JP2014009682A - Egr device of internal combustion engine - Google Patents

Egr device of internal combustion engine Download PDF

Info

Publication number
JP2014009682A
JP2014009682A JP2012149450A JP2012149450A JP2014009682A JP 2014009682 A JP2014009682 A JP 2014009682A JP 2012149450 A JP2012149450 A JP 2012149450A JP 2012149450 A JP2012149450 A JP 2012149450A JP 2014009682 A JP2014009682 A JP 2014009682A
Authority
JP
Japan
Prior art keywords
exhaust gas
expansion chamber
passage
exhaust
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012149450A
Other languages
Japanese (ja)
Inventor
Koji Kondo
浩司 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2012149450A priority Critical patent/JP2014009682A/en
Publication of JP2014009682A publication Critical patent/JP2014009682A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an EGR device of an internal combustion engine, capable of preventing the deterioration of fuel consumption while suppressing an increase in costs.SOLUTION: A swirl flow generator (35) for making an exhaust gas flow a swirl flow is located in an exhaust pipe (32) downstream of a diesel particulate filter (34). An expansion chamber (36) is formed on the exhaust pipe (32) downstream of the swirl flow generator (35). One end (38a) of a low pressure EGR passage (38) is connected to the outer periphery of the expansion chamber (36) such that the low pressure EGR passage (38) extends toward a side ahead of an exhaust gas swirl direction. An inner wall surface (36a) of the expansion chamber (36) projects inside the expansion chamber (36) such that the inside of a connection (36b) to which the one end (38a) of the low pressure EGR passage (38) is connected stretches to an opposite side of the low pressure EGR passage, and is formed such that an amount of projection to the inside of the expansion chamber (36) is decreased with the distance toward the exhaust gas swirl direction.

Description

本発明は、内燃機関のEGR装置に係り、特にEGRガスの取り出し部の構造に関する。   The present invention relates to an EGR device for an internal combustion engine, and more particularly to the structure of an EGR gas extraction portion.

自動車用エンジンでは、内燃機関から排出される排ガス中の窒素酸化物(NOx)及びスモーク(煤)を低減するために排ガスを吸気へ再循環させる排気再循環(EGR)装置が設けられている。そして、近年はNOxの大幅な低減要求に対し、吸気へ大量に排ガス(EGRガス)を導入することが求められており、排気通路の排気触媒の下流と吸気通路の過給機の上流とをEGRクーラを介してEGR通路で接続し、過給機のコンプレッサの上流に低圧のEGRガスを吸気に導入する低圧EGR装置が設けられている。   In an automobile engine, an exhaust gas recirculation (EGR) device that recirculates exhaust gas to intake air is provided in order to reduce nitrogen oxides (NOx) and smoke (soot) in exhaust gas discharged from an internal combustion engine. In recent years, it has been required to introduce a large amount of exhaust gas (EGR gas) into the intake air in response to a significant reduction in NOx, and the downstream of the exhaust catalyst in the exhaust passage and the upstream of the supercharger in the intake passage. A low-pressure EGR device is provided that is connected to the EGR passage through the EGR cooler and introduces low-pressure EGR gas into the intake air upstream of the compressor of the supercharger.

そして、このような過給機のコンプレッサの上流に低圧のEGRガスを吸気に導入する低圧EGR装置では、特許文献1のように、排気通路のEGR通路の接続部の下流に排気絞り弁を設け、例えば、低圧EGRガスの導入量の増量時には、EGR通路に設けられるEGRバルブを開くと共に、排気絞り弁を閉じ、排気絞り弁の上流の排気管の内圧を上昇させ、低圧EGR装置のEGR経路と吸気通路とに差圧を生じさせて、低圧EGRガスの吸気通路への導入量が増加するようにしている。   In such a low-pressure EGR device that introduces low-pressure EGR gas into the intake air upstream of the compressor of the supercharger, an exhaust throttle valve is provided downstream of the connection portion of the EGR passage of the exhaust passage as in Patent Document 1. For example, when the introduction amount of the low pressure EGR gas is increased, the EGR valve provided in the EGR passage is opened, the exhaust throttle valve is closed, the internal pressure of the exhaust pipe upstream of the exhaust throttle valve is increased, and the EGR path of the low pressure EGR device A differential pressure is generated between the intake passage and the intake passage so that the amount of low-pressure EGR gas introduced into the intake passage is increased.

特開2011−26964号公報JP 2011-26964 A

このように、上記特許文献1の低圧EGR装置では、排気絞り弁を閉じ、排気絞り弁の上流の排気管の内圧を上昇させ、低圧EGR装置のEGR経路と吸気通路とに差圧を生じさせて、低圧EGRガスの吸気通路への導入量を増加させている。
しかしながら、このように排気絞り弁を閉じ、排気通路の内圧を上昇させると、内燃機関のポンプ仕事が増大して燃費が悪化することとなり好ましいことではない。
As described above, in the low pressure EGR device of Patent Document 1, the exhaust throttle valve is closed, the internal pressure of the exhaust pipe upstream of the exhaust throttle valve is increased, and a differential pressure is generated between the EGR path and the intake passage of the low pressure EGR device. Thus, the amount of low-pressure EGR gas introduced into the intake passage is increased.
However, when the exhaust throttle valve is closed and the internal pressure of the exhaust passage is increased in this way, the pump work of the internal combustion engine increases and fuel consumption deteriorates, which is not preferable.

