JP2014008027A - Hybrid system and portable equipment provided with the same - Google Patents
Hybrid system and portable equipment provided with the same Download PDFInfo
- Publication number
- JP2014008027A JP2014008027A JP2012147744A JP2012147744A JP2014008027A JP 2014008027 A JP2014008027 A JP 2014008027A JP 2012147744 A JP2012147744 A JP 2012147744A JP 2012147744 A JP2012147744 A JP 2012147744A JP 2014008027 A JP2014008027 A JP 2014008027A
- Authority
- JP
- Japan
- Prior art keywords
- engine
- electric motor
- battery
- voltage
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D34/00—Mowers; Mowing apparatus of harvesters
- A01D34/835—Mowers; Mowing apparatus of harvesters specially adapted for particular purposes
- A01D34/90—Mowers; Mowing apparatus of harvesters specially adapted for particular purposes for carrying by the operator
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D69/00—Driving mechanisms or parts thereof for harvesters or mowers
- A01D69/02—Driving mechanisms or parts thereof for harvesters or mowers electric
- A01D69/025—Electric hybrid systems
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Harvester Elements (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Description
本発明は、工具などの駆動対象を駆動する原動機としてエンジン及び電動モータを有すると共にエンジンの回転エネルギーの一部を電力に変換してバッテリを充電するように構成されたハイブリッドシステム及びこれを備えた携帯型作業機に関する。 The present invention includes a hybrid system that includes an engine and an electric motor as a prime mover for driving a drive target such as a tool, and is configured to charge a battery by converting a part of the rotational energy of the engine into electric power. The present invention relates to a portable work machine.
この種のハイブリッドシステムを採用した携帯型作業機として、例えば特許文献1に記載された背負式作業機械が知られている。この背負式作業機械は、発電機及び先端工具を駆動するための第1出力軸を有するエンジンと、上記発電機の発電電力によって充電されるバッテリと、上記先端工具を駆動するための第2出力軸を有する電動モータと、備え、切替スイッチによって上記エンジンによる上記先端工具の駆動と上記電動モータによる上記先端工具の駆動とが切り替え可能に構成されている。また、前記発電機は、前記エンジンを始動するスタータモータを兼用可能に構成されている。 As a portable work machine that employs this type of hybrid system, for example, a backpack-type work machine described in Patent Document 1 is known. The backpack-type work machine includes an engine having a first output shaft for driving a generator and a tip tool, a battery charged by power generated by the generator, and a second output for driving the tip tool. An electric motor having a shaft, and configured to be switchable between driving of the tip tool by the engine and driving of the tip tool by the electric motor by a changeover switch. Further, the generator is configured to be able to serve as a starter motor that starts the engine.
しかし、上記背負式作業機械においては、例えば上記バッテリが満充電状態又はそれに近い状態であるときに上記エンジンによる上記先端工具の駆動が選択されると、上記バッテリが過充電されてしまい当該バッテリに大きなダメージを与えるおそれがある。
これに対し、上記バッテリの過充電を防止するための保護機構等を設けることも考えられるが、複雑な保護機構等はコストアップを招くことになるため好ましくない。また、作業機械の使用環境などによっては上記保護回路等が正常に作動しなくなるおそれもある。
However, in the backpack type work machine, for example, when the driving of the tip tool by the engine is selected when the battery is in a fully charged state or a state close thereto, the battery is overcharged and the battery is overcharged. There is a risk of doing great damage.
On the other hand, it is conceivable to provide a protection mechanism or the like for preventing overcharging of the battery, but a complicated protection mechanism or the like is not preferable because it increases the cost. In addition, the protection circuit or the like may not operate normally depending on the use environment of the work machine.
なお、このような課題は、携帯型作業機に限るものではなく、駆動対象を駆動する原動機としてエンジン及び電動モータを有すると共に、エンジンの回転エネルギーの一部を電力に変換してバッテリを充電する構成のハイブリッドシステムについて共通するものであると言える。 Such a problem is not limited to a portable work machine, but has an engine and an electric motor as a prime mover for driving a driving target, and charges a battery by converting a part of the rotational energy of the engine into electric power. It can be said that this is common to the hybrid systems having the configuration.
そこで、本発明は、駆動対象を駆動する原動機としてエンジン及び電動モータを有すると共に、エンジンの回転エネルギーの一部を電力に変換してバッテリを充電する構成のハイブリッドシステムにおいて、バッテリの過充電を防止するための保護機構の簡略化を可能としつつ、バッテリの過充電を効果的に防止することを目的とする。 Therefore, the present invention prevents an overcharge of a battery in a hybrid system having an engine and an electric motor as a prime mover for driving an object to be driven, and charging a battery by converting a part of the rotational energy of the engine into electric power. It is an object of the present invention to effectively prevent overcharging of a battery while enabling simplification of a protection mechanism for the purpose.
本発明の一側面によると、ハイブリッドシステムは、駆動対象を駆動するための出力軸を有するエンジンと、前記エンジンの前記出力軸にトルクを伝達可能に設けられると共に前記エンジンの回転によって発電する発電機としても機能する電動モータと、前記電動モータの発電電力によって充電されるバッテリと、を備え、発電機として機能したときの前記電動モータの発電電圧が前記バッテリの満充電電圧を超えないように設定されている。 According to one aspect of the present invention, a hybrid system includes an engine having an output shaft for driving an object to be driven, and a generator that is provided so as to be able to transmit torque to the output shaft of the engine and generates electric power by rotation of the engine. An electric motor that also functions as a battery that is charged by the electric power generated by the electric motor, and the power generation voltage of the electric motor when functioning as a generator is set not to exceed the full charge voltage of the battery. Has been.
