JP2014011810A - Control device and variable speed generator motor starting method - Google Patents
Control device and variable speed generator motor starting method Download PDFInfo
- Publication number
- JP2014011810A JP2014011810A JP2012144179A JP2012144179A JP2014011810A JP 2014011810 A JP2014011810 A JP 2014011810A JP 2012144179 A JP2012144179 A JP 2012144179A JP 2012144179 A JP2012144179 A JP 2012144179A JP 2014011810 A JP2014011810 A JP 2014011810A
- Authority
- JP
- Japan
- Prior art keywords
- variable speed
- generator motor
- speed generator
- speed
- variable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Control Of Eletrric Generators (AREA)
Abstract
Description
本発明の実施形態は、可変速揚水発電システム等における可変速発電電動機の始動を制御する制御装置および可変速発電電動機始動方法に関する。 Embodiments described herein relate generally to a control device and a variable speed generator motor starting method for controlling the start of a variable speed generator motor in a variable speed pumped storage power generation system or the like.
大容量揚水発電所の発電電動機の始動装置としては、一般に、半導体素子からなる周波数変換器を用いた静止形始動装置を用いて、停止状態から定格回転速度まで加速し、系統電圧と発電電動機端子電圧の同期を取った後、並列用遮断器により系統並入し、ポンプ運転を開始する方式が採用されている。このような静止形始動装置としては、サイリスタ始動装置が知られている。この種の始動装置は、出力20MW程度の大きなものであり、その費用、設置スペースの低減が求められている。 As a starter for a generator motor of a large-capacity pumped storage power plant, in general, a stationary starter using a frequency converter made of a semiconductor element is used to accelerate from a stopped state to a rated rotational speed, and the system voltage and generator motor terminal After synchronizing the voltage, a system is adopted in which the system is inserted by a parallel circuit breaker and pump operation is started. As such a stationary starter, a thyristor starter is known. This type of starting device has a large output of about 20 MW, and its cost and reduction in installation space are required.
一方で、近年の地球温暖化対策を背景に、可変速揚水発電所に二重給電交流機(以下、「可変速発電電動機」と呼ぶ。)を適用するケースが増加している。可変速揚水発電所に、大容量の可変速発電電動機を適用する場合、その励磁装置に20MWを超える出力を持つ周波数変換器(以下、「二次励磁装置」と呼ぶ。)を用いる場合があり、可変速揚水発電所によっては、上記サイリスタ始動装置を別途設置することなく、この「二次励磁装置」を始動装置として用い、可変速発電電動機の二次巻線から可変周波数の駆動電力を発電電動機に注入し、停止状態から同期速度近傍まで加速する方式(以下、「自己始動方式(二次側)」と呼ぶ)を採用している。 On the other hand, against the background of global warming countermeasures in recent years, there are an increasing number of cases where double-feed AC generators (hereinafter referred to as “variable speed generator motors”) are applied to variable speed pumped storage power plants. When a large-capacity variable speed generator motor is applied to a variable speed pumped storage power plant, a frequency converter (hereinafter referred to as “secondary excitation device”) having an output exceeding 20 MW may be used for the excitation device. Depending on the variable speed pumped storage power plant, this “secondary excitation device” can be used as a starter without the need to install the thyristor starter separately to generate variable frequency drive power from the secondary winding of the variable speed generator motor. A method of injecting into the electric motor and accelerating from the stop state to the vicinity of the synchronous speed (hereinafter referred to as “self-starting method (secondary side)”) is adopted.
「自己始動方式(二次側)」において、系統と同期並入する速度は、いわゆる可変速運転範囲の最低速度以上を目標としている。 In the “self-starting method (secondary side)”, the target speed for synchronously entering the system is set to be equal to or higher than the lowest speed in the so-called variable speed operation range.
ところが、近年の可変速揚水発電所はその高落差大容量化に伴い、その選定される可変速運転範囲が従来の±5〜7%程度から、±4%程度へと小さくなってきている。そのため、励磁装置として用いられる周波数変換器に求められる出力周波数範囲、出力電圧範囲も可変速運転範囲に比例して小さくなり、その結果、従来実施してきたとおりに可変速発電電動機の二次巻線に二次励磁装置を接続し、始動装置として用いて駆動電力を供給しても、出力電圧が低いため、可変速運転範囲の下限速度までも昇速することができなくなってきている。 However, in recent years, variable speed pumped storage power plants have a variable range of selected variable speeds that have been reduced from about ± 5 to 7% to about ± 4% with the increase in capacity of the high head. For this reason, the output frequency range and output voltage range required for the frequency converter used as the excitation device are also reduced in proportion to the variable speed operation range. Even if a secondary excitation device is connected to the motor and used as a starting device to supply driving power, the output voltage is low, so that it is impossible to increase the speed to the lower limit speed of the variable speed operation range.
