pair of sprockets 56 is photocurable wiring pattern 16B. And 16C. While the connection circuits 28B and 28C are formed by the light irradiation unit 4, the mounting unit 3A simultaneously performs the mounting process of the liquid crystal driver 22B.

(5)上記の1または複数セットの接続回路28B及び28Cの形成、並びに外部端子24Aの接合が終了すると、光源26Aによる光の照射を停止する。その後、遮光板移動装置62により遮光板60Aを、遮光位置から開放位置に移動させる。その状態で、一対のスプロケット56を回転させて、アンテナ回路28Aが形成された1または複数の基板14Aを部品実装基板回収ユニット5Aの方向に送る。以下の工程は、実施形態1で説明したのと同様である。   (5) When the formation of the one or more sets of connection circuits 28B and 28C and the joining of the external terminals 24A are completed, the light irradiation by the light source 26A is stopped. Thereafter, the light shielding plate 60A is moved from the light shielding position to the open position by the light shielding plate moving device 62. In this state, the pair of sprockets 56 are rotated to send one or more boards 14A on which the antenna circuit 28A is formed in the direction of the component mounting board collection unit 5A. The following steps are the same as those described in the first embodiment.

以上のように、ライン10Bには、未だ電子部品が搭載されていない基板の光硬化性配線パターンに光を照射させないように、搭載ユニット3Aと光照射ユニット4Aとの間に遮光手段が設けられているので、コストアップを抑えながら、導電性配線パターンの形成、並びに、導電性配線パターンと電子部品の外部端子との接合を同時に実行することが可能となる。   As described above, the line 10B is provided with a light shielding means between the mounting unit 3A and the light irradiation unit 4A so as not to irradiate light onto the photocurable wiring pattern of the substrate on which the electronic component is not yet mounted. Therefore, it is possible to simultaneously perform the formation of the conductive wiring pattern and the joining of the conductive wiring pattern and the external terminal of the electronic component while suppressing an increase in cost.

以下、図10に示したICカード用のICチップ実装アンテナ回路基板を製造する場合を説明する。   Hereinafter, a case where the IC chip mounting antenna circuit board for the IC card shown in FIG. 10 is manufactured will be described.

(1)未だアンテナ回路28Aが形成されていない基板素材50Bを、基板供給ユニット1Aにおいて、巻き出しロール52に巻き付けた状態でセットする。そして、巻き出しロール52から巻出した基板素材50Bを、一対のスプロケット56に、十分な張力を与えながら掛け渡し、その状態でさらに一対のスプロケット56を回転させながら、基板素材50Bの先端を巻き取りロール54に所定長さだけ巻き取らせる。   (1) The substrate material 50B on which the antenna circuit 28A is not yet formed is set in a state of being wound around the unwinding roll 52 in the substrate supply unit 1A. Then, the substrate material 50B unwound from the unwinding roll 52 is passed over the pair of sprockets 56 while applying sufficient tension, and the tip of the substrate material 50B is wound while further rotating the pair of sprockets 56 in this state. The take-up roll 54 is wound by a predetermined length.

(2)基板素材50Bの1つの基板輪郭58Bを配線形成材料供給ユニット2Aでカメラ画像等により認識し、その基板輪郭58Bが配線形成材料供給ユニット2Aにおける材料供給位置に到達すると、基板素材50Bの送りを止める。   (2) When one substrate outline 58B of the substrate material 50B is recognized by the wiring formation material supply unit 2A by a camera image or the like and the substrate outline 58B reaches the material supply position in the wiring formation material supply unit 2A, the substrate material 50B Stop feeding.

配線形成材料供給ユニット2Aにおいては、光硬化性配線パターン16Aを、上述した塗布装置や各種印刷装置を使用して形成することができる。これにより、図13Aに示したような、光硬化性配線パターン16Aが基板素材50Bの実装面に配された基板輪郭58Bの内部に基板14B毎に形成される。光硬化性配線パターン16Aが形成されると基板素材50Bの送りが再開される。このとき、カメラ画像等により検知した基板輪郭58Bの位置及び姿勢に基づいて、塗布装置のニードルの位置決めをしたり、スクリーン印刷装置のマスクの位置決めをしたり、インクジェットプリンタのノズルの位置決めをしたりすることができる。   In the wiring forming material supply unit 2A, the photocurable wiring pattern 16A can be formed using the above-described coating apparatus and various printing apparatuses. As a result, a photocurable wiring pattern 16A as shown in FIG. 13A is formed for each substrate 14B inside the substrate contour 58B disposed on the mounting surface of the substrate material 50B. When the photocurable wiring pattern 16A is formed, the feeding of the substrate material 50B is resumed. At this time, based on the position and orientation of the substrate contour 58B detected by a camera image or the like, the needle of the coating device is positioned, the mask of the screen printing device is positioned, or the nozzle of the inkjet printer is positioned. can do.