上記ハイブリッドシステムによると、電動モータによってエンジンの出力をアシストすることができるので、小型のエンジンを採用しながら出力の向上を図ることができる。また、発電機として機能したときの当該電動モータの発電電圧がバッテリの満充電電圧を超えないように設定されているので、特別な保護機構等を設けることなく、容易かつ確実にバッテリの過充電を防止することができる。 According to the hybrid system, the output of the engine can be assisted by the electric motor, so that the output can be improved while employing a small engine. In addition, since the power generation voltage of the electric motor when it functions as a generator is set so as not to exceed the full charge voltage of the battery, it is possible to easily and reliably overcharge the battery without providing a special protection mechanism. Can be prevented.
以下、添付図面を参照しつつ本発明の実施形態について説明する。
図1は、本発明が適用された刈払機(携帯型作業機械)1の外観を示している。図1に示すように、刈払機1は、操作棹2と、操作棹2の後端部に取り付けられた動力ユニット3と、操作棹2の前端部に取り付けられたギヤヘッド4と、ギヤヘッド4に取り付けられた円盤状の刈刃5と、刈刃5を部分的に覆うように操作棹2に取り付けられた飛散防護カバー6と、操作棹2の中間部に取り付けられたハンドル7と、を有する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows the appearance of a brush cutter (portable work machine) 1 to which the present invention is applied. As shown in FIG. 1, the brush cutter 1 includes an operating rod 2, a power unit 3 attached to the rear end portion of the operating rod 2, a gear head 4 attached to the front end portion of the operating rod 2, and a gear head 4. A disc-shaped cutting blade 5 attached; a scattering protection cover 6 attached to the operation rod 2 so as to partially cover the cutting blade 5; and a handle 7 attached to an intermediate portion of the operation rod 2. .
操作棹2は、中空パイプ形状を有し、直線状に伸びている。操作棹2に内部には、図示省略したドライブシャフトが収容されている。このドライブシャフトは、動力ユニット3の出力(回転、トルク)をギヤヘッド4に伝達し、これにより刈刃5を回転させる。また、ハンドル7には、後述するエンジン10のスロットル操作を行うスロットルレバー8やエンジン10を停止させるストップスイッチ(図示省略)などが設けられている。刈払機1のユーザは、スロットルレバー8を操作することによりエンジン10の出力を調整することができ、上記ストップスイッチを操作することによりエンジン10を停止させることができる。 The operation rod 2 has a hollow pipe shape and extends linearly. A drive shaft (not shown) is accommodated in the operation rod 2. The drive shaft transmits the output (rotation, torque) of the power unit 3 to the gear head 4, thereby rotating the cutting blade 5. Further, the handle 7 is provided with a throttle lever 8 for performing a throttle operation of the engine 10 to be described later, a stop switch (not shown) for stopping the engine 10, and the like. The user of the brush cutter 1 can adjust the output of the engine 10 by operating the throttle lever 8, and can stop the engine 10 by operating the stop switch.
図2は、動力ユニット3の構成を説明するための図である。図2(a)は動力ユニット3の後部を示し、図2(b)は図2(a)のA−A断面図である。
図2に示すように、動力ユニット3は、エンジン10と、エンジン10の燃料を蓄える燃料タンク20と、エンジン10を始動するためのリコイルスタータ30と、エンジン10に吸入される空気をろ過するエアフィルタ40と、エンジン10に吸入される空気に燃料を混合して混合気を形成するキャブレター50と、エンジン10からの排気を大気に放出するマフラ60と、電動モータ70と、を備えている。
FIG. 2 is a diagram for explaining the configuration of the power unit 3. FIG. 2A shows a rear portion of the power unit 3, and FIG. 2B is a cross-sectional view taken along the line AA in FIG.
As shown in FIG. 2, the power unit 3 includes an engine 10, a fuel tank 20 that stores fuel for the engine 10, a recoil starter 30 for starting the engine 10, and air that filters air taken into the engine 10. A filter 40, a carburetor 50 that mixes fuel with air sucked into the engine 10 to form an air-fuel mixture, a muffler 60 that discharges exhaust from the engine 10 to the atmosphere, and an electric motor 70 are provided.
本実施形態において、エンジン10は空冷4ストローク単気筒エンジンである。但し、これに限るものではなく、例えば空冷2ストローク単気筒エンジンとしてもよい。エンジン10は、シリンダ11と、シリンダ11に収容されたピストン12と、クランクシャフト13と、クランクシャフト13を収容するクランクケース14と、ピストン12とクランクシャフト13を連結したコネクティングロッド15と、シリンダ11に設けられた点火プラグ16と、オイルパン17と、を備えている。 In the present embodiment, the engine 10 is an air-cooled four-stroke single cylinder engine. However, the present invention is not limited to this. For example, an air-cooled two-stroke single cylinder engine may be used. The engine 10 includes a cylinder 11, a piston 12 accommodated in the cylinder 11, a crankshaft 13, a crankcase 14 that accommodates the crankshaft 13, a connecting rod 15 that connects the piston 12 and the crankshaft 13, and the cylinder 11. A spark plug 16 and an oil pan 17 are provided.
クランクシャフト14は、エンジン10の出力軸であり、図示省略した遠心クラッチ等を介して上記ドライブシャフトに接続されている。これにより、エンジン20の出力(回転、トルク)が上記ドライブシャフト及びギヤヘッド4を介して刈刃5に伝達されて刈刃5が駆動される。すなわち、エンジン10は、駆動対象である刈刃5を駆動する原動機である。 The crankshaft 14 is an output shaft of the engine 10 and is connected to the drive shaft via a centrifugal clutch (not shown). As a result, the output (rotation, torque) of the engine 20 is transmitted to the cutting blade 5 via the drive shaft and the gear head 4 to drive the cutting blade 5. That is, the engine 10 is a prime mover that drives the cutting blade 5 to be driven.
