JP2014005958A - Solar heat collector - Google Patents

Solar heat collector Download PDF

Info

Publication number
JP2014005958A
JP2014005958A JP2012140411A JP2012140411A JP2014005958A JP 2014005958 A JP2014005958 A JP 2014005958A JP 2012140411 A JP2012140411 A JP 2012140411A JP 2012140411 A JP2012140411 A JP 2012140411A JP 2014005958 A JP2014005958 A JP 2014005958A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer fin
heat
tube
vacuum tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012140411A
Other languages
Japanese (ja)
Other versions
JP5904667B2 (en
Inventor
Yoshitake Nagata
剛丈 永田
Yoshiyuki Akao
善幸 赤尾
Eitoku Saito
栄徳 斎藤
Hiromitsu Ishikawa
博光 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Light Metal Industry Co Ltd
Nikkeikin Aluminum Core Technology Co Ltd
Original Assignee
Riken Light Metal Industry Co Ltd
Nikkeikin Aluminum Core Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Light Metal Industry Co Ltd, Nikkeikin Aluminum Core Technology Co Ltd filed Critical Riken Light Metal Industry Co Ltd
Priority to JP2012140411A priority Critical patent/JP5904667B2/en
Publication of JP2014005958A publication Critical patent/JP2014005958A/en
Application granted granted Critical
Publication of JP5904667B2 publication Critical patent/JP5904667B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • F24S10/755Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations the conduits being otherwise bent, e.g. zig-zag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Abstract

PROBLEM TO BE SOLVED: To provide a solar heat collector having high heat collection efficiency, in which a heat transfer fin is bent by small stress and thereby easiness in insertion and adhesion to a double vacuum tube of the heat transfer fin are improved.SOLUTION: A solar heat collector concentrates solar radiation energy on a heat collection part 1 and warms a heat carrier flowing in the heat collection part. The collector includes: a double vacuum tube 2 made of transparent glass; a selective absorption film 3 coated on an outer peripheral surface of an inner tube 2b in the double vacuum tube 2; a heat transfer fin 10 that can come into surface contact with an inner peripheral surface of the inner tube 2b in the double vacuum tube 2 by elastic force; and a heat carrier pipe 15 coming into surface contact with an inside surface of the heat transfer fin 10. An outside surface of the heat transfer fin 10 is subjected to anode oxidation film treatment, and an outer diameter of the heat transfer fin 10 is formed as the same diameter as an inner diameter X of the inner tube 2b in the double vacuum tube 2 or larger. Furthermore, the heat transfer fin is formed in a cross-sectional circular-arc shape while one side thereof is opened, and a V-shaped bent part 12 is provided which bends in a V-shape toward the inside of a circular arc part such that a tip is positioned at a portion opposite to the opening.

Description

この発明は、太陽光集熱装置に関するもので、更に詳細には、太陽光集熱装置であるCPC(Compound Parabolic Concentrator=複合放物面鏡集熱装置)の集熱装置に関するものである。   The present invention relates to a solar heat collector, and more particularly to a heat collector of a CPC (Compound Parabolic Concentrator) that is a solar heat collector.

従来、太陽光を利用する装置は数多く開発されている。例えば、CPC(Compound Parabolic Concentrator)はその一つであり、集光板(反射鏡)を放物線形状、及びインボリュート曲線形状にすることで、広範囲の入射光を集熱管へ導くことができる。更に、その集熱管の外表面には太陽放射エネルギを良く吸収し、かつ放射率の小さい選択吸収膜等が蒸着されており、その集熱管内に熱媒体が流れるものが知られている(例えば、特許文献1,2参照)。   Conventionally, many devices using sunlight have been developed. For example, CPC (Compound Parabolic Concentrator) is one of them, and a wide range of incident light can be guided to the heat collecting tube by making the light collector (reflector) a parabolic shape and an involute curve shape. Further, a selective absorption film or the like that absorbs solar radiation energy well and has a low emissivity is deposited on the outer surface of the heat collection tube, and a heat medium flows in the heat collection tube is known (for example, Patent Documents 1 and 2).

