JP2014010076A - Measurement device for advanced glycation end product - Google Patents

Measurement device for advanced glycation end product Download PDF

Info

Publication number
JP2014010076A
JP2014010076A JP2012147436A JP2012147436A JP2014010076A JP 2014010076 A JP2014010076 A JP 2014010076A JP 2012147436 A JP2012147436 A JP 2012147436A JP 2012147436 A JP2012147436 A JP 2012147436A JP 2014010076 A JP2014010076 A JP 2014010076A
Authority
JP
Japan
Prior art keywords
light
led
measurement
ages
skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012147436A
Other languages
Japanese (ja)
Inventor
Kazuo Nohara
和夫 野原
Hidenori Kano
秀紀 加納
Tomonari Fuwa
朝成 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A KIT KK
A-KIT KK
Original Assignee
A KIT KK
A-KIT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A KIT KK, A-KIT KK filed Critical A KIT KK
Priority to JP2012147436A priority Critical patent/JP2014010076A/en
Publication of JP2014010076A publication Critical patent/JP2014010076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an AGEs(Advanced Glycation End products) measurement device which is compact, inexpensive, excellent in operability, and simple by directly converting fluorescent emission resulting from the AGEs from the skin of a person by the excitation rays of light from an LED light emission section into an electric signal by a light reception section without using any conventional optical or indirect optical transmission means.SOLUTION: A measurement head 1 of a measurement device is configured in a small and compact shape so as to be gripped with the hand of a person, and an LED light emission section 12 which concentrically emits irradiation rays of light as a light emission section and a base integration type spectral photometer element 15 as a light reception section 14 are consolidated and internally mounted on the measurement head 1. Fluorescent emission resulting from AGEs from the skin is directly converted into an electric signal by the spectral photometer element of the light reception section 14 so as to be detected.

Description

本発明は、加齢と共に体内に生成蓄積される糖化最終生成物質(advanced glycation endproducts;AGEs)の蛍光特性を利用して、各種の身体内部的な疾患、例えば、糖尿病と糖尿病性網膜剥離、腎臓疾患、動脈硬化、アルツハイマー病、骨粗しょう症、癌、皮膚硬化などの老化の進行度や成人病疾患に関する可能性を判別するために、AGEsを非侵襲的に検出測定するための簡易型の測定装置に関し、特に人種や日焼けなどの皮膚組織の色素の影響を受け難い人体の最適な部位における測定を可能にするために、皮膚に押し当てる測定ヘッドに発光部と受光部を集約して小型コンパクトに成し、これを自在に最適な部位に押し当てるだけで検出測定を可能にした糖化最終生成物質の測定装置に関する。   The present invention makes use of the fluorescent properties of advanced glycation end products (AGEs) that are produced and accumulated in the body with age, and thus various internal diseases such as diabetes and diabetic retinal detachment, kidneys, and the like. Simplified measurement for non-invasive detection and measurement of AGEs to determine the degree of aging and adult disease such as disease, arteriosclerosis, Alzheimer's disease, osteoporosis, cancer and skin sclerosis With regard to the device, in order to enable measurement at the optimal part of the human body that is not easily affected by pigments of the skin tissue such as race and sunburn, the light emitting part and the light receiving part are integrated into the measuring head that is pressed against the skin and is compact. The present invention relates to an apparatus for measuring a saccharified final product that is compact and can be detected and measured by simply pressing it to an optimal site.

一般に加齢と共に人間の体内には、各種の糖化最終生成物質(AGEs)が蓄積され、殊に成人病の主たる原因となる高血糖状態の糖尿病患者では、血中及び人体組織中のAGEs蓄積量が、同年齢の健常者と比べて多いことが知られ、特定の病気に対応した特定のAGEsが存在すること、及びこれらAGEsの中には、青色光(380nm〜500nm)以下の領域にある特定の励起光を照射すると、AGEs由来の蛍光特性により励起光よりも長い特定の波長を発するもの、或いは蛍光を発しないもの等、様々な糖化物質が存在することが知られている。   In general, various glycation end products (AGEs) are accumulated in the human body with aging, and the accumulated amount of AGEs in the blood and human tissues, particularly in diabetic patients with hyperglycemia, which is the main cause of adult diseases. However, it is known that there are many AGEs compared to healthy people of the same age, and there are specific AGEs corresponding to specific diseases, and these AGEs are in the region of blue light (380 nm to 500 nm) or less. It is known that there are various saccharified substances such as those that emit a specific wavelength longer than the excitation light or those that do not emit fluorescence when irradiated with specific excitation light due to fluorescence characteristics derived from AGEs.

また、特定のAGEsを測定したり検出するための装置には、人体から血液や細胞等を採取して分析する質量分析装置(MS)や高速液体クロマトグラフィー(HPLC)が使用されている。或いは近年、採血や細胞診等の試料を人から採取することによる負担を強いることのないような、所謂、非侵襲的な測定装置の開発が注目され、例えば、皮膚組織に特定の励起光を照射し、AGEsの蛍光発光を光学的に測定器本体に導いて検出する大掛りな測定装置など、様々な検出測定装置も提案されている。更には、これ等によるAGEs量の測定結果に基づいて、各種の成人病疾患などの可能性を判別したり、病気の診断がなされる様になっていることも知られている。 As a device for measuring or detecting specific AGEs, a mass spectrometer (MS) or high performance liquid chromatography (HPLC) that collects blood and cells from a human body and analyzes them is used. In recent years, attention has been paid to the development of so-called non-invasive measuring devices that do not impose the burden of collecting samples such as blood collection and cytology from humans. For example, specific excitation light is applied to skin tissue. Various detection and measurement devices have also been proposed, such as a large measurement device that irradiates and optically guides and detects the fluorescence emission of AGEs to the main body of the measurement device. Furthermore, it is also known that the possibility of various adult diseases and the like are diagnosed and diagnosed based on the measurement results of the amount of AGEs.

特に、後者の非侵襲的にAGEsを測定する装置において注意しなくてはならないこととしては、皮膚の色は人種、性差、加齢、日焼け、皮膚疾患、皮膚組織の厚さ、メラニン量、血中ヘモグロビン量等に関し、人種的に大幅な違いがあり、そのために皮膚AGEs測定装置によって得られた測定値は、皮膚色の影響を受けることになるので、測定データを適切に補正する必要がある。更には、皮膚に照射した光から得られる反射光と、本来必要な皮膚中AGE由来の蛍光、或いは皮膚中のAGE以外の物質から発生する蛍光等の影響と測定誤差を可能な限り少なくし、または避けるための様々な工夫がなされ、これ等の一般的な解決課題に対する提案も知られている。 In particular, in the latter non-invasive apparatus for measuring AGEs, it should be noted that the color of the skin is race, sex, aging, sunburn, skin disease, skin tissue thickness, melanin content, Regarding blood hemoglobin level, etc., there is a great racial difference. For this reason, the measurement values obtained by the skin AGEs measurement device will be affected by the skin color, so it is necessary to correct the measurement data appropriately. There is. Furthermore, the influence and measurement error of reflected light obtained from the light irradiated on the skin and the originally necessary fluorescence derived from the AGE in the skin, or fluorescence generated from substances other than the AGE in the skin are minimized as much as possible. Various ideas for avoiding these problems have been made, and proposals for these general solutions are also known.

例えば、研究用に市販されているこの種の非侵襲的なAGEs検出測定装置として、上面に検出窓を開口した箱型のケーシング内に、光源と蛍光分光器及びデータ解析装置を内蔵してなる設置型の測定装置(商品名:AGE Reader)が実用化され、ケーシングの上に人の腕を載せて励起光を照射し、腕からの蛍光を検出して、その測定値に基づく疾病状態の診断などに供するものが実用化されていると共に、当該測定装置に関して国際特許出願された特許文献の特徴的な構成は、ケース6内に設けたブラックライト蛍光管2を光源とし、フィルター5を介して特定波長の励起光を皮膚組織7に照射し、皮膚組織7からの蛍光発光を測定窓18からそのままファイバー3を介して光学的に検出器22に導いて測定し、コンピューター16により臨床的に患者の正常な皮膚組織における自家蛍光特性を把握できるようにした、皮膚組織の自家蛍光特性を決定するための方法とその装置に関するもの(特許文献1)がある。 For example, as this kind of non-invasive AGEs detection and measurement device commercially available for research, a light source, a fluorescence spectrometer, and a data analysis device are built in a box-shaped casing having a detection window opened on the upper surface. An installation-type measuring device (trade name: AGE Reader) has been put into practical use. A person's arm is placed on the casing and irradiated with excitation light. The fluorescence from the arm is detected, and the disease state based on the measured value is detected. What is used for diagnosis and the like has been put into practical use, and the characteristic configuration of the patent document for which an international patent application has been filed with respect to the measurement device has been described below, using a black light fluorescent tube 2 provided in the case 6 as a light source and passing through a filter 5. Then, the skin tissue 7 is irradiated with excitation light having a specific wavelength, and the fluorescence emitted from the skin tissue 7 is optically guided to the detector 22 through the measurement window 18 through the fiber 3 and measured. Clinically and to grasp the autofluorescence properties in normal skin tissue of a patient, there is a method and apparatus for determining the autofluorescence properties of the skin tissue (Patent Document 1).

更に、従来知られている、この種の非侵襲的なAGEs検出測定方法と、その検出測定値に基づく疾病状態の診断方法などに関する先行技術としては、例えば、人体組織の一部に光源サブシステム(A)からの励起光を照射し、励起光に応答した人体組織内の化学物質(AGEs)に由来する蛍光や、人体組織から放たれる光を、そのまま映像の状態で検出サブシステム(C)に光学的に導出して測定し、この検出光を、組織状態(AGEsレベルまたは疾病状態)を決定するために、組織状態の尺度(判定値)と関連付けるべく、信号処理装置(D)に保存された検出光モデルと組合わせて、疾病診断判定を行なうようにした、組織の蛍光発光を用いた糖化最終産物または疾病状態の尺度の決定に関するもの(特許文献2)、または、多光子励起を利用して、生体物質に所定の反応を進行させ、該反応の反応生成物である自家蛍光性物質からの蛍光を光学的に検出部に導出することによって、前記生体物質を検出する方法と、この検出された蛍光検出値に基づいて、疾患状態及び生理機能の判定を行なうようにした、レーザーを用いた生体物質検出方法に関するもの(特許文献3)が知られている。 Furthermore, as a prior art relating to a conventionally known non-invasive AGE detection / measurement method of this kind and a diagnosis method of a disease state based on the detection / measurement value, for example, a light source subsystem in a part of human tissue Fluorescence derived from chemical substances (AGEs) in human tissue that responded to the excitation light by irradiating the excitation light from (A) and light emitted from the human tissue are detected as they are in the state of the image (C In order to determine the tissue state (AGE level or disease state), the detected light is transmitted to the signal processing device (D) to be related to a measure (determination value) of the tissue state. Related to determination of glycation end product or disease state scale using fluorescence emission of tissue, which is used in combination with a stored detection light model to make a disease diagnosis determination (Patent Document 2), or multiple light A method for detecting the biological material by causing a predetermined reaction to proceed to the biological material using excitation and optically deriving fluorescence from the autofluorescent material that is a reaction product of the reaction to the detection unit In addition, there is known a biological substance detection method using a laser (Patent Document 3) in which a disease state and physiological function are determined based on the detected fluorescence detection value.

或いは、この種の非侵襲的なAGEs検出測定装置としては、従来のピンポイント(点)の測定方法による励起光の照射位置のずれによる測定値のばらつきをなくすために、測定対象部(皮膚組織)に対する励起光光源4とこの励起光由来の蛍光を光学的に受光する検出器8とを備えた走査機構1を、上面に窓部3aを有する筺体3内に装備することにより、測定対象部に対し筺体3内部で上記励起光光源4並びに受光検出器8を平面的に移動させてAGEs由来の蛍光を測定(走査)することができるようにし、当該構成により、一回の走査により多点測定、即ち面としての測定値を得て、この豊富な測定情報に基づいて測定結果のばらつきを解消するようにした大掛かりな測定装置システム(特許文献4)、及び水銀キセノンランプ18を第1の励起光光源とするとともに、ハロゲンランプ20を第2の励起光光源とする光源部12を設け、この光源部12からの第1と第2の検査光L1,L2を、皮膚などの所定の部位(検査部位)Wへと光学的に伝導するグラスファイバーなどの第1の導光部32と、皮膚などの所定の部位(検査部位)WからのAGEs由来の蛍光などの反射光を、フォトダイオードアレイ46を有する別置きの測定部16へと光学的に伝導する同様な第2の導光部34とにより、光として検査部Wへ照射し、かつ光として受光するためのハンディータイプの照射部30を設けた、皮膚の蛍光測定方法およびその装置に関するもの(特許文献5)などが知られている。 Alternatively, as this type of non-invasive AGE detection / measurement apparatus, in order to eliminate variations in measurement values due to displacement of the irradiation position of excitation light by the conventional pinpoint (point) measurement method, ) Is equipped with a scanning mechanism 1 having an excitation light source 4 and a detector 8 for optically receiving fluorescence derived from the excitation light in a housing 3 having a window 3a on the upper surface, thereby measuring a measurement target portion. On the other hand, the excitation light source 4 and the light detector 8 can be moved in a plane in the housing 3 to measure (scan) the fluorescence derived from AGEs. With this configuration, multiple points can be obtained by a single scan. A large-scale measuring device system (Patent Document 4) that obtains measurement, that is, a measurement value as a surface, and eliminates variations in measurement results based on this abundant measurement information, and a mercury xenon lamp 18 A light source unit 12 having a first excitation light source and a halogen lamp 20 as a second excitation light source is provided, and the first and second inspection lights L1 and L2 from the light source unit 12 are supplied to the skin or the like. Reflected light such as fluorescence derived from AGEs from a first light guide part 32 such as glass fiber that is optically conducted to a predetermined part (examination part) W and a predetermined part (examination part) W such as skin. A handy type for irradiating the inspection part W as light and receiving it as light by the same second light guiding part 34 optically conducting to the separate measuring part 16 having the photodiode array 46 There is known a method for measuring fluorescence of skin and an apparatus therefor (Patent Document 5) provided with the irradiation unit 30.