キャブレター50はスロットルワイヤー8aを介してスロットルレバー8に接続されている(図1参照)。スロットルレバー8が操作されることによってキャブレター50のスロットル開度が変化し、これにより、エンジン10の出力が調整される。 The carburetor 50 is connected to the throttle lever 8 via the throttle wire 8a (see FIG. 1). When the throttle lever 8 is operated, the throttle opening of the carburetor 50 changes, whereby the output of the engine 10 is adjusted.
電動モータ70は、特に制限されないが、本実施形態においてはアウターロータ型の三相ブラシレスモータを採用している。電動モータ70は、アウターロータ71と、ステータ72と、を備えている。また、電動モータ70は、電子ギヤ機能を内蔵している。 The electric motor 70 is not particularly limited, but an outer rotor type three-phase brushless motor is employed in the present embodiment. The electric motor 70 includes an outer rotor 71 and a stator 72. In addition, the electric motor 70 has a built-in electronic gear function.
アウターロータ71は、クランクシャフト14に固定されてクランクシャフト14とともに回転する。具体的には、アウターロータ71は有底筒状に形成されており、その底部がクランクシャフト14に固定されている。また、アウターロータ71の筒状部の内周面にはマグネット71aが固定されている。 The outer rotor 71 is fixed to the crankshaft 14 and rotates together with the crankshaft 14. Specifically, the outer rotor 71 is formed in a bottomed cylindrical shape, and its bottom is fixed to the crankshaft 14. A magnet 71 a is fixed to the inner peripheral surface of the cylindrical portion of the outer rotor 71.
ステータ72は、動力ユニット3における固定部分に固定されると共にアウターロータ71の筒状部の内側に配置されている。ステータ72は、磁性材料で形成されたステータコア72aと、ステータコア72aに巻回された三相のステータコイル72bと、を有する。そして、ステータコイル72bは、通電されることによってアウターロータ71を回転させる磁界を発生する。電動モータ70の出力は、アウターロータ71を介してクランクシャフト14に伝達され、その後、上記ドライブシャフト及びギヤヘッド4を介して刈刃5に伝達される。すなわち、電動モータ70は、クランクシャフト14にトルクを伝達可能に設けられており、また、駆動対象である刈刃5を駆動する第2の原動機である。 The stator 72 is fixed to a fixed portion in the power unit 3 and is disposed inside the cylindrical portion of the outer rotor 71. The stator 72 includes a stator core 72a formed of a magnetic material, and a three-phase stator coil 72b wound around the stator core 72a. The stator coil 72b generates a magnetic field that rotates the outer rotor 71 when energized. The output of the electric motor 70 is transmitted to the crankshaft 14 via the outer rotor 71 and then transmitted to the cutting blade 5 via the drive shaft and the gear head 4. That is, the electric motor 70 is provided so as to be able to transmit torque to the crankshaft 14 and is a second prime mover that drives the cutting blade 5 to be driven.
このように、本実施形態による刈払機1の動力ユニット3は、駆動対象である刈刃5を駆動する原動機としてエンジン10及び電動モータ70を有している。すなわち、本実施形態による刈払機1においては、エンジン10の出力のみ、電動モータ70のみ、又は、エンジン10の出力と電動モータ70の出力との組み合わせによって刈刃5を駆動することが可能である。但し、本実施形態において電動モータ70は、主にエンジン10の出力をアシストするために使用するものとする。 As described above, the power unit 3 of the brush cutter 1 according to the present embodiment includes the engine 10 and the electric motor 70 as a prime mover for driving the cutting blade 5 to be driven. That is, in the brush cutter 1 according to the present embodiment, the cutting blade 5 can be driven by only the output of the engine 10, only the electric motor 70, or a combination of the output of the engine 10 and the output of the electric motor 70. . However, in the present embodiment, the electric motor 70 is mainly used to assist the output of the engine 10.
また、電動モータ70は、クランクシャフト14の回転エネルギーを電気エネルギーに変換する発電機、換言すれば、エンジン10の回転によって発電する発電機として機能することもできる。例えば、エンジン10の出力に余裕がある場合には、エンジン10の出力(回転エネルギー)の一部が電動モータ70によって電力に変換される。電動モータ60が発電した電力は後述するバッテリ110に蓄えられる。すなわち、本実施形態による刈払機1において、動力ユニット3は、駆動対象を駆動する原動機としてエンジン10及び電動モータ70を有すると共に、エンジン10の回転エネルギーの一部を電力に変換してバッテリ110を充電するハイブリッドシステムを構成している。なお、動力ユニット3の電気的な構成については後述する。 The electric motor 70 can also function as a generator that converts the rotational energy of the crankshaft 14 into electric energy, in other words, a generator that generates electric power by the rotation of the engine 10. For example, when there is a margin in the output of the engine 10, a part of the output (rotational energy) of the engine 10 is converted into electric power by the electric motor 70. The electric power generated by the electric motor 60 is stored in a battery 110 described later. In other words, in the brush cutter 1 according to the present embodiment, the power unit 3 includes the engine 10 and the electric motor 70 as a prime mover that drives a drive target, and converts a part of the rotational energy of the engine 10 into electric power to convert the battery 110. Configures a hybrid system to charge. The electrical configuration of the power unit 3 will be described later.
さらに、電動モータ70は、エンジン10を始動するスタータモータとしても機能することができる。例えば、ハンドル7にスタートスイッチ(図示省略)を設け、ユーザがこのスタートスイッチを操作することにより、バッテリ110から電動モータ70へと電力が供給されて電動モータ70がクランクシャフト14を回転駆動するように構成することができる。 Furthermore, the electric motor 70 can also function as a starter motor that starts the engine 10. For example, the handle 7 is provided with a start switch (not shown), and when the user operates the start switch, electric power is supplied from the battery 110 to the electric motor 70 so that the electric motor 70 rotates the crankshaft 14. Can be configured.