このような問題に対し、冒頭に記載したような(1)サイリスタ始動装置を別途設置する方式(サイリスタ始動方式)のほか、(2)大電流の分岐回路母線、断路器等を設け、始動時に主回路切替を行い発電電動機の一次巻線側から必要な駆動電力を注入する方式(自己始動方式(一次側))、(3)始動時のみ用いる昇圧変圧器、及び分岐回路母線、断路器等を二次巻線側に設け、始動時の二次電圧を昇圧し、二次巻線側から必要な駆動電力を注入する方式(自己始動方式(二次側昇圧変圧器付))の適用が考えられるが、これらのいずれの場合も、大きな装置・機器を別途設置するため、機器費用が増大し、発電所のレイアウト設計を複雑にするとともに、建屋の大型化や土木費用の増大を招くことになる。 To deal with such problems, in addition to (1) a method of separately installing a thyristor starting device (thyristor starting method) as described at the beginning, (2) a large-current branch circuit bus, a disconnector, etc. are provided. Method of switching main circuit and injecting necessary driving power from primary winding side of generator motor (self-starting method (primary side)), (3) Step-up transformer used only at start-up, branch circuit bus, disconnector, etc. Is applied to the secondary winding side, boosts the secondary voltage at startup, and injects the necessary drive power from the secondary winding side (self-starting method (with secondary step-up transformer)) In any of these cases, large equipment / equipment will be installed separately, which will increase equipment costs, complicate the layout design of the power plant, increase the size of the building, and increase civil engineering costs. become.
発明が解決しようとする課題は、可変速揚水発電システムにおいて可変速運転範囲が制限される可変速発電電動機を二次励磁装置により始動するに際し、装置の大型化や費用の増大を招くことなく、当該可変速発電電動機を始動することを可能とする制御装置および可変速発電電動機始動方法を提供することにある。 The problem to be solved by the invention is to start up a variable speed generator motor whose variable speed operation range is limited in a variable speed pumped storage power generation system with a secondary excitation device without causing an increase in the size of the device or an increase in cost. It is an object of the present invention to provide a control device and a variable speed generator motor starting method capable of starting the variable speed generator motor.
実施形態の制御装置は、電力系統に負荷時タップ切換器付変圧器を介して可変速発電電動機が接続され、二次励磁装置から前記可変速発電電動機の二次巻線に駆動電力を供給することにより前記可変速発電電動機を停止状態から始動させる可変速揚水発電システムに適用される。この制御装置は、前記負荷時タップ切換器付変圧器の巻線比をタップ切換により変更して前記可変速発電電動機の一次側電圧を低下させた状態で、前記可変速発電電動機の回転速度が所定の回転速度を上回ったときに、前記二次励磁装置からの駆動電力による昇速を完了させて前記可変速発電電動機が電力系統と並入するように制御する手段を有する。 In the control device of the embodiment, a variable speed generator motor is connected to a power system via a transformer with a load tap changer, and a driving power is supplied from a secondary excitation device to a secondary winding of the variable speed generator motor. Thus, the present invention is applied to a variable speed pumped storage power generation system that starts the variable speed generator motor from a stopped state. In this control device, the rotational speed of the variable speed generator-motor is reduced in a state where the winding ratio of the transformer with a load tap changer is changed by tap switching to lower the primary voltage of the variable-speed generator motor. And a means for controlling the variable speed generator motor so that the variable speed generator motor is juxtaposed with the electric power system by completing the speed increase by the driving power from the secondary excitation device when a predetermined rotational speed is exceeded.
以下、実施の形態について、図面を参照して説明する。 Hereinafter, embodiments will be described with reference to the drawings.
図1は、一実施形態に係る可変速揚水発電システムの基本構成を示すブロック図である。 FIG. 1 is a block diagram showing a basic configuration of a variable speed pumped storage power generation system according to an embodiment.
可変速揚水発電システムは、主な要素として、ポンプ水車1、二重給電交流機で実現される可変速発電電動機2(以下、「発電電動機2」と略称する場合がある)、この可変速発電電動機2の二次巻線に接続し可変周波数の交流を印加する二次励磁装置3、この二次励磁装置3が出力する交流電圧、電流、周波数、位相の制御や、開閉設備5,6の開閉制御、水面押下装置(図示せず)の駆動制御などを行う制御装置4、可変速発電電動機2の固定子側に接続される系統連系用の並列用遮断器5、可変速発電電動機2の固定子巻線端を三相短絡するための始動用断路器6、二次励磁装置3用の電源変圧器としての励磁用変圧器7、励磁用変圧器7に接続される二次励磁装置3用の励磁用遮断器8、電力系統側(高圧側)に一次巻線が接続されると共に可変速発電電動機2側(低圧側)に二次巻線が接続される負荷時タップ切換器付主要変圧器9(以下、「主要変圧器9」と略称する場合がある)、系統電圧の測定のための計器用変圧器10、可変速発電電動機2の端子電圧の測定のための計器用変圧器11、可変速発電電動機2の回転子の回転数もしくは回転速度(以下、「速度」と略称する場合がある)を検出するための速度検出器12、可変速発電電動機2の回転子の位相を検出するための位相検出器13などを備えている。