WO01/022869号公報WO01 / 022869 特開2007−222669号公報JP 2007-222669 A 特開2009−047540号公報JP 2009-047540 A 特開2012−058104号公報JP 2012-058104 A 特開2004−290234号公報JP 2004-290234 A

しかしながら、上記特許文献1におけるような装置の場合、光源として使用しているブラックライト蛍光管2が長尺であるため、測定部位が小さい範囲で良いにもかかわらず光源を収容するケース6が大型化し、しかも被測定物として適する人体の部位は、ブラックライト蛍光管2と類似する形状をした人の腕などにおける皮膚組織7に限られ、その為に測定の際には、ケース1を設置して測定窓18の上に腕を載せる必要があり、日焼けなどの影響の少ない上腕の内側や腹部等の最適な測定部位の選択に制約があって、使い勝手の悪いものであるばかりでなく、特にブラックライト蛍光管2を光源としているために、消費電力と発熱エネルギーが大きく、敏感な皮膚組織にとってはあり好ましいものではなかった。
更に、波長域の広いブラックライト蛍光管2による照射光の影響を避けるために、高価なグラスファイバー3により集光して光の状態のまま分光光度計15と検出器22に光学的に導いている関係上、装置が大型化するとともにコストが嵩む等、不都合なものであった。
However, since the black light fluorescent tube 2 used as the light source is long in the case of the apparatus as described in Patent Document 1, the case 6 for accommodating the light source is large even though the measurement site may be in a small range. The body part suitable for the object to be measured is limited to the skin tissue 7 on the person's arm or the like having a shape similar to that of the black light fluorescent tube 2. For this purpose, the case 1 is installed. It is necessary to put an arm on the measurement window 18 and there are restrictions on the selection of the optimal measurement site such as the inner side of the upper arm and the abdomen which are less affected by sunburn, etc. Since the black light fluorescent tube 2 is used as a light source, power consumption and heat generation energy are large, which is undesirable for sensitive skin tissues.
Further, in order to avoid the influence of irradiation light from the black light fluorescent tube 2 having a wide wavelength range, the light is condensed by an expensive glass fiber 3 and optically guided to the spectrophotometer 15 and the detector 22 in the light state. Therefore, the apparatus is inconvenient, such as an increase in size and cost.

また、特許文献2における図11、図12に開示された測定装置は、キセノンアーク灯やレーザー光等を励起光光源として複雑なフィルタリングを施した光源サブシステム(A)と、蛍光検出のための光電子倍増管(PMT)に複雑なフィルタリングを施してなる検出サブシステム(C)とが、光学的送達サブシステム(B)としての二分岐ファイバー束を介して試料の個体組織に導かれている構成のため、検出光をそのまま検出サブシステム(C)に光学的に送るために使用されているフアイバー束は、前記特許文献1と同様に高価であり、そのうえ信号処理装置(D)には、色合いを判別するための検出光モデルを必要とするので、色判別誤差を伴うものであるとともに、装置としても複雑かつ大掛かりで、ポータブルな扱いができない等、使用に際し制約が多く不都合なものであった。   11 and 12 in Patent Document 2 includes a light source subsystem (A) that performs complicated filtering using a xenon arc lamp, a laser beam, or the like as an excitation light source, and a fluorescence detection device. A configuration in which a detection subsystem (C) obtained by performing complicated filtering on a photomultiplier tube (PMT) is guided to an individual tissue of a sample via a bifurcated fiber bundle as an optical delivery subsystem (B) Therefore, the fiber bundle used to optically send the detection light as it is to the detection subsystem (C) is expensive as in the above-mentioned Patent Document 1, and the signal processing device (D) has a hue. Because it requires a detection light model for discriminating color, it is accompanied by color discrimination errors, and the device is complicated and large, and cannot be handled portablely. , Were those constraints that are many disadvantages in use.

そして、特許文献3の図5、図6に開示された生体物質検出方法に用いる検出装置は、多光子励起のための光源としてレーザー光源11を用いた構成のため、生体試料標本4の深部におけるAGEsの測定検査ができる代わりに、レーザー光源11の消費電力と発生エネルギーが大きく高価な設備となり、しかも光源11と標本4との伝達経路には、焦点を合わせる対物レンズ28aや複雑なフィルタリング等の光学的な手段を必要とするばかりでなく、特に図6の装置に示されているように、前記した特許文献1,2と同様に、検出光を光学的に伝達するための効率の良い光ファイバー28cを使用しているため、コストの高いものであるとともに、レーザー光源を含めたシステムとしてみた場合も、手軽に移動して使用できるようなものではなかった。 And since the detection apparatus used for the biological material detection method disclosed in FIGS. 5 and 6 of Patent Document 3 uses a laser light source 11 as a light source for multiphoton excitation, Instead of being able to measure and inspect AGEs, the power consumption and generated energy of the laser light source 11 are large and expensive, and the transmission path between the light source 11 and the specimen 4 includes an objective lens 28a for focusing and complicated filtering. In addition to the need for optical means, as shown in the apparatus of FIG. 6 in particular, an efficient optical fiber for optically transmitting detection light as in the above-mentioned Patent Documents 1 and 2. Because it uses 28c, it is expensive, and can be easily moved and used when viewed as a system that includes a laser light source. There was no.

更に、特許文献4の皮膚AGEの非侵襲的測定装置と測定システム並びに測定方法は、特に図2,図3,図4に図示されかつ文献公報の明細書中にも記載されているように、設置型の検出装置10の筺体3内に一列状態に配置された紫外光LED4a(波長230nm〜365nm)と、可視光LED4b(波長405nm)とにより励起光光源4が構成され、この光源4から発せられた励起光は、窓部3aから測定対象部(皮膚組織)に直接照射されるが、皮膚組織からの蛍光や反射光は、上記窓部3aから筺体3内に装備された受光部側の蛍光導入スリット5、導光部6、レンズ7などの光学経路を経て検出器8へと案内されると同時に、これ等光源4と検出部8は、一体的に駆動機構2により走査機構1として移動走査自在に構成されているので、外部の測定装置9に対し電気信号を送ることはできても、検出器8に至るまでの光学経路5,6,7は長い反転パスを必要とし、しかも、検出装置10本体が自動走査機構1を必須条件としているため、この走査と駆動にかかわる可動部が複雑で大型化せざるを得ず、ために前記特許文献1等と同様に設置して使用するタイプの構造であり、簡単に持ち運びできるものではなく、そのうえ皮膚組織の最適な部位での測定には不向きで、使い勝手の悪いものであった。 Furthermore, the non-invasive measuring device and measuring system for skin AGE of Patent Document 4 and the measuring method are particularly shown in FIGS. 2, 3 and 4 and also described in the specification of the publication. An excitation light source 4 is composed of an ultraviolet light LED 4a (wavelength 230 nm to 365 nm) and a visible light LED 4b (wavelength 405 nm) arranged in a line in the housing 3 of the installation type detection device 10, and emits light from the light source 4. The excitation light thus emitted is directly applied to the measurement target part (skin tissue) from the window 3a, but the fluorescence and reflected light from the skin tissue is transmitted from the window 3a to the light receiving part side mounted in the housing 3 side. While being guided to the detector 8 through optical paths such as the fluorescence introduction slit 5, the light guide portion 6, and the lens 7, the light source 4 and the detection portion 8 are integrated as a scanning mechanism 1 by the drive mechanism 2. It is configured to move and scan freely Therefore, even if an electrical signal can be sent to the external measuring device 9, the optical paths 5, 6 and 7 to the detector 8 require a long inversion path, and the detecting device 10 itself is automatically Since the scanning mechanism 1 is an indispensable condition, the movable part involved in this scanning and driving must be complicated and large in size. It was not easy to carry, and was unsuitable for measurement at the optimal site of skin tissue, making it unusable.

更にまた、特許文献5の皮膚の蛍光測定方法およびその装置にあっては、その図1および文献公報明細書中にも記載されているように、光源部12を構成する水銀キセノンランプ18を第1の励起光光源とするとともに、ハロゲンランプ20を第2の励起光光源とし、これ等第1と第2の検査光L1(波長335nm),L2(波長365nm)を、皮膚などの所定の部位(検査部位)Wへと、光学的伝導手段であるグラスファイバーなどの第1の導光部32を介して照射部30から照射し、次いで所定の部位(検査部位)WからのAGEs由来の蛍光などの反射光を、上記照射部30からフォトダイオードアレイ46を有する別置きの測定部16へと、同様に光学的な伝導手段である第2の導光部34により導くようになっているので、皮膚などの最適部位に対する照射部30の操作性は改善されるものの、それぞれ別置きに構成されている光源部12と測定部16とが高価な光学的な伝導手段を用いて連繋されている以上、前記した従来の特許文献1乃至3におけると全く同様に、高価でコストが嵩むものであるばかりでなく、その励起光光源12の水銀キセノンランプ18やハロゲンランプ20は、消費電力も大きく大掛かりな装置にならざるを得ず、使用に際し装置を設置して使用せざるを得ないため、持ち運びに便利な装置とは言えないものであった。
また,検査測定の際には、皮膚などの測定部位に、最初に第1の検査光L1を照射して反射した蛍光を測定し、次いで波長の大幅に異なる第2の検査光L2を照射して反射光を測定し、これ等の反射光データにより蛍光補正を行なう様にしているため(公報段落0049参照)、処理と操作が複雑になり簡便に使用できるものではなかった。
Furthermore, in the method and apparatus for measuring skin fluorescence of Patent Document 5, the mercury xenon lamp 18 constituting the light source unit 12 is used as described in FIG. And the halogen lamp 20 as a second excitation light source, and these first and second inspection lights L1 (wavelength 335 nm) and L2 (wavelength 365 nm) are applied to a predetermined part such as skin. (Test site) W is irradiated from the irradiation unit 30 through the first light guide unit 32 such as glass fiber which is an optical conducting means, and then fluorescence derived from AGEs from a predetermined site (test site) W Is reflected from the irradiation unit 30 to the separate measurement unit 16 having the photodiode array 46 by the second light guide unit 34 which is also an optical conducting means. ,leather Although the operability of the irradiation unit 30 with respect to the optimal site such as is improved, the light source unit 12 and the measurement unit 16 that are configured separately are connected using an expensive optical conducting means, Just as in the above-mentioned conventional Patent Documents 1 to 3, not only is it expensive and costly, but the mercury xenon lamp 18 and the halogen lamp 20 of the excitation light source 12 are large in power consumption and large in size. Inevitably, the device must be installed and used for use, so it cannot be said that the device is convenient to carry.
In the test measurement, the measurement site such as the skin is first irradiated with the first test light L1 to measure the reflected fluorescence, and then the second test light L2 having a significantly different wavelength is applied. Thus, the reflected light is measured, and the fluorescence correction is performed using the reflected light data (see paragraph 0049 of the publication), so that the processing and operation become complicated and cannot be used easily.

そこで、本発明は、上記各種の不具合を改善し解決するために創案されたものであって、その目的とするところは、人体の最適な測定部位の皮膚に自由に測定装置の測定ヘッドを押し当てられるように、測定ヘッドの形状を人の手で握れるような小型コンパクトな形状に形成し、当該測定ヘッドの内部には略中空円錐形状の取付け部材を設けて、その円錐内面の同一円周上には光源としての複数のLEDを環状に配列し、これ等のLED光が中心軸線上の一点に集中して向かうようにしたLED発光部を設けるとともに、取付け部材の中央頂部には受光部としての基盤一体型の分光光度計素子を集約して内装し、当該受光部と上記測定ヘッドの端面中央に開孔した測定穴とが同一軸線上に配置されて、上記LED発光部からの励起光が測定穴から皮膚に集中的に照射されると同時に、皮膚からの反射光が測定穴から上記受光部へと入光するワンパス式の光経路を構成し、これにより糖化最終生成物質(AGEs)由来の蛍光発光を、受光部の分光光度計素子にて直接的に電気信号に変換して検出し、省エネに優れたLED光源でありながら集中的に強力な励起光などの照射ができるようにし、簡便かつ操作性に優れ、しかもポータブル性(持ち運び自在性)を可能にするとともに、消費電力の小さい安価な簡易型の糖化最終生成物質の測定装置を提供することにある。   Therefore, the present invention has been made to improve and solve the above various problems, and the object of the present invention is to freely press the measuring head of the measuring device against the skin of the optimal measuring site of the human body. The shape of the measuring head is small and compact so that it can be held by a human hand, and a mounting member with a substantially hollow conical shape is provided inside the measuring head, and the same circumference of the inner surface of the cone is provided. A plurality of LEDs as light sources are arranged in a ring shape on the top, and an LED light emitting unit is provided in which these LED lights are concentrated and directed to one point on the central axis, and a light receiving unit is provided at the central top of the mounting member. As a base-integrated spectrophotometer element, the light receiving part and the measurement hole opened in the center of the end face of the measuring head are arranged on the same axis, and excitation from the LED light emitting part Light is measuring hole In addition to intensively irradiating the skin, a one-pass optical path is formed in which the reflected light from the skin enters the light receiving part through the measurement hole, and thereby the fluorescence derived from glycated end product substances (AGEs). Light emission is directly converted to an electrical signal by the spectrophotometer element of the light receiving unit and detected, so that it is possible to intensively irradiate powerful excitation light etc. while being an LED light source excellent in energy saving. An object of the present invention is to provide an inexpensive and simple measurement apparatus for a final saccharification product that is excellent in operability and enables portability (portability) and has low power consumption.

