JP2014006229A - Insulation defect part searching method for power cable - Google Patents

Insulation defect part searching method for power cable Download PDF

Info

Publication number
JP2014006229A
JP2014006229A JP2012155020A JP2012155020A JP2014006229A JP 2014006229 A JP2014006229 A JP 2014006229A JP 2012155020 A JP2012155020 A JP 2012155020A JP 2012155020 A JP2012155020 A JP 2012155020A JP 2014006229 A JP2014006229 A JP 2014006229A
Authority
JP
Japan
Prior art keywords
cable
current
insulation
voltage
insulation defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012155020A
Other languages
Japanese (ja)
Inventor
Kibo Tanaka
希望 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012155020A priority Critical patent/JP2014006229A/en
Publication of JP2014006229A publication Critical patent/JP2014006229A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)
  • Locating Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a searching method for identifying a position of an insulation defect part of a power cable in a temporally and economically efficient manner.SOLUTION: A DC voltage 1 is applied between the ground and a conductor part 2 at one end of a power cable to which an insulation defect has occurred; a current 4 is caused to be leaked to the ground from the insulation defect part 3; and a current value on the cable is measured by a clamp type ammeter 5 while maintaining the situation. Since a current value of a part on the cable farther than a leakage point when seen from a voltage application side is not measured, a boundary between a part where the current flows and a part where the current does not flow is determined to identify the insulation defect part 3.

Description

電力送電ケーブルの絶縁不良箇所を探索することに関するものである  It relates to searching for poor insulation in power transmission cables.

海外製品などで、絶縁不良箇所調査機器は存在するが、作業効率が非常に悪く、かつ、信頼度も曖昧である。それは、ケーブル導体に高圧のパルスを送信すると、絶縁不良箇所から大地に漏れるパルスを受信機で探索するという方法である。この方法ではケーブルの全長さを順次探さなければならない。ケーブルが長いと10〜20km、そのすべてを受信機で確認しなければならない。これでは絶縁不良箇所を特定することは膨大な時間を要するし、このパルス信号による方法では架空線に使用されるケーブルなどには適用できない。  Although there are equipment for investigating defective insulation in overseas products, etc., the work efficiency is very poor and the reliability is vague. That is, when a high-voltage pulse is transmitted to the cable conductor, the receiver searches for a pulse leaking to the ground from the location of poor insulation. In this method, the total length of the cable must be searched sequentially. If the cable is long, 10-20km, all of which must be confirmed by the receiver. In this case, it takes an enormous amount of time to identify the insulation failure location, and this pulse signal method cannot be applied to a cable used for an overhead wire.

その他にも高周波を利用する方法もある。しかし、この方法は他のケーブルと相互に電磁誘導より通電しない部分にも電流が誘導されるので間違った測定をすることもありうる。  There are other methods using high frequency. However, this method may cause erroneous measurement because current is also induced in a portion that is not energized by electromagnetic induction with other cables.

このようにケーブルの絶縁不良箇所を調査する方法は多々存在するが、それぞれ一長一短あり、試行錯誤の結果、直流電圧による方法が開発された。  As described above, there are many methods for investigating the insulation failure portion of the cable, but each has advantages and disadvantages. As a result of trial and error, a method using a DC voltage has been developed.

なし  None

なし  None

現行の絶縁不良個所を特定する技術で確実にいかなる配線方法にも絶縁不良箇所を確実に特定できる方法は普及していない。絶縁調査は絶縁抵抗計による方法が主流なので、ケーブルの導体が露出している部分(配電盤への接続箇所など)と次の導体が露出している箇所間しか絶縁抵抗計で絶縁値を測定する方法がないので、どうしても長い間隔でしか、絶縁不良箇所が特定できない。ケーブルの被覆がつながっている単位でケーブルを交換するしか方法がないのが現状である。このため、絶縁不良箇所の発生したケーブルは健全な部分もすべて交換しなければ修理ができない。停電時間は長く必要で、修理費用も高価になる。
ケーブルの被覆がある箇所でも絶縁不良箇所が特定できる方法があればこれらの問題は解決する。
There is no widespread method for reliably identifying an insulation failure location in any wiring method with the current technology for identifying an insulation failure location. Insulation surveys are mainly done with an insulation resistance meter, so measure the insulation value with an insulation resistance meter only between the part where the cable conductor is exposed (such as the connection to the switchboard) and the part where the next conductor is exposed. Since there is no method, it is unavoidable to identify an insulation failure location only at long intervals. At present, there is no other way but to replace the cable in units where the cable sheath is connected. For this reason, a cable in which an insulation failure has occurred cannot be repaired unless all healthy parts are also replaced. Power outage time is long and repair costs are expensive.
These problems can be solved if there is a method that can identify an insulation failure location even in a location where the cable is covered.