また、光硬化性配線パターン16Aは、1セットずつ形成してもよいし、例えば、スクリーン印刷装置による場合は、複数セットの光硬化性配線パターン16Aを、複数の基板14Aに対応して、1回の印刷で同時に形成することもできる。あるいは、塗布装置やインクジェットプリンタにより、所定セットの光硬化性配線パターン16Aを順次形成した後で、基板素材50Bの送りを再開することもできる。   Further, the photocurable wiring pattern 16A may be formed one set at a time. For example, in the case of using a screen printing apparatus, a plurality of sets of the photocurable wiring pattern 16A are associated with a plurality of substrates 14A. It can also be formed simultaneously by printing once. Alternatively, the feeding of the substrate material 50B can be resumed after sequentially forming a predetermined set of the photocurable wiring pattern 16A by a coating apparatus or an ink jet printer.

(3)光硬化性配線パターン16Aの1セット、または複数セットの形成が終了すると、一対のスプロケット56を回転させることで、基板素材50Bの光硬化性配線パターン16Aが形成された部分を、搭載ユニット3Aまで送る。そして、例えば図示しないチップマウンタにより、外部端子24Aが端子接合位置18で光硬化性配線パターン16Aの上に乗るように、ICチップ22Aを、基板素材50Bのチップ実装面の搭載位置20に搭載する(図14B参照)。このとき、複数セットの光硬化性配線パターン16Aの搭載位置20に順次ICチップ22Aを搭載することができる。   (3) When the formation of one set or a plurality of sets of the photocurable wiring pattern 16A is completed, the pair of sprockets 56 are rotated to mount the portion of the substrate material 50B where the photocurable wiring pattern 16A is formed. Send to unit 3A. Then, for example, by a chip mounter (not shown), the IC chip 22A is mounted on the mounting position 20 on the chip mounting surface of the substrate material 50B so that the external terminal 24A is placed on the photocurable wiring pattern 16A at the terminal bonding position 18. (See FIG. 14B). At this time, the IC chips 22A can be sequentially mounted at the mounting positions 20 of the plurality of sets of photocurable wiring patterns 16A.

これにより、ICチップ22Aの各外部端子24Aの少なくとも先端が光硬化性配線パターン16Aの中に没入される。このとき、必要に応じて、基板輪郭58Bの位置及び姿勢、または、光硬化性配線パターン16Aの形状及び姿勢を、カメラ画像等により検知することができ、その検知結果により、チップマウンタの搭載ヘッドの位置決めをすることができる。搭載ユニット3AでICチップ22Aの搭載をしている間に、同時に、配線形成材料供給ユニット2Aでは、上述した光硬化性配線パターンの形成工程を行う。   Thereby, at least the tip of each external terminal 24A of the IC chip 22A is immersed in the photocurable wiring pattern 16A. At this time, the position and orientation of the substrate outline 58B or the shape and orientation of the photocurable wiring pattern 16A can be detected by a camera image or the like as necessary, and the mounting head of the chip mounter is determined based on the detection result. Can be positioned. While the IC chip 22A is mounted on the mounting unit 3A, the wiring forming material supply unit 2A simultaneously performs the above-described photocurable wiring pattern forming process.