また、排気通路に排気絞り弁を設けることは、コストの増加に繋がり好ましいことではない。
本発明は、この様な問題を解決するためになされたもので、その目的とするところは、コストの増加を抑制しつつ、燃費の悪化を防止することのできる内燃機関のEGR装置を提供することにある。
Also, providing an exhaust throttle valve in the exhaust passage leads to an increase in cost and is not preferable.
The present invention has been made to solve such a problem, and an object of the present invention is to provide an EGR device for an internal combustion engine that can prevent deterioration in fuel consumption while suppressing an increase in cost. There is.

上記の目的を達成するために、請求項1の内燃機関のEGR装置では、内燃機関から排出される排ガスを浄化する排気浄化手段が配設され、前記排気浄化手段の下流に通路面積の拡大後に再度縮小する膨張室が形成される排気通路と、前記内燃機関に空気を導入する吸気通路と、一端が前記排気通路の前記膨張室の外周部に前記排気通路と連通するように接続され、他端が前記吸気通路と連通するように前記吸気通路に接続される排ガス導入路を有し、前記吸気通路への前記排ガスの導入量を調整し、前記吸気通路へ前記排ガスを再循環させる排気再循環手段と、前記吸気通路の前記排ガス導入路の他端の接続部の上流に配設され、前記排ガス導入路の他端の接続部の前記吸気通路内の圧力を調整し、前記排ガスの導入量を調整する吸気圧力調整手段と、を備えることを特徴とする。   In order to achieve the above object, in the EGR device for an internal combustion engine according to claim 1, exhaust purification means for purifying exhaust gas discharged from the internal combustion engine is disposed, and after the passage area is expanded downstream of the exhaust purification means. An exhaust passage in which an expansion chamber that is contracted again is formed, an intake passage that introduces air into the internal combustion engine, one end is connected to the outer peripheral portion of the expansion chamber of the exhaust passage so as to communicate with the exhaust passage, An exhaust gas recirculation passage connected to the intake air passage so that an end thereof communicates with the intake air passage, adjusting an introduction amount of the exhaust gas into the intake air passage, and recirculating the exhaust gas to the intake air passage; Circulating means and upstream of the connection portion at the other end of the exhaust gas introduction path of the intake passage, adjust the pressure in the intake passage at the connection portion at the other end of the exhaust gas introduction path, and introduce the exhaust gas Intake pressure to adjust the amount Characterized in that it comprises a settling unit.

また、請求項2の内燃機関のEGR装置では、請求項1において、前記排気浄化手段と前記膨張室との間の前記排気通路内に、前記排ガスに旋回流を発生させる旋回流発生手段を配設することを特徴とする。
また、請求項3の内燃機関のEGR装置では、請求項2において、前記排ガス導入路の前記一端は、前記排ガス導入路が前記膨張室の前記外周部から前記排ガスの前記旋回流の排ガス旋回方向の先方側へ向けて延びるように前記膨張室の前記外周部に接続されることを特徴とする。
In the EGR device for an internal combustion engine according to claim 2, the swirl flow generating means for generating a swirl flow in the exhaust gas is disposed in the exhaust passage between the exhaust purification means and the expansion chamber. It is characterized by providing.
Further, in the EGR device for an internal combustion engine according to claim 3, the exhaust gas swirling direction of the swirling flow of the exhaust gas from the outer peripheral portion of the expansion chamber is the exhaust gas introducing path of the one end of the exhaust gas introducing path. It is connected to the outer peripheral portion of the expansion chamber so as to extend toward the front side of the expansion chamber.

また、請求項4の内燃機関のEGR装置では、請求項3において、前記膨張室の内側壁面は、前記排ガス導入路の前記一端が接続される接続部の内側が前記膨張室の内側に突出し、前記排ガス旋回方向に向かうにつれ、前記膨張室の内側への突出量が減少するように形成されることを特徴とする。   In the EGR device for an internal combustion engine according to claim 4, the inner wall surface of the expansion chamber according to claim 3 is such that the inside of the connection portion to which the one end of the exhaust gas introduction path is connected protrudes to the inside of the expansion chamber. As the exhaust gas turns in the exhaust gas swirl direction, the amount of protrusion to the inside of the expansion chamber decreases.

請求項1の発明によれば、排気通路の排気浄化手段の下流に通路面積の拡大後に再度縮小する膨張室を形成し、当該膨張室の外周部に排気再循環手段の排ガス導入路の一端を排気通路と連通するように接続し、他端を吸気通路と連通するように当該吸気通路の吸気圧力調整手段の下流に接続している。
このように、排気通路に膨張室を形成し、排ガスの流路の内径を拡大させることで、膨張室以前の排気通路内の圧力に対し膨張室内の圧力を上昇させることができる。
According to the first aspect of the present invention, the expansion chamber which is reduced again after the passage area is enlarged is formed downstream of the exhaust gas purification means of the exhaust passage, and one end of the exhaust gas introduction path of the exhaust gas recirculation means is provided on the outer periphery of the expansion chamber. The exhaust passage is connected so as to communicate with the exhaust passage, and the other end is connected downstream of the intake pressure adjusting means of the intake passage so as to communicate with the intake passage.
Thus, by forming an expansion chamber in the exhaust passage and enlarging the inner diameter of the exhaust gas flow path, the pressure in the expansion chamber can be increased with respect to the pressure in the exhaust passage before the expansion chamber.