電動モータ70のアウターロータ71には、冷却ファン80が一体に設けられている。具体的には、冷却ファン80は、アウターロータ71の筒状部の外周面に取り付けられている。この冷却ファン80は、エンジン10、電動モータ70及び後述するコントロールユニット100に冷却風を送るように構成されている。 A cooling fan 80 is integrally provided on the outer rotor 71 of the electric motor 70. Specifically, the cooling fan 80 is attached to the outer peripheral surface of the cylindrical portion of the outer rotor 71. The cooling fan 80 is configured to send cooling air to the engine 10, the electric motor 70, and a control unit 100 described later.
図3は、動力ユニット3のトルク特性を示す図である。
図3に実線で示すように、電動モータ70は、その無負荷回転数がエンジン10の許容上限回転数(例えば、12,000rpm)とほぼ等しくなるように設定されている。なお、図3において一点鎖線はエンジントルクを示しており、ハッチング領域は上記電子ギヤ機能の使用領域(電子ギヤによるアシスト領域)を示している。
FIG. 3 is a diagram showing the torque characteristics of the power unit 3.
As indicated by a solid line in FIG. 3, the electric motor 70 is set so that its no-load rotational speed is substantially equal to the allowable upper limit rotational speed (for example, 12,000 rpm) of the engine 10. In FIG. 3, the alternate long and short dash line indicates the engine torque, and the hatched area indicates the use area of the electronic gear function (assist area by the electronic gear).
図4は、電動モータ70の発電特性を示す図であり、より具体的には、刈払機1が刈り払いを行っていない空吹かしの状態で電動モータ70を発電機として機能させた場合のエンジン10の回転数(=電動モータ70の回転数)と電動モータ70の発電電圧の関係を示している。図4に示すように、電動モータ70は、エンジン10の許容上限回転数で回転したときの発電電圧がバッテリ110の満充電電圧とほぼ等しくなるように、具体的には、バッテリ110の満充電電圧又はそれよりも僅かに低い電圧となるように設定されている。すなわち、電動モータ70は、その発電電圧がバッテリ110の満充電電圧を超えないように設定されている。 FIG. 4 is a diagram illustrating the power generation characteristics of the electric motor 70. More specifically, the engine when the electric motor 70 functions as a generator in an idle state in which the brush cutter 1 is not trimming. 10 shows the relationship between the number of rotations 10 (= the number of rotations of the electric motor 70) and the generated voltage of the electric motor 70. As shown in FIG. 4, specifically, the electric motor 70 is fully charged so that the generated voltage when the engine 10 rotates at the allowable upper limit number of rotations is substantially equal to the fully charged voltage of the battery 110. The voltage is set to be a voltage or slightly lower than that. That is, the electric motor 70 is set so that the generated voltage does not exceed the full charge voltage of the battery 110.
ここで、エンジン10の許容上限回転数とは、刈払機1の通常の使用状態においてエンジン10が回転し得る最大回転数のことをいい、レブリミッターなどの過回転抑制装置を備えている場合には、当該過回転抑制装置によってそれ以上の回転上昇が制限されるエンジン10の回転数を含む。また、バッテリ110の満充電電圧とは、バッテリ110を所定の条件で充電した場合に満充電状態に達したものとして充電を終了するように設定された電圧のことをいい、バッテリ110の製造元等によって提示された、バッテリ満充電時の電圧やこれに準ずる電圧を含む。 Here, the allowable upper limit number of rotations of the engine 10 means the maximum number of rotations at which the engine 10 can rotate in the normal use state of the brush cutter 1, and when an overspeed suppressing device such as a rev limiter is provided. , Including the number of rotations of the engine 10 in which further increase in rotation is restricted by the overspeed suppressing device. Further, the full charge voltage of the battery 110 is a voltage that is set so as to end the charge when the battery 110 is fully charged when the battery 110 is charged under a predetermined condition. The voltage when the battery is fully charged or the voltage equivalent to this is presented.
図5は、動力ユニット3の電気的な概略構成を示すブロック図である。
図5に示すように、動力ユニット3は、コントロールユニット100と、コントロールユニット100に接続されたバッテリ110と、を備えている。
FIG. 5 is a block diagram showing an electrical schematic configuration of the power unit 3.
As shown in FIG. 5, the power unit 3 includes a control unit 100 and a battery 110 connected to the control unit 100.
コントロールユニット100は、マイクロコンピュータを含む複数の集積回路によって構成されており、エンジン10及び電動モータ70の作動を制御する。特にコントロールユニット100は、電動モータ70によってエンジン10の出力をアシストする「トルクアシストモード」と、電動モータ70を発電機として機能させてその発電電力でバッテリ110の充電を行う「発電充電モード」とを選択可能に構成されている。なお、上記トルクアシストモードと上記発電充電モードのいずれも選択しない場合、コントロールユニット100は、電動モータ70を駆動させず、また発電機としても機能させない。 The control unit 100 is composed of a plurality of integrated circuits including a microcomputer, and controls the operation of the engine 10 and the electric motor 70. In particular, the control unit 100 includes a “torque assist mode” in which the output of the engine 10 is assisted by the electric motor 70 and a “power generation charging mode” in which the electric motor 70 functions as a generator and charges the battery 110 with the generated power. Is configured to be selectable. When neither the torque assist mode nor the power generation charging mode is selected, the control unit 100 does not drive the electric motor 70 and does not function as a generator.
バッテリ110は、複数の二次電池セル(バッテリセル)を有しており、コントロールユニット100を介して、点火プラグ16や電動モータ70に電力を供給し、また、発電機として機能した電動モータ70の発電電力を蓄えるように構成されている。 The battery 110 has a plurality of secondary battery cells (battery cells), supplies power to the spark plug 16 and the electric motor 70 via the control unit 100, and also functions as an electric motor 70 that functions as a generator. It is configured to store the generated power.