絶縁が低下したケーブルの導体と大地間に直流電圧を印加し、絶縁低下個所から大地に電流を漏洩させる。この状態でケーブル上の各箇所の電流値をクランプ型電流計で測定する。直流電圧印加側から見て、電流の大地への漏洩箇所から遠い側のケーブル上では電流値は零となるので、この境界点を特定することで絶縁不良箇所を発見できる。  A DC voltage is applied between the conductor of the cable whose insulation has been lowered and the ground, and current is leaked from the place where the insulation is lowered to the ground. In this state, the current value at each location on the cable is measured with a clamp-type ammeter. Since the current value is zero on the cable far from the location where the current leaks to the ground when viewed from the DC voltage application side, the insulation failure location can be found by specifying this boundary point.

この発明により、電力ケーブルに絶縁不良箇所が発生した際、非常に短い長さの間で絶縁不良箇所を特定できるので、修理交換するケーブルの長さを短くすることができる。この結果交換時間を短縮して停電時間を短くできる。また、修理交換費用も大幅に少なくできる。
そのほかには、この発明によると、絶縁値が送電可能な値のうちに絶縁調査ができるので、電力を使用しない時間帯に停電し、ケーブルの絶縁不良箇所を除去することができる。法令では、定格電流の2000分の一程度の漏洩電流が許容されている。高圧では耐圧試験しか示されていないが、だいたいの目安として数MΩ程度以上の絶縁値まで送電可能である。この発明によれば印加する直流電圧をケーブルの許容電圧内で高くすることにより、かなり高い絶縁不良値の範囲でも調査特定することができる。例えば、10MΩの絶縁不良箇所が発生した場合、2000Vの直流電圧により2000V÷10MΩ=0.2mA程度の電流が流すことができるので調査可能である。ただし、使用するククランプ型電流計は0.1mAまで測定可能な高精度なものが必要となる。いづれにしろ、絶縁不良値がかなり高い状態で調査できるので、予防保全として使用できる。絶縁不良を地絡継電器により回路遮断されるまで放置した場合、企業などでは操業中の停電となりその損失は計り知れない。そのため絶縁が低下しだしたら、送電可能な絶縁値のうちにこの発明により絶縁不良箇所を除去することで停電事故を避けることができる。
According to the present invention, when an insulation failure location occurs in the power cable, the insulation failure location can be specified within a very short length, so that the length of the cable to be repaired and replaced can be shortened. As a result, the replacement time can be shortened and the power failure time can be shortened. Also, repair and replacement costs can be greatly reduced.
In addition to this, according to the present invention, since the insulation investigation can be performed while the insulation value can be transmitted, it is possible to perform a power failure in a time zone in which the power is not used, and to remove the defective insulation portion of the cable. According to the law, a leakage current of about 1/20 of the rated current is allowed. Only a pressure resistance test is shown at high voltage, but as a general guideline, it is possible to transmit power to an insulation value of several MΩ or more. According to the present invention, the DC voltage to be applied is increased within the allowable voltage of the cable, so that it is possible to investigate and specify even in the range of a considerably high insulation failure value. For example, when an insulation failure portion of 10 MΩ is generated, a current of about 2000 V ÷ 10 MΩ = 0.2 mA can be flowed by a DC voltage of 2000 V, so that it can be investigated. However, the clamp type ammeter to be used must have a high accuracy capable of measuring up to 0.1 mA. In any case, it can be used as preventive maintenance because the insulation failure value can be investigated in a considerably high state. If the insulation failure is left until the circuit is interrupted by the ground fault relay, it will be a power outage during operation and the loss will be immeasurable. Therefore, if the insulation starts to drop, it is possible to avoid a power failure by removing the defective insulation portion from the insulation value that can be transmitted.