したがって、膨張室に排ガス導入路の一端を接続することで、排気シャッタ等を用いて排気通路内全体の圧力を上昇させて吸気通路への排ガス導入量を増加する必要がないので、排気シャッタ等を廃止し、排ガスの圧力の上昇によるポンピングロスを低減することができるのでコストを低減して燃費を向上させることができる。
また、膨張室に排ガス導入路の一端を接続することで、例えば、排気再循環手段の排ガスの吸気通路への導入量を調整するバルブ等の開度が同一であっても、膨張室内の圧力が高いことにより吸気通路への排ガスの導入量を増加させることができる。
Therefore, by connecting one end of the exhaust gas introduction passage to the expansion chamber, it is not necessary to increase the pressure inside the exhaust passage by using an exhaust shutter or the like to increase the amount of exhaust gas introduced into the intake passage. The pumping loss due to the increase in exhaust gas pressure can be reduced, so that the cost can be reduced and the fuel consumption can be improved.
In addition, by connecting one end of the exhaust gas introduction path to the expansion chamber, for example, even if the opening of a valve or the like for adjusting the amount of exhaust gas recirculation means introduced into the intake passage is the same, the pressure in the expansion chamber The amount of exhaust gas introduced into the intake passage can be increased due to the high value.

したがって、吸気通路への排ガスの導入量が同一であれば、吸気通路への排ガスの導入量を増加させるための吸気圧力調整手段による排ガス導入路の他端が接続される吸気通路内の圧力を低下させることを抑制することができるので、内燃機関のポンピングロスを低減することができ、更に燃費を向上させることができる。
また、請求項2の発明によれば、排気浄化手段と膨張室との間の排気通路に、排気通路内の排ガスに旋回流を発生させる旋回流発生手段を配設しており、膨張室に流入する排ガスに旋回流を発生させることで、旋回流による慣性力によって膨張室の外周部に排ガスを導くことができるので、排気再循環手段の排ガス導入路に排ガスを導入しやすくなり、吸気通路への排ガス導入量を増加させることができる。
Therefore, if the amount of exhaust gas introduced into the intake passage is the same, the pressure in the intake passage to which the other end of the exhaust gas introduction passage by the intake pressure adjusting means for increasing the amount of exhaust gas introduced into the intake passage is connected is adjusted. Since it can suppress that it reduces, the pumping loss of an internal combustion engine can be reduced and a fuel consumption can be improved further.
According to the invention of claim 2, swirl flow generating means for generating swirl flow in the exhaust gas in the exhaust passage is disposed in the exhaust passage between the exhaust purification means and the expansion chamber. By generating a swirling flow in the inflowing exhaust gas, the exhaust gas can be guided to the outer peripheral portion of the expansion chamber by the inertial force due to the swirling flow, so that it becomes easier to introduce the exhaust gas into the exhaust gas introduction path of the exhaust gas recirculation means, and the intake passage The amount of exhaust gas introduced into can be increased.

したがって、吸気通路への排ガスの導入量が同一であれば、吸気通路への排ガスの導入量を増加させるための吸気圧力調整手段による排ガス導入路の他端が接続される吸気通路内の圧力を低下させることを抑制することができるので、内燃機関のポンピングロスを低減することができ、更に燃費を向上させることができる。
また、請求項3の発明によれば、排ガス導入路が膨張室の外周部から排ガスの旋回流の排ガス旋回方向の先方側へ向けて延びるように排ガス導入路の一端を膨張室の外周部に接続しており、旋回流による慣性力によって、膨張室の外周部に導かれる排ガスを排気再循環手段の排ガス導入路に直接導入しやすくなるので、吸気通路への排ガス導入量を増加させることができる。
Therefore, if the amount of exhaust gas introduced into the intake passage is the same, the pressure in the intake passage to which the other end of the exhaust gas introduction passage by the intake pressure adjusting means for increasing the amount of exhaust gas introduced into the intake passage is connected is adjusted. Since it can suppress that it reduces, the pumping loss of an internal combustion engine can be reduced and a fuel consumption can be improved further.
According to the invention of claim 3, one end of the exhaust gas introduction path extends to the outer peripheral part of the expansion chamber so that the exhaust gas introduction path extends from the outer peripheral part of the expansion chamber toward the front side in the exhaust gas swirling direction of the exhaust gas swirl flow. Since it is easy to introduce the exhaust gas guided to the outer periphery of the expansion chamber directly into the exhaust gas introduction path of the exhaust gas recirculation means due to the inertial force due to the swirling flow, the amount of exhaust gas introduced into the intake passage can be increased. it can.

また、請求項4の発明によれば、膨張室の外周部の排ガス導入路の一端が接続される接続部の内側となる膨張室の内側壁面を膨張室の内側に突出させ、排ガス旋回方向に向かうにつれ膨張室の内側へ突出量を減らしており、旋回流である排ガスを排ガス導入路に導くことで、排ガスを排気再循環手段の排ガス導入路に導入しやすくなるので、吸気通路への排ガス導入量を更に増加させることができる。   According to the invention of claim 4, the inner wall surface of the expansion chamber, which is the inner side of the connection portion to which one end of the exhaust gas introduction path of the outer peripheral portion of the expansion chamber is connected, protrudes to the inside of the expansion chamber, so The projecting amount is reduced to the inside of the expansion chamber as it goes, and exhaust gas that is a swirling flow is guided to the exhaust gas introduction path, so that it becomes easier to introduce the exhaust gas into the exhaust gas introduction path of the exhaust gas recirculation means. The amount introduced can be further increased.