また、本発明の別の目的は、特定の糖化最終生成物質(AGEs)に対する特定の励起光とAGEs由来の蛍光特性に相関関係があることに着目して、その測定精度の向上を図るために、測定装置の測定ヘッドにおけるLED発光部として、特定のAGEsに対する特定の励起光を発する二種類以上の紫外光LEDを組合せてなる、または特定のAGEsに対する励起光より僅かに短い波長の紫外光LEDと僅かに長い波長の紫外光LEDとの二種類の紫外光LEDを組合せてなる励起光光源を採用し、これ等の二種類以上の励起光LEDによる皮膚からのAGEs由来の二種類以上の蛍光発光を、受光部の分光光度計素子にて重合増幅された測定値電気信号に変換して検出できるようにし、測定値にバラつきがなく精度の良い、簡便かつ操作性に優れ、しかもポータブル性(持ち運び自在性)を可能にし、しかも消費電力の小さい安価な糖化最終生成物質の測定装置を提供することにある。   Another object of the present invention is to increase the measurement accuracy by paying attention to the fact that there is a correlation between specific excitation light for specific glycation end products (AGEs) and fluorescence characteristics derived from AGEs. An ultraviolet light LED having a wavelength slightly shorter than the excitation light for the specific AGEs, as a combination of two or more types of ultraviolet light LEDs that emit specific excitation light for the specific AGEs, as the LED light emitting unit in the measurement head of the measurement apparatus And two or more kinds of fluorescence derived from AGEs from the skin by these two or more kinds of excitation light LEDs. The emitted light is converted into a measurement value electric signal amplified and amplified by the spectrophotometer element of the light receiving unit so that the measurement value can be detected, and there is no variation in the measurement value. Excellent sex, yet in that it enables portability (portable flexibility), yet provides a measuring device with low power consumption inexpensive glycation end product materials.

更にまた、本発明の目的は、特定の糖化最終生成物質(AGEs)として、特にクロスリン、ピロピリジン、ペントジンなど蛍光を発するAGEsを対象とし、或いは3デオキシグルコソン(3DG)を糖化反応中間体として生成するAGEs、更にはカルボキシメチルリジン(CML)のように蛍光を発しないAGEsの発生過程で同時に生成される蛍光を発するAGEsに対する特定の励起光波長の370nmと、これに対応するAGEs由来の蛍光波長440nmとの相関関係に着目して、測定装置の測定ヘッドにおけるLED発光部として、上記特定の励起光波長より僅かに短い波長365nmの紫外光LEDと、僅かに長い波長375nmの紫外光LEDとの二種類の紫外光LEDを組合せて、これを励起光光源として採用し、これ等の近接した二種類の励起光LEDによる皮膚からのAGEs由来の二つの蛍光発光を、受光部の分光光度計素子にて重合増幅された測定値電気信号に変換して検出できるようにし、特定のAGEsに由来する蛍光波長に対し、測定精度の良い簡便かつ操作性に優れた、安価な糖化最終生成物質の測定装置を提供することにある。 Furthermore, the object of the present invention is to produce specific glycation end products (AGEs), particularly AGEs that emit fluorescence such as crosslin, pyropyridine, and pentodine, or produce 3 deoxyglucosone (3DG) as a saccharification reaction intermediate. Specific excitation light wavelength of 370 nm for AGEs that emit simultaneously with the generation process of AGEs that do not emit fluorescence, such as carboxymethyllysine (CML), and fluorescence wavelengths derived from the corresponding AGEs Focusing on the correlation with 440 nm, as an LED light emitting part in the measuring head of the measuring apparatus, an ultraviolet light LED having a wavelength of 365 nm slightly shorter than the specific excitation light wavelength and an ultraviolet light LED having a slightly longer wavelength of 375 nm Combining two kinds of ultraviolet LED, this is adopted as the excitation light source, It is possible to detect and detect two fluorescence emission derived from AGEs from the skin by two kinds of adjacent excitation light LEDs such as, etc., by converting into a measurement value electric signal that is polymerized and amplified by the spectrophotometer element of the light receiving unit. An object of the present invention is to provide an inexpensive measurement apparatus for a final saccharification product with excellent measurement accuracy and excellent operability with respect to a fluorescence wavelength derived from AGEs.

また、本発明の目的は、皮膚組織のAGEs由来の蛍光測定値を日焼けや、メラニン色素などの皮膚色の個人差の影響を受けないようにするために、測定装置の測定ヘッドにおけるLED発光部として、二種類以上の複数の紫外光LEDを組合せてなる励起光光源の他に、比較的長い波長の、例えば一例として、波長465nmの白色光LEDを併設して、この白色光により人種、性別、加齢程度や日焼け、皮膚疾患などの皮膚色の個人差を補正できるようにし、AGEsに由来する蛍光成分のみの測定値とし、精度の良い、簡便かつ操作性に優れた、安価な糖化最終生成物質の測定装置を提供することにある。 Further, an object of the present invention is to provide an LED light emitting unit in a measurement head of a measurement apparatus in order to prevent the fluorescence measurement value derived from AGEs of skin tissue from being influenced by individual differences in skin color such as sunburn and melanin pigment. As an example, in addition to an excitation light source formed by combining two or more types of ultraviolet light LEDs, a white light LED having a relatively long wavelength, for example, a wavelength of 465 nm as an example, It is possible to correct individual differences in skin color such as gender, age, sunburn, skin diseases, etc., and to measure only the fluorescent component derived from AGEs, which is accurate, simple and easy to operate, and inexpensive saccharification The object is to provide an apparatus for measuring the final product.

また、本発明の目的は、種々の幅広いAGEsの検査測定ができるようにするために、測定装置の測定ヘッドにおけるLED発光部として設ける複数個の励起光LEDについて、複数の紫外光LEDもしくは、特定のAGEsに対する特定の励起光を発する二種類以上の紫外光LEDを設けて、何れかの励起光LEDによる蛍光特性の高い方のAGEsに由来する蛍光発光を選択可能にし、この蛍光発光を選択的に受光部の分光光度計素子にて測定値電気信号に直接変換して検出できるようにし、いくつかの特定のAGEsに対する検査測定に関し、多機能的に精度の良い、簡便かつ操作性に優れた、安価な糖化最終生成物質の測定装置を提供することにある。 Another object of the present invention is to provide a plurality of excitation light LEDs provided as LED light emitting units in a measurement head of a measurement apparatus so that various wide AGEs can be inspected and measured. Two or more kinds of ultraviolet light LEDs that emit specific excitation light for AGEs of AGEs are provided, and fluorescence emission derived from AGEs having higher fluorescence characteristics by any excitation light LED can be selected, and this fluorescence emission is selectively used. In addition, it is possible to detect and directly convert the measured value electrical signal to the spectrophotometer element of the light-receiving unit, and to perform inspection and measurement for some specific AGEs, which is multifunctionally accurate, simple and excellent in operability. An object of the present invention is to provide an inexpensive measuring device for a saccharified final product.

上記目的を達成するため、本発明の課題解決手段は、測定装置の測定ヘッドの形状を人の手で握れるように小型コンパクトな形状に形成し、当該測定ヘッドの
内部には略中空円錐形状の取付け部材を設けて、その円錐内面の同一円周上には光源としての複数のLEDを環状に配列し、これ等のLED光が中心軸線上の一点に集中して向かうようにしたLED発光部を設けるとともに、取付け部材の中央頂部には受光部としての基盤一体型の分光光度計素子を集約して内装し、当該受光部と上記測定ヘッドの端面中央に開孔した測定穴とが同一軸線上に配置されて、上記LED発光部からの励起光が測定穴から皮膚に集中的に照射されると同時に、皮膚からの反射光が測定穴から上記受光部へと入光するワンパス式の光経路を構成し、これにより糖化最終生成物質(AGEs)由来の蛍光発光を、受光部の分光光度計素子にて直接的に電気信号に変換して検出し、この蛍光測定値に関する電気信号を別置きの操作ボックス内のコントロール基盤にケーブル伝達するようにし、かつ当該コントロール基盤により前記LED発光部と受光部の分光光度計素子とを制御可能にするとともに、この蛍光測定値に関する電気信号を判定処理制御部に対する入力信号として出力できるように構成したことを特徴とする。
In order to achieve the above object, the problem-solving means of the present invention is to form the measuring head of the measuring device into a small and compact shape so that it can be grasped by a human hand. An LED light-emitting unit provided with a mounting member, in which a plurality of LEDs as light sources are arranged in an annular shape on the same circumference of the inner surface of the cone, and these LED lights are concentrated toward one point on the central axis In addition, a base-integrated spectrophotometer element as a light receiving part is integrated and installed at the center top of the mounting member, and the light receiving part and the measurement hole opened in the center of the end face of the measuring head are on the same axis. A one-pass type light that is arranged on a line so that the excitation light from the LED light emitting part is intensively applied to the skin from the measurement hole and at the same time, the reflected light from the skin enters the light receiving part from the measurement hole Configure the route and Fluorescence emission derived from saccharification end product (AGEs) is detected by directly converting it into an electrical signal with the spectrophotometer element of the light receiving unit, and the electrical signal related to this fluorescence measurement value is controlled in a separate operation box. The cable is transmitted to the base, and the control base can control the LED light emitting part and the spectrophotometer element of the light receiving part, and an electric signal related to the fluorescence measurement value is output as an input signal to the determination processing control part It is configured so that it can be used.

上記した目的を達成するため、本発明の課題解決手段は、測定装置の測定ヘッドの形状を人の手で握れるように小型コンパクトな形状に形成するとともに、当該測定ヘッドには発光源としてのLED発光部と受光部としての基盤一体型の分光光度計素子を集約して内装してなり、上記LED発光部として、特定のAGEsに対する特定の励起光を発する二種類以上の紫外光LEDを組合せてなる、または特定のAGEsに対する励起光より僅かに短い波長の紫外光LEDと、僅かに長い波長の紫外光LEDとの二種類の紫外光LEDを組合せてなる励起光光源を採用し、これ等の二種類以上の紫外光LEDによる皮膚からのAGEs由来の二種類以上の蛍光発光を、受光部の分光光度計素子にて重合増幅された測定値電気信号に変換して検出できるようにし、この電気信号を別置きの操作ボックス内のコントロール基盤にケーブル伝達するようにし、かつ当該コントロール基盤により前記LED発光部と受光部の分光光度計素子とを制御可能にするとともに、前記蛍光測定値に関する電気信号を判定処理制御部に対する入力信号として出力できるように構成したことを特徴とする。   In order to achieve the above-described object, the problem solving means of the present invention is to form the measurement head of the measurement device into a small and compact shape so that it can be grasped by a human hand, and the measurement head includes an LED as a light source. A base-integrated spectrophotometer element as a light emitting part and a light receiving part is integrated and incorporated, and as the LED light emitting part, two or more kinds of ultraviolet LEDs that emit specific excitation light for specific AGEs are combined. An excitation light source comprising a combination of two types of ultraviolet LEDs, an ultraviolet light LED having a wavelength slightly shorter than the excitation light for specific AGEs and an ultraviolet light LED having a slightly longer wavelength, is used. Detects two or more types of fluorescent light emission derived from AGEs from the skin by two or more types of ultraviolet light LEDs by converting them into measurement value electrical signals that are polymerized and amplified by the spectrophotometer element of the light receiving unit. The electric signal is transmitted to a control board in a separate operation box and the spectrophotometer element of the LED light emitting unit and the light receiving unit can be controlled by the control board. An electrical signal related to the fluorescence measurement value can be output as an input signal to the determination processing control unit.

更に上記した目的を達成するため、本発明の課題解決手段は、特定の糖化最終生成物質(AGEs)として、特にクロスリン、ピロピリジン、ペントジンなど蛍光を発するAGEsを対象とし、或いは3デオキシグルコソン(3DG)を糖化反応中間体として生成するAGEs、更にはカルボキシメチルリジン(CML)のように蛍光を発しないAGEsの発生過程で同時に生成される蛍光を発するAGEsに対する特定の励起光波長の370nmと、これに対応するAGEs由来の蛍光波長440nmとの相関関係に着目して、測定装置の測定ヘッドにおけるLED発光部として、上記特定の励起光波長より僅かに短い波長365nmの紫外光LEDと僅かに長い波長375nmの紫外光LEDとを組合せて、これを励起光光源として採用し、これ等の近接した二種類の紫外光LEDによる皮膚からのAGEs由来の二つの蛍光発光を、受光部の分光光度計素子にて重合増幅された測定値電気信号に変換して検出できるように構成したことを特徴とする。 Furthermore, in order to achieve the above-described object, the problem solving means of the present invention is directed to specific glycation end-product substances (AGEs), particularly AGEs that emit fluorescence such as crosslin, pyropyridine, and pentodine, or 3 deoxyglucosone (3DG ), Which is a saccharification reaction intermediate, and a specific excitation light wavelength of 370 nm for AGEs that emit fluorescence simultaneously with the generation of AGEs that do not emit fluorescence, such as carboxymethyllysine (CML), Focusing on the correlation with the fluorescence wavelength of 440 nm derived from AGEs corresponding to the ultraviolet light LED with a wavelength of 365 nm slightly shorter than the specific excitation light wavelength and a slightly longer wavelength as the LED light emitting part in the measurement head of the measuring device Combined with 375nm UV LED, this is used as excitation light source The two fluorescent light emission derived from AGEs from the skin by these two kinds of adjacent ultraviolet light LEDs can be detected by converting into a measurement value electric signal that is polymerized and amplified by the spectrophotometer element of the light receiving unit. It is characterized by comprising.