(4)1または複数のICチップ22Aの基板素材50Bへの搭載が終了すると、遮光板60Aが遮光位置にある場合は、遮光板移動装置62により遮光板60Aを、遮光位置から開放位置に移動させる。その後、一対のスプロケット56を回転させることで、基板素材50Bの光硬化性配線パターン16Aが形成された部分を光照射ユニット4まで送る。なお、遮光板60Aが開放位置にある場合は、そのままの状態で基板素材50Bを送る。   (4) When one or more IC chips 22A are mounted on the substrate material 50B, if the light shielding plate 60A is at the light shielding position, the light shielding plate moving device 62 moves the light shielding plate 60A from the light shielding position to the open position. Let Thereafter, by rotating the pair of sprockets 56, the portion of the substrate material 50 </ b> B where the photocurable wiring pattern 16 </ b> A is formed is sent to the light irradiation unit 4. If the light shielding plate 60A is in the open position, the substrate material 50B is sent as it is.

次に、遮光板移動装置62により遮光板60Aを、開放位置から遮光位置に移動させる。その後、光照射ユニット4で1または複数セットの光硬化性配線パターン16Aに光を照射することで、1または複数セットの光硬化性配線パターン16Aを硬化させる。これにより、アンテナ回路28Aを形成するとともに、同時に、アンテナ回路28Aと外部端子24Aとを接合する。   Next, the light shielding plate 60A is moved from the open position to the light shielding position by the light shielding plate moving device 62. Thereafter, the light irradiation unit 4 irradiates one or a plurality of sets of the photocurable wiring patterns 16A with light, thereby curing the one or a plurality of sets of the photocurable wiring patterns 16A. Thus, the antenna circuit 28A is formed, and at the same time, the antenna circuit 28A and the external terminal 24A are joined.

このとき、図17に示したように、一対のスプロケット56の間に張り渡された基板素材50Bの下面(第2表面)側から、基板素材50Bを透過させた光を光硬化性配線パターン16Aに照射する。光照射ユニット4でアンテナ回路28Aを形成している間に、同時に、搭載ユニット3Aでは、上述したICチップ22Aの搭載工程を行う。   At this time, as shown in FIG. 17, light transmitted through the substrate material 50B from the lower surface (second surface) side of the substrate material 50B stretched between the pair of sprockets 56 is photocurable wiring pattern 16A. Irradiate. While the antenna circuit 28A is formed by the light irradiation unit 4, the mounting unit 3A simultaneously performs the mounting process of the IC chip 22A described above.

(5)上記の1または複数セットのアンテナ回路28Aの形成、並びに外部端子24Aの接合が終了すると、光源26Aによる光の照射を停止する。その後、遮光板移動装置62により遮光板60Aを、遮光位置から開放位置に移動させる。その状態で、一対のスプロケット56を回転させて、アンテナ回路28Aが形成された1または複数の基板14Aを部品実装基板回収ユニット5Aの方向に送る。以下の工程は、実施形態2で説明したのと同様である。   (5) When the formation of the one or more sets of antenna circuits 28A and the joining of the external terminals 24A are finished, the light irradiation by the light source 26A is stopped. Thereafter, the light shielding plate 60A is moved from the light shielding position to the open position by the light shielding plate moving device 62. In this state, the pair of sprockets 56 are rotated to send one or more boards 14A on which the antenna circuit 28A is formed in the direction of the component mounting board collection unit 5A. The following steps are the same as those described in the second embodiment.

以上のように、ライン10Bによれば、未だベアチップ部品が搭載されていない基板の光硬化性配線パターンに光を照射させないように、搭載ユニット3Aと光照射ユニット4Aとの間に遮光手段が設けられているので、コストアップを抑えながら、アンテナ回路の形成、並びに、アンテナ回路とベアチップ部品の外部端子との接合を同時に実行することが可能となる。   As described above, according to the line 10B, light shielding means is provided between the mounting unit 3A and the light irradiation unit 4A so as not to irradiate light to the photocurable wiring pattern of the substrate on which the bare chip component is not yet mounted. Therefore, it is possible to simultaneously perform the formation of the antenna circuit and the joining of the antenna circuit and the external terminal of the bare chip component while suppressing an increase in cost.