本発明に係る内燃機関のEGR装置が適用されたエンジンの概略構成図である。1 is a schematic configuration diagram of an engine to which an EGR device for an internal combustion engine according to the present invention is applied. 図1のA部の斜視図の拡大図である。It is an enlarged view of the perspective view of the A section of FIG. 図1のB−B線での断面の拡大図である。It is an enlarged view of the cross section in the BB line of FIG.

以下、本発明の実施の形態を図面に基づき説明する。
図1は、内燃機関のEGR装置が適用されたエンジンの概略構成図である。図2は、図1のA部の斜視図の拡大図である。なお、図2の上側が排ガス流れ方向の上流側を、下側が排ガス流れ方向の下流側を示す。また、図3は、図1のB−B線での断面の拡大図である。図3中の白抜き矢印は、排ガスの流れ方向を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an engine to which an EGR device for an internal combustion engine is applied. FIG. 2 is an enlarged view of a perspective view of a portion A in FIG. In addition, the upper side of FIG. 2 shows the upstream in the exhaust gas flow direction, and the lower side shows the downstream in the exhaust gas flow direction. FIG. 3 is an enlarged view of a cross section taken along line BB in FIG. The white arrow in FIG. 3 shows the flow direction of exhaust gas.

図1に示すように、エンジン(内燃機関)1は、多気筒の筒内直接噴射式内燃機関(例えばコモンレール式ディーゼルエンジン)であり、詳しくは、コモンレールに蓄圧された高圧燃料を各気筒の燃料噴射ノズル2に供給し、任意の噴射時期及び噴射量で当該燃料噴射ノズル2から各気筒の燃焼室3内に噴射可能な構成を成している。
エンジン1の各気筒には、上下摺動可能なピストン4が設けられている。そして、当該ピストン4は、コンロッド5を介してクランクシャフト6に連結されている。また、クランクシャフト6の一端部には図示しないフライホイールが設けられている。
As shown in FIG. 1, an engine (internal combustion engine) 1 is a multi-cylinder direct injection internal combustion engine (for example, a common rail diesel engine). Specifically, high pressure fuel accumulated in the common rail is used as fuel for each cylinder. The fuel nozzle is supplied to the injection nozzle 2 and can be injected from the fuel injection nozzle 2 into the combustion chamber 3 of each cylinder at an arbitrary injection timing and injection amount.
Each cylinder of the engine 1 is provided with a piston 4 that can slide up and down. The piston 4 is connected to the crankshaft 6 via a connecting rod 5. Further, a flywheel (not shown) is provided at one end of the crankshaft 6.

燃焼室3には、インテークポート8とエキゾーストポート9とが連通されている。
インテークポート8には、燃焼室3と当該インテークポート8との連通と遮断を行うインテークバルブ10が設けられている。また、エキゾーストポート9には、燃焼室3と当該エキゾーストポート9との連通と遮断とを行うエキゾーストバルブ11が設けられている。
An intake port 8 and an exhaust port 9 are communicated with the combustion chamber 3.
The intake port 8 is provided with an intake valve 10 for communicating and blocking between the combustion chamber 3 and the intake port 8. In addition, the exhaust port 9 is provided with an exhaust valve 11 for performing communication and blocking between the combustion chamber 3 and the exhaust port 9.

インテークポート8の上流には、吸入した空気を各気筒に分配するインテークマニフォールド12が連通するように設けられている。
インテークマニフォールド12とエキゾーストマニフォールド16には、それぞれが連通するように高温・高圧の排ガスの一部を吸気へ戻す、即ち高温・高圧のEGRガスを吸気に導入する高圧EGR通路17が設けられている。また、高圧EGR通路17は、インテークマニフォールド12に高圧の排ガスが吸気に戻る量、即ちEGRガスの流量を調整するEGRバルブ18を介して接続されている。また、高圧EGR通路17には、インテークマニフォールド12に導入する排ガスを冷却するEGRクーラ19が設けられている。
An intake manifold 12 that distributes the intake air to each cylinder is provided upstream of the intake port 8 so as to communicate therewith.
The intake manifold 12 and the exhaust manifold 16 are provided with a high-pressure EGR passage 17 for returning a part of the high-temperature / high-pressure exhaust gas to the intake air, that is, for introducing the high-temperature / high-pressure EGR gas into the intake air so as to communicate with each other. . The high-pressure EGR passage 17 is connected to the intake manifold 12 via an EGR valve 18 that adjusts the amount of high-pressure exhaust gas that returns to the intake air, that is, the flow rate of EGR gas. The high-pressure EGR passage 17 is provided with an EGR cooler 19 that cools the exhaust gas introduced into the intake manifold 12.

インテークマニフォールド12の上流には、最上流から吸入された新気中のゴミを取り除くエアークリーナ22、吸入空気量を調整し低温・低圧のEGRガスの導入量を制御する電子制御スロットルバルブ(吸気圧力調整手段)25と、排ガスのエネルギを利用し吸入された新気を圧縮するターボチャージャ23の図示しないコンプレッサハウジングと、圧縮され高温となった新気を冷却するインタークーラ24とが吸気管(吸気通路)27を介してインテークマニフォールド12に接続されている。また、高圧EGR通路17より導入される高温のEGRガスの流量を調整するための電子制御スロットルバルブ26は、吸気管27とインテークマニフォールド12との間に配設されている。   Upstream of the intake manifold 12 is an air cleaner 22 that removes fresh air sucked from the uppermost stream, and an electronically controlled throttle valve that controls the amount of low-temperature and low-pressure EGR gas by adjusting the amount of intake air (intake pressure). (Adjustment means) 25, a compressor housing (not shown) of the turbocharger 23 that compresses the fresh air sucked using the energy of the exhaust gas, and an intercooler 24 that cools the hot fresh air that has been compressed and is heated. It is connected to the intake manifold 12 via a passageway 27. An electronically controlled throttle valve 26 for adjusting the flow rate of high-temperature EGR gas introduced from the high-pressure EGR passage 17 is disposed between the intake pipe 27 and the intake manifold 12.