ケーブルに直流電圧を印加したとき、直流電流の分布を示した図である。  It is the figure which showed distribution of direct-current when a direct-current voltage is applied to a cable. 3相3芯のケーブルの断面図である。とくに遮蔽型ケーブルといい、各導体に金属シールドが施されている。さらに、3芯まとめて、金属シールドが施されている。この3芯一括の金属シールドは、接地されており、ケーブル絶縁体内部の水トリーなどによる劣化による絶縁低下による地絡電流を速やかに通電させることにより地絡継電器を動作させ回路遮断させることにより、絶縁低下を早期に発見し、短絡事故に至らぬようにしている。  It is sectional drawing of a three-phase three-core cable. In particular, it is called a shielded cable, and each conductor has a metal shield. Furthermore, the metal shield is given to the three cores together. This three-core metal shield is grounded, and by quickly energizing a ground fault current due to a decrease in insulation due to deterioration due to water trees inside the cable insulator, the ground fault relay is operated and the circuit is shut off. We detect insulation deterioration early and try not to cause a short circuit accident. 絶縁低下した3相3芯ケーブルに直流電圧を印加したときの電流分布を示す。  The current distribution when a DC voltage is applied to a three-phase three-core cable with reduced insulation is shown.

この発明は、直流電圧発生装置と直流0.1mAまで測定可能なクランプ型直流電流計が最低あれば実施可能である。直流電圧発生装置は直流耐圧試験器などが利用できる。また、0.1mA測定可能なクランプ型直流電流計なども既製品として販売されているので使用することができる。しかし、これらの既製品は、この発明の目的に使用されているわけではないので、この発明使用目的に過剰な性能、また、逆に不足する性能が混在している。
直流耐圧試験器では不足する性能として電圧の下限さらに低くする必要があり、過剰な性能は、直流耐圧試験に必要な機能は不要である。
また、クランプ型電流計は屋内仕様のものしかなく、電力ケーブルの敷設されている過酷な環境に使用できる耐久性能が必要であり、また、クランプをケーブルに固定する冶具も必要である。クランプ口径が30mmのものが最大であるのでさらに口径の大きいクランプが必要である。
The present invention can be implemented with a DC voltage generator and a clamp type DC ammeter capable of measuring up to DC 0.1 mA. The DC voltage generator can be a DC withstand voltage tester. A clamp type DC ammeter capable of measuring 0.1 mA is also available as an off-the-shelf product. However, since these off-the-shelf products are not used for the purpose of the present invention, excessive performance and conversely insufficient performance are mixed for the purpose of the present invention.
It is necessary to further lower the lower limit of the voltage as the performance that is insufficient in the DC withstand voltage tester, and the excessive performance does not require the function necessary for the DC withstand voltage test.
In addition, the clamp-type ammeter is only for indoor use, and requires durability that can be used in harsh environments where power cables are laid, and also requires a jig for fixing the clamp to the cable. Since the clamp diameter is 30 mm at the maximum, a clamp with a larger diameter is required.

図1は、本発明の原理を概略的に示している。符号1は直流電圧発生装置で、通常直流耐圧試験器で代用できる。(ただし、直流耐圧試験器は、耐圧試験に必要な高度機能があるので、これらを除いた機材を低コストで製作するほうがよい。)
符号2はケーブルの導体で、ここに直流電圧を印加すると、符号3の絶縁不良箇所より、破線の符号4の直流電流が大地を経由して循環する。この直流電流は漏洩点符号3から右側に流れない。そこで、クランプ型電流計符号5のように、ケーブル上を順次電流値を測定していく。全体の長さの1/2、1/4、1/8・・と分割して測定していくことで効率よく調査できる。最終的に、電流があるところと電流がないところの境界点を特定することができる。
FIG. 1 schematically illustrates the principle of the present invention. Reference numeral 1 denotes a DC voltage generator, which can be replaced by a normal DC withstand voltage tester. (However, since the DC withstand voltage tester has advanced functions necessary for the withstand voltage test, it is better to manufacture equipment excluding these at low cost.)
Reference numeral 2 is a conductor of the cable. When a DC voltage is applied thereto, a DC current indicated by a broken line 4 circulates from the location of defective insulation 3 through the ground. This direct current does not flow to the right from the leakage point code 3. Therefore, the current value is sequentially measured on the cable as in the clamp type ammeter code 5. It is possible to investigate efficiently by dividing and measuring 1/2, 1/4, 1/8,... Of the entire length. Finally, the boundary point between where there is current and where there is no current can be identified.