The variable-speed pumped-storage power generation system includes, as main elements, a pump-turbine 1, a variable-speed generator-motor 2 (hereinafter sometimes abbreviated as “generator-motor 2”) realized by a double-feed AC machine, and this variable-speed power generation. The secondary excitation device 3 connected to the secondary winding of the electric motor 2 to apply a variable frequency alternating current, the control of the alternating voltage, current, frequency and phase output from the secondary excitation device 3, and the
なお、主要変圧器9は、本システムにおける主要な変圧器の一つであり、ここでは一般的な「負荷時タップ切換器付変圧器」が適用されるものとする。負荷時タップ切換器付変圧器は、負荷がかかっている状態で、停電させずに、タップを切り替えて高圧側の巻数を変えることによって当該変圧器の巻線比(「巻数比」という場合もある。)を変え、低圧側の電圧を任意に変えることのできる変圧器である。主要変圧器9は手動で操作できるものであるが、制御装置4が操作できるように構成してもよい。
The main transformer 9 is one of the main transformers in the present system, and here, a general “transformer with load tap changer” is applied. A transformer with a tap changer at the time of loading is not subject to a power outage in a loaded state, but by changing the number of turns on the high voltage side by switching the tap, the transformer turns ratio (also called “turn ratio”) It is a transformer that can change the voltage on the low voltage side arbitrarily. The main transformer 9 can be manually operated, but may be configured so that the
また、制御装置4は、二次励磁装置3から可変速発電電動機2の二次巻線に駆動電力を供給することにより可変速発電電動機2を停止状態から始動させるための制御を行う機能を有する。
Further, the
特に本実施形態においては、制御装置4は、主要変圧器9の巻線比をタップ切換により変更して可変速発電電動機2の一次側電圧を低下させた状態で、可変速発電電動機2の回転速度が所定の回転速度を上回ったときに、二次励磁装置3からの駆動電力による昇速を完了させて可変速発電電動機2が電力系統と並入するように制御する機能を有する。例えば、可変速発電電動機2の始動前においては、主要変圧器9の巻線比が大きくなるように制御し、電力系統との並入後に主要変圧器9の巻線比が小さくなるように制御する。
Particularly in the present embodiment, the
また、制御装置4は、昇速を完了させ系統並入させるときの速度は、タップ切換を行う前の一般的な可変速運転範囲の下限速度よりも低く、かつ、可変速発電電動機2の無負荷運転状態での二次電圧、二次電流のいずれか一方が二次励磁装置3の最大出力電圧または最大出力電流と等しくなる速度以上となるようにする。
Further, the
このような制御を採用する理由について、従来技術と対比させながら以下に説明する。 The reason for adopting such control will be described below in comparison with the prior art.
一般に、可変速揚水発電システムにおいては、図2に示すように、そのプラントの最高揚程(落差)Hpmax、最低揚程(落差)Hpminの範囲内、ポンプ水車のポンプ運転特性、水車運転特性から要求される最大入力(出力)Pmax、最低入力(出力)の範囲で、かつ周波数変換器の連続定格としての最大出力電圧、最大出力電流値以内になるように決定した回転速度範囲(例えば、N=N0±5%)の上下限速度範囲内で、可変速運転範囲Rを決定する。したがって、この範囲内のすべての領域で安定な連続運転(定常運転)ができる。 Generally, in a variable speed pumped storage power generation system, as shown in FIG. 2, it is required from the range of the maximum head (head) Hpmax and the minimum head (head) Hpmin of the plant, the pump operation characteristics of the pump turbine, and the turbine operation characteristics. Range of maximum input (output) Pmax, minimum input (output), and the rotational speed range determined to be within the maximum output voltage and maximum output current value as the continuous rating of the frequency converter (for example, N = N0 The variable speed operation range R is determined within the upper and lower limit speed range of ± 5%). Therefore, stable continuous operation (steady operation) can be performed in all regions within this range.
しかし、前述のように、従来は定格回転速度に対して±5〜7%程度あった可変速運転範囲が、近年の高速大容量ポンプ水車を用いた可変速揚水システムにおいては、±4%程度に小さくなる傾向にあり、その一方で、ポンプ水車の高速化により回転体の反抗トルクが増大するため、上記の従来技術の手法では、可変速運転範囲の下限速度以上で系統並入ができる速度まで、二次励磁装置を用いて誘導電動機とした可変速発電電動機を加速昇速することができなくなってきている。 However, as described above, the variable speed operation range, which was conventionally about ± 5 to 7% of the rated rotational speed, is about ± 4% in the recent variable speed pumping system using a high-speed large-capacity pump turbine. On the other hand, the repulsive torque of the rotating body increases due to the higher speed of the pump turbine, so in the above-mentioned conventional technique, the speed at which the system can be entered at a speed exceeding the lower limit speed of the variable speed operation range. Until now, it has become impossible to accelerate and accelerate a variable speed generator motor that is an induction motor using a secondary excitation device.
そこで、一般的な可変速運転範囲の下限速度よりも低い速度での系統並入が可能かどうかを、数式を参照しながら検証する。 Therefore, it is verified with reference to the formula whether or not system parallel insertion at a speed lower than the lower limit speed of the general variable speed operation range is possible.