エキゾーストポート9の下流には、各気筒から排出される排ガスをまとめるエキゾーストマニフォールド16と、ターボチャージャ23に排ガスを導入する図示しないタービンハウジングと、排気管(排気通路)32とが連通するように設けられている。
排気管32には、上流から順番に排ガス中の炭化水素(THC)或いは一酸化炭素(CO)等の被酸化成分を酸化する酸化触媒(排気浄化手段)33と、排ガス中の黒鉛を主成分とする微粒子状物資(PM)を捕集し燃焼させるディーゼルパティキュレートフィルタ(排気浄化手段)34とが連通するように設けられている。また、ディーゼルパティキュレートフィルタ34の下流の排気管32内には、排ガスの流れを排ガス流れ方向を軸にして旋回する旋回流となるように図2のような旋回流発生装置(旋回流発生手段)35が配設されている。そして、旋回流発生装置35の下流の排気管32には、図3のような、排気管32の内径に対して内径を拡大した膨張室36が形成されている。
Downstream of the exhaust port 9, an exhaust manifold 16 that collects exhaust gas discharged from each cylinder, a turbine housing (not shown) that introduces exhaust gas into the turbocharger 23, and an exhaust pipe (exhaust passage) 32 are provided in communication with each other. It has been.
The exhaust pipe 32 is mainly composed of an oxidation catalyst (exhaust purification means) 33 that oxidizes components to be oxidized such as hydrocarbon (THC) or carbon monoxide (CO) in the exhaust gas in order from upstream and graphite in the exhaust gas. A diesel particulate filter (exhaust gas purification means) 34 that collects and combusts particulate matter (PM) to be combusted is provided. Further, in the exhaust pipe 32 downstream of the diesel particulate filter 34, a swirl flow generator (swirl flow generating means) as shown in FIG. 2 is formed so that the swirl flow swirls around the exhaust gas flow direction. ) 35 is provided. An expansion chamber 36 having an inner diameter larger than the inner diameter of the exhaust pipe 32 is formed in the exhaust pipe 32 downstream of the swirl flow generator 35 as shown in FIG.

図2に示すように、旋回流発生装置35は、排気管32の中心部より放射状に広がるように複数(本実施例では8枚)の翼部35aが配設されている。そして、当該翼部35aは、排ガス流れ方向の下流側の膨張室35内に配設時に外周側となる部位が旋回方向に湾曲するように形成されている。
図3に示すように、電子制御スロットルバルブ25の下流に低温・低圧の排ガスの一部を吸気へ戻す、即ち低温・低圧のEGRガスを吸気に導入するための低圧EGR通路(排気再循環手段、排ガス導入路)38が排気管32と吸気管27とが連通するように、そして低圧EGR通路38が排ガス旋回方向の先方側に向けて延びるように低圧EGR通路38の一端38aが膨張室36の外周部に接続されている。また、膨張室36の内側壁面36aは、低圧EGR通路38の一端38aが接続される接続部36bの内側が反低圧EGR通路38側に延伸するように膨張室36の内側に突出し、排ガスの旋回方向に向かうにつれ、膨張室36の内側への突出量が減少するように形成されている。
As shown in FIG. 2, the swirling flow generating device 35 is provided with a plurality (eight in this embodiment) of blade portions 35 a so as to spread radially from the central portion of the exhaust pipe 32. The blade portion 35a is formed such that a portion on the outer peripheral side is curved in the swirl direction when disposed in the expansion chamber 35 on the downstream side in the exhaust gas flow direction.
As shown in FIG. 3, a low-pressure EGR passage (exhaust gas recirculation means for returning a part of the low-temperature / low-pressure exhaust gas to the intake air downstream of the electronic control throttle valve 25, that is, introducing low-temperature / low-pressure EGR gas into the intake air. , The exhaust pipe 32 and the intake pipe 27 communicate with each other, and the one end 38a of the low pressure EGR passage 38 extends in the expansion chamber 36 so that the low pressure EGR passage 38 extends toward the front side in the exhaust gas swirling direction. It is connected to the outer periphery. Further, the inner wall surface 36a of the expansion chamber 36 protrudes to the inside of the expansion chamber 36 so that the inner side of the connection portion 36b to which one end 38a of the low pressure EGR passage 38 is connected extends toward the anti-low pressure EGR passage 38, and the swirling of the exhaust gas. It is formed so that the amount of protrusion to the inside of the expansion chamber 36 decreases as it goes in the direction.