図2は、3芯の電力ケーブルの断面図である。符号11のように外部から水などの侵入による劣化部分が発生して、電磁気的な影響で拡大していく。導体と大地間までつながったら漏電電流が発生する。この発明では、この劣化が小さいうちにその箇所を特定することができる。FIG. 2 is a cross-sectional view of a three-core power cable. As indicated by reference numeral 11, a deteriorated portion due to intrusion of water or the like from the outside occurs, and is enlarged due to electromagnetic influence. If it is connected between the conductor and the ground, a leakage current is generated. In the present invention, the location can be specified while the deterioration is small.

図3は3芯ケーブルにおける本発明による絶縁不良箇所調査をするときの結線図であるが、3芯一括で電圧を印加する。電力ケーブルにはシースという金属シールドがあり、これは接地されており、調査の前に接地極から外しておくことが重要である。FIG. 3 is a connection diagram when investigating an insulation failure location according to the present invention in a three-core cable, and a voltage is applied in a three-core package. Power cables have a metal shield called a sheath, which is grounded and important to remove from the grounding pole before investigation.

事業用電気工作物、自家用電気工作物の所有者は、配電線の絶縁低下時、当該配電線を全長さにわたり交換するのが通常であるが、数kmにわたるときもある。これは、時間的にも経済的にもたいへん効率が悪い。この発明によれば、かなり短い範囲に絶縁不良箇所を特定できるので、工期的にも、経済的にもたいへん効率がよく、このような発明による絶縁不良箇所が電力送電の維持および工事にかかわる産業界には朗報となる。  The owners of business electric works and private electric works usually change the distribution line over the entire length when the insulation of the distribution line is lowered, but sometimes it extends over several kilometers. This is very inefficient in terms of time and economics. According to the present invention, it is possible to identify an insulation failure point in a considerably short range, so that it is very efficient both in terms of construction period and economically. Good news for the world.

1 直流電圧発生装置(直流耐圧試験器で代用可)
2 ケーブルの導体
3 絶縁低下個所
4 直流電流
5 直流電流を測定するクランプ型電流計のクランプ部
6 ケーブルの金属シールド、一般的にシースと呼ばれている。
7 ケーブルの外皮
8 導体の金属シールドで、導体間の静電容量の低減のためにある。
9 ケーブルの電流がながれる導体
10 ケーブルの絶縁体
11 絶縁体内に発生した絶縁劣化部分 原因は製造時に混入した異物、外部から侵入した水、施工時に受けたストレスによる傷などに電流による電界、磁界による電磁的な要因で劣化が促進される。
12 金属シールドに施された接地 通常シールド接地という。
13 ケーブルの外装
14 ケーブルの導体
15 片端の導体を短絡させた個所
16 金属シールド シース(接地はされていない。)
17 直流耐圧試験器
1 DC voltage generator (DC voltage tester can be used instead)
2 Cable conductor 3 Insulation drop 4 DC current 5 Clamp section of clamp-type ammeter that measures DC current 6 Metal shield of cable, generally called sheath
7 Cable sheath 8 Conductor metal shield to reduce capacitance between conductors.
9 Conductor through which the cable current flows 10 Cable insulator 11 Insulation deterioration part generated in the insulator Causes of foreign matter mixed in during manufacture, water entering from the outside, scratches due to stress received during construction, etc. due to electric and magnetic fields due to current Degradation is accelerated by electromagnetic factors.
12 Grounding on metal shield Usually called shield grounding.
13 Cable sheath 14 Cable conductor 15 Location where one end of conductor is short-circuited 16 Metal shield sheath (not grounded)
17 DC pressure tester

Claims (1)