また上記した目的を達成するため、本発明の課題解決手段は、測定装置の測定ヘッドの形状を人の手で握れるように小型コンパクトな形状にするとともに、当該測定ヘッドには測定装置のLED発光部と受光部としての基盤一体型の分光光度計素子を集約して内装してなり、上記LED発光部として、二種類以上の複数の紫外光LEDを組合せてなる励起光光源の他に、比較的長い波長の、例えば一例として、波長465nmの白色光LEDを併設して、この白色光により人種、性別、加齢程度や日焼け、皮膚疾患などの皮膚色の個人差を補正して、AGEsに由来する蛍光成分のみの測定値とするように構成したことを特徴とする。   In order to achieve the above object, the problem-solving means of the present invention is to make the shape of the measuring head of the measuring device small and compact so that it can be grasped by a human hand, and the measuring head has LED light emission of the measuring device. In addition to the excitation light source that combines two or more types of ultraviolet light LEDs as the LED light emitting part, a comparison is made with the spectrophotometer elements integrated into the base as the light emitting part and the light receiving part. For example, a white light LED with a wavelength of 465 nm is used as an example. The white light corrects individual differences in skin color such as race, sex, age, sunburn, and skin disease. It is characterized in that it is configured so as to be a measured value of only a fluorescent component derived from the above.

また上記した目的を達成するため、本発明の課題解決手段は、測定装置の測定ヘッドにおけるLED発光部として設ける複数個の励起光LEDについて、複数の紫外光LEDもしくは、特定のAGEsに対する特定の励起光を発する二種類以上の紫外光LEDを設けて、何れかの励起光LEDによる蛍光特性の高い方のAGEsに由来する蛍光発光を選択可能にし、この蛍光発光を選択的に受光部の分光光度計素子により測定値電気信号に変換して検出できるよう構成したことを特徴とする。   In order to achieve the above-described object, the problem-solving means of the present invention provides a plurality of excitation light LEDs provided as LED light emitting units in a measurement head of a measurement apparatus, a plurality of ultraviolet LEDs or a specific excitation for a specific AGE. Two or more kinds of ultraviolet LEDs that emit light are provided, and fluorescence emission derived from AGEs having higher fluorescence characteristics by any excitation light LED can be selected. It is characterized in that it can be detected by being converted into a measured value electric signal by a measuring element.

本発明によれば、請求項1に記載の如く、測定装置の測定ヘッドの形状を人の手で握れるように小型コンパクトな形状に形成し、当該測定ヘッドの内部には略中空円錐形状の取付け部材を設けて、その円錐内面の同一円周上には光源としての複数のLEDを環状に配列し、これ等のLED光が中心軸線上の一点に集中して向かうようにしたLED発光部を設けるとともに、取付け部材の中央頂部には受光部としての基盤一体型の分光光度計素子を集約して内装し、当該受光部と上記測定ヘッドの端面中央に開孔した測定穴とが同一軸線上に配置されて、上記LED発光部からの励起光が測定穴から皮膚に集中的に照射されると同時に、皮膚からの反射光が測定穴から上記受光部へと入光するワンパス式の光経路を構成し、これにより糖化最終生成物質(AGEs)由来の蛍光発光を、受光部の分光光度計素子にて直接的に電気信号に変換して検出し、この蛍光測定値に関する電気信号を別置きの操作ボックス内のコントロール基盤にケーブル伝達するようにし、かつ当該コントロール基盤により前記LED発光部と受光部の分光光度計素子とを制御可能にするとともに、この蛍光測定値に関する電気信号を判定処理制御部に対する入力信号として出力できるようにしたので、省エネに優れたLED発光源でありながら集中的に励起光などを皮膚に照射することができ、装置としての測定性能の向上を果たすことができるとともに、操作性に優れ自在に人体における測定に最適な場所、即ち、人種や日焼けなどの皮膚組織の色素の影響を受け難い最適部位に、検出器ヘッドを押し当てて測定することができ、これにより検出精度と操作性を飛躍的に向上させることができる優れた効果を発揮する。   According to the present invention, as described in claim 1, the shape of the measuring head of the measuring device is formed in a small and compact shape so that it can be grasped by a human hand, and a substantially hollow conical shape is attached inside the measuring head. An LED light emitting unit is provided in which a plurality of LEDs as light sources are arranged in a ring on the same circumference of the inner surface of the conical inner surface so that these LED lights are concentrated on one point on the central axis. At the center top of the mounting member, a spectrophotometer element integrated with a base as a light receiving part is integrated and housed, and the light receiving part and the measurement hole opened in the center of the end face of the measuring head are on the same axis. The one-pass optical path in which the excitation light from the LED light emitting unit is intensively applied to the skin from the measurement hole and the reflected light from the skin enters the light receiving unit through the measurement hole. Make up the final saccharification Fluorescence emission derived from chemical substances (AGEs) is detected by directly converting it into an electrical signal at the spectrophotometer element of the light receiving unit, and this electrical signal related to the fluorescence measurement value is used as a control base in a separate operation box. It is possible to transmit the cable and to control the spectrophotometer element of the LED light emitting unit and the light receiving unit by the control base, and to output an electric signal related to the fluorescence measurement value as an input signal to the determination processing control unit As a result, it is possible to intensively irradiate the skin with excitation light, etc. while being an LED light source with excellent energy savings, which can improve the measurement performance as a device and has excellent operability. The detector head is pressed to the most suitable place for measurement in the area, that is, the most suitable part that is not easily affected by the pigment of skin tissue such as race and sunburn. It can be measured, thereby exerting an excellent effect that it is possible to dramatically improve the detection accuracy and usability.

また、そればかりでなく、測定装置全体としても簡単な構造であるので、持ち運び自在で便利なポータブル型の測定装置として提供することが可能であるとともに、測定装置の光源としての発光部には、特定波長の発光LEDを採用したので、その光源電源も安価な一般電源で済み、しかも消費電力も少なくて済み経済的であり、ランニングコストのかからない経済効果の大きい測定装置を提供することができる。
更に、測定ヘッドにおいて、受光した蛍光を含む検出光を直接分光光度計素子により電気的に変換して計測し、電気信号としてケーブル伝達できるので、従来一般に採用されていたような高価なグラスファイバー等の光学的な検出光伝導手段を必要とすることがなく、それゆえ従来装置に比べ、非常に安価に装置を構成することができるなど、初期投資の点においても、経済性に優れた測定装置を得ることができる。
In addition, since the entire measurement device has a simple structure, it can be provided as a portable and convenient portable measurement device, and the light emitting unit as a light source of the measurement device includes: Since a light emitting LED of a specific wavelength is adopted, the light source power source can be an inexpensive general power source, and the power consumption is low, which is economical and can provide a measuring device with a large economic effect without running costs.
Furthermore, in the measuring head, the detection light including the received fluorescence can be directly converted and measured by a spectrophotometer element, and transmitted as a cable as an electric signal. Therefore, it is possible to construct the apparatus at a very low cost compared with the conventional apparatus, and the measurement apparatus is excellent in economic efficiency in terms of initial investment. Can be obtained.

本発明によれば、請求項2に記載の如く、測定装置の測定ヘッドの形状を人の手で握れるように小型コンパクトな形状に形成し、当該測定ヘッドの内部には略中空円錐形状の取付け部材を設けて、その円錐内面の同一円周上には光源としての複数のLEDを環状に配置し、これ等のLED光が中心線上の一点に集中して向かうようにしたLED発光部を設けるとともに、取付け部材の中央頂部には受光部としての基盤一体型の分光光度計素子を集約して内装し、当該受光部と上記測定ヘッドの端面中央に開孔した測定穴とが、同一軸線上に配置されて、上記LED発光部からの励起光が測定穴から皮膚に集中的に照射されると同時に、皮膚からの反射光が測定穴から上記受光部へと入光するようなワンパス式の光経路を構成し、かつ上記LED発光部として、特定のAGEsに対する特定の励起光を発する二種類以上の紫外光LEDを組合せてなる、または特定のAGESに対する励起光より僅かに短い波長の紫外光LEDと僅かに長い波長の紫外光LEDとを組合せてなる励起光光源を採用し、これ等の二種類以上の紫外光LEDによる皮膚からのAGEs由来の二種類以上の蛍光発光を、前記受光部の分光光度計素子にて重合増幅された測定値電気信号に変換して検出できるようにし、この電気信号を別置きの操作ボックス内のコントロール基盤にケーブル伝達するようにし、かつ当該コントロール基盤により前記LED発光部と受光部の分光光度素子とを制御可能にするとともに、この蛍光測定値に関する電気信号を判定処理制御部に対する入力信号として出力できるようにしたので、LED発光部における集中的な集光効果による強力な照射光と相俟って、この照射光による皮膚からの反射光も強力なものになして受光することができるばかりでなく、この反射光中の二種類以上の蛍光発光においては、測定出力値として所謂重合増幅効果を得てその分光光度分布を際立たせることができるので、必要な測定値を確実かつ選択的に検出し、測定することができる優れた効果を発揮する。
それ故、測定値のバラつきも抑えられ、測定精度の向上を図ることができるなど、精度の良い簡便かつ操作性に優れ、しかもポータブル性(持ち運び自在性)にも優れているうえに、消費電力も小さくて済む安価な糖化最終生成物質の測定装置を得ることができる。
According to the present invention, as described in claim 2, the shape of the measuring head of the measuring device is formed in a small and compact shape so that it can be grasped by a human hand, and a substantially hollow conical mounting is provided inside the measuring head. A member is provided, and a plurality of LEDs as light sources are arranged in an annular shape on the same circumference of the inner surface of the cone, and an LED light emitting unit is provided in which these LED lights are concentrated to one point on the center line. In addition, a base-integrated spectrophotometer element as a light receiving part is integrated and installed at the center top of the mounting member, and the light receiving part and the measurement hole opened in the center of the end face of the measuring head are on the same axis. The one-pass type in which the excitation light from the LED light emitting unit is intensively applied to the skin from the measurement hole and the reflected light from the skin enters the light receiving unit through the measurement hole. Constitutes the optical path and the LE As the light emitting part, two or more kinds of ultraviolet light LEDs emitting specific excitation light for specific AGEs are combined, or an ultraviolet light LED having a wavelength slightly shorter than the excitation light for specific AGES and ultraviolet light having a slightly longer wavelength Employing an excitation light source in combination with LEDs, these two or more types of ultraviolet light LEDs are used to polymerize and amplify two or more types of fluorescence emission derived from AGEs from the skin using the spectrophotometer element of the light receiving unit. The measured signal is converted into an electric signal so that it can be detected, and the electric signal is transmitted to a control board in a separate operation box, and the spectrophotometer of the LED light emitting unit and the light receiving unit is transmitted by the control board. The device can be controlled and an electric signal related to the fluorescence measurement value can be output as an input signal to the determination processing control unit. Therefore, coupled with the strong irradiation light due to the concentrated light collecting effect in the LED light emitting part, the reflected light from the skin due to this irradiation light can not only be received in a powerful way, but also this In two or more types of fluorescent light emission in the reflected light, the so-called polymerization amplification effect can be obtained as a measurement output value and its spectrophotometric distribution can be highlighted, so that necessary measurement values can be detected reliably and selectively. Exhibits excellent effects that can be done.
Therefore, the variation in measured values can be suppressed, the measurement accuracy can be improved, and it is easy to operate with high accuracy, excellent operability, and excellent portability (portability) and power consumption. Therefore, it is possible to obtain an inexpensive measuring device for the final saccharified product.

また、本発明の糖化最終生成物質の測定装置は、請求項3に記載の如く、特定の糖化最終生成物質(AGEs)として、特にクロスリン、ピロピリジン、ペントジンなど蛍光を発するAGEsを対象とし、或いは3デオキシグルコソン(3DG)を糖化反応中間体として生成するAGEs、更にはカルボキシメチルリジン(CML)のように蛍光を発しないAGEsの発生過程で同時に生成される蛍光を発するAGEsに対する特定の励起光波長の370nmと、これに対応するAGEs由来の蛍光波長440nmとの相関関係に着目して、測定装置の測定ヘッドにおけるLED発光部として、上記特定の励起光波長より僅かに短い波長365nmの紫外光LEDと僅かに長い波長375nmの紫外光LEDとを組合せて、これを励起光光源として採用し、これ等の近接した二種類の紫外光LEDによる皮膚からのAGEs由来の二つの蛍光発光を、受光部の分光光度計素子にて重合増幅された測定値電気信号に変換して検出できるようにしたので、対象とする特定のAGEを確実に精度よく検出測定することができ、しかも安価であるなど優れた効果を発揮するものである。 Further, the apparatus for measuring a final saccharification product according to the present invention, as defined in claim 3, is intended for specific saccharification final product (AGEs), particularly AGEs that emit fluorescence such as croslin, pyropyridine, pentodine, or 3 Specific excitation light wavelength for AGEs that generate deoxyglucosone (3DG) as a saccharification reaction intermediate, and for AGEs that generate fluorescence simultaneously with the generation of AGEs that do not emit fluorescence such as carboxymethyllysine (CML) Focusing on the correlation between 370 nm and the corresponding fluorescence wavelength 440 nm derived from AGEs, an ultraviolet light LED having a wavelength of 365 nm slightly shorter than the specific excitation light wavelength is used as the LED light-emitting part in the measuring head of the measuring apparatus. And a slightly longer ultraviolet LED with a wavelength of 375 nm, which is used as an excitation light source The two fluorescence emission derived from the AGEs from the skin by these two kinds of adjacent ultraviolet light LEDs are converted into a measurement value electric signal that is polymerized and amplified by the spectrophotometer element of the light receiving unit. Since it can be detected, it is possible to reliably detect and measure a specific AGE as a target, and to exhibit excellent effects such as low cost.