コントロールユニット100は、機能的に、点火タイミング検出回路101と、エンジン点火回路102と、スロットル開度検出回路103と、モード選択回路104と、ロータ位置検出回路105と、インバータ回路106と、昇圧チョッパ回路107と、モータ制御回路108と、発電・充電制御回路109と、を備えている。 The control unit 100 functionally includes an ignition timing detection circuit 101, an engine ignition circuit 102, a throttle opening detection circuit 103, a mode selection circuit 104, a rotor position detection circuit 105, an inverter circuit 106, and a boost chopper. A circuit 107, a motor control circuit 108, and a power generation / charge control circuit 109 are provided.
点火タイミング検出回路101は、クランク角センサ111の出力信号を入力し、入力したクランク角センサ111の出力信号に基づいてエンジン10の点火タイミングを検出する。エンジン点火回路102は、点火タイミング検出回路101によって点火タイミングが検出されると、バッテリ110からの電力を点火プラグ16に供給する。このとき、バッテリ100からの電力はイグニッションコイル16aで高電圧に変換され、これにより、点火プラグ16で放電が生じて混合気への点火が行われる。 The ignition timing detection circuit 101 receives the output signal of the crank angle sensor 111 and detects the ignition timing of the engine 10 based on the input output signal of the crank angle sensor 111. The engine ignition circuit 102 supplies the electric power from the battery 110 to the spark plug 16 when the ignition timing is detected by the ignition timing detection circuit 101. At this time, the electric power from the battery 100 is converted into a high voltage by the ignition coil 16a, whereby discharge occurs in the spark plug 16 and ignition of the air-fuel mixture is performed.
スロットル開度検出回路103は、キャブレター50に接続されており、キャブレター50のスロットル開度を検出する。検出されたスロットル開度はモード選択回路104やモータ制御回路108などに出力される。なお、スロットル開度検出回路103は、上記スロットル開度に代えて、スロットルレバー8の操作量を検出するようにしてもよい。 The throttle opening degree detection circuit 103 is connected to the carburetor 50 and detects the throttle opening degree of the carburetor 50. The detected throttle opening is output to the mode selection circuit 104, the motor control circuit 108, and the like. The throttle opening detection circuit 103 may detect the operation amount of the throttle lever 8 instead of the throttle opening.
モード選択回路104は、クランク角センサ111の出力信号やキャブレター50のスロットル開度(又はスロットルレバー8の操作量)を入力し、これらに基づいて上記トルクアシストモードや上記発電充電モードの選択を行う。モード選択回路104は、エンジン10の出力が不足した場合に上記トルクアシストモードを選択し、エンジン10の出力に余裕がある場合に上記発電充電モードを選択する。 The mode selection circuit 104 inputs the output signal of the crank angle sensor 111 and the throttle opening (or the operation amount of the throttle lever 8) of the carburetor 50, and selects the torque assist mode or the power generation charging mode based on these signals. . The mode selection circuit 104 selects the torque assist mode when the output of the engine 10 is insufficient, and selects the power generation charging mode when the output of the engine 10 has a margin.
例えば、モード選択回路104は、クランク角センサ111の出力信号に基づいて算出されるエンジン10の実回転数がキャブレター50のスロットル開度(又はスロットルレバー8の操作量)に応じて予め設定された判定回転数の下限値を下回る場合、すなわち、エンジン10に高い負荷がかかった場合に、上記トルクアシストモードを選択し、エンジン10の実回転数が上記判定回転数の上限値を上回る場合、すなわち、エンジン10にかかる負荷が低い場合に、上記発電充電モードを選択する。なお、上記トルクアシストモードや上記発電充電モードの選択(判定)基準は、刈払機1の仕様等に応じて適宜設定することができる。モード選択回路104の選択結果は、モータ制御回路108や発電・充電制御回路109に出力される。 For example, in the mode selection circuit 104, the actual rotational speed of the engine 10 calculated based on the output signal of the crank angle sensor 111 is preset according to the throttle opening (or the operation amount of the throttle lever 8) of the carburetor 50. When the engine speed is lower than the lower limit value of the determined rotational speed, that is, when a high load is applied to the engine 10, the torque assist mode is selected, and when the actual rotational speed of the engine 10 exceeds the upper limit value of the determined rotational speed, that is, The power generation charging mode is selected when the load on the engine 10 is low. The selection (determination) criteria for the torque assist mode and the power generation charging mode can be set as appropriate according to the specifications of the brush cutter 1 and the like. The selection result of the mode selection circuit 104 is output to the motor control circuit 108 and the power generation / charge control circuit 109.
ロータ位置検出回路105は、電動モータ70に内蔵されたロータ位置検出センサ(エンコーダやホールIC等)112の出力信号を入力し、入力した位置検出センサ112の出力信号に基づいてアウターロータ71の回転位置を検出する。検出されたアウターロータ71の回転位置はモータ制御回路108に出力される。 The rotor position detection circuit 105 inputs an output signal of a rotor position detection sensor (encoder, Hall IC, etc.) 112 built in the electric motor 70, and rotates the outer rotor 71 based on the input output signal of the position detection sensor 112. Detect position. The detected rotational position of the outer rotor 71 is output to the motor control circuit 108.
インバータ回路106は、AC−DCコンバータ部とDC−ACインバータ部とを有している。インバータ回路106は、バッテリ110の直流出力を交流電力に変換して電動モータ70に供給すると共に、電動モータ70の交流出力(発電電力)を直流電力に変換する。 The inverter circuit 106 includes an AC-DC converter unit and a DC-AC inverter unit. The inverter circuit 106 converts the DC output of the battery 110 into AC power and supplies it to the electric motor 70, and converts the AC output (generated power) of the electric motor 70 into DC power.