絶縁不良箇所の発生した電力ケーブルの絶縁不良箇所を非常に高い精度で特定することができること。その方法は絶縁不良箇所が発生したケーブルの導体に片端から直流電圧を印加して、絶縁不良箇所から大地に電流を漏洩させ、クランプ型電流計によりケーブル上の電流分布を調査する。電圧印加点から見て、電流漏洩点より遠い部分は電流がないので、電流が流れるところと流れていないところの境界を見つけることで、絶縁不良箇所が特定できる。この原理を請求項とする。The insulation failure location of the power cable where the insulation failure occurred can be identified with very high accuracy. In this method, a DC voltage is applied from one end to a conductor of a cable where a defective insulation point has occurred, current is leaked from the defective insulation point to the ground, and the current distribution on the cable is investigated using a clamp-type ammeter. Since there is no current in the portion far from the current leakage point when viewed from the voltage application point, the insulation failure location can be identified by finding the boundary between where the current flows and where it does not flow. This principle is claimed.
JP2012155020A 2012-06-21 2012-06-21 Insulation defect part searching method for power cable Pending JP2014006229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012155020A JP2014006229A (en) 2012-06-21 2012-06-21 Insulation defect part searching method for power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012155020A JP2014006229A (en) 2012-06-21 2012-06-21 Insulation defect part searching method for power cable

Publications (1)

Publication Number Publication Date
JP2014006229A true JP2014006229A (en) 2014-01-16

Family

ID=50104063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012155020A Pending JP2014006229A (en) 2012-06-21 2012-06-21 Insulation defect part searching method for power cable

Country Status (1)

Country Link
JP (1) JP2014006229A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109361428A (en) * 2018-10-31 2019-02-19 北京四季豆信息技术有限公司 A kind of method and device of collector search electric energy meter
JP2021196334A (en) * 2020-06-12 2021-12-27 希望 田中 High-speed and high-precision exploration system for cable leakage point

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109361428A (en) * 2018-10-31 2019-02-19 北京四季豆信息技术有限公司 A kind of method and device of collector search electric energy meter
JP2021196334A (en) * 2020-06-12 2021-12-27 希望 田中 High-speed and high-precision exploration system for cable leakage point

Similar Documents

Publication Publication Date Title
Khan et al. A review of condition monitoring of underground power cables
Dong et al. Analysis of cable failure modes and cable joint failure detection via sheath circulating current
EP1133701B1 (en) Method for diagnosing insulation degradation in underground cable
JP2014190758A (en) Deterioration diagnostic method for power cable
CN103499777B (en) A kind of appraisal procedure based on ultralow frequency Partial Discharge Detection and system
CN110412418B (en) Insulation tubular bus insulation diagnosis and positioning method based on grounding current measurement
Ushakov et al. Diagnostics of High-Voltage Cable Lines
Su et al. Using very-low-frequency and oscillating-wave tests to improve the reliability of distribution cables
CN116718875B (en) Positioning method and instrument for sheath layer grounding in high-voltage cable single-end grounding system
JP2014006229A (en) Insulation defect part searching method for power cable
Wong et al. Practical experience using VLF Tan Delta and partial discharge measurement in medium voltage cable
Yamashita et al. Development of on-line partial discharge locator for electric power cable
US9239351B2 (en) Injection protocol
CN205958708U (en) Alternate water -cooled generator direct current test instrument that has water path connection
Wang et al. Fault location in the outer sheath of power cables
Selkirk et al. Why neutral-grounding resistors need continuous monitoring
ElFaraskoury Experiences of Sweep Frequency Response Analyser for the Diagnosis of Transformer Winding Damage
Ali et al. Developing a framework for underground cable fault-finding in low voltage distribution networks
CN109188190A (en) A method of detection kelvin effect type electric tracing line fault
Hummel et al. MV cable life cycle management
Neier et al. Combined application of diagnostics tools for MV underground cables
Caprara et al. Partial Discharge measurements during AC voltage test: a fast and effective method for the site commissioning of long EHV XLPE cable systems
Densley Review of international standards and practices for medium voltage power cable diagnostics
Bascom et al. Power cable failure modes and fault location methods, practices and strategies
Wu et al. Partial discharge measurement for condition assessment of high voltage cables in power system