更に、本発明の糖化最終生成物質の測定装置は、請求項4に記載の如く、測定装置の測定ヘッドにおけるLED発光部として、二種類以上の複数の紫外光LEDを組合せてなる励起光光源の他に、比較的長い波長の白色光LEDを併設してあるので、この白色光により皮膚組織における吸収光の色補正を図るとともに、皮膚色の個人差を補正してAGEに由来する蛍光の測定値を蛍光成分のみに際立たせて検出測定することができ、皮膚組織の環境条件等に左右されることなく、蛍光発光に絞り込んだ測定を確実に精度よく行なうことができ、しかもこの優れた効果を安価かつ簡便になし得て、経済的にもその実用的効果が大きいものである。   Furthermore, the measurement apparatus for a saccharification final product according to the present invention is an excitation light source comprising a combination of two or more types of ultraviolet LEDs as an LED light emitting unit in a measurement head of a measurement apparatus. In addition, since a white LED with a relatively long wavelength is also provided, the color of the absorbed light in the skin tissue is corrected with this white light, and individual differences in skin color are corrected to measure fluorescence derived from AGE. The value can be detected and measured by highlighting only the fluorescent component, and the measurement focused on fluorescence emission can be performed accurately and reliably without being influenced by the environmental conditions of the skin tissue. Can be made inexpensively and easily, and its practical effect is great economically.

また更に、本発明の糖化最終生成物質の測定装置は、請求項5に記載の如く、測定装置の測定ヘッドにおけるLED発光部として設ける複数個の励起光LEDについて、複数の紫外光LEDもしくは、特定のAGEsに対する特定の励起光を発する二種類以上の紫外光LED設けて、何れかの励起光LEDによる蛍光特性の高い方のAGEsに由来する蛍光発光を選択可能にし、この蛍光発光を選択的に受光部の分光光度計素子にて測定値電気信号に変換して検出できるようにしてあるので、種々の幅広いAGEsの検査測定を精度良く行なうことができるとともに、簡便かつ操作性に優れ、安価な糖化最終生成物質の測定装置であっても、多機能を備えた汎用性のあるものとすることができる優れた効果を発揮するものである。   Furthermore, the measurement apparatus for a saccharification final product according to the present invention is the plurality of excitation light LEDs provided as the LED light emitting section in the measurement head of the measurement apparatus, as described in claim 5. Two or more kinds of ultraviolet light LEDs that emit specific excitation light for AGEs of one of them are provided, and fluorescence emission derived from AGEs having higher fluorescence characteristics by any excitation light LED can be selected, and this fluorescence emission is selectively Since the spectrophotometer element of the light receiving unit is converted into a measurement value electric signal and can be detected, a wide variety of AGEs can be inspected and measured with high accuracy, and it is simple, excellent in operability, and inexpensive. Even an apparatus for measuring a final saccharification product exhibits an excellent effect that can be made versatile with multiple functions.

本発明の一実施の形態における糖化最終生成物質の測定装置の全体構成を表す説明用斜視図である。It is a perspective view for explanation showing the whole composition of the measuring device of the final saccharification substance in one embodiment of the present invention. 本発明の図1の実施の形態における測定装置を構成する測定ヘッド部の側面図である。It is a side view of the measurement head part which comprises the measuring apparatus in embodiment of FIG. 1 of this invention. 本発明の実施の形態における図2に示す測定ヘッド部をA方向から見た押し当て面の説明図である。It is explanatory drawing of the pressing surface which looked at the measurement head part shown in FIG. 2 in embodiment of this invention from the A direction. 本発明の実施の形態における図2に示す測定ヘッド部の説明用縦断面図である。It is a longitudinal cross-sectional view for description of the measurement head part shown in FIG. 2 in embodiment of this invention. 本発明の実施の形態における図2に示す測定ヘッド部の押し当て面である当接カバーを取り外してA方向から見た説明図である。It is explanatory drawing which removed the contact cover which is a pressing surface of the measurement head part shown in FIG. 2 in embodiment of this invention, and was seen from A direction. 本発明の実施の形態における光源としての紫外光LEDの取付け要領の一実施例を示す説明用拡大図である。It is an explanatory enlarged view which shows one Example of the attachment point of ultraviolet light LED as a light source in embodiment of this invention. 本発明の実施の形態における蛍光発光等の反射光を受光する受光部の一実施例を示す説明用拡大図である。It is an explanatory enlarged view showing an example of a light receiving unit that receives reflected light such as fluorescent light emission in the embodiment of the present invention. 本発明の実施の形態における光源としての白色LEDの取付け要領の一実施例を示す説明用拡大図である。It is an explanatory enlarged view which shows one Example of the attachment point of white LED as a light source in embodiment of this invention. 本発明の実施の形態における光源として特定の励起光波長に近接した二種類の励起光による特定のAGE由来の二種類の蛍光発光の測定検出結果の一例を示すグラフ図である。It is a graph which shows an example of the measurement detection result of two types of fluorescence emission derived from the specific AGE by the two types of excitation light close | similar to the specific excitation light wavelength as a light source in embodiment of this invention.

以下、図に示した実施の形態に基づき、本発明を説明する。
図1は、一実施の形態における糖化最終生成物質の測定装置の全体構成を表す説明用斜視図であり、本発明の測定装置は、人体の最適な測定部位の皮膚に自由に押し当てられるように、人の手で握れるような小型コンパクトな形状に形成された測定ヘッド1と、当該測定ヘッド1に内装された後述のLED発光部12と受光部14としての基盤一体型の分光光度計素子15に対する電源供給制御や検出光の出力制御等を司るコントロール基盤2aを主体とする操作ボックス2と、この操作ボックス2からの検出光の測定電気信号出力を受けて、その検出光の分光分布波形を表示するディスプレイ画面3aを有し、かつ得られた測定値データから病気や疾患の進行度などを診断したり、判定処理するための制御ソフトなどを内蔵したパソコン3とより構成される。
The present invention will be described below based on the embodiments shown in the drawings.
FIG. 1 is an explanatory perspective view showing the entire configuration of a measurement apparatus for a glycated end product substance in one embodiment, and the measurement apparatus of the present invention is freely pressed against the skin of an optimal measurement site of a human body. In addition, a measurement head 1 formed in a compact and compact shape that can be grasped by a human hand, and a substrate-integrated spectrophotometer element as an LED light-emitting unit 12 and a light-receiving unit 14 described later built in the measurement head 1 15 receives an operation box 2 mainly composed of a control board 2a that controls power supply control, detection light output control, and the like, and a measurement electric signal output of the detection light from the operation box 2, and a spectral distribution waveform of the detection light A personal computer 3 having a display screen 3a for displaying, and having control software for diagnosing the progress of disease or disease from the obtained measured value data, or for determining processing More composed.

上記操作ボックス2には、電源コネクター2bと上記LED発光部12に対する切り替えスイッチ2cと、基盤一体型の分光光度計素子15に対する切り替えスイッチ2dが装備されているとともに、上記測定ヘッド1と操作ボックス2とは、LED発光部12及び分光光度計素子15への電源供給のための給電ケーブル4a及び4b、並びに分光光度計素子15からの蛍光分光光度分布の電気信号を伝達する配線ケーブル4cを束ねたケーブル4により連絡され、更に、上記コントロール基盤2aからの出力信号を伝送するためのUSBケーブル5によって、操作ボックス2は判定処理制御機能を有するパソコン3と接続されている。
なお、パソコン3において行なわれる、老化や成人病疾患等の予測や診断に関する判定方法や、その処理ソフトなどについては、ここでは説明を省略する。
The operation box 2 is equipped with a power supply connector 2b, a changeover switch 2c for the LED light emitting unit 12, and a changeover switch 2d for the spectrophotometer element 15 integrated with the base. The measurement head 1 and the operation box 2 are also provided. Is a bundle of power supply cables 4a and 4b for supplying power to the LED light emitting unit 12 and the spectrophotometer element 15, and a wiring cable 4c for transmitting an electrical signal of the fluorescence spectrophotometric distribution from the spectrophotometer element 15. The operation box 2 is connected to a personal computer 3 having a determination processing control function through a USB cable 5 which is connected by a cable 4 and transmits an output signal from the control board 2a.
In addition, about the determination method regarding the prediction and diagnosis of aging, an adult disease, etc., the processing software, etc. which are performed in the personal computer 3, description is abbreviate | omitted here.

次に、本発明の最大の特徴である、測定装置の測定ヘッド1にかかわる構成について、図2乃至図5に基づいて以下詳述する。
本発明の測定ヘッド1は、人の手で握れるようにするために小型コンパクトな形状として、外観的に図示の場合は略コップ形に形成されてなる(ただし外観形状はこのコップ形に限られるものではない)中空の測定ヘッド本体1aからなり、この中空の測定ヘッド本体1aの大径側の開口端には、皮膚に押し当てるための当接面を形成するように、円盤状の当接カバー10が取付けられ、この当接カバー10の中央には、皮膚への励起光と皮膚からの蛍光を含む反射光が通過するための測定穴10aが開孔され(図3参照)、更に測定ヘッド本体1aの小径側の端部には、前記操作ボックス2内のコントロール基盤2aと接続するケーブル4がコネクター接続されている。
Next, the configuration relating to the measuring head 1 of the measuring apparatus, which is the greatest feature of the present invention, will be described in detail below with reference to FIGS.
The measuring head 1 of the present invention is formed into a small and compact shape so that it can be grasped by a human hand, and is formed in a substantially cup shape in the case of illustration (however, the outer shape is limited to this cup shape). (Not a thing) It consists of a hollow measuring head main body 1a, and a disc-shaped contact is formed at the opening end on the large diameter side of the hollow measuring head main body 1a so as to form a contact surface for pressing against the skin. A cover 10 is attached, and a measurement hole 10a for allowing reflected light including excitation light to the skin and fluorescence from the skin to pass through is opened in the center of the contact cover 10 (see FIG. 3). A cable 4 connected to the control board 2a in the operation box 2 is connected to the end of the head main body 1a on the small diameter side.

なお、上記当接カバー10について本発明の実施例の場合、全体の色を黒色とし、測定穴10a以外の部分からの光の乱反射を防いだり、後述の光源から発せられて測定穴10a以外に照射される余分な光を吸収できるようにしてある。
また、上記当接カバー10は、人の皮膚に直接押し当てる部分となるので、図示してないがその表面に更に同様な形状の、即ち、測定穴10aに対応する穴を中央に開孔してある円盤状の衛生フィルム、または汗等を吸収する吸湿性のあるフェルト部材や吸湿紙等を貼着することもでき、そうすることにより、被験者に不快な思いを懐かせたりすることなく快適に、かつ衛生的なAGEs測定検査が可能である。
In the case of the embodiment of the present invention, the abutting cover 10 is black as a whole and prevents irregular reflection of light from portions other than the measurement hole 10a. The extra light to be irradiated can be absorbed.
Further, since the contact cover 10 is a portion that directly presses against the human skin, a hole having a similar shape on the surface, that is, a hole corresponding to the measurement hole 10a is opened in the center (not shown). A disc-shaped sanitary film, or a felt-absorbing felt material that absorbs sweat, moisture-absorbing paper, etc. can also be attached, so that the subject can feel comfortable without feeling uncomfortable. In addition, hygienic AGE measurement and inspection is possible.

そして、上記測定ヘッド本体1a内には、図4に詳細を示すように、略中空円錐形をした取付け部材11が固定支持されていて、その取付け部材11の内側円錐面の同一円周上には、特定の糖化最終生成物質(AGEs)に対する励起光光源として複数個の、例えば図示実施例の場合は、特定の波長に近接した異なる波長を持つ二種類の紫外光LED12a,12bと、皮膚の色補正のための後述する白色光LED13とを交互に円環状に配列して、消費電力の少ないLED発光部12を構成し、かつ円錐体の内周面に埋め込まれたこれ等の紫外光LED12a,12bと白色光LED13から発せられる励起光と補正光は、前記当接カバー10の中心部の測定穴10aの一点に向けられて、集中的に照射されるように設置されている。
なお、特定のAGEsに対する特定の励起光を発する励起光光源としての紫外光LED12a,12bは、二種類に限られることなく後述の重合効果の得られるものであれば、二種類以上の特定波長の紫外光LEDを採用することができるものであり、或いは、特定の波長の励起光を発する一種類の紫外光LEDであっても、これを複数個円環状に配列してなる集光配列構造として実施することも可能である。
As shown in detail in FIG. 4, a mounting member 11 having a substantially hollow conical shape is fixed and supported in the measuring head main body 1 a, and on the same circumference of the inner conical surface of the mounting member 11. Is a plurality of excitation light sources for specific glycation end products (AGEs), for example, in the case of the illustrated embodiment, two kinds of ultraviolet LEDs 12a and 12b having different wavelengths close to a specific wavelength, White light LEDs 13 to be described later for color correction are alternately arranged in an annular shape to constitute an LED light emitting unit 12 with low power consumption, and these ultraviolet light LEDs 12a embedded in the inner peripheral surface of the cone. , 12b and the white light LED 13 are arranged so that the excitation light and the correction light are directed toward one point of the measurement hole 10a at the center of the contact cover 10 and are intensively irradiated.
Note that the ultraviolet LEDs 12a and 12b serving as excitation light sources that emit specific excitation light for specific AGEs are not limited to two types, and may have two or more specific wavelengths as long as the polymerization effect described below is obtained. An ultraviolet light LED can be used, or even a single kind of ultraviolet light LED that emits excitation light of a specific wavelength is used as a condensing arrangement structure in which a plurality of such LEDs are arranged in an annular shape. It is also possible to implement.