昇圧チョッパ回路107は、インバータ回路106とバッテリ110の間に配置されている。昇圧チョッパ回路107は、インバータ回路106によって直流電力に変換された電動モータ70の発電電力を昇圧してバッテリ110に供給する。 The step-up chopper circuit 107 is disposed between the inverter circuit 106 and the battery 110. The step-up chopper circuit 107 boosts the electric power generated by the electric motor 70 converted into DC power by the inverter circuit 106 and supplies it to the battery 110.
モータ制御回路108は、モータ選択回路104の選択結果、クランク角センサ111の出力信号、キャブレター50のスロットル開度(又はスロットルレバー8の操作量)、アウターロータ71の回転位置などを入力する。そして、モータ制御回路108は、モード選択回路104によってトルクアシストモードが選択された場合に、電動モータ70をエンジン10の出力をアシストするアシストモータとして機能させる。 The motor control circuit 108 inputs the selection result of the motor selection circuit 104, the output signal of the crank angle sensor 111, the throttle opening of the carburetor 50 (or the operation amount of the throttle lever 8), the rotational position of the outer rotor 71, and the like. The motor control circuit 108 causes the electric motor 70 to function as an assist motor that assists the output of the engine 10 when the mode selection circuit 104 selects the torque assist mode.
具体的には、モータ制御回路108は、アウターロータ71の回転位置に応じてインバータ回路106の複数のスイッチング素子を制御し、各相のステータコイル72とバッテリ110の電極とを選択的に接続して電動モータ70を駆動する。また、モータ制御回路108は、PWM制御による電動モータ70の駆動が可能であり、例えば、エンジン10の実回転数と上記判定回転数との比較結果に基づいて電動モータ70の出力(トルク)を制御する。 Specifically, the motor control circuit 108 controls a plurality of switching elements of the inverter circuit 106 according to the rotational position of the outer rotor 71 and selectively connects the stator coil 72 of each phase and the electrode of the battery 110. Then, the electric motor 70 is driven. The motor control circuit 108 can drive the electric motor 70 by PWM control. For example, the motor control circuit 108 outputs the output (torque) of the electric motor 70 based on the comparison result between the actual rotational speed of the engine 10 and the determined rotational speed. Control.
発電・充電制御回路109は、モータ選択回路104の選択結果、バッテリ110の電圧を検知するバッテリセンサ(電圧検知部)113の出力信号、電動モータ70の発電電圧を検知する電圧センサ114の出力信号などを入力する。そして、発電・充電制御回路109は、モード選択回路104によって発電充電モードが選択され、かつ、バッテリ110の電圧が満充電電圧よりも低い所定電圧以下である場合に、電動モータ70を発電機として機能させる。 The power generation / charge control circuit 109 outputs the output signal of the battery sensor (voltage detection unit) 113 that detects the selection result of the motor selection circuit 104, the voltage of the battery 110, and the output signal of the voltage sensor 114 that detects the power generation voltage of the electric motor 70. Enter. The power generation / charge control circuit 109 uses the electric motor 70 as a generator when the power generation charging mode is selected by the mode selection circuit 104 and the voltage of the battery 110 is equal to or lower than a predetermined voltage lower than the full charge voltage. Make it work.
具体的には、発電・充電制御回路109は、インバータ回路106の上記複数のスイッチング素子を制御して各相のステータコイル72とバッテリ110の電極とを接続する。また、発電・充電制御回路109は、昇圧チョッパ回路107をPWM制御によって駆動して、すなわち、昇圧チョッパ回路107のスイッチング素子のON時間とOFF時間の比を適宜調整して電動モータ70の発電電圧をバッテリ110の電圧以上に昇圧させる。これにより、上述したように電動モータ70の発電電圧がバッテリ110の満充電電圧を超えないように設定されている場合であっても、電動モータ70の発電電力によってバッテリ110を満充電状態まで充電することができる。ここで、昇圧チョッパ回路107の上記スイッチング素子のOFF時間は、電動モータ70の発電電圧とバッテリ110の電圧との比較結果に基づいて設定される。 Specifically, the power generation / charge control circuit 109 controls the plurality of switching elements of the inverter circuit 106 to connect the stator coil 72 of each phase and the electrode of the battery 110. Further, the power generation / charge control circuit 109 drives the boost chopper circuit 107 by PWM control, that is, appropriately adjusts the ratio between the ON time and the OFF time of the switching element of the boost chopper circuit 107 to appropriately generate the generated voltage of the electric motor 70. Is increased to a voltage higher than the voltage of the battery 110. As a result, even when the power generation voltage of the electric motor 70 is set not to exceed the full charge voltage of the battery 110 as described above, the battery 110 is charged to the fully charged state by the power generated by the electric motor 70. can do. Here, the OFF time of the switching element of the step-up chopper circuit 107 is set based on a comparison result between the generated voltage of the electric motor 70 and the voltage of the battery 110.
以上のように構成された刈払機1は、ハイブリッドシステムを構成する動力ユニット3を備えており、エンジン10の出力によって刈刃5を駆動すると共にエンジン10の出力が不足した場合には電動モータ70によってエンジン10の出力をアシストする。これにより、エンジン10の大型化を抑制しつつ、刈払機1の出力を向上させることができる。また、エンジン10の出力に余裕がある場合には、電動モータ70を発電機として機能させて電動モータ70の発電電力によってバッテリ110が充電される。これにより、バッテリ110が電力不足の状態となることが抑制され、エンジン10の出力が不足した場合の電動モータ70によるトルクアシストを安定して得ることができる。 The brush cutter 1 configured as described above includes the power unit 3 that constitutes a hybrid system. When the cutting blade 5 is driven by the output of the engine 10 and the output of the engine 10 is insufficient, the electric motor 70 is provided. To assist the output of the engine 10. Thereby, the output of the brush cutter 1 can be improved while suppressing the enlargement of the engine 10. Further, when there is a margin in the output of the engine 10, the electric motor 70 is caused to function as a generator, and the battery 110 is charged with the electric power generated by the electric motor 70. Thereby, it is suppressed that battery 110 will be in the state where power is insufficient, and torque assist by electric motor 70 when the output of engine 10 is insufficient can be obtained stably.