図18に、実施形態3の遮光手段の変形例を示す。図18(a)は、実装面側に配置された、一方の遮光板60Aの変形例を示し、図示例の遮光板60Cは、下端部(基板素材側端部)に基板素材50の送りの方向と平行に突出する突部64Aが設けられている。図18(b)は、他方の遮光板60Bの変形例を示し、図示例の遮光板60Dは、上端部(基板素材側端部)に基板素材50の送りの方向と平行に突出する突部64Bが設けられている。   FIG. 18 shows a modification of the light shielding means of the third embodiment. FIG. 18A shows a modification of one light shielding plate 60A arranged on the mounting surface side. The light shielding plate 60C in the illustrated example is configured to feed the substrate material 50 to the lower end portion (the substrate material side end portion). A protrusion 64A that protrudes in parallel with the direction is provided. FIG. 18B shows a modification of the other light shielding plate 60B, and the light shielding plate 60D in the illustrated example protrudes parallel to the feeding direction of the substrate material 50 at the upper end (substrate material side end). 64B is provided.

図19(a)に示すように、遮光板60Aおよび60Bでは、基板素材50の主面に対して斜めに入射した光66が、屈折により、搭載ユニット3A側(図の左側)に漏れることも考えられる。その点、遮光板60Aおよび60Bの少なくとも一方に、突部64Aおよび64Bを設けることで、図19(b)に示す遮光板60Cおよび60Dのように、基板素材50の主面に対して斜めに入射した光も有効に遮光することが可能となる。このとき、突部64Aおよび64Bの基板素材50との対向面68Aおよび68Bは、光の反射を避けるためにつや消しとし、黒色とするのが好ましい。   As shown in FIG. 19A, in the light shielding plates 60A and 60B, the light 66 incident obliquely with respect to the main surface of the substrate material 50 may leak to the mounting unit 3A side (left side in the figure) due to refraction. Conceivable. In that respect, by providing protrusions 64A and 64B on at least one of the light shielding plates 60A and 60B, the light shielding plates 60C and 60D shown in FIG. Incident light can also be effectively shielded. At this time, the facing surfaces 68A and 68B of the protrusions 64A and 64B facing the substrate material 50 are preferably matte and black to avoid light reflection.

(実施形態4)
以下、図20および図21を参照して、本発明のさらに他の実施形態を説明する。
図20は、部品実装基板を、マザー基板等の別の基板に実装した様子を示す正面図である。
(Embodiment 4)
Hereinafter, still another embodiment of the present invention will be described with reference to FIGS.
FIG. 20 is a front view showing a state where the component mounting board is mounted on another board such as a mother board.

図20の例では、部品実装基板としての電子部品パッケージ40Cが、別の基板であるマザー基板70に実装されている。電子部品パッケージ40Cは、電子部品としての2つの積層半導体22Dおよび22Eと、ガラスインターポーザ14Cとを含んでいる。   In the example of FIG. 20, an electronic component package 40C as a component mounting board is mounted on a mother board 70 which is another board. The electronic component package 40C includes two stacked semiconductors 22D and 22E as electronic components and a glass interposer 14C.

積層半導体22Dは、それぞれがベアチップ部品であるCPU(Central Processing Unit:中央演算装置)72Aと、2つのメモリ72Bおよび72Cとを積層し、それらの間を、複数の貫通電極74で接続したものである。同様に、積層半導体22Eは、それぞれがベアチップ部品であるGPU(Graphics Processing Unit:グラフィックス・プロセッシング・ユニット)72Dと、2つのメモリ72Eおよび72Fとを積層し、それらの間を、複数の貫通電極74で接続したものである。   The laminated semiconductor 22D is obtained by laminating a CPU (Central Processing Unit) 72A, each of which is a bare chip component, and two memories 72B and 72C, and connecting them with a plurality of through electrodes 74. is there. Similarly, the stacked semiconductor 22E includes a GPU (Graphics Processing Unit) 72D, each of which is a bare chip component, and two memories 72E and 72F, and a plurality of through electrodes between them. 74 is connected.

積層半導体22Dおよび22Eのそれぞれの貫通電極74の一端(図で下端)は、積層半導体22Dおよび22Eのそれぞれの下面(または、ガラスインターポーザ14C側の面)に突設された外部端子24Dと接続されている。   One end (the lower end in the figure) of each through electrode 74 of each of the stacked semiconductors 22D and 22E is connected to an external terminal 24D that protrudes from the lower surface (or the surface on the glass interposer 14C side) of each of the stacked semiconductors 22D and 22E. ing.