更に、取付け部材11の円錐頂部に当たる中心部には、前記当接カバー10の測定穴10aに対向するよう同一軸線上の位置関係を保って、前記受光部14の受光穴14a及び基盤一体型の分光光度計素子15が設置され、これ等の配置関係により、上記LED発光部12からの励起光と補正光が測定穴10aから皮膚に集中して集光的に照射されると同時に、皮膚からの蛍光を含む反射光が測定穴10aから受光部14の分光光度計素子15へと入光する、ワンパス式の光経路を形成するように構成されている。
また、測定穴10aに対面する取付け部材11の円錐形内面は、これに黒色系の色彩を施してあり、これにより前記した当接カバー10におけると同様に、光源からの照射光の乱反射を吸収するとともに、皮膚からの反射光の乱反射を吸収する事ができるように配慮してある。なお、この色は、黒色に限らず、光源として使用する光や皮膚からの反射光に合わせて、効果的に乱反射を吸収できる色合いを選択することが好ましい。
Further, the central portion corresponding to the top of the conical portion of the mounting member 11 maintains the positional relationship on the same axis so as to face the measurement hole 10a of the abutting cover 10, and the light receiving hole 14a of the light receiving portion 14 and the substrate integrated type A spectrophotometer element 15 is installed. Due to these arrangement relationships, the excitation light and the correction light from the LED light emitting unit 12 are concentrated and irradiated from the skin through the measurement hole 10a. It is configured to form a one-pass optical path through which reflected light including the fluorescence of the light enters the spectrophotometer element 15 of the light receiving unit 14 from the measurement hole 10a.
Further, the conical inner surface of the mounting member 11 facing the measurement hole 10a is provided with a black color, thereby absorbing the irregular reflection of the irradiation light from the light source as in the contact cover 10 described above. At the same time, consideration is given so that diffuse reflection of reflected light from the skin can be absorbed. Note that this color is not limited to black, and it is preferable to select a color that can effectively absorb irregular reflections according to light used as a light source and reflected light from the skin.

上記LED発光部12について更に詳しく説明すると、特定のAGEsに対する励起光光源としての特定の波長との関係について、本実施例においては例えば、特定のAGEsとして、特にクロスリン、ピロピリジン、ペントジンなど蛍光を発するAGEsを対象としているが、これに限られることなく、例えば3デオキシグルコソン(3DG)のように糖化反応中間体として生成するAGEs、更にはカルボキシメチルリジン(CML)のように蛍光を発しないAGEsであっても、その発生過程で同時に生成される蛍光を発するAGEsをも対象にするように、これらAGEsに対する特定の励起光波長の370nmと、これに対応するAGEs由来の蛍光波長440nmとの相関関係に着目して、具体的に例えば、測定装置の測定ヘッド10におけるLED発光部12として、上記特定の励起光波長370nmより僅かに短い波長365nmの紫外光LEDと、僅かに長い波長375nmの紫外光LEDとを組合せて、これを励起光光源として採用し、図5に示すように同一円周上に交互に対向配置した状態で、取付け部材11の中に埋め込まれて固定され(図6参照)、これ等の特定励起光に近接した二種類の波長を持つ紫外光LED12a,12bからの励起光は、前述したように、当接カバー10の中心部の測定穴10aの一点に向けられて集中して集光的に照射され、一つのLED光は弱くても一点に集められて強力な光となるのである。
なお、これ等の二種類の紫外光LED12a,12bによる皮膚からのAGEs由来の二つの蛍光発光は、原理的には、紫外光LEDの特定の波長の種類に対応して特定のAGEs由来の蛍光が励起されるので、同数の蛍光発光が反射光として発生するものであり、蛍光を発しないAGEsでもその糖化反応中間体からの反射光や、AGEs生成過程で付随的に蛍光を発生するものなど、もしくは何れかの紫外光LED12a,12bによる蛍光特性の高い方のAGEsに由来する蛍光発光など、あらゆる反射光を幅広く検出測定することができるのである。
また、これ等の紫外光LED12a,12bの波長の選定については、測定対象とされる特定のAGEsが異なれば、当然その励起光として使用する波長も相対的に異なり、AGEs由来の蛍光波長も上記と異なることは言うまでもなく、その必要とする波長に合わせて紫外光LEDを種々選択して採用したり、特定の励起光波長に対する僅かに短い波長と長い波長の幅の設定についても、効率の良い波長幅を適宜選択設定するものである。
The LED light emitting unit 12 will be described in more detail. Regarding the relationship with a specific wavelength as an excitation light source for specific AGEs, in the present embodiment, for example, specific AGEs emit fluorescence such as crosslin, pyropyridine, and pentidine. AGEs are targeted, but not limited thereto, for example, AGEs produced as saccharification reaction intermediates such as 3 deoxyglucosone (3DG), and AGEs that do not emit fluorescence such as carboxymethyllysine (CML) Even so, the correlation between the specific excitation light wavelength of 370 nm for these AGEs and the corresponding fluorescence wavelength of 440 nm derived from AGEs so that the AGEs emitting fluorescence generated simultaneously in the generation process are also targeted. Focusing on the relationship, specifically, for example, the measurement head of the measurement device As the LED light emitting unit 12 in FIG. 10, an ultraviolet light LED having a wavelength of 365 nm slightly shorter than the specific excitation light wavelength of 370 nm and an ultraviolet light LED having a slightly longer wavelength of 375 nm are combined and adopted as an excitation light source, As shown in FIG. 5, in the state of being alternately arranged on the same circumference, they are embedded and fixed in the mounting member 11 (see FIG. 6), and two types of wavelengths close to these specific excitation lights are used. As described above, the excitation light from the ultraviolet LEDs 12a and 12b is concentrated and focused on one point of the measurement hole 10a at the center of the contact cover 10, and one LED light is weak. But it is gathered into one point and becomes a powerful light.
In addition, in principle, the two types of fluorescence emission derived from AGEs from the skin by these two types of ultraviolet light LEDs 12a and 12b correspond to the fluorescence of specific AGEs corresponding to the types of specific wavelengths of ultraviolet light LEDs. Excited, the same number of fluorescent emissions are generated as reflected light, and even AGEs that do not emit fluorescence are reflected from the saccharification reaction intermediate, or incidentally generate fluorescence during the AGE generation process, etc. Alternatively, it is possible to detect and measure a wide range of all reflected light such as fluorescent light emission derived from AGEs having higher fluorescence characteristics by any one of the ultraviolet LEDs 12a and 12b.
Further, regarding the selection of the wavelengths of these ultraviolet LEDs 12a and 12b, if the specific AGEs to be measured are different, the wavelength used as the excitation light is naturally relatively different, and the fluorescence wavelength derived from AGEs is also the above Needless to say, it is also efficient to select and adopt various kinds of ultraviolet LEDs according to the required wavelength, or to set slightly short wavelengths and long wavelength widths for specific excitation light wavelengths. The wavelength width is appropriately selected and set.

また、上記LED発光部12には、皮膚の状態のバラつきや吸収光などの色補正用として、比較的長い波長、例えば一例として、本実施例の場合は465nmの波長の白色光LED13を、図5に示すように上記紫外光LED12a,12bと交互に同一円周上に対向的に円環状に配列して併設してあるとともに、図8に拡大図を示すようにこの白色光LED13は、取付け部材11に埋め込まれて固定されている他、その発光側の取付け部材11には、皮膚組織に対する照射光として、上記特定の励起光以外の、例えば380nm以下の励起光の影響を抑えたり、皮膚の状態のバラつきに起因する反射光や、日焼け、メラニン物質などの赤色系の吸収光などの色合いを補正するための効果を発揮する着色ガラス製の発光フィルター13aが設けられている。 Further, the LED light emitting unit 12 is a white light LED 13 having a relatively long wavelength, for example, a wavelength of 465 nm in the case of this embodiment, for color correction such as variation in skin condition or absorbed light. As shown in FIG. 5, the ultraviolet light LEDs 12a and 12b are alternately arranged on the same circumference so as to face each other in an annular shape, and the white light LED 13 is mounted as shown in an enlarged view in FIG. In addition to being embedded and fixed in the member 11, the light emitting side mounting member 11 has an effect of suppressing the influence of excitation light other than the specific excitation light, for example, 380 nm or less, as the irradiation light to the skin tissue, A light emitting filter 13a made of colored glass that exhibits an effect for correcting shades of reflected light caused by variations in the state of the sun, red absorption light such as sunburn and melanin, etc. It has been kicked.

更に、本発明の特徴的な構成として、上記したLED発光部12と相俟って受光部14の構成が重要である。即ち、本発明では、測定ヘッド本体1a内に固定された中空円錐状の取付け部材11の円錐頂部に当たる中心部には、図4及び図7に示すように、前記当接カバー10の中心部の測定穴10aに対向するよう受光穴14aが同一軸線上において開口するように設置され、この受光穴14aの受光側の取付け部材11には、前記特定のAGEs由来の蛍光波長440nm以外の皮膚組織からの反射光や、他の物質からの蛍光、例えば波長418nm付近の蛍光等をカットするための着色ガラス製の受光フィルター14bを設けるとともに、受光穴14aの背面側の取付け部材11には、受光穴14aから取り込まれた特定のAGE由来の蛍光(図示実施例の場合は近接した二種類の波長の励起光に励起されたAGE由来の二つの蛍光発光)を感知して、この二つの測定光を重合増幅して直接的に電気信号に変換して計測する基盤一体型の分光光度計素子15が固定配備され、蛍光測定値を光学的伝達手段に依存することなく電気信号に変換してケーブル4を介し、前記操作ボックス2のコントロール基盤2aに電送するように構成されている。 Furthermore, as a characteristic configuration of the present invention, the configuration of the light receiving portion 14 is important in combination with the LED light emitting portion 12 described above. That is, in the present invention, the central portion of the hollow conical mounting member 11 fixed in the measuring head main body 1a is in contact with the central portion of the contact cover 10 as shown in FIGS. The light receiving hole 14a is disposed so as to open on the same axis so as to face the measurement hole 10a, and the light receiving side attachment member 11 of the light receiving hole 14a has a skin tissue other than the fluorescence wavelength of 440 nm derived from the specific AGEs. The light receiving hole 14 is provided in the mounting member 11 on the back side of the light receiving hole 14a. Fluorescence derived from a specific AGE captured from 14a (in the illustrated example, two fluorescent emissions derived from AGE excited by two adjacent wavelengths of excitation light) Then, a base-integrated spectrophotometer element 15 that superimposes and amplifies the two measurement lights and directly converts them into an electrical signal for measurement is fixedly provided, and the fluorescence measurement value depends on the optical transmission means. Instead, it is configured to be converted into an electric signal and transmitted to the control board 2a of the operation box 2 via the cable 4.

次に、本発明の糖化最終生成物質の測定装置を使用するときは、図1に示すように測定ヘッド1、操作ボックス2及びパソコン3を電気的に接続してセットアップする。次いで測定操作を行なうオペレーターは、電源や発光源に対する切り替えスイッチ2c,2c,2dを適宜入力(ON)状態にして、測定ヘッド1を手に持って被験者の腹部や首などの最適な部位に当接カバー10を押し当てて、しばらくの間この状態を保持する。
こうすることにより被験者の皮膚に対しては、LED発光部12における紫外光LED12aからの365nmの励起光と、紫外光LED12bからの375nmの励起光と、白色光LED13から発光されて発光フィルター13aによりフィルタリングされた皮膚の補正光としての白色光が、同時に押し当て面の測定穴10aからピンポイントで照射される。
Next, when using the measuring apparatus for the final saccharified product of the present invention, the measuring head 1, the operation box 2 and the personal computer 3 are electrically connected and set up as shown in FIG. Next, the operator who performs the measurement operation sets the change-over switches 2c, 2c and 2d for the power source and the light source to the appropriate input (ON) state, holds the measurement head 1 in his hand, and touches the optimal part such as the abdomen and neck of the subject. The contact cover 10 is pressed and this state is maintained for a while.
By doing so, the subject's skin is irradiated with 365 nm excitation light from the ultraviolet light LED 12a in the LED light emitting unit 12, 375 nm excitation light from the ultraviolet light LED 12b, and the white light LED 13 and is emitted by the light emission filter 13a. White light as filtered correction light for the skin is simultaneously irradiated at a pin point from the measurement hole 10a of the pressing surface.

このとき被験者の皮膚組織の状態が人種差や性差、極端な年齢差、或いは極度な日焼け状態やメラニン色素の沈着もない等の良好な状態であれば、白色光LED13の発光をする必要はないので、そのときには操作ボックス2の切換えスイッチ2dをOFF操作して白色光LED13の発光を止めればよいが、一般的には一定条件の下での均質な測定データを得るためには、白色LED13による色補正を常時行なって、測定データを蛍光成分のみにすることが望ましい。 At this time, if the skin tissue of the subject is in a good state such as a race difference, sex difference, extreme age difference, extreme sunburn state, or no melanin pigment deposition, the white light LED 13 does not need to emit light. Therefore, at that time, the changeover switch 2d of the operation box 2 may be turned OFF to stop the light emission of the white light LED 13, but in general, in order to obtain uniform measurement data under a certain condition, the white LED 13 is used. It is desirable to always perform color correction and make the measurement data only the fluorescent component.