低圧EGR通路38の他端38bは、電子制御スロットルバルブ25の下流の吸気管27に接続されている。そして、低圧EGR通路38には、排ガスが吸気に戻る量、即ちEGRガスの流量を調整するEGRバルブ(排気再循環手段)39と、吸気へ戻す排ガスを冷やすEGRクーラ40とが設けられている。
このように本発明に係る内燃機関のEGR装置は、ディーゼルパティキュレートフィルタ34下流の排気管32内に、図2のような、排ガスの流れを排ガス流れ方向を軸にして旋回する旋回流とする旋回流発生装置35を配設している。そして、旋回流発生装置35の下流の排気管32には、図3のような、排気管32の内径に対して内径を拡大した膨張室36を形成している。そして、図3のように、低圧EGR通路38が排ガス旋回方向の先方側に向けて延びるように低圧EGR通路38の一端38aを膨張室36の外周部に接続している。また、膨張室36の内側壁面36aを低圧EGR通路38の一端38aが接続される接続部36bの内側が反低圧EGR通路38側に延伸するように膨張室36の内側に突出し、排ガスの旋回方向に向かうにつれ、膨張室36の内側への突出量が減少するように形成している。
The other end 38 b of the low pressure EGR passage 38 is connected to the intake pipe 27 downstream of the electronic control throttle valve 25. The low-pressure EGR passage 38 is provided with an EGR valve (exhaust gas recirculation means) 39 for adjusting the amount of exhaust gas returning to the intake air, that is, the flow rate of EGR gas, and an EGR cooler 40 for cooling the exhaust gas returning to the intake air. .
As described above, the EGR device for an internal combustion engine according to the present invention makes the exhaust gas flow into the exhaust pipe 32 downstream of the diesel particulate filter 34, as shown in FIG. A swirl flow generator 35 is provided. An expansion chamber 36 having an inner diameter larger than the inner diameter of the exhaust pipe 32 is formed in the exhaust pipe 32 downstream of the swirl flow generator 35 as shown in FIG. As shown in FIG. 3, one end 38 a of the low pressure EGR passage 38 is connected to the outer peripheral portion of the expansion chamber 36 so that the low pressure EGR passage 38 extends toward the front side in the exhaust gas swirl direction. Further, the inside wall surface 36a of the expansion chamber 36 protrudes inside the expansion chamber 36 so that the inside of the connecting portion 36b to which one end 38a of the low pressure EGR passage 38 is connected extends toward the anti-low pressure EGR passage 38, and the swirl direction of the exhaust gas. The amount of protrusion to the inner side of the expansion chamber 36 is reduced as it goes to.

このように、排気管32に膨張室36を形成し、排ガスの流路の内径を拡大させることで、膨張室36以前の排気管32内の圧力に対し膨張室36内の圧力を上昇させることができる。
したがって、膨張室36に低圧EGR通路38の一端38aを接続することで、排気シャッタ等を用いて排気管32内全体の圧力を上昇させて吸気管27への排ガス導入量を増加する必要がないので、排気シャッタ等を廃止し、排ガスの圧力の上昇によるポンピングロスを低減することができるのでコストを低減して燃費を向上させることができる。
In this way, by forming the expansion chamber 36 in the exhaust pipe 32 and expanding the inner diameter of the exhaust gas flow path, the pressure in the expansion chamber 36 is increased with respect to the pressure in the exhaust pipe 32 before the expansion chamber 36. Can do.
Therefore, by connecting one end 38a of the low pressure EGR passage 38 to the expansion chamber 36, it is not necessary to increase the total pressure in the exhaust pipe 32 using an exhaust shutter or the like to increase the amount of exhaust gas introduced into the intake pipe 27. Therefore, the exhaust shutter and the like can be eliminated, and the pumping loss due to the increase in the exhaust gas pressure can be reduced. Therefore, the cost can be reduced and the fuel consumption can be improved.

また、膨張室36に低圧EGR通路38の一端38aを接続することで、例えば、EGRバルブ39の開度が同一であっても、膨張室36内の圧力が高いことにより吸気管27への排ガスの導入量を増加させることができる。
したがって、吸気管27への排ガスの導入量が同一であれば、電子制御スロットルバルブ25による低圧EGR通路38の他端38bが接続される吸気管27内の圧力を低下させることを抑制することができるので、エンジン1のポンピングロスを低減することができ、更に燃費を向上させることができる。
Further, by connecting one end 38a of the low pressure EGR passage 38 to the expansion chamber 36, for example, even if the opening degree of the EGR valve 39 is the same, the exhaust gas to the intake pipe 27 is increased due to the high pressure in the expansion chamber 36. The introduction amount of can be increased.
Therefore, if the amount of exhaust gas introduced into the intake pipe 27 is the same, it is possible to suppress the pressure in the intake pipe 27 to which the other end 38b of the low pressure EGR passage 38 is connected by the electronic control throttle valve 25 from being reduced. Therefore, the pumping loss of the engine 1 can be reduced, and the fuel consumption can be further improved.

また、ディーゼルパティキュレートフィルタ34と膨張室36との間の排気管32内に、排気管32内の排ガスに旋回流を発生させる旋回流発生装置35を配設しており、膨張室36に流入する排ガスに旋回流を発生させることで、旋回流による慣性力によって膨張室36の外周部に排ガスを導くことができるので、低圧EGR通路38に排ガスを導入しやすくなり、吸気管27への排ガス導入量を増加させることができる。   Further, a swirl flow generator 35 that generates a swirl flow in the exhaust gas in the exhaust pipe 32 is disposed in the exhaust pipe 32 between the diesel particulate filter 34 and the expansion chamber 36, and flows into the expansion chamber 36. By generating a swirling flow in the exhaust gas to be discharged, the exhaust gas can be guided to the outer peripheral portion of the expansion chamber 36 by the inertial force due to the swirling flow, so that it becomes easier to introduce the exhaust gas into the low pressure EGR passage 38 and the exhaust gas to the intake pipe 27 The amount introduced can be increased.