ガラスインターポーザ14Cは、例えばマトリックス状に形成された複数の厚み方向の貫通孔を有しており、それぞれの貫通孔には、中継電極82が形成されている。各中継電極82の一端(図で下端)は、ガラスインターポーザ14Cの下面(または、マザー基板70側の面)に突設された半田バンプ84と接続されている。中継電極82のうちの少なくとも一部分の他端(図で上端)は、それぞれ、ガラスインターポーザ14Cの上面(または、電子部品パッケージ40Cの実装面)に外部端子24Dと対応して形成された、複数のランド電極28Dと接続されている。各外部端子24Dは、ランド電極28Dの内部に少なくとも一部分が没入した状態で、ランド電極28Dと接合されている。   The glass interposer 14C has, for example, a plurality of through holes in the thickness direction formed in a matrix, and a relay electrode 82 is formed in each through hole. One end (the lower end in the figure) of each relay electrode 82 is connected to a solder bump 84 provided on the lower surface of the glass interposer 14C (or the surface on the mother substrate 70 side). The other end (upper end in the figure) of at least a part of the relay electrode 82 is formed on the upper surface of the glass interposer 14C (or the mounting surface of the electronic component package 40C) corresponding to the external terminal 24D. The land electrode 28D is connected. Each external terminal 24D is joined to the land electrode 28D in a state in which at least a part is immersed in the land electrode 28D.

図21に、図2Aおよび図2Bに示したのと同様のコンベア6Aに、実施形態1と同様のキャリアボード12が一定の間隔で載せられ、それぞれの、キャリアボードの上にガラスインターポーザが載せられている様子を、コンベアの上面図により示す。図示例のキャリアボード12は、実施形態1と同様に光透過性を有している。図21の左端(a)の状態では、ガラスインターポーザ14Cの上面で複数のランド電極28Dを形成すべき位置に、電極前駆体16Dが形成されている。ここで、電極前駆体16Dは、上述した配線形成材料(例えば導電性インク)を使用して形成することができる。電極前駆体16Dの形成は、図1の配線材料供給ユニット2を使用して実行することができる。そのような配線材料供給ユニット2には、上述した塗装装置または印刷装置を含ませることができる。   In FIG. 21, carrier boards 12 similar to those of the first embodiment are placed on a conveyor 6A similar to that shown in FIGS. 2A and 2B at regular intervals, and glass interposers are placed on the respective carrier boards. This is shown by a top view of the conveyor. The carrier board 12 in the illustrated example is light transmissive as in the first embodiment. In the state at the left end (a) in FIG. 21, the electrode precursor 16D is formed at a position where the plurality of land electrodes 28D are to be formed on the upper surface of the glass interposer 14C. Here, the electrode precursor 16D can be formed using the above-described wiring forming material (for example, conductive ink). The formation of the electrode precursor 16D can be performed using the wiring material supply unit 2 of FIG. Such a wiring material supply unit 2 can include the above-described coating apparatus or printing apparatus.

図21の中央の状態(b)では、実施形態1と同様の電子部品搭載ユニット3によって、外部端子24Dを有する電子部品としての積層半導体22Fが、外部端子24Dが電極前駆体16Dに着地するように、ガラスインターポーザ14Cの上面の搭載位置20に搭載されている。このとき、図4で示したのと同様に、外部端子24Dの一部分は、電極前駆体16Dの内部に没入している。   In the center state (b) of FIG. 21, the electronic component mounting unit 3 similar to that of the first embodiment causes the stacked semiconductor 22F as an electronic component having the external terminal 24D to land on the electrode precursor 16D. The glass interposer 14C is mounted at the mounting position 20 on the upper surface. At this time, as shown in FIG. 4, a part of the external terminal 24D is immersed in the electrode precursor 16D.