また、上記集熱部を真空二重ガラス管で形成し、外周面に選択吸収膜面を有し、かつ外周方向に弾発力を有する円弧状の熱伝導体を、上記真空二重ガラス管の内管に面接触させて装着し、熱伝導体の内周面に媒体となる導通管を面接触させ、その導通管内に熱媒体が流れるものが知られている(例えば、特許文献3,4,5参照)。   Further, the heat collecting part is formed of a vacuum double glass tube, an arc-shaped heat conductor having a selective absorption film surface on the outer peripheral surface and having a resilient force in the outer peripheral direction, the vacuum double glass tube It is known that the inner pipe of the heat conductor is mounted in surface contact, the conductive pipe serving as a medium is brought into surface contact with the inner peripheral surface of the heat conductor, and the heat medium flows in the conductive pipe (for example, Patent Document 3, 4, 5).

特開2004−278837号公報JP 2004-278837 A 特開2008−138899号公報JP 2008-138899 A 実開昭62−195044号公報Japanese Utility Model Publication No. 62-195044 実開昭63−43045号公報Japanese Utility Model Publication No. 63-43045 特開2011−202910号公報JP 2011-202910 A

上記特許文献1,2に記載の集熱管構造において、管内を流れる熱媒体への伝熱効率を向上させるためには、なるべく集熱管の外径を小さくする必要があるが、この場合、集熱管への集光が困難となり、その結果、集熱効率が低下する懸念がある。また、集熱管の材質は、銅管やアルミニウム管等で構成されているため保温性に劣り、放熱による熱損失が生じる懸念もある。   In the heat collecting tube structures described in Patent Documents 1 and 2, in order to improve the heat transfer efficiency to the heat medium flowing in the tube, it is necessary to reduce the outer diameter of the heat collecting tube as much as possible. As a result, there is a concern that the heat collection efficiency is lowered. Moreover, since the material of the heat collecting tube is composed of a copper tube, an aluminum tube or the like, the heat retention property is inferior, and there is a concern that heat loss may occur due to heat radiation.

一方、特許文献3,4に記載の集熱管の構造では、真空度(保温性)の高い真空二重ガラス管(以下にガラス管という)の内部に熱媒体が流れる導通管を設け、広い集光面と高い保温性を集熱管に確保することができる。しかしながら、ガラス管の内周面に金属板からなる熱伝導体を外周方向への弾発力により面接触させ、熱伝導体の内周面に加熱媒体導通管を面接触させて固定するため、ガラス管と熱伝導体が正確に接触するようにその形状を形成する必要がある。ガラス管と熱伝導体が正確に面接触しない場合、例えば、ガラス管の内径に対して熱伝導体の外径が大きすぎると、ガラス管に熱伝導体を装着する際に、ガラス管が破損する懸念がある。また、ガラス管の内径に対して、熱伝導体の外径が小さすぎると、ガラス管に熱伝導体が面接触せずその間に隙間が生じるため、熱抵抗が大きくなり、その結果、ガラス管から熱媒体への伝熱効率が低下してしまう。更に、熱伝導体は反射率の高い金属板から形成されているため、内部のガラス管から熱伝導体への放射伝熱が減じてしまう虞がある。このように、ガラス管から熱媒体への伝熱効率を良好にするためには、熱伝導体の形状を正確に作製し、ガラス管と熱伝導体を確実に面接触させる必要がある。   On the other hand, in the structure of the heat collection tube described in Patent Documents 3 and 4, a conducting tube through which a heat medium flows is provided inside a vacuum double glass tube (hereinafter referred to as a glass tube) having a high degree of vacuum (heat retention), and a wide collection of tubes. The light collecting surface and high heat retention can be ensured in the heat collecting tube. However, in order to bring the heat conductor made of a metal plate into surface contact with the elastic force in the outer peripheral direction on the inner peripheral surface of the glass tube and fix the heating medium conducting tube in surface contact with the inner peripheral surface of the heat conductor, It is necessary to form the shape so that the glass tube and the heat conductor are in accurate contact. If the glass tube and the heat conductor do not come into precise surface contact, for example, if the outer diameter of the heat conductor is too large relative to the inner diameter of the glass tube, the glass tube will break when the heat conductor is attached to the glass tube. There are concerns. Further, if the outer diameter of the heat conductor is too small with respect to the inner diameter of the glass tube, the heat conductor does not come into surface contact with the glass tube and a gap is formed between them, resulting in an increase in thermal resistance. As a result, the glass tube The heat transfer efficiency from the heat medium to the heat medium is reduced. Furthermore, since the heat conductor is formed of a highly reflective metal plate, there is a risk that radiant heat transfer from the internal glass tube to the heat conductor may be reduced. Thus, in order to improve the heat transfer efficiency from the glass tube to the heat medium, it is necessary to make the shape of the heat conductor accurately and to ensure that the glass tube and the heat conductor are in surface contact.