ここで、電動モータ70は、発電機として機能したときの発電電圧がバッテリ110の満充電電圧を超えないように設定されている。具体的には、エンジン10がその許容上限回転数で回転したときの電動モータ70の発電電圧がバッテリ110の満充電電圧とほぼ等しくなっている。これにより、特別な保護機構等を設けることなく、バッテリ110の過充電が容易かつ確実に防止される。 Here, the electric motor 70 is set so that the generated voltage when functioning as a generator does not exceed the full charge voltage of the battery 110. Specifically, the power generation voltage of the electric motor 70 when the engine 10 rotates at the allowable upper limit rotational speed is substantially equal to the full charge voltage of the battery 110. Thereby, overcharging of the battery 110 is easily and reliably prevented without providing a special protection mechanism or the like.
また、本実施形態においては、電動モータ70の無負荷回転数がエンジン10の上記許容上限回転数とほぼ等しくなっている。これにより、実際の使用においては高い出力を発揮できる回転数で電動モータ70を作動させることができ、エンジン10の出力が不足した場合の電動モータ70による効果的なアシストを可能としつつ、エンジン10の出力に余裕がある場合のバッテリ110の過充電を防止することができる。ここで、電動モータ70の最高出力は上記無負荷回転数のほぼ半分の回転数で発生するので、電動モータ70は上記無負荷回転数の50%〜100%の間を動作範囲とするのが一般的である。このため、発電機として機能したときの電動モータ70の発電電圧は、バッテリ110の満充電電圧の50%以上で、かつ、バッテリ110の満充電電圧以下の所定の値となる。 In the present embodiment, the no-load rotational speed of the electric motor 70 is substantially equal to the allowable upper limit rotational speed of the engine 10. Thus, in actual use, the electric motor 70 can be operated at a rotation speed capable of exhibiting a high output, and the electric motor 70 can effectively assist the engine 10 when the output of the engine 10 is insufficient. The battery 110 can be prevented from being overcharged when there is a margin in the output. Here, since the maximum output of the electric motor 70 is generated at a rotational speed almost half the no-load rotational speed, the electric motor 70 has an operating range between 50% and 100% of the no-load rotational speed. It is common. For this reason, the generated voltage of the electric motor 70 when functioning as a generator is a predetermined value that is 50% or more of the full charge voltage of the battery 110 and less than or equal to the full charge voltage of the battery 110.
さらに、バッテリ110の電圧を検知するバッテリセンサ113及び昇圧チョッパ回路107が設けられており、バッテリ110の電圧が満充電電圧よりも低い所定電圧以下である場合に、昇圧チョッパ回路107を駆動して電動モータ70の発電電圧をバッテリ110の電圧以上に昇圧させる。これにより、電動モータ70の発電電力(≦バッテリ110の満充電電圧)によってバッテリ110を満充電電圧まで充電することができる。 Further, a battery sensor 113 for detecting the voltage of the battery 110 and a boost chopper circuit 107 are provided. When the voltage of the battery 110 is equal to or lower than a predetermined voltage lower than the full charge voltage, the boost chopper circuit 107 is driven. The power generation voltage of the electric motor 70 is boosted to be higher than the voltage of the battery 110. Thereby, the battery 110 can be charged to the full charge voltage by the electric power generated by the electric motor 70 (≦ the full charge voltage of the battery 110).
なお、以上では携帯型作業機が刈払機1である場合について説明したが、刈払機1以外の携帯型作業機についても本発明を適用できることはもちろんである。刈払機1以外の携帯型作業機としては、草刈機、チェーンソー、カットオフソー、噴霧器、散布機、ブロワ、集塵機などがあり、この場合の駆動対象には、刈刃やソーチェーンなどの工具類はもちろん、送風ファンやポンプなども含まれる。さらに、本発明は、携帯型作業機に適用されるハイブリッドシステムに限られず、移動体などに適用されるハイブリッドシステムにも適用可能である。 In addition, although the case where the portable work machine was the brush cutter 1 was described above, the present invention can be applied to portable work machines other than the brush cutter 1 as well. Examples of portable work machines other than the brush cutter 1 include a mower, a chain saw, a cut-off saw, a sprayer, a spreader, a blower, and a dust collector. In this case, the driving objects include tools such as a cutting blade and a saw chain. Of course, a fan and a pump are included. Furthermore, the present invention is not limited to a hybrid system that is applied to a portable work machine, but can also be applied to a hybrid system that is applied to a mobile object or the like.
1…刈払機(携帯型作業機)、3…動力ユニット(ハイブリッドシステム)、5…刈刃(駆動対象)、10…エンジン、70…電動モータ、100…コントロールユニット、106…インバータ回路、107…昇圧チョッパ回路、108…モータ制御回路、109…発電・充電制御回路、110…バッテリ(蓄電装置)、111…クランク角センサ、112…ロータ位置検出センサ、113…バッテリセンサ(検知部)、114…電圧センサ DESCRIPTION OF SYMBOLS 1 ... Brush cutter (portable working machine), 3 ... Power unit (hybrid system), 5 ... Cutting blade (drive object), 10 ... Engine, 70 ... Electric motor, 100 ... Control unit, 106 ... Inverter circuit, 107 ... Step-up chopper circuit, 108 ... Motor control circuit, 109 ... Power generation / charge control circuit, 110 ... Battery (power storage device), 111 ... Crank angle sensor, 112 ... Rotor position detection sensor, 113 ... Battery sensor (detection unit), 114 ... Voltage sensor
Claims (6)
前記エンジンの前記出力軸にトルクを伝達可能に設けられると共に、前記エンジンの回転によって発電する発電機としても機能する電動モータと、
前記電動モータの発電電力によって充電されるバッテリと、を備え、
発電機として機能したときの前記電動モータの発電電圧が前記バッテリの満充電電圧を超えないように設定されている、ハイブリッドシステム。 An engine having an output shaft for driving the driven object;
An electric motor that is provided so as to be able to transmit torque to the output shaft of the engine and that also functions as a generator that generates electric power by rotation of the engine;
A battery charged by the electric power generated by the electric motor,
A hybrid system configured such that a generated voltage of the electric motor when functioning as a generator does not exceed a full charge voltage of the battery.