主要変圧器9の高圧側電圧(系統側電圧)と低圧側電圧(発電電動機一次電圧)との関係を、数式を用いて表現すると、以下のようになる。 The relationship between the high-voltage side voltage (system-side voltage) and the low-voltage side voltage (generator motor primary voltage) of the main transformer 9 is expressed using mathematical formulas as follows.
V0/V1 = α …(1)
V2 = V1×s …(2)
ここで、V0:主要変圧器高圧側電圧(系統側電圧)
V1:主要変圧器低圧側電圧(発電電動機一次電圧)
α:主要変圧器巻線比
V2:二次励磁装置の出力電圧(発電電動機二次電圧)
s:すべり
上記の関係式から分かるように、「二次励磁装置の出力電圧(発電機二次電圧)V2」が「主要変圧器低圧側電圧(発電電動機一次電圧)V1」×「すべりs」に等しいことから、同じ二次電圧V2の状態のもとで、一次電圧V1を下げれば、すべりsを大きくすることができる。そこで、主要変圧器9のタップ位置を切り換えて、主要変圧器巻線比を変え、可変速発電電動機2の一次電圧V1を下げ、同じ二次電圧V2の定格一次電圧に対する比率を上げる。
V 0 / V 1 = α (1)
V 2 = V 1 × s (2)
Where V 0 : Main transformer high voltage (system voltage)
V 1 : Main transformer low voltage (generator motor primary voltage)
α: Main transformer winding ratio V 2 : Output voltage of secondary excitation device (secondary voltage of generator motor)
s: Slip As can be seen from the above relational expression, “the output voltage of the secondary excitation device (the generator secondary voltage) V 2 ” is “the main transformer low voltage side voltage (the generator motor primary voltage) V 1 ” × “the slip. from equal to s', under the condition of the same secondary voltage V 2, by lowering the primary voltage V 1, it is possible to increase the slip s. Therefore, by switching the tap position of the main transformer 9, changing the main transformer turns ratio, decrease the primary voltage V 1 of the variable speed generator-motor 2, increasing the ratio of the rated primary voltage of the same secondary voltage V 2.
これにより、可変速発電電動機2の定格電圧運転時よりも大きなすべり周波数に相当する二次電圧V2の供給により、可変速発電電動機2の系統並入を行うことができる。すなわち、すべり周波数がタップ切換前の可変速運転範囲の最大すべり周波数を超える状態で、二次励磁装置3からの駆動電力による昇速を完了させて可変速発電電動機2を電力系統に並入させることができる。従って、昇速完了速度を定格一次電圧時(通常時)の可変速運転範囲の下限速度よりも低い速度(大きなすべり時の速度)で可変速発電電動機2の系統並入を行うことができることになる。 Thereby, system variable insertion of the variable speed generator-motor 2 can be performed by supplying the secondary voltage V 2 corresponding to a slip frequency larger than that during the rated voltage operation of the variable-speed generator motor 2. That is, in the state where the slip frequency exceeds the maximum slip frequency in the variable speed operation range before tap switching, the speed increase by the drive power from the secondary excitation device 3 is completed and the variable speed generator motor 2 is inserted into the power system. be able to. Accordingly, the variable speed generator-motor 2 can be connected to the system at a speed lower than the lower limit speed of the variable speed operation range at the rated primary voltage (normal time) (speed at the time of large slip). Become.
例えば、可変速運転範囲が±5%の場合、主要変圧器9のタップ切換により、主要変圧器9の変圧比を、例えば、275/16.5kVから275/16.0[kV]に変えると、上記の関係式(2)より、すべりsの値を以下のように大きくすることができる。 For example, when the variable speed operation range is ± 5%, if the transformation ratio of the main transformer 9 is changed from, for example, 275 / 16.5 kV to 275 / 16.0 [kV] by tap switching of the main transformer 9. From the above relational expression (2), the value of the slip s can be increased as follows.
V2 = 16.5[kV]×5[%] = 16.0[kV]×s
s = 5.16[%]
すなわち、主要変圧器9のタップ切換により、可変速発電電動機2の可変速運転範囲の下限を、5[%]から5.16[%]に拡大することができる。また、主要変圧器9のタップ切換の電圧調整範囲をより大きなものにすれば、更に大きな並入速度低減効果が期待できる。
V 2 = 16.5 [kV] × 5 [%] = 16.0 [kV] × s
s = 5.16 [%]
That is, the lower limit of the variable speed operation range of the variable speed generator-motor 2 can be expanded from 5 [%] to 5.16 [%] by tap switching of the main transformer 9. Moreover, if the voltage adjustment range of tap switching of the main transformer 9 is made larger, a greater effect of reducing the entry speed can be expected.