これに対し、特許文献5に記載の伝熱フィンは、図10に示すように、一側が開口110した断面円弧状に形成される円弧状基部120に内方に向かって凹状に屈曲する凹状湾曲部130が設けられている。このように形成される特許文献5に記載の伝熱フィン100の構造では、一側が開口110した断面円弧状に形成される伝熱フィン100の円弧状部の内方に向かって凹状に屈曲する凹状湾曲部130を設けることで、伝熱フィン100と二重真空管との接触面積及び密着性を向上させる構造となっている。凹状湾曲部130を設けることで、伝熱フィン100を二重真空管に挿入する作業を、伝熱フィン100を撓ませて容易に行うことができ、撓んだ伝熱フィン100が元に戻ろうとする弾性応力により、伝熱フィン100と二重真空管とを圧着させている。更には伝熱フィン100の外表面上に施した陽極酸化被膜により、伝熱フィン100を二重真空管に挿入する際の摩擦を軽減し、伝熱フィン100と二重真空管とを圧着させる際の緩衝作用を持たせ、伝熱フィン100から二重真空管へ働く弾性応力を均一化させている。   On the other hand, as shown in FIG. 10, the heat transfer fin described in Patent Document 5 has a concave curve that bends inwardly to an arcuate base 120 formed in an arcuate cross section with an opening 110 on one side. A section 130 is provided. In the structure of the heat transfer fin 100 described in Patent Document 5 formed as described above, the heat transfer fin 100 is bent in a concave shape toward the inside of the arc-shaped portion of the heat transfer fin 100 formed in an arc shape with an opening 110 on one side. By providing the concave curved portion 130, the contact area and adhesion between the heat transfer fin 100 and the double vacuum tube are improved. By providing the concave curved portion 130, the operation of inserting the heat transfer fins 100 into the double vacuum tube can be easily performed by bending the heat transfer fins 100, and the bent heat transfer fins 100 are about to return. The heat transfer fin 100 and the double vacuum tube are pressure-bonded by the elastic stress. Further, the anodic oxide coating on the outer surface of the heat transfer fin 100 reduces friction when the heat transfer fin 100 is inserted into the double vacuum tube, and the heat transfer fin 100 and the double vacuum tube are pressure-bonded. A buffering action is provided to make the elastic stress acting from the heat transfer fin 100 to the double vacuum tube uniform.