したがって、吸気管27への排ガスの導入量が同一であれば、吸気管27への排ガスの導入量を増加させるための電子制御スロットルバルブ25による低圧EGR通路38の他端38bが接続される吸気管27内の圧力を低下させることを抑制することができるので、エンジン1のポンピングロスを低減することができ、更に燃費を向上させることができる。   Therefore, if the introduction amount of the exhaust gas to the intake pipe 27 is the same, the intake air to which the other end 38b of the low pressure EGR passage 38 by the electronic control throttle valve 25 for increasing the introduction amount of the exhaust gas to the intake pipe 27 is connected. Since it is possible to suppress the pressure in the pipe 27 from being lowered, the pumping loss of the engine 1 can be reduced and the fuel consumption can be further improved.

また、低圧EGR通路38が排ガス旋回方向の先方側に向けて延びるように低圧EGR通路38の一端38aを膨張室36の外周部に接続しており、旋回流による慣性力によって、膨張室36の外周部に導かれる排ガスを低圧EGR通路38に直接導入しやすくなるので、吸気管27への排ガス導入量を増加させることができる。
また、膨張室36の内側壁面36aを低圧EGR通路38の一端38aが接続される接続部の内側36bが反低圧EGR通路側に延伸するように膨張室36の内側に突出し、排ガスの旋回方向に向かうにつれ、膨張室36の内側への突出量が減少するように形成しており、旋回流である排ガスを低圧EGR通路38に導くことで、低圧EGR通路38に導入しやすくなるので、吸気管27への排ガス導入量を更に増加させることができる。
Further, one end 38a of the low pressure EGR passage 38 is connected to the outer peripheral portion of the expansion chamber 36 so that the low pressure EGR passage 38 extends toward the front side in the exhaust gas swirling direction. Since the exhaust gas guided to the outer peripheral portion can be easily introduced directly into the low pressure EGR passage 38, the amount of exhaust gas introduced into the intake pipe 27 can be increased.
Further, the inner wall surface 36a of the expansion chamber 36 protrudes inside the expansion chamber 36 so that the inner side 36b of the connecting portion to which one end 38a of the low pressure EGR passage 38 is connected extends toward the anti-low pressure EGR passage, and in the swirling direction of the exhaust gas. The amount of protrusion to the inside of the expansion chamber 36 is reduced as it goes, and the exhaust gas, which is a swirling flow, is guided to the low pressure EGR passage 38, so that it can be easily introduced into the low pressure EGR passage 38. The amount of exhaust gas introduced into 27 can be further increased.

以上で発明の実施形態の説明を終えるが、発明の形態は本実施形態に限定されるものではない。
膨張室36の形成と、旋回流発生装置35の配設と、低圧EGR通路38の膨張室36への接続位置と、膨張室36の内側壁面36aの形成とを同時に実施するようにしているが、それぞれを同時に実施する必要はなく、例えば、膨張室36を排気管32に形成し、膨張室36の外周部に低圧EGR通路38を接続するだけでも、膨張室36の形成による効果を得ることができる。
This is the end of the description of the embodiment of the invention, but the invention is not limited to this embodiment.
The formation of the expansion chamber 36, the arrangement of the swirling flow generator 35, the connection position of the low pressure EGR passage 38 to the expansion chamber 36, and the formation of the inner wall surface 36a of the expansion chamber 36 are performed simultaneously. It is not necessary to carry out each of them simultaneously. For example, even if the expansion chamber 36 is formed in the exhaust pipe 32 and only the low pressure EGR passage 38 is connected to the outer peripheral portion of the expansion chamber 36, the effect of forming the expansion chamber 36 can be obtained. Can do.

また、旋回流発生装置35の翼部35aを排ガス流れ方向の下流側の膨張室35内に配設時に外周側となる部位が旋回方向に湾曲するように形成しているが、これに限定されるものではなく、排ガスの流れを旋回流とする翼部の形状であれば良いことはいうまでもない。   Further, the wing portion 35a of the swirl flow generator 35 is formed so that the portion on the outer peripheral side is curved in the swirl direction when disposed in the expansion chamber 35 on the downstream side in the exhaust gas flow direction. Needless to say, the shape of the airfoil is not limited to the shape of the wing, and the flow of the exhaust gas is a swirling flow.

1 エンジン(内燃機関)
25 電子制御スロットルバルブ(吸気圧力調整手段)
27 吸気管(吸気通路)
32 排気管(排気通路)
33 酸化触媒(排気浄化手段)
34 ディーゼルパティキュレートフィルタ(排気浄化手段)
35 旋回流発生装置(旋回流発生手段)
36 膨張室
38 低圧EGR通路(排気再循環手段、排ガス導入路)
39 EGRバルブ(排気再循環手段)
1 engine (internal combustion engine)
25 Electronically controlled throttle valve (intake pressure adjustment means)
27 Intake pipe (intake passage)
32 Exhaust pipe (exhaust passage)
33 Oxidation catalyst (exhaust gas purification means)
34 Diesel particulate filter (exhaust gas purification means)
35 Swirl flow generator (Swirl flow generator)
36 Expansion chamber 38 Low pressure EGR passage (exhaust gas recirculation means, exhaust gas introduction passage)
39 EGR valve (exhaust gas recirculation means)

Claims (4)