図3に、制御装置4が有する二次励磁装置制御機能の一構成例を示す。
FIG. 3 shows a configuration example of the secondary excitation device control function of the
制御装置4が有する二次励磁装置制御機能は、自己始動制御部21、二次励磁制御部22、比較部23、およびスイッチSW1,SW2を備えている。
The secondary excitation device control function of the
スイッチSW1,SW2は、比較部23からの信号がオフのときに、それぞれ、閉,開の状態にあり、自己始動制御部21と二次励磁制御部22のうち、自己始動制御部21から出力される信号を二次励磁装置3へ供給する。一方、スイッチSW1,SW2は、比較部23からの信号がオンになると、それぞれ、開,閉の状態に切り替わり、自己始動制御部21と二次励磁制御部22のうち、二次励磁制御部22から出力される信号を二次励磁装置3へ供給するようになる。
The switches SW1 and SW2 are in a closed state and an open state, respectively, when the signal from the
自己始動制御部21は、二次励磁装置3を始動装置として可変速発電電動機2(およびポンプ水車1)を始動させるための制御モード(以下、「自己始動制御モード」と称す。)を実行する機能であり、スイッチSW1が閉の状態のときにその制御信号が二次励磁装置3へ送られる。この制御信号は、二次励磁装置(周波数変換器)3の出力周波数を0Hzから系統周波数近傍まで漸増させる。 The self-start control unit 21 executes a control mode (hereinafter referred to as “self-start control mode”) for starting the variable speed generator-motor 2 (and the pump turbine 1) using the secondary excitation device 3 as a start device. This is a function, and the control signal is sent to the secondary excitation device 3 when the switch SW1 is in the closed state. This control signal gradually increases the output frequency of the secondary excitation device (frequency converter) 3 from 0 Hz to the vicinity of the system frequency.
二次励磁制御部22は、二次励磁装置3を通じて可変速発電電動機2の系統並入時および並入後の可変速運転の制御を行うための制御モード(以下、「二次励磁制御モード」と称す。)を実行する機能であり、スイッチSW2が閉の状態となったときにその制御信号が二次励磁装置3へ送られる。 The secondary excitation control unit 22 is a control mode (hereinafter referred to as “secondary excitation control mode”) for controlling the variable speed operation of the variable speed generator motor 2 when the variable speed generator motor 2 is installed in the system and after the parallel installation through the secondary excitation device 3. The control signal is sent to the secondary excitation device 3 when the switch SW2 is in a closed state.
制御装置4には、あらかじめ定められたモード切替速度設定値Ncが記憶部などに保持されている。なお、この設定値は制御装置4の外側から取り込まれるように構成してもよい。モード切替速度設定値Ncは、可変速発電電動機2の回転子の速度Nがいかなる値になったら制御モードを自己始動制御モードから二次励磁制御モードへ切り替えるかを定めたものである。すなわち、二次励磁装置3からの駆動電力による昇速を完了させて可変速発電電動機2を系統並入させるときの可変速発電電動機2の回転子の速度を定めたものである。
In the
比較部23は、速度検出器12で検出される速度Nとモード切替速度設定値Ncとを比較し、速度Nがモード切替速度設定値Ncに達しない間は、出力信号をオフの状態にしている。その間、スイッチSW1は閉、スイッチSW2は開の状態にあり、自己始動制御部21からの制御信号が二次励磁装置3へ送られ、自己始動制御モードが実行されている。一方、比較部23は、速度Nがモード切替速度設定値Ncに達したら(速度Nがモード切替速度設定値Nc以上となったら)、出力信号をオンの状態にする。これにより、スイッチSW1は開、スイッチSW2は閉の状態となり、二次励磁制御部22からの制御信号が二次励磁装置3へ送られ、二次励磁制御モードが実行される。
The
特に、モード切替速度設定値Ncは、前述したようにタップ切換前の可変速運転範囲の下限速度よりも低く、かつ、可変速発電電動機2の無負荷運転状態での二次電圧、二次電流のいずれか一方が二次励磁装置3の最大出力電圧または最大出力電流と等しくなる速度以上となるように設定する。 In particular, the mode switching speed set value Nc is lower than the lower limit speed of the variable speed operation range before tap switching as described above, and the secondary voltage and secondary current in the no-load operation state of the variable speed generator motor 2 are set. Is set to be equal to or higher than a speed equal to the maximum output voltage or the maximum output current of the secondary excitation device 3.