しかし、二重真空管は例えば外径が30〜100mmで、長さが1000〜2000mmと比較的長尺であるため、二重真空管の内管内に伝熱フィンを挿入するためには、更に小さい応力で伝熱フィンを撓ませることができ、かつ伝熱フィンと二重真空管との密着性を更に向上させることが太陽光集熱装置の機能向上及び組立作業性には不可欠であり、伝熱フィンの更なる改善が望まれている。   However, since the double vacuum tube has a relatively long length of, for example, 30 to 100 mm and a length of 1000 to 2000 mm, a smaller stress is required to insert the heat transfer fin into the inner tube of the double vacuum tube. It is indispensable for improving the function of the solar heat collecting apparatus and assembling workability to bend the heat transfer fin and improve the adhesion between the heat transfer fin and the double vacuum tube. Further improvement is desired.

この発明は、発明者等が上記事情に鑑みて鋭意研究してなされたもので、小さい応力で伝熱フィンを撓ませて伝熱フィンの二重真空管内への挿入を容易にして組立作業を容易にすると共に、密着性を向上させることにより、反射鏡により集熱部に集光された太陽放射エネルギを、熱媒管内に流れる熱媒体へ効率よく伝導する集熱効率の高い太陽光集熱装置を提供することを目的とする。   The present invention has been made by the inventors in earnest research in view of the above circumstances. The heat transfer fin is bent with a small stress so that the heat transfer fin can be easily inserted into the double vacuum tube for assembly work. A solar collector with high heat collection efficiency that efficiently conducts solar radiant energy collected in the heat collection section by the reflector to the heat medium flowing in the heat medium pipe by improving the adhesion. The purpose is to provide.

上記課題を解決するために、この発明は、照射される太陽光を集熱部に集中させ、上記集熱部内を流れる熱媒体を温める太陽光集熱装置であって、透明なガラス製の二重真空管と、上記二重真空管の内管の外周面に被覆される選択吸収膜と、弾発力によって上記二重真空管の内管の内周面に面接触可能な伝熱フィンと、上記伝熱フィンの内側面に面接触する熱媒管とを具備し、上記伝熱フィンの外表面には陽極酸化皮膜処理が施され、かつ、伝熱フィンの外径が上記二重真空管の内管の内径と同径以上に形成され、更に上記伝熱フィンは、一側が開口した断面円弧状に形成されると共に、上記開口と対向する部位に先端が位置すべく円弧状部の内方に向かってV字状に屈曲するV字状屈曲部が設けられている、ことを特徴とする。   In order to solve the above-described problems, the present invention is a solar heat collecting apparatus that concentrates irradiated sunlight on a heat collecting section and heats a heat medium flowing in the heat collecting section. A heavy vacuum tube, a selective absorption film coated on the outer peripheral surface of the inner tube of the double vacuum tube, a heat transfer fin capable of surface contact with the inner peripheral surface of the inner tube of the double vacuum tube by elastic force, and the heat transfer A heat transfer medium tube in surface contact with the inner surface of the heat fin, the outer surface of the heat transfer fin is anodized, and the outer diameter of the heat transfer fin is the inner tube of the double vacuum tube. Further, the heat transfer fin is formed in a circular arc shape having an opening on one side, and is directed inward of the arc-shaped portion so that the tip is located at a portion facing the opening. A V-shaped bent portion that is bent into a V shape is provided.

このように構成することにより、伝熱フィンの開口とV字状屈曲部とを結ぶ線に対して直交する方向から伝熱フィンに力を加えると、V字状屈曲部に応力が集中し、小さい応力で伝熱フィンを撓ませることができる。これにより、外径が二重真空管の内管と同径以上に形成された伝熱フィンの二重真空管の内管への挿入を容易にすることができ、また、伝熱フィンの撓みに応じた弾発力によって伝熱フィンの外表面を内管の内周面に密着させることができる。   With this configuration, when a force is applied to the heat transfer fin from a direction orthogonal to the line connecting the opening of the heat transfer fin and the V-shaped bent portion, stress concentrates on the V-shaped bent portion, The heat transfer fin can be bent with a small stress. This makes it easy to insert heat transfer fins with an outer diameter equal to or greater than the inner diameter of the double vacuum tube into the inner tube of the double vacuum tube. The outer surface of the heat transfer fin can be brought into close contact with the inner peripheral surface of the inner tube by the elastic force.