図21の右端(c)の状態では、実施形態1と同様の光照射ユニット4によって、電極前駆体16Dに光を照射して硬化させることで、ランド電極28Dが形成されている。このとき、同時に、外部端子24Dがランド電極28Dの内部に没入した状態でランド電極28Dと接合される。よって、部品実装基板の生産性を向上させることができるとともに、高い接続信頼性が得られる。その結果、上述したアンダーフィル材等の使用を省略することもできる。また、外部端子と基板電極とを接合するときに、電子部品やガラスインターポーザを加熱したり、高い圧力を掛けたりすることがないので、ガラスインターポーザに例えば厚みが0.1mm程度の薄板ガラスを使用することも可能となり、部品実装基板を小型化および薄型化することが容易となる。   In the state of the right end (c) of FIG. 21, the land electrode 28D is formed by irradiating and curing the electrode precursor 16D with the light irradiation unit 4 similar to that of the first embodiment. At the same time, the external terminal 24D is joined to the land electrode 28D while being immersed in the land electrode 28D. Therefore, productivity of the component mounting board can be improved and high connection reliability can be obtained. As a result, the use of the above-described underfill material can be omitted. Also, when joining external terminals and substrate electrodes, electronic components and glass interposers are not heated or subjected to high pressure, so thin glass with a thickness of, for example, about 0.1 mm is used for the glass interposer. It is also possible to make the component mounting board smaller and thinner.

ここで、図3および図6に示したアンテナ回路基板14Aには、ガラスインターポーザ14Cと同様のガラスインターポーザを使用することができる。そのようなガラスインターポーザの一方の主面に実施形態1と同じ手順でアンテナ回路用の光硬化性配線パターン16Aを形成するとともに、端子接合位置で外部端子24Aとアンテナ回路28Aとを接合することで、実施形態1と同様に、生産性と接続信頼性とを向上させることができる。また、この場合には、ガラスインターポーザには積層半導体ではなく、単層のICチップを実装することもできる。   Here, a glass interposer similar to the glass interposer 14C can be used for the antenna circuit board 14A shown in FIGS. By forming the photocurable wiring pattern 16A for the antenna circuit on one main surface of such a glass interposer in the same procedure as in the first embodiment, and joining the external terminal 24A and the antenna circuit 28A at the terminal joining position. As in the first embodiment, productivity and connection reliability can be improved. In this case, a single-layer IC chip can be mounted on the glass interposer instead of the laminated semiconductor.

本発明によれば、光硬化性の配線形成材料を使用することで、加熱工程なしに、アンテナ回路の形成、並びに、アンテナ回路とベアチップ部品の電極端子との接合を同時に行うことができる。よって、加熱が望ましくないベアチップ部品及び基板を使用したICカードの製造に非常に好適に適用することができる。   According to the present invention, by using a photocurable wiring forming material, it is possible to simultaneously form an antenna circuit and join the antenna circuit and the electrode terminal of the bare chip component without a heating step. Therefore, it can be very suitably applied to the manufacture of an IC card using a bare chip component and a substrate where heating is not desirable.

1…基板供給ユニット、2…配線形成材料供給ユニット、3…搭載ユニット、4…光照射ユニット、5…部品実装基板回収ユニット、6…移動手段、6A…コンベア、6B…送り装置、7…ボード支持部、10、10A…ライン、12…キャリアボード、14…基板、14A…アンテナ回路基板、14B…回路基板、16、16A〜16C…光硬化性配線パターン、18、18A…端子接合位置、20、20A…搭載位置、22A…ICチップ、22B…液晶ドライバ、24、24A〜24C…外部端子、24D…ダミー電極、26、26A…光源、28…導電性配線パターン、28A…アンテナ回路、28B…接続回路、32…金属ナノ粒子、34…分散剤、40…ICカード、40A…COFパッケージ、   DESCRIPTION OF SYMBOLS 1 ... Board supply unit, 2 ... Wiring formation material supply unit, 3 ... Mounting unit, 4 ... Light irradiation unit, 5 ... Component mounting board collection unit, 6 ... Moving means, 6A ... Conveyor, 6B ... Feeder, 7 ... Board Support part 10, 10A ... line, 12 ... carrier board, 14 ... substrate, 14A ... antenna circuit board, 14B ... circuit board, 16, 16A-16C ... photo-curable wiring pattern, 18, 18A ... terminal bonding position, 20 20A ... Mounting position, 22A ... IC chip, 22B ... Liquid crystal driver, 24, 24A-24C ... External terminal, 24D ... Dummy electrode, 26, 26A ... Light source, 28 ... Conductive wiring pattern, 28A ... Antenna circuit, 28B ... Connection circuit, 32 ... metal nanoparticles, 34 ... dispersant, 40 ... IC card, 40A ... COF package,

Claims (8)