次に、図4を参照して、制御装置4による動作の一例を説明する。
Next, an example of the operation by the
可変速発電電動機2(およびポンプ水車1)が停止している状態において、制御装置4の制御のもとで、もしくは手動により、主要変圧器9の巻線比が大きくなるようにタップを切り換えて、可変速発電電動機2の一次側電圧を低下させる(ステップS1)。
When the variable speed generator motor 2 (and the pump turbine 1) is stopped, the tap is switched so that the winding ratio of the main transformer 9 is increased under the control of the
制御装置4は、始動操作に応じて可変速発電電動機2(およびポンプ水車1)の始動を開始する(ステップS2)。この始動において、制御装置4は、並列用遮断器5を開路、始動用断路器6を閉路することにより、可変速発電電動機2を誘導電動機とし、また、自己始動制御モードを実行することにより、二次励磁装置3を可変周波数・可変電圧を出力する駆動装置として動作させ、その交流出力をほぼ0Hzから系統周波数近傍まで変化させることにより、可変速発電電動機2を加速昇速させる(ステップS3)。
The
制御装置4は、可変速発電電動機2の速度Nとモード切替速度設定値Ncとを比較し(ステップS4)、速度Nがモード切替速度設定値Ncに達したら(N≧Ncが成立したら)、制御モードを自己始動制御モードから二次励磁制御モードへ切り替える(ステップS5)。すなわち、制御装置4は、可変速発電電動機2の速度Nがタップ切換前の可変速運転範囲の下限速度よりも低い状態で、始動用断路器6を開路した後、計器用変圧器11で測定される可変速発電電動機2の端子電圧が計器用変圧器10で測定される電力系統電圧と同期するように二次励磁装置3の交流出力電圧、電流、周波数および位相を制御し、同期確認後、並列用遮断器5を閉路し、系統並入させる(ステップS6)。
The
系統連系後、制御装置4は、二次励磁装置3と電力系統からの駆動電力で可変速発電電動機2を加速して可変速運転範囲まで昇速させ、ポンプ水車1を用いた揚水運転を開始する(ステップS7)。
After the grid connection, the
最後に、制御装置4の制御のもとで、もしくは手動により、主要変圧器9の巻線比が小さくなるようにタップを切り換えて、可変速発電電動機2の一次側電圧を増加させる(ステップS8)。すなわち、主要変圧器9の巻線比を始動操作前の元の状態に戻す。
Finally, under the control of the
なお、上記実施形態は、その要旨を逸脱しない範囲で適宜変形して実施するようにしてもよい。例えば、上記実施形態の図3,図4においては、可変速発電電動機2の回転速度に着眼し、この回転速度がタップ切換前の可変速運転範囲の下限速度よりも低い所定の回転速度を上回ったときに、二次励磁装置3からの駆動電力による昇速を完了させて可変速発電電動機2が電力系統と並入するように制御する場合について例示したが、このような制御のみに限定する必要はない。 In addition, you may make it implement the said embodiment suitably deform | transforming in the range which does not deviate from the summary. For example, in FIGS. 3 and 4 of the above embodiment, the rotational speed of the variable speed generator-motor 2 is focused, and this rotational speed exceeds a predetermined rotational speed that is lower than the lower limit speed of the variable speed operating range before tap switching. In this example, the case where the variable speed generator motor 2 is controlled so as to be installed in parallel with the power system by completing the speed increase by the driving power from the secondary excitation device 3 is limited to such control. There is no need.
可変速発電電動機2の回転速度に着眼する代わりに、例えば、二次励磁装置(周波数変換器)3の「自己始動制御モード」中の出力周波数に着眼し、この二次励磁装置3の出力周波数が、タップ切換前の可変速運転範囲の下限速度相当の出力周波数(可変速運転範囲の下限速度を達成する出力周波数)よりも低い所定の回転速度を上回ったときに、二次励磁装置3からの駆動電力による昇速を完了させて可変速発電電動機2が電力系統と並入するように制御するものとして実現してもよい。 Instead of focusing on the rotational speed of the variable speed generator-motor 2, for example, focusing on the output frequency in the “self-starting control mode” of the secondary excitation device (frequency converter) 3, the output frequency of the secondary excitation device 3 When the rotational speed exceeds a predetermined rotational speed lower than the output frequency corresponding to the lower limit speed of the variable speed operation range before tap switching (the output frequency that achieves the lower limit speed of the variable speed operation range), the secondary excitation device 3 It may be realized that the variable speed generator motor 2 is controlled so as to be parallel to the power system by completing the speed increase by the driving power.
この場合、より具体的には、二次励磁装置3の「自己始動制御モード」中の出力周波数は、タップ切換前の可変速運転範囲の下限速度相当の出力周波数よりも低く、かつ、可変速発電電動機2の無負荷運転状態での二次電圧、二次電流のいずれか一方が二次励磁装置3の最大出力電圧または最大出力電流と等しくなる速度相当の出力周波数以上となるようにする。 In this case, more specifically, the output frequency in the “self-starting control mode” of the secondary excitation device 3 is lower than the output frequency corresponding to the lower limit speed of the variable speed operation range before the tap switching, and the variable speed. Either the secondary voltage or the secondary current in the no-load operation state of the generator motor 2 is set to be equal to or higher than the output frequency corresponding to the speed at which the maximum output voltage or the maximum output current of the secondary excitation device 3 is equal.
また、前述のモード切替速度設定値Ncの代わりに、二次励磁装置3の出力周波数がいかなる値になったら制御モードを自己始動制御モードから二次励磁制御モードへ切り替えるかを定めたモード切替出力周波数設定値を採用してもよい。このモード切替出力周波数設定値は、タップ切換前の可変速運転範囲の下限速度相当の出力周波数よりも低く、かつ、可変速発電電動機2の無負荷運転状態での二次電圧、二次電流のいずれか一方が二次励磁装置3の最大出力電圧または最大出力電流と等しくなる速度相当の出力周波数以上となるように設定する。そして、二次励磁装置3の出力周波数とモード切替出力周波数設定値とを比較し、二次励磁装置3の出力周波数がモード切替出力周波数設定値に達したら(二次励磁装置3の出力周波数がモード切替出力周波数設定値以上となったら)、制御モードを自己始動制御モードから二次励磁制御モードへ切り替えるようにすればよい。 Further, in place of the mode switching speed setting value Nc described above, a mode switching output that determines what value the output frequency of the secondary excitation device 3 is to switch from the self-starting control mode to the secondary excitation control mode. A frequency setting value may be adopted. This mode switching output frequency setting value is lower than the output frequency corresponding to the lower limit speed of the variable speed operation range before tap switching, and the secondary voltage and secondary current in the no-load operation state of the variable speed generator motor 2 are set. Either one is set to be equal to or higher than the output frequency corresponding to the speed equal to the maximum output voltage or the maximum output current of the secondary excitation device 3. Then, the output frequency of the secondary excitation device 3 is compared with the mode switching output frequency set value, and when the output frequency of the secondary excitation device 3 reaches the mode switching output frequency setting value (the output frequency of the secondary excitation device 3 is When the mode switching output frequency setting value is exceeded, the control mode may be switched from the self-starting control mode to the secondary excitation control mode.