また、伝熱フィンの外表面に陽極酸化皮膜処理を施すことにより、伝熱フィン外表面の反射率を抑制することができる以外に、更に伝熱フィンを二重真空管の内管に挿入する際の摩擦を低減することができると共に、緩衝作用を持たせることができるので、上記伝熱フィンの撓み及び弾発力の作用と相俟って伝熱フィンの二重真空管の内管への挿入を容易にし、伝熱フィンと二重真空管の内管との接触面積を増やし、伝熱フィンと二重真空管の内管との密着性を向上させることができる。   In addition to suppressing the reflectance of the outer surface of the heat transfer fin by applying an anodic oxide film treatment to the outer surface of the heat transfer fin, when the heat transfer fin is further inserted into the inner tube of the double vacuum tube Since the friction of the heat transfer fins can be reduced and the buffering action can be provided, the heat transfer fins are inserted into the inner tube of the double vacuum tube in combination with the bending and elastic action of the heat transfer fins. The contact area between the heat transfer fin and the inner tube of the double vacuum tube can be increased, and the adhesion between the heat transfer fin and the inner tube of the double vacuum tube can be improved.

この発明において、上記伝熱フィンは、V字状屈曲部の肉厚がそれ以外の部分よりも薄く形成されるのが良い。このように構成することにより、更に小さい応力で伝熱フィンを撓ませることができ、伝熱フィンの二重真空管の内管への挿入を更に容易にすることができる。   In the present invention, the heat transfer fin is preferably formed so that the thickness of the V-shaped bent portion is thinner than other portions. By comprising in this way, a heat-transfer fin can be bent with still smaller stress, and the insertion to the inner tube of a double vacuum tube of a heat-transfer fin can be made still easier.

また、この発明において、V字状屈曲部の内角は、25°〜35°とするのが好ましい。このように構成することで、伝熱フィンを少ない応力で撓ませることが可能になる。しかし、V字状屈曲部の内角が25°よりも小さいと、例えば、伝熱フィンをアルミニウム製押出形材にて形成する場合、加工精度上不良率が高くなり、製品コストが高騰してしまう。また、V字状屈曲部の内角が35°よりも大きいと、十分な撓み量が期待できない。   Moreover, in this invention, it is preferable that the internal angle of a V-shaped bending part shall be 25 degrees-35 degrees. By comprising in this way, it becomes possible to bend a heat-transfer fin with few stresses. However, if the inner angle of the V-shaped bent portion is smaller than 25 °, for example, when the heat transfer fin is formed of an aluminum extruded shape, the defect rate becomes high in terms of processing accuracy and the product cost increases. . Further, when the inner angle of the V-shaped bent portion is larger than 35 °, a sufficient amount of bending cannot be expected.

また、この発明において、V字状屈曲部のV字内方向長さ(D)と伝熱フィンの半径(R)の比率(D/R)は、4/17〜10/17が好ましく、更には5/17〜8/17が好ましい。このように構成することで、伝熱フィンを少ない応力で撓ませることが可能になる。V字状屈曲部部分の長さ(D)と伝熱フィンの半径(R)の比率(D/R)が、4/17よりも小さい場合や10/17よりも大きい場合は、十分な変形量を得られず、弾性応力も小さくなるため、二重真空管への密着性も低下してしまう。   In the present invention, the ratio (D / R) of the V-shaped inward length (D) of the V-shaped bent portion and the radius (R) of the heat transfer fin is preferably 4/17 to 10/17, Is preferably 5/17 to 8/17. By comprising in this way, it becomes possible to bend a heat-transfer fin with few stresses. When the ratio (D / R) of the length (D) of the V-shaped bent portion and the radius (R) of the heat transfer fin is smaller than 4/17 or larger than 10/17, sufficient deformation is caused. Since the amount cannot be obtained and the elastic stress is reduced, the adhesion to the double vacuum tube is also lowered.