内燃機関から排出される排ガスを浄化する排気浄化手段が配設され、前記排気浄化手段の下流に通路面積の拡大後に再度縮小する膨張室が形成される排気通路と、
前記内燃機関に空気を導入する吸気通路と、
一端が前記排気通路の前記膨張室の外周部に前記排気通路と連通するように接続され、他端が前記吸気通路と連通するように前記吸気通路に接続される排ガス導入路を有し、前記吸気通路への前記排ガスの導入量を調整し、前記吸気通路へ前記排ガスを再循環させる排気再循環手段と、
前記吸気通路の前記排ガス導入路の他端の接続部の上流に配設され、前記排ガス導入路の他端の接続部の前記吸気通路内の圧力を調整し、前記排ガスの導入量を調整する吸気圧力調整手段と、を備えることを特徴とする内燃機関のEGR装置。
Exhaust gas purification means for purifying exhaust gas discharged from the internal combustion engine is disposed, and an exhaust passage in which an expansion chamber is formed downstream of the exhaust gas purification means and which is reduced again after the passage area is enlarged,
An intake passage for introducing air into the internal combustion engine;
One end is connected to the outer peripheral portion of the expansion chamber of the exhaust passage so as to communicate with the exhaust passage, and the other end has an exhaust gas introduction path connected to the intake passage so as to communicate with the intake passage, An exhaust gas recirculation means for adjusting the amount of the exhaust gas introduced into the intake passage and recirculating the exhaust gas into the intake passage;
The exhaust gas is disposed upstream of the connection portion at the other end of the exhaust gas introduction path of the intake passage, and the pressure in the intake passage at the connection portion at the other end of the exhaust gas introduction path is adjusted to adjust the introduction amount of the exhaust gas. An EGR device for an internal combustion engine, comprising: an intake pressure adjusting means.
前記排気浄化手段と前記膨張室との間の前記排気通路内に、前記排ガスに旋回流を発生させる旋回流発生手段を配設することを特徴とする、請求項1に記載の内燃機関のEGR装置。   2. The EGR of the internal combustion engine according to claim 1, wherein swirl flow generating means for generating swirl flow in the exhaust gas is disposed in the exhaust passage between the exhaust purification unit and the expansion chamber. apparatus. 前記排ガス導入路の前記一端は、前記排ガス導入路が前記膨張室の前記外周部から前記排ガスの前記旋回流の排ガス旋回方向の先方側へ向けて延びるように前記膨張室の前記外周部に接続されることを特徴とする、請求項2に記載の内燃機関のEGR装置。   The one end of the exhaust gas introduction path is connected to the outer peripheral part of the expansion chamber so that the exhaust gas introduction path extends from the outer peripheral part of the expansion chamber toward the front side in the exhaust gas swirling direction of the swirling flow of the exhaust gas. The EGR device for an internal combustion engine according to claim 2, wherein: 前記膨張室の内側壁面は、前記排ガス導入路の前記一端が接続される接続部の内側が前記膨張室の内側に突出し、前記排ガス旋回方向に向かうにつれ、前記膨張室の内側への突出量が減少するように形成されることを特徴とする、請求項3に記載の内燃機関のEGR装置。   As for the inner wall surface of the expansion chamber, the inside of the connection portion to which the one end of the exhaust gas introduction path is connected protrudes to the inside of the expansion chamber, and the amount of protrusion to the inside of the expansion chamber increases in the exhaust gas swirling direction. The EGR device for an internal combustion engine according to claim 3, wherein the EGR device is configured to decrease.
JP2012149450A 2012-07-03 2012-07-03 Egr device of internal combustion engine Pending JP2014009682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012149450A JP2014009682A (en) 2012-07-03 2012-07-03 Egr device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012149450A JP2014009682A (en) 2012-07-03 2012-07-03 Egr device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2014009682A true JP2014009682A (en) 2014-01-20

Family

ID=50106583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012149450A Pending JP2014009682A (en) 2012-07-03 2012-07-03 Egr device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2014009682A (en)

Similar Documents

Publication Publication Date Title
US10047674B2 (en) Exhaust device for engine
JP5444996B2 (en) Internal combustion engine and control method thereof
JP6051881B2 (en) Internal combustion engine and EGR gas mixing device
JP2006233898A (en) Egr device
JP2008169712A (en) Engine with egr system
JP2013515207A (en) Internal combustion engine
JP2005147010A (en) Exhaust gas reflux device for turbosupercharging engine
JP5934125B2 (en) Intake device for internal combustion engine
KR101683495B1 (en) Engine system having turbo charger
CN109416004B (en) Method for operating an internal combustion piston engine and internal combustion piston engine
US10900430B2 (en) Internal combustion engine and control device for internal combustion engine
JP2014222047A (en) Intake system of internal combustion engine
JP6357902B2 (en) Engine exhaust gas recirculation method and exhaust gas recirculation device
JP6108078B2 (en) Engine exhaust purification system
JP6112297B2 (en) Engine exhaust purification system
JP2010223077A (en) Internal combustion engine
JP2014009682A (en) Egr device of internal combustion engine
KR101526390B1 (en) Engine system
JP4206934B2 (en) Supercharging system for internal combustion engines
JP5823842B2 (en) Exhaust gas recirculation device for multi-cylinder internal combustion engine with turbocharger
JP2007297948A (en) Control device for internal combustion engine
JP6671328B2 (en) Control device for internal combustion engine
JP2011080406A (en) Engine supercharging system
JP6032802B2 (en) EGR device
JP2018013114A (en) EGR control device