また、上記実施形態の図3,図4においては、可変速発電電動機2の速度に基づいて制御モードの切替を行う場合を説明したが、代わりに、可変速発電電動機2に対する二次励磁装置3のすべり周波数に基づいて制御モードの切替を行うようにしてもよい。 3 and 4 of the above embodiment, the case where the control mode is switched based on the speed of the variable speed generator motor 2 has been described. Instead, the secondary excitation device 3 for the variable speed generator motor 2 is described. The control mode may be switched based on the slip frequency.
この場合、制御装置4は、すべり周波数がタップ切換前の可変速運転範囲の最大すべり周波数を超える状態で、二次励磁装置3からの駆動電力による昇速を完了させて可変速発電電動機2が電力系統と並入するように制御する機能を有する。より具体的には、昇速を完了させ系統並入させるときのすべり周波数は、タップ切換前の可変速運転範囲の最大すべり周波数よりも高く、かつ、可変速発電電動機2の無負荷運転状態での二次電圧、二次電流のいずれか一方が二次励磁装置3の最大出力電圧または最大出力電流と等しくなるすべり周波数以下となるようにする。
In this case, the
上記実施形態によれば、「自己始動方式(二次側)」において、可変揚水システムの通常時の可変速運転範囲の下限速度よりも低い速度で系統並入することが可能となるため、別置きの静止形始動装置や、始動用変圧器などが不要になり、膨大な機器コストや大きな設置スペースの削減が可能となる。特に近年の地下発電所に適用する場合には、その土木掘削費用の低減効果は絶大となる。また、残土の地上での処理も少なくて済み、地球環境への貢献も大きい。さらには、より低回転速度で系統並入できるため、始動時間の短縮が可能となる。 According to the above embodiment, in the “self-starting method (secondary side)”, it is possible to enter the system at a speed lower than the lower limit speed of the variable speed operation range at the normal time of the variable pumping system. There is no need for a stationary starter or a starting transformer, which makes it possible to reduce enormous equipment costs and a large installation space. In particular, when applied to underground power plants in recent years, the effect of reducing civil engineering excavation costs is enormous. In addition, there is little processing of the remaining soil on the ground, and the contribution to the global environment is great. Furthermore, since the system can be entered at a lower rotational speed, the starting time can be shortened.
以上詳述したように、実施形態によれば、可変速揚水発電システムにおいて可変速運転範囲が制限される可変速発電電動機を二次励磁装置により始動するに際し、機器の大型化や費用の増大を招くことなく、当該可変速発電電動機を始動することが可能となる。 As described above in detail, according to the embodiment, when starting a variable speed generator motor whose variable speed operation range is limited in the variable speed pumped storage power generation system by the secondary excitation device, the size of the equipment is increased and the cost is increased. The variable speed generator motor can be started without inviting.
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
1…ポンプ水車、2…可変速発電電動機、3…二次励磁装置、4…制御装置、5…並列用遮断器、6…始動用断路器、7…励磁用変圧器、8…励磁用遮断器、9…負荷時タップ切換器付主要変圧器9、10…計器用変圧器、11…計器用変圧器、12…速度検出器、13…位相検出器。 DESCRIPTION OF SYMBOLS 1 ... Pump turbine, 2 ... Variable speed generator motor, 3 ... Secondary excitation device, 4 ... Control device, 5 ... Parallel circuit breaker, 6 ... Start disconnector, 7 ... Excitation transformer, 8 ... Excitation break 9: Main transformer with load tap changer 9, 10 ... Instrument transformer, 11 ... Instrument transformer, 12 ... Speed detector, 13 ... Phase detector.
Claims (5)
前記負荷時タップ切換器付変圧器の巻線比をタップ切換により変更して前記可変速発電電動機の一次側電圧を低下させた状態で、前記可変速発電電動機の回転速度が所定の回転速度を上回ったときに、前記二次励磁装置からの駆動電力による昇速を完了させて前記可変速発電電動機が電力系統と並入するように制御する手段を有することを特徴とする制御装置。 A variable speed generator-motor is connected to the power system via a transformer with a load tap changer, and the drive power is supplied from a secondary excitation device to the secondary winding of the variable-speed generator motor, thereby the variable-speed generator-motor A control device applied to a variable speed pumped storage power generation system that starts the engine from a stopped state,
In a state where the winding ratio of the transformer with a load tap changer is changed by tap change and the primary voltage of the variable speed generator motor is lowered, the rotation speed of the variable speed generator motor becomes a predetermined rotation speed. A control device comprising means for controlling the variable speed generator motor so that the speed increase by the drive power from the secondary excitation device is completed and the variable speed generator motor is juxtaposed with the power system when the power exceeds the upper limit.