このように構成することにより伝熱フィンの外向きの弾性的応力を確実に確保することができるため、伝熱フィンと内管の接触面積を増やし、密着性を更に向上させることができる。   By configuring in this manner, the outward elastic stress of the heat transfer fin can be reliably ensured, so that the contact area between the heat transfer fin and the inner tube can be increased, and the adhesion can be further improved.

また、この発明において、上記伝熱フィンの内側面に、断面が狭隘開口状の嵌合溝部が長手方向に沿って設けられ、上記嵌合凹溝部内に上記熱媒管を嵌合させる方がよい。   Further, in this invention, it is preferable that a fitting groove portion having a narrow opening is provided along the longitudinal direction on the inner side surface of the heat transfer fin, and the heating medium pipe is fitted in the fitting groove portion. Good.

このように構成することにより、伝熱フィンの内側面に熱媒管の接触面積を増やすことができると共に、確実に面接触することができるため、伝熱フィンと熱媒管の密着性が向上する。   By configuring in this way, the contact area of the heat transfer tube can be increased on the inner surface of the heat transfer fin and the surface contact can be ensured, so the adhesion between the heat transfer fin and the heat transfer tube is improved. To do.

更に、上記伝熱フィンは、アルミニウム製押出形材にて形成することができる。このように構成することにより、伝熱フィンは良好な熱伝導性を確保することができる。また、アルミニウムはリサイクル性が良好である。   Further, the heat transfer fin can be formed of an aluminum extruded profile. By comprising in this way, the heat-transfer fin can ensure favorable thermal conductivity. Aluminum has good recyclability.

この発明によれば、 小さい応力で伝熱フィンを撓ませて伝熱フィンの二重真空管内への挿入を容易にして組立作業を容易にすることができると共に、密着性を向上させて集熱効率を向上することができる。   According to the present invention, the heat transfer fins can be bent with a small stress to facilitate the insertion of the heat transfer fins into the double vacuum tube, and the assembly work can be facilitated. Can be improved.

この発明に係る太陽光集熱装置を示す概略斜視図である。It is a schematic perspective view which shows the solar heat collecting device which concerns on this invention. 上記太陽光集熱装置の一部を断面で示す平面図である。It is a top view which shows a part of said solar heat collecting device in a cross section. 上記太陽光集熱装置の一部を断面で示す側面図である。It is a side view which shows a part of said solar heat collecting device in a cross section. 上記太陽光集熱装置の要部を示す断面図(a)及び(a)のI部拡大断面図(b)であるである。It is sectional drawing (a) which shows the principal part of the said solar heat collecting apparatus, and the I section expanded sectional view (b) of (a). この発明における集熱部の断面図である。It is sectional drawing of the heat collecting part in this invention. この発明における集熱部の断面斜視図である。It is a section perspective view of the heat collection part in this invention. この発明における伝熱フィンの斜視図である。It is a perspective view of the heat-transfer fin in this invention. この発明における伝熱フィンの要部の形状、寸法を示す概略断面図(a)及び(a)の一部拡大図(b)である。It is a schematic sectional drawing (a) which shows the shape of the principal part of the heat-transfer fin in this invention, and a dimension, and the partially expanded view (b) of (a). この発明における伝熱フィンの形状と応力の関係を調べる実験例を示す概略断面図である。It is a schematic sectional drawing which shows the experimental example which investigates the relationship between the shape of the heat-transfer fin in this invention, and stress. 従来の伝熱フィンを示す概略断面図である。It is a schematic sectional drawing which shows the conventional heat-transfer fin. この発明におけるV字状屈曲部の内角が25°の場合のV字部の深さと変位量(撓み)の関係を示すグラフである。It is a graph which shows the relationship between the depth of a V-shaped part and displacement amount (deflection) in case the internal angle of the V-shaped bending part in this invention is 25 degrees.