また、本実施例においては、LED発光部12における励起光として、特定の波長365nmの紫外光LED12a及び波長375nmの紫外光LED12bとが同時にかつ集光的に押し当て面の測定穴10aから皮膚にピンポイントで照射されるので、これ等近接した二種類の特定波長を持つ励起光を受けた皮膚からは、この特定の励起光に反応したAGEs由来の波長440nm付近の二つの蛍光が発せられ、これ等二つの蛍光発光は、前記測定ヘッド本体1aの中心線上において対向的な配置関係にあるワンパス式の光経路中に配置された受光部14の受光フィルター14bにより、前記特定のAGEs由来の蛍光波長440nm以外の皮膚からの反射光や、他の物質からの蛍光がフィルタリングされ、更に受光穴14aなどを経由して分光光度計素子15へと入光し、この近接した波長を持つ二つの蛍光発光は、図9に示すように互いに重合増幅されて強められた電気信号とされ、ノイズなどの影響を受けることなく確実に基盤一体型の分光光度計素子15によって分光光度分布測定値として計測され、この蛍光測定値は、更にケーブル4を介して電送され、爾後の操作ボックス2のコントロール基盤2aにて処理される。 Further, in the present embodiment, as the excitation light in the LED light emitting unit 12, the ultraviolet light LED 12a having a specific wavelength of 365 nm and the ultraviolet light LED 12b having a wavelength of 375 nm are simultaneously and concentratedly applied to the skin from the measurement hole 10a on the pressing surface. Since it is irradiated at a pinpoint, two fluorescences near the wavelength of 440 nm derived from AGEs in response to the specific excitation light are emitted from the skin that has received excitation light having these two specific wavelengths close to each other. These two types of fluorescence are emitted from the specific AGEs by the light receiving filter 14b of the light receiving unit 14 disposed in the one-pass type optical path that is oppositely arranged on the center line of the measuring head main body 1a. The reflected light from the skin other than the wavelength of 440 nm and the fluorescence from other substances are filtered and further passed through the light receiving hole 14a and the like. As shown in FIG. 9, the two fluorescent lights that enter the spectrophotometer element 15 and have a wavelength close to each other are converted into electric signals that have been amplified by polymerization and are not affected by noise or the like. It is reliably measured as a spectrophotometric distribution measurement value by the base-integrated spectrophotometer element 15, and this fluorescence measurement value is further transmitted via the cable 4 and processed by the control base 2 a of the operation box 2 after the operation. .

このとき、二種類の波長の紫外光LED12aと紫外光12bとは、操作ボックス2の切換えスイッチ2c,2cにより、上記したように同時入力状態にセットしたり、或いは、紫外光LED12a,12bの何れか一方による蛍光特性の高いAGEsに由来する蛍光発光が顕著で、安定して検出測定できる場合には、何れか一方の入力状態を切換えスイッチ2c,2cにより選択し、蛍光特性の高い方の紫外光LED12a,12bを選択的に用いるように操作することもでき、更に、LED発光部12に設けるこれ等の複数個の紫外光LED(励起光LED)については、特定のAGEsに対する特定の一種類の励起光を発するものを複数個設けた場合には、そのうちのいくつかを選択することにより、照射光の強さを調節するように実施することも可能である。 At this time, the ultraviolet light LED 12a and the ultraviolet light 12b of two types of wavelengths are set to the simultaneous input state as described above by the changeover switches 2c and 2c of the operation box 2, or any of the ultraviolet light LEDs 12a and 12b. When fluorescence emission derived from AGEs having high fluorescence characteristics due to one of them is remarkable and can be detected and measured stably, one of the input states is selected by the changeover switches 2c and 2c, and the ultraviolet having the higher fluorescence characteristics is selected. The light LEDs 12a and 12b can be operated to be selectively used. Further, the plurality of ultraviolet light LEDs (excitation light LEDs) provided in the LED light emitting unit 12 are specific one type for specific AGEs. If there are multiple devices that emit excitation light, select some of them to adjust the intensity of the irradiation light. It is also possible to.

以上説明したように、図1に全体的構成を示した測定装置の実施例によれば、既存の一般的なパソコン3を利用して本発明の測定ヘッド1と操作ボックス2などと電気的にケーブル接続してシステムを構成してあるので、システム全体としても小型コンパクトにして持ち運びに便利であり、しかも測定ヘッド1が手で握れる程度のコップ状の大きさの形状にしてあるため、その操作に際しても、被験者の皮膚における最適な部位に容易かつ自在に押し当てて測定することができ操作性が良く、更に初期のこの種装置の目的であるところの人体に負担を掛けることのないよう非侵襲的に糖化最終生成物質(AGEs)を測定することができるのである。 As described above, according to the embodiment of the measuring apparatus whose overall structure is shown in FIG. 1, the existing general personal computer 3 is used to electrically connect the measuring head 1 and the operation box 2 of the present invention. Since the system is configured by cable connection, the entire system is compact and convenient to carry, and the measuring head 1 is shaped like a cup so that it can be grasped by hand. In this case, it can be measured easily and freely against the optimal part of the skin of the subject, and the operability is good. Further, the initial purpose of this type of device is not to place a burden on the human body. It is possible to measure glycated end product substances (AGEs) invasively.

そして特に、上記測定ヘッド本体1a内における取付け部材11の内側円錐面の同一円周上に、特定のAGEsに対する励起光光源としての特定の波長に近接した異なる波長を持つ二種類の紫外光LED12aと12bと、皮膚の色補正のための白色光LED13とを交互に円環状に配列して構成されたLED発光部12が設けられ、これ等の紫外光LED12a,12bと白色光LED13から発せられる励起光と補正光が、前記当接カバー10の中心部の測定穴10aの一点に向けられて集中して集光的に照射されるので、省エネタイプのLED光でありながら、照射光として集光された強い光源とすることができ、これと同時に、取付け部材11の円錐頂部の中心部に設けられた受光部14では、前記当接カバー10の測定穴10aと対向配置された受光穴14a並びに受光フィルター14bによるワンパス式の光経路において、皮膚からの蛍光を含む反射光が測定穴10aから分光光度計素子15へと入光し、近接した二種類のAGEs由来の蛍光発光は重合増幅されて強調された状態で、分光光度計素子15により直接的に電気信号に変換されて計測されるので精度が極めて良いのである。
特に特定のAGEsに対する励起光光源としての特定の波長に対応した異なる波長を持つ紫外光LED12aと12bは、二種類に限られるものではなく、
必要に応じて二種類以上の紫外光LEDを組合わせて、これを励起光光源とすることができ、これ等二種類以上の紫外光LEDからの励起光による特定のAGEs由来の蛍光発光も当然二種類以上発生し、重合作用を呈して強められることは勿論である。
In particular, on the same circumference of the inner conical surface of the mounting member 11 in the measuring head main body 1a, two kinds of ultraviolet LEDs 12a having different wavelengths close to a specific wavelength as an excitation light source for specific AGEs, 12b and white light LEDs 13 for color correction of the skin are alternately arranged in an annular shape, and an LED light emitting unit 12 is provided. Excitations emitted from the ultraviolet light LEDs 12a and 12b and the white light LED 13 are provided. Since the light and the correction light are focused and focused on one point of the measurement hole 10a at the center of the contact cover 10, the light and the correction light are condensed as irradiation light while being an energy saving type LED light. At the same time, in the light receiving portion 14 provided at the center of the conical top portion of the mounting member 11, the measurement hole 10a of the contact cover 10 and In a one-pass optical path by the light receiving hole 14a and the light receiving filter 14b arranged in the direction, the reflected light including the fluorescence from the skin enters the spectrophotometer element 15 from the measurement hole 10a, and is derived from two adjacent types of AGEs The fluorescence emission of the above is amplified and superposed and is directly converted into an electrical signal by the spectrophotometer element 15 and measured, so that the accuracy is very good.
In particular, the ultraviolet LEDs 12a and 12b having different wavelengths corresponding to specific wavelengths as excitation light sources for specific AGEs are not limited to two types,
If necessary, two or more types of ultraviolet light LEDs can be combined and used as an excitation light source. Fluorescence emission derived from specific AGEs due to the excitation light from these two or more types of ultraviolet light LEDs is also natural. Of course, two or more types are generated and can be strengthened by exhibiting a polymerization effect.

また、本発明では、AGEs由来の蛍光発光を光の状態で導くような一般的な光学的な光経路や、光学的な伝導手段によることなしに、測定ヘッド本体1aに内装した分光光度計素子15により、直接的に蛍光発光を電気信号に変換して検出し、これを操作ボックス2内のコントロール基盤2a及び判定処理システムとしてのパソコン3に電送することができるので、安価かつ簡便な装置として持ち運ぶことができ、ホータプル性にも優れているものである。 Further, in the present invention, a spectrophotometer element built in the measurement head main body 1a without using a general optical light path or optical conduction means that guides fluorescence emission derived from AGEs in a light state. 15, the fluorescent emission can be directly converted into an electric signal and detected, and this can be transmitted to the control board 2 a in the operation box 2 and the personal computer 3 as a judgment processing system, so that it is an inexpensive and simple device. It can be carried and excels in hot pullability.

また、図1の場合は操作ボックス2と既存の一般的なパソコン3とを利用してAGEsの測定装置とシステムを構成したが、操作ボックス2のコントロール基盤2aや切り替えスイッチ2c,2d等の操作機能をパソコン3に持たせたり、或いは測定ヘッド1側に持たせて手元操作可能に変更することもでき、この場合、先に説明したような本発明の本質的な構成である、測定ヘッド1内のLED発光部12の集光配列構造と、測定穴10aと受光部14の受光穴14aのワンパス式の光経路構造、及び基盤一体型の分光光度計素子15と電気的なケーブル4を用いることなどは、何ら変わることなくその作用効果も変わることなく実施することができるのである。   In the case of FIG. 1, the AGEs measuring device and system are configured using the operation box 2 and an existing general personal computer 3, but the operation of the control board 2 a and changeover switches 2 c and 2 d of the operation box 2 is performed. The function can be given to the personal computer 3 or can be changed so that it can be operated by hand by giving it to the measuring head 1 side. In this case, the measuring head 1 is the essential configuration of the present invention as described above. The light condensing arrangement structure of the LED light emitting unit 12 in the inside, the one-pass type optical path structure of the measurement hole 10a and the light receiving hole 14a of the light receiving unit 14, and the base-integrated spectrophotometer element 15 and the electric cable 4 are used. This can be carried out without any change and without changing the function and effect.

本発明の糖化最終生成物質(AGEs)の測定装置は、上記したようにその測定ヘッド内部のLED発光部の複数個の発光LEDを円環状に配列して得られる集光配列構造と、測定穴と受光部とのワンパス式の光経路と、受光部における基盤一体型の分光光度計素子による電気変換計測方式などの組合わせ構造について、これを変更しない限りは、複数個の発光LEDが特定の励起波長を持つ一種類であっても二種類以上であっても良く、その他、操作ボックスやディスプレイ画面を有するコンピューターまたはパソコンなどについて、これを図示の実施例以外の形状構造のものを採用したり、また、測定ヘッド自体の外観形状についても、更に小型化したペンシル形状などへの変更も制限されるものではなく、当業者が容易に変更することが可能な範囲において、種々組合せたり変更することも自在である。   As described above, the measurement apparatus for saccharification end product substances (AGEs) of the present invention includes a condensing arrangement structure obtained by arranging a plurality of light emitting LEDs in an LED light emitting portion inside the measurement head in an annular shape, and a measurement hole. As long as this is not changed, a plurality of light-emitting LEDs are specified as long as the combination structure such as a one-pass light path between the light-receiving part and the light-receiving part and an electrical conversion measurement method using a base-integrated spectrophotometer element in the light-receiving part is not changed. One type or two or more types having an excitation wavelength may be used. In addition, a computer or personal computer having an operation box or a display screen may have a shape structure other than the illustrated embodiment. In addition, the external shape of the measuring head itself is not limited to a further reduced pencil shape, and can be easily changed by those skilled in the art. In a possible range, it is free to various combinations or changes.

更に、特定の糖化最終生成物質(AGEs)についても、実施例に述べたクロスリン、ピロピリジン、ペントジンなど蛍光を発するAGEsを対象とすることや、或いは3デオキシグルコソン(3DG)を糖化反応中間体として生成するAGEs、更にはカルボキシメチルリジン(CML)のように蛍光を発しないAGEsの発生過程で同時に生成される蛍光を発するAGEsなどに限定されることはなく、特定のAGEに対する励起光光源として用いる特定の波長の関係についても、具体的に実施例に述べた特定の励起光の波長370nmと、これに対応するAGE由来の蛍光波長440nmに限定されるものではなく、特定のAGEが変わればその励起光光源としての励起光LEDの波長を種々変更して構成することは勿論であり、これ等の変更に付随して、受光部に設ける受光フィルターにおけるカット波長の変更も必要に応じて行なうものであり、実施例の波長に限定されるものではなく、また、発光フィルターや受光フィルターの方式も、着色ガラス方式に限定されるものではない。   Furthermore, with regard to specific glycation end products (AGEs), AGEs that emit fluorescence such as crosslin, pyropyridine, and pentodine described in the examples are targeted, or 3 deoxyglucosone (3DG) is used as a saccharification reaction intermediate. It is not limited to AGEs that generate fluorescence, and AGEs that generate fluorescence simultaneously with the generation process of AGEs that do not emit fluorescence, such as carboxymethyllysine (CML), and are used as an excitation light source for a specific AGE. The relationship between the specific wavelengths is not limited to the specific excitation light wavelength of 370 nm specifically described in the embodiment and the corresponding AGE-derived fluorescence wavelength of 440 nm. If the specific AGE changes, Of course, the wavelength of the excitation light LED as the excitation light source can be variously changed. Along with this change, the cut wavelength of the light receiving filter provided in the light receiving section is also changed as necessary, and is not limited to the wavelength of the embodiment, and the method of the light emitting filter and the light receiving filter is also used. It is not limited to the colored glass system.