前記バッテリの電圧が前記満充電電圧よりも低い所定電圧以下である場合に、前記電動モータの発電電圧を前記バッテリの電圧以上に昇圧させる昇圧チョッパ回路と、
をさらに備えた、請求項1〜4のいずれか一つに記載のハイブリッドシステム。 A detector for detecting the voltage of the battery;
A step-up chopper circuit that boosts the power generation voltage of the electric motor to be equal to or higher than the voltage of the battery when the voltage of the battery is equal to or lower than a predetermined voltage lower than the full charge voltage;
The hybrid system according to any one of claims 1 to 4, further comprising:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012147744A JP2014008027A (en) | 2012-06-29 | 2012-06-29 | Hybrid system and portable equipment provided with the same |
PCT/JP2013/066846 WO2014002846A1 (en) | 2012-06-29 | 2013-06-19 | Hybrid system and portable work machine provided with same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012147744A JP2014008027A (en) | 2012-06-29 | 2012-06-29 | Hybrid system and portable equipment provided with the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014008027A true JP2014008027A (en) | 2014-01-20 |
Family
ID=49783004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012147744A Pending JP2014008027A (en) | 2012-06-29 | 2012-06-29 | Hybrid system and portable equipment provided with the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014008027A (en) |
WO (1) | WO2014002846A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016093132A (en) * | 2014-11-14 | 2016-05-26 | 株式会社マキタ | Electric working machine |
WO2017051662A1 (en) * | 2015-09-24 | 2017-03-30 | 日立工機株式会社 | Self-propelled grass mower |
WO2019167230A1 (en) * | 2018-03-01 | 2019-09-06 | 本田技研工業株式会社 | Work machine |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2526667B2 (en) * | 1989-06-05 | 1996-08-21 | 三菱電機株式会社 | Charge generator |
JP3155897B2 (en) * | 1994-11-28 | 2001-04-16 | 株式会社アイ・エイチ・アイ・エアロスペース | Control device for gas turbine generator |
JP3405084B2 (en) * | 1996-09-10 | 2003-05-12 | 日産自動車株式会社 | Control device for series hybrid electric vehicle |
JP2004215483A (en) * | 2002-05-29 | 2004-07-29 | Matsushita Electric Ind Co Ltd | Motor generator |
JP4566062B2 (en) * | 2005-05-09 | 2010-10-20 | 富士重工業株式会社 | Brush cutter |
JP5776139B2 (en) * | 2010-05-26 | 2015-09-09 | 日立工機株式会社 | Back working work machine and work machine |
-
2012
- 2012-06-29 JP JP2012147744A patent/JP2014008027A/en active Pending
-
2013
- 2013-06-19 WO PCT/JP2013/066846 patent/WO2014002846A1/en active Application Filing
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016093132A (en) * | 2014-11-14 | 2016-05-26 | 株式会社マキタ | Electric working machine |
US10236739B2 (en) | 2014-11-14 | 2019-03-19 | Makita Corporation | Electric working machine |
WO2017051662A1 (en) * | 2015-09-24 | 2017-03-30 | 日立工機株式会社 | Self-propelled grass mower |
WO2019167230A1 (en) * | 2018-03-01 | 2019-09-06 | 本田技研工業株式会社 | Work machine |
US11053991B2 (en) | 2018-03-01 | 2021-07-06 | Honda Motor Co., Ltd. | Protecting work machine from damage due to locked state |
Also Published As
Publication number | Publication date |
---|---|
WO2014002846A1 (en) | 2014-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5607820B2 (en) | Hybrid drive portable work machine | |
US20230238910A1 (en) | Battery and motor system for replacing internal combustion engine | |
US11621662B2 (en) | Battery and motor system for replacing internal combustion engine | |
AU2017279698B2 (en) | Motor system for dual voltage devices | |
RU2430844C2 (en) | Method of controlling transport facility hybrid drive and hybrid drive run by said method | |
US9065305B2 (en) | Engine-generator without flywheel | |
US10263485B2 (en) | Alternator with integrated engine controller | |
US8961366B2 (en) | Hybrid system of engine and motor generator | |
JPH0694856B2 (en) | Electronically commutated coaxial starter motors for internal combustion engines | |
JP2011239523A5 (en) | ||
JP2014117761A (en) | Power tool | |
US10697416B2 (en) | Engine generator | |
WO2014002846A1 (en) | Hybrid system and portable work machine provided with same | |
US20140096988A1 (en) | Power tool | |
CN103659751A (en) | Power tool | |
JPH071975A (en) | Hybrid electric power supply device for motor-driven travel vehicle | |
JP2014234756A (en) | Power supply device and portable work machine | |
JP6677176B2 (en) | Power conversion circuit control device, rotating electric machine unit | |
JP2014066198A (en) | Power tool | |
US20140096987A1 (en) | Power tool | |
US20070080589A1 (en) | Consolidated energy system generator | |
CN204928641U (en) | Adopt power conversion technique to start all -in -one of electricity generation | |
JP5789924B2 (en) | Engine for portable work machine and portable work machine equipped with the same | |
JP2011251348A (en) | Engine cutter | |
JP6093145B2 (en) | Multi-voltage generator |