以下に、この発明に係る太陽光集熱装置の実施形態を添付図面に基づいて詳細に説明する。   Hereinafter, embodiments of a solar heat collecting apparatus according to the present invention will be described in detail with reference to the accompanying drawings.

この発明に係る太陽光集熱装置は、図1ないし図3に示すように、給水管33と給湯管34を挿入する矩形筒状の主枠31と、この主枠31の一方の側壁の下部から外方に延在する矩形状のベース板32と、このベース板32の端部であって主枠31と対向する位置に設けられた真空管受け36からなる本体30と、主枠31の側壁部に沿設される側枠部材35を介してベース板32の上方に並設される複数の集熱部1と、各集熱部1の下方に配設された集光枠部材40にくさび状接続部材42(図4(a)参照)によって取り付けられ、集熱部1付近に入光する太陽光を反射して集熱部1に集中させる集光板43とを具備している。   As shown in FIGS. 1 to 3, the solar heat collecting apparatus according to the present invention includes a rectangular cylindrical main frame 31 into which a water supply pipe 33 and a hot water supply pipe 34 are inserted, and a lower portion of one side wall of the main frame 31. A main body 30 comprising a rectangular base plate 32 extending outward from the base plate, a vacuum tube receiver 36 provided at an end of the base plate 32 and facing the main frame 31, and a side wall of the main frame 31 A plurality of heat collecting portions 1 arranged in parallel above the base plate 32 via side frame members 35 provided along the portions, and a light collecting frame member 40 disposed below each heat collecting portion 1 And a light collecting plate 43 that is attached by a cylindrical connection member 42 (see FIG. 4A) and reflects sunlight incident on the vicinity of the heat collecting section 1 to concentrate it on the heat collecting section 1.

上記集光枠部材40は、図4(a)に示すように、アルミニウム製(アルミニウム合金を含む)の押出形材にて形成されており、中央部に断面コ字状の凹状嵌合部41を有し、両側部が左右対称かつW字形状の複合放物面に形成された取付面を有している。なお、取付面を形成する複合放物面は、インボリュート曲線と放物曲線(CPC曲線)とを組み合わせてなる形状であり、入射光が最も効率よく集熱部1に向けて反射される形状である。   As shown in FIG. 4A, the light condensing frame member 40 is formed of an extruded shape made of aluminum (including an aluminum alloy), and has a concave fitting portion 41 having a U-shaped cross section at the center. The both sides have a mounting surface formed on a bilaterally symmetric and W-shaped compound paraboloid. In addition, the compound paraboloid which forms the attachment surface is a shape formed by combining an involute curve and a parabolic curve (CPC curve), and is a shape in which incident light is reflected toward the heat collector 1 most efficiently. is there.

上記集熱部1は、図4ないし図6に示すように、透明なガラス製の外管2aと内管2bからなる二重真空管2と、二重真空管2の内管2bの外周面に被覆される選択吸収膜3と、二重真空管2の内管2bの内周面に面接触するように配置された伝熱フィン10と、伝熱フィン10の内側面に面接触するように配置され、主枠2内に挿入された給水管33と給湯管34に接続する熱媒管15とを具備している。また、図1,図2に示すように、集熱部1の先端部は、真空管受け36に取り付けられたキャップ36aに挿入された状態で保持され、集熱部1の基端部は、側枠部材35に取付孔35aを介して保持されている。   As shown in FIGS. 4 to 6, the heat collecting section 1 covers the outer peripheral surface of the double vacuum tube 2 composed of a transparent glass outer tube 2 a and an inner tube 2 b and the inner tube 2 b of the double vacuum tube 2. The selective absorption film 3 is arranged, the heat transfer fin 10 arranged so as to be in surface contact with the inner peripheral surface of the inner tube 2 b of the double vacuum tube 2, and arranged so as to be in surface contact with the inner side surface of the heat transfer fin 10. A water supply pipe 33 inserted into the main frame 2 and a heat medium pipe 15 connected to the hot water supply pipe 34 are provided. As shown in FIGS. 1 and 2, the distal end portion of the heat collecting portion 1 is held in a state of being inserted into a cap 36 a attached to the vacuum tube receiver 36, and the proximal end portion of the heat collecting portion 1 is The frame member 35 is held via an attachment hole 35a.