第1表面およびその反対側の第2表面を有するICカード用の基板の前記第1表面の端子接合位置を含む領域に、流動性を有する光硬化性の配線形成材料を供給することにより、アンテナ回路用の光硬化性配線パターンを形成する配線形成材料供給装置と、
外部端子を有するベアチップ部品を、前記外部端子が前記端子接合位置に着地するように、前記第1表面の搭載位置に搭載する搭載装置と、
前記光硬化性配線パターンに光を照射して硬化させ、前記アンテナ回路を形成するとともに、前記外部端子を前記端子接合位置で前記アンテナ回路と接合する光照射装置と、を含むICカードの製造システム。
An antenna is provided by supplying a photocurable wiring forming material having fluidity to a region including a terminal bonding position on the first surface of an IC card substrate having a first surface and a second surface opposite to the first surface. A wiring forming material supply device for forming a photocurable wiring pattern for a circuit;
A mounting device for mounting a bare chip component having an external terminal at a mounting position on the first surface such that the external terminal lands at the terminal joining position;
An IC card manufacturing system comprising: a light irradiating device that irradiates and cures the light curable wiring pattern to form the antenna circuit and joins the external terminal to the antenna circuit at the terminal joining position. .
前記基板を載せるキャリアと、
前記キャリアに載せられた前記基板を、前記配線形成材料供給装置から、前記搭載装置を経由して、前記光照射装置まで搬送する搬送手段と、を含む、請求項1記載のICカードの製造システム。
A carrier on which the substrate is placed;
The IC card manufacturing system according to claim 1, further comprising: a transport unit configured to transport the substrate placed on the carrier from the wiring forming material supply device to the light irradiation device via the mounting device. .
前記基板及び前記キャリアが光透過性を有し、
前記光照射装置が、前記基板の前記第2表面側から、前記第1表面に形成された前記光硬化性配線パターンに、前記基板及び前記キャリアを透過させた光を照射する、請求項2記載のICカードの製造システム。
The substrate and the carrier have optical transparency;
The said light irradiation apparatus irradiates the light which permeate | transmitted the said board | substrate and the said carrier to the said photocurable wiring pattern formed in the said 1st surface from the said 2nd surface side of the said board | substrate. IC card manufacturing system.
前記キャリアが、石英ガラス、および光透過性樹脂より選択される少なくとも一種を含むか、または、光透過部分を有する、非透明の板材から形成される、請求項2または3記載のICカードの製造システム。   The IC card according to claim 2 or 3, wherein the carrier includes at least one selected from quartz glass and a light-transmitting resin, or is formed from a non-transparent plate material having a light-transmitting portion. system. 前記配線形成材料が、平均粒子径が1〜10nmのCu粒子を含む、請求項1〜4のいずれか一項に記載のICカードの製造システム。   The IC card manufacturing system according to claim 1, wherein the wiring forming material includes Cu particles having an average particle diameter of 1 to 10 nm. 前記ベアチップ部品の前記外部端子が、少なくとも最表面にCuを含む、請求項5記載のICカードの製造システム。   The IC card manufacturing system according to claim 5, wherein the external terminal of the bare chip component includes Cu at least on an outermost surface. 前記基板が、ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリエチレン、ポリプロピレン、ポリブチレンテレフタレート、ポリフェニルスルフィド、ポリエーテルエーテルケトン、ポリカーボネイト、液晶ポリマー、ポリスチレン、アクリル樹脂、ポリアセタール、ポリフェニルエーテル、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合樹脂より選択される少なくとも一種を含む、請求項1〜6のいずれか一項に記載のICカードの製造システム。   The substrate is polyethylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, polybutylene terephthalate, polyphenyl sulfide, polyether ether ketone, polycarbonate, liquid crystal polymer, polystyrene, acrylic resin, polyacetal, polyphenyl ether, acrylonitrile-styrene copolymer The IC card manufacturing system according to any one of claims 1 to 6, comprising at least one selected from a coalesced acrylonitrile-butadiene-styrene copolymer resin. 第1表面およびその反対側の第2表面を有するICカード用の基板の前記第1表面の端子接合位置を含む領域に、流動性を有する光硬化性の配線形成材料を供給することにより、光硬化性配線パターンを形成する工程と、
外部端子を有するベアチップ部品を、前記外部端子が前記端子接合位置に着地するように、前記第1表面の搭載位置に搭載する工程と、
前記光硬化性配線パターンに光を照射して硬化させ、前記アンテナ回路を形成するとともに、前記外部端子を前記端子接合位置で前記アンテナ回路と接合する工程と、を含むICカードの製造方法。
By supplying a photocurable wiring forming material having fluidity to a region including a terminal bonding position on the first surface of an IC card substrate having a first surface and a second surface opposite to the first surface, Forming a curable wiring pattern; and
Mounting a bare chip component having an external terminal at a mounting position on the first surface such that the external terminal lands at the terminal joining position;
A method of manufacturing an IC card, comprising: irradiating and curing the light curable wiring pattern to form the antenna circuit, and joining the external terminal to the antenna circuit at the terminal joining position.
JP2012150646A 2012-07-04 2012-07-04 Manufacturing system of ic card and manufacturing method Pending JP2014013828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012150646A JP2014013828A (en) 2012-07-04 2012-07-04 Manufacturing system of ic card and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012150646A JP2014013828A (en) 2012-07-04 2012-07-04 Manufacturing system of ic card and manufacturing method