以上で、本発明の実施の形態についての説明を終えるが、本発明の範囲は図示され、または説明された詳細そのものには限定されないことは勿論であるとともに、これらを種々組み合わせて実施することも可能で、何れの場合も本発明の目的を逸脱するものでなければ、本発明の優れた効果を損なうことなく発揮できるものである。 This is the end of the description of the embodiment of the present invention. However, the scope of the present invention is not limited to the details shown or described, and may be implemented in various combinations. If it is possible and does not depart from the object of the present invention in any case, the excellent effects of the present invention can be exhibited without impairing.

本発明は、医療分野における糖化最終生成物質(AGEs)の測定や検査技術分野の、特に予防医学の産業分野において利用される。   INDUSTRIAL APPLICATION This invention is utilized in the measurement field | area of a glycation end product (AGEs) in a medical field, a test | inspection technical field, especially the industrial field of preventive medicine.

1 測定ヘッド
1a測定ヘッド本体
2 操作ボックス
2aコントロール基盤
2b電源コネクター
2c,2c,2d切り替えスイッチ
3 パソコン(判定処理制御部)
3aデータ表示画面
4 ケーブル
4a,4b給電ケーブル
4c配線ケーブル
5 USBケーブル
10 当接カバー
10a測定穴
11 取付け部材
12 LED発光部
12a,12b紫外光LED
13 白色光LED
13a発光フィルター
14 受光部
14a受光穴
14b受光フィルター
15 基盤一体型の分光光度計素子
DESCRIPTION OF SYMBOLS 1 Measuring head 1a Measuring head main body 2 Operation box 2a Control board 2b Power supply connector 2c, 2c, 2d changeover switch 3 Personal computer (judgment processing control part)
3a data display screen
4 Cable 4a, 4b Feeding cable 4c Wiring cable 5 USB cable 10 Contact cover 10a measurement hole
11 Mounting member 12 LED light emission part 12a, 12b UV light LED
13 White light LED
13a Light-emitting filter 14 Light-receiving part 14a Light-receiving hole 14b Light-receiving filter 15 Base-integrated spectrophotometer element

Claims (5)

測定装置の測定ヘッドの形状を人の手で握れるように小型コンパクトな形状に形成し、当該測定ヘッドの内部には略中空円錐形状の取付け部材を設けて、その円錐形内面の同一円周上には光源としての複数のLEDを環状に配列し、これ等のLED光が中心軸線上の一点に集中して向かうようにしたLED発光部を設けるとともに、取付け部材の中央頂部には受光部としての基盤一体型の分光光度計素子を集約して内装し、当該受光部と上記測定ヘッドの端面中央に開孔した測定穴とが同一軸線上に配置されて、上記LED発光部からの励起光が測定穴から皮膚に集光的に照射されると同時に、皮膚からの反射光が測定穴から上記受光部へと入光するワンパス式の光経路を構成し、これにより糖化最終生成物質(AGEs)由来の蛍光発光を、受光部の分光光度計素子にて直接的に電気信号に変換して検出し、この蛍光測定値に関する電気信号を別置きの操作ボックス内のコントロール基盤にケーブル伝達するようにし、かつ当該コントロール基盤により前記LED発光部と受光部の分光光度計素子とを制御可能にするとともに、この蛍光測定値に関する電気信号を判定処理制御部に対する入力信号として出力するよう構成したことを特徴とする糖化最終生成物質の測定装置。 The shape of the measuring head of the measuring device is made small and compact so that it can be grasped by a human hand, and a mounting member with a substantially hollow conical shape is provided inside the measuring head, on the same circumference of the conical inner surface A plurality of LEDs as light sources are arranged in a ring shape, and an LED light emitting unit is provided in which these LED lights are concentrated and directed at one point on the central axis, and a light receiving unit is provided at the central top of the mounting member. The base-integrated spectrophotometer elements are integrated and housed, and the light receiving part and the measurement hole opened in the center of the end face of the measuring head are arranged on the same axis, and the excitation light from the LED light emitting part Is condensed and irradiated to the skin from the measurement hole, and at the same time, a reflected light from the skin enters the light receiving part through the one-pass type optical path. ) Derived fluorescence The spectrophotometer element of the light receiving unit directly converts it into an electric signal and detects it, and transmits the electric signal related to the fluorescence measurement value to a control board in a separate operation box. The saccharification final product, characterized in that the LED light-emitting unit and the spectrophotometer element of the light-receiving unit can be controlled, and an electric signal related to the fluorescence measurement value is output as an input signal to the determination processing control unit Measuring device. 測定装置の測定ヘッドの形状を人の手で握れるように小型コンパクトな形状に形成し、当該測定ヘッドの内部には略中空円錐形状の取付け部材を設けて、その円錐形内面の同一円周上には光源としての複数のLEDを環状に配置し、これ等のLED光が中心線上の一点に集中して向かうようにしたLED発光部を設けるとともに、取付け部材の中央頂部には受光部としての基盤一体型の分光光度計素子を集約して内装し、当該受光部と測定ヘッドの端面中央に開孔した測定穴とが、同一軸線上に配置されて、上記LED発光部からの励起光が測定穴から皮膚に集光的に照射されると同時に、皮膚からの反射光が測定穴から上記受光部へと入光するようなワンパス式の光経路を構成し、かつ上記LED発光部として、特定のAGEsに対する特定の励起光を発する二種類以上の紫外光LEDを組合せてなる、または特定のAGEsに対する励起光より僅かに短い波長の紫外光LEDと僅かに長い波長の紫外光LEDとの二種類の紫外光LEDを組合せてなる励起光光源を採用し、これ等の二種類以上の紫外光LEDによる皮膚からのAGEs由来の二種類以上の蛍光発光を、前記受光部の分光光度計素子にて重合増幅された測定値電気信号に変換して検出し、この電気信号を別置きの操作ボックス内のコントロール基盤にケーブル伝達するようにし、かつ当該コントロール基盤により前記LED発光部と受光部の分光光度計素子とを制御可能にするとともに、前記蛍光測定値に関する電気信号を判定処理制御部に対する入力信号として出力するように構成したことを特徴とする糖化最終生成物質の測定装置。   The shape of the measuring head of the measuring device is made small and compact so that it can be grasped by a human hand, and a mounting member with a substantially hollow conical shape is provided inside the measuring head, on the same circumference of the conical inner surface A plurality of LEDs as a light source are arranged in an annular shape, and an LED light emitting unit is provided in which these LED lights are concentrated and directed to one point on the center line, and a light receiving unit is provided at the central top of the mounting member. The substrate-integrated spectrophotometer elements are gathered and housed, and the light receiving part and the measurement hole opened in the center of the end face of the measurement head are arranged on the same axis, so that the excitation light from the LED light emitting part At the same time that the skin is condensed and irradiated from the measurement hole, a one-pass type optical path is formed so that the reflected light from the skin enters the light receiving unit through the measurement hole, and as the LED light emitting unit, Special for specific AGEs Two kinds of ultraviolet light LEDs, which are a combination of two or more kinds of ultraviolet light LEDs that emit excitation light, or a slightly shorter wavelength ultraviolet light LED and a slightly longer wavelength ultraviolet light LED than the excitation light for specific AGEs An excitation light source composed of a combination of the above, and two or more kinds of fluorescent light emission derived from AGEs from the skin by these two or more kinds of ultraviolet LED were polymerized and amplified by the spectrophotometer element of the light receiving section. The measured value is converted into an electric signal and detected, and this electric signal is transmitted to a control board in a separate operation box via a cable, and the LED light emitting unit and the spectrophotometer element of the light receiving unit are connected by the control board. The saccharification process is characterized in that an electric signal related to the fluorescence measurement value is output as an input signal to the determination processing control unit. Measuring device of the generated material. 測定ヘッドにおける光源としてのLED発光部が、特定の糖化最終生成物質(AGEs)に対する特定の励起光波長370nmより僅かに短い波長365nmの紫外光LEDと僅かに長い波長375nmの紫外光LEDとの、近接した二種類の波長の紫外光LEDを組合せて励起光光源として採用したことを特徴とする請求項1または請求項2に記載の糖化最終生成物質の測定装置。 The LED light emitting unit as a light source in the measurement head is composed of an ultraviolet LED having a wavelength of 365 nm slightly shorter than a specific excitation light wavelength 370 nm and an ultraviolet LED having a slightly longer wavelength 375 nm for a specific glycation end product (AGEs). The apparatus for measuring a final saccharification product according to claim 1 or 2, wherein two adjacent ultraviolet light LEDs having different wavelengths are used as an excitation light source. 測定ヘッドにおける光源としてのLED発光部が、複数の紫外光LEDを組合せてなる励起光光源の他に、比較的長い波長の白色光LEDを併設してあることを特徴とする請求項1または請求項2及び請求項3に記載の糖化最終生成物質の測定装置。 The LED light-emitting unit as a light source in the measuring head includes a white light LED having a relatively long wavelength in addition to an excitation light source formed by combining a plurality of ultraviolet LEDs. The apparatus for measuring a saccharified final product according to any one of Items 2 and 3. 測定ヘッドにおける光源としてのLED発光部が、複数の紫外光LEDもしくは、特定のAGEsに対する特定の励起光を発する二種類以上の紫外光LEDを有し、何れかの励起光LEDによる蛍光特性の高い方のAGEsに由来する蛍光発光を選択可能にし、この蛍光発光を選択的に受光部の分光光度計素子にて測定値電気信号に変換して検出できるよう構成したことを特徴とする請求項1または請求項2、請求項3及び請求項4に記載の糖化最終生成物質の測定装置。 The LED light emitting unit as a light source in the measurement head has a plurality of ultraviolet LEDs or two or more types of ultraviolet LEDs that emit specific excitation light for specific AGEs, and has high fluorescence characteristics due to any excitation light LED 2. The fluorescent light emission derived from the other AGEs is made selectable, and the fluorescent light emission is selectively converted into a measurement value electric signal by a spectrophotometer element of a light receiving section and can be detected. Or the measuring apparatus of the saccharification end product substance of Claim 2, Claim 3, and Claim 4.
JP2012147436A 2012-06-29 2012-06-29 Measurement device for advanced glycation end product Pending JP2014010076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012147436A JP2014010076A (en) 2012-06-29 2012-06-29 Measurement device for advanced glycation end product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012147436A JP2014010076A (en) 2012-06-29 2012-06-29 Measurement device for advanced glycation end product

Publications (1)

Publication Number Publication Date
JP2014010076A true JP2014010076A (en) 2014-01-20

Family

ID=50106896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012147436A Pending JP2014010076A (en) 2012-06-29 2012-06-29 Measurement device for advanced glycation end product

Country Status (1)

Country Link
JP (1) JP2014010076A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116026A1 (en) * 2015-12-28 2017-07-06 (주)해아림 Spectroscopic analysis device having compact structure
CN109793501A (en) * 2019-03-08 2019-05-24 合肥中科易康达生物医学有限公司 A kind of body metabolism health index Non-invasive detection equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116026A1 (en) * 2015-12-28 2017-07-06 (주)해아림 Spectroscopic analysis device having compact structure
CN108780040A (en) * 2015-12-28 2018-11-09 昱秀林株式会社 Spectroscopy apparatus with cramped construction
CN109793501A (en) * 2019-03-08 2019-05-24 合肥中科易康达生物医学有限公司 A kind of body metabolism health index Non-invasive detection equipment

Similar Documents

Publication Publication Date Title
CN105358947B (en) Integration spectrum for Raman, reflection and fluorescence spectral measuring is popped one's head in
JP3875798B2 (en) Method of operating a bloodless measuring device for blood component concentration and bloodless measuring device
US8594758B2 (en) Transmission fluorometer
JP5982364B2 (en) Apparatus and method for identifying and monitoring components or characteristics of a measurement medium, in particular physiological blood values
KR101243183B1 (en) Apparatus for measurement of autofluorescence of advanced glycation end products
WO1998046133A1 (en) Apparatus and methods relating to optical systems for diagnosis of skin diseases
JP2012058104A (en) Measuring apparatus, measuring system, measuring method, control program, and recording medium
JP5739927B2 (en) Transmitted light detection type skin fluorescence measurement device
US8597208B2 (en) Method and apparatus for measuring analytes
KR101097399B1 (en) Apparatus for diagnosis of diseases by estimation advanced glycation end products using skin autofluorescence
JP2007083028A (en) Noninvasive inspecting apparatus
JP2008237775A (en) Blood component measuring apparatus
JP4772408B2 (en) Optical biological information measurement system and coupling layer used for optical information measurement
US6256530B1 (en) Optical instrument and technique for cancer diagnosis using in-vivo fluorescence emission of test tissue
JP2014062740A (en) Aging evaluation method and aging evaluation device
WO2015109127A1 (en) Angled confocal spectroscopy
JP2014010076A (en) Measurement device for advanced glycation end product
KR101444730B1 (en) Transmitted light detection type measurement apparatus for skin autofluorescence
KR20120049487A (en) Dental multi diagnosis system based on optical properties for dental disease
JP4052461B2 (en) Non-invasive measuring device for blood glucose level
KR101905975B1 (en) Plasmon raman probe and endoscope device using the same
KR101483087B1 (en) Reflection detection type measurement apparatus for skin autofluorescence
JP4360661B2 (en) Biological light measurement device
JP2004147706A (en) Apparatus and method for determining non-invasive biomedical component
JPH11137538A (en) Blood component measuring device, and method