制御装置により、前記負荷時タップ切換器付変圧器の巻線比をタップ切換により変更して前記可変速発電電動機の一次側電圧を低下させた状態で、前記可変速発電電動機の回転速度が所定の回転速度を上回ったときに、前記二次励磁装置からの駆動電力による昇速を完了させて前記可変速発電電動機が電力系統と並入するように制御することを特徴とする可変速発電電動機始動方法。 In a variable speed pumped storage power generation system in which a variable speed generator motor is connected to a power system via a transformer with a load tap changer, driving power is supplied from a secondary excitation device to the secondary winding of the variable speed generator motor. A variable speed generator motor starting method for starting the variable speed generator motor from a stopped state by:
In a state where the winding ratio of the transformer with a load tap changer is changed by tap switching by the control device and the primary voltage of the variable speed generator motor is lowered, the rotation speed of the variable speed generator motor is set to a predetermined value. The variable speed generator-motor is controlled so that the variable speed generator-motor is juxtaposed with the electric power system by completing the speed-up by the driving power from the secondary excitation device when the rotation speed exceeds How to start.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012144179A JP2014011810A (en) | 2012-06-27 | 2012-06-27 | Control device and variable speed generator motor starting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012144179A JP2014011810A (en) | 2012-06-27 | 2012-06-27 | Control device and variable speed generator motor starting method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014011810A true JP2014011810A (en) | 2014-01-20 |
Family
ID=50108066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012144179A Pending JP2014011810A (en) | 2012-06-27 | 2012-06-27 | Control device and variable speed generator motor starting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014011810A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104155883A (en) * | 2014-06-12 | 2014-11-19 | 国家电网公司 | Starting control method for static frequency converter (SFC) of pump storage group |
JP2022505734A (en) * | 2018-10-24 | 2022-01-14 | シーメンス エナジー インコーポレイテッド | Hybrid synchronous capacitor and power generator |
-
2012
- 2012-06-27 JP JP2012144179A patent/JP2014011810A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104155883A (en) * | 2014-06-12 | 2014-11-19 | 国家电网公司 | Starting control method for static frequency converter (SFC) of pump storage group |
CN104155883B (en) * | 2014-06-12 | 2016-09-14 | 国家电网公司 | A kind of startup control method of pump-storage generator SFC |
JP2022505734A (en) * | 2018-10-24 | 2022-01-14 | シーメンス エナジー インコーポレイテッド | Hybrid synchronous capacitor and power generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nøland et al. | Excitation system technologies for wound-field synchronous machines: Survey of solutions and evolving trends | |
JP5713788B2 (en) | Control device and variable speed generator motor starting method | |
Gomez et al. | Grid synchronisation of doubly fed induction generators using direct torque control | |
Singh et al. | Transient performance of series-compensated three-phase self-excited induction generator feeding dynamic loads | |
KR101543794B1 (en) | Systems and methods involving starting variable speed generators | |
Daoud et al. | Ride-through capability enhancement of VSC-HVDC based wind farms using low speed flywheel energy storage system | |
JP2014011810A (en) | Control device and variable speed generator motor starting method | |
JP6077131B2 (en) | Apparatus and method for extending fault removal time | |
US20180145620A1 (en) | Systems and methods for providing grid stability | |
Chiandone et al. | Electric shaft starting sequence for synchronous generator in hydroelectric pumped storage station using smart Exciter | |
RU2422977C1 (en) | Method of ac motor soft start | |
JP2856869B2 (en) | Operation method of variable speed pumped storage power plant | |
Silva et al. | Transients analysis of synchronous and induction generators in parallel operation mode in an isolated electric system | |
JP7475048B2 (en) | Method and apparatus for paralleling induction generators | |
Schmuelling et al. | Comparison of different methods for excitation of synchronous machines | |
Paez et al. | Voltage support in industrial distribution systems in presence of induction generator-based wind turbines and large motors | |
EP3267576B1 (en) | Controller and generator-motor starting method | |
US20230288494A1 (en) | Testing of an electrical system of a wind turbine | |
Ali et al. | Comparison between Hardware and Programming Solutions to Alleviate Influence of Voltage Dips on Wind Energy Systems | |
Grządzielski et al. | Study of transient phenomena at a thermal unit’s starting circuit set-up and auxiliary equipment start-up | |
JP2024147467A (en) | Control device and power generation system | |
JP3492481B2 (en) | Variable speed pumped storage generator | |
Hamilton | Starting of large hv motors on a weak power system-a case study | |
JP2014057490A (en) | Excited power supply device | |
JP2024107586A (en) | Synchronous phase modifier method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20131219 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20131226 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140109 |