Publications (1)

Publication Number Publication Date
JP2014013828A true JP2014013828A (en) 2014-01-23

Family

ID=50109344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012150646A Pending JP2014013828A (en) 2012-07-04 2012-07-04 Manufacturing system of ic card and manufacturing method

Country Status (1)

Country Link
JP (1) JP2014013828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184621A (en) * 2015-03-25 2016-10-20 スタンレー電気株式会社 Method of manufacturing electronic device, and electronic device
JP2018049981A (en) * 2016-09-23 2018-03-29 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184621A (en) * 2015-03-25 2016-10-20 スタンレー電気株式会社 Method of manufacturing electronic device, and electronic device
JP2018049981A (en) * 2016-09-23 2018-03-29 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP6128495B2 (en) Electronic component mounting structure, IC card, COF package
JP2014017364A (en) Manufacturing system and manufacturing method of component mounting substrate
US10178769B2 (en) Bonded assembly and display device including the same
JP3780996B2 (en) Circuit board, mounting structure of semiconductor device with bump, mounting method of semiconductor device with bump, electro-optical device, and electronic device
JP6057224B2 (en) Component mounting structure
TWI483363B (en) Package substrate, package structure and method for manufacturing package structure
JP6032637B2 (en) Component mounting board manufacturing system and manufacturing method
TW201426920A (en) Method for bonding bare chip dies
TW200424985A (en) Circuit board, mounting structure of ball grid array, electro-optic device and electronic apparatus
US20210066243A1 (en) Micro led display and method for manufacturing the same
JP2018056278A (en) Implementation method of electronic component, joint structure of electronic component, substrate device, display device, and display system
JPWO2008047918A1 (en) Electronic device package structure and package manufacturing method
CN107078071B (en) Method for manufacturing connected body, method for connecting electronic component, and connected body
JP2014013827A (en) Manufacturing system of electronic component mounting substrate and manufacturing method
JP2014013828A (en) Manufacturing system of ic card and manufacturing method
JP6752669B2 (en) Electronic component mounting method, electronic component bonding structure, board equipment, display equipment, display system
JP2014013830A (en) Manufacturing system of ic card and manufacturing method
JP2014013829A (en) Manufacturing system of electronic component mounting substrate and manufacturing method
JP2011180162A (en) Anisotropic conductive material coating device, anisotropic conductive material coating method, display panel module assembling apparatus, and display panel module assembling method
JP6783537B2 (en) Manufacturing method of the connector
JP6370562B2 (en) CONNECTION MANUFACTURING METHOD, FLEXIBLE BOARD CONNECTION METHOD, CONNECTION BODY AND FLEXIBLE SUBSTRATE
KR20090106777A (en) Flexible printed circuit having electrode attached conductive particle and Tape carrier package using the same
KR20120085208A (en) Method for manufacturing wiring board for mounting electronic component, wiring board for mounting electronic component, and method for manufacturing wiring board having an electronic component
JP2006216942A (en) Circuit board, mounting structure of semiconductor element with bumps, electro-optical device, and electronic apparatus
JP2006165591A (en) Circuit board, packaging structure for semiconductor element with bumps, and electro-optical apparatus and electronic equipment