上記二重真空管2は、真空度の高い真空ガラス管を使用し、ガラス管の一方の端面を閉じた外管2aと内管2bとを重ね合わせ、外管2aと内管2bの一方の端面を閉じる。そして、他方の端面側を真空ポンプによって減圧し、外管2aを封止する。このようにすることによって、真空層5が形成される。なお、内管2bの外周面には、後述する選択吸収膜3が被覆される。   The double vacuum tube 2 uses a vacuum glass tube with a high degree of vacuum, and the outer tube 2a and the inner tube 2b, which are closed at one end surface of the glass tube, are overlapped to form one end surface of the outer tube 2a and the inner tube 2b. Close. And the other end surface side is pressure-reduced with a vacuum pump, and the outer tube | pipe 2a is sealed. By doing so, the vacuum layer 5 is formed. The outer peripheral surface of the inner tube 2b is covered with a selective absorption film 3 described later.

上記内管2bの外表面を被覆する選択吸収膜3は、例えば内管2bの外周面を密着被覆する低熱放射率の薄い金属膜上に黒色の黒クロムまたは無電解ニッケルがメッキ処理されたり、マンガン系の黒色塗料がペイントまたは蒸着されるか、あるいは酸化銅皮膜やアルマイト皮膜などにより、既存の方法によって太陽光の吸収率が大きい薄膜を形成したものである。上記内管2bの外表面に選択吸収膜3が形成されることで、太陽熱を効率的に吸収しながら選択吸収膜3から外管2aへの放射伝熱を低下させることができる。また、内管2bと外管2aとの間の真空層5が、選択吸収膜3から外管2aへの対流熱伝達による熱損失を防ぐ。   The selective absorption film 3 that covers the outer surface of the inner tube 2b is, for example, plated with black black chrome or electroless nickel on a thin metal film having a low thermal emissivity that tightly covers the outer peripheral surface of the inner tube 2b. Manganese black paint is painted or vapor-deposited, or a thin film having a large sunlight absorption rate is formed by a conventional method using a copper oxide film or an alumite film. By forming the selective absorption film 3 on the outer surface of the inner tube 2b, it is possible to reduce radiant heat transfer from the selective absorption film 3 to the outer tube 2a while efficiently absorbing solar heat. Further, the vacuum layer 5 between the inner tube 2b and the outer tube 2a prevents heat loss due to convective heat transfer from the selective absorption film 3 to the outer tube 2a.

上記のように形成される選択吸収膜3は、図5に示すように、二重真空管2の内管2bの外周面に被覆される。選択吸収膜3は、二重真空管2の外管2aと内管2bの間に位置するため、上述したように、内管2bに選択吸収膜3を被覆した上で、外管2aと内管2bを一体的に結合する。   The selective absorption film 3 formed as described above is coated on the outer peripheral surface of the inner tube 2b of the double vacuum tube 2 as shown in FIG. Since the selective absorption film 3 is located between the outer tube 2a and the inner tube 2b of the double vacuum tube 2, as described above, the inner tube 2b is coated with the selective absorption film 3, and then the outer tube 2a and the inner tube are covered. 2b are joined together.

上記伝熱フィン10は、図7及び図8に示すように、熱伝導率の高いアルミニウム製(アルミニウム合金を含む)の押出形材にて形成されており、長手方向に沿う一側に開口11aが設けられた断面略円弧状に形成される基部11と、基部11の長手方向に沿ってそれぞれ形成される、開口11aと対向する部位に先端が位置すべく基部11の内方に向かってV字状に屈曲するV字状屈曲部12と、断面が狭隘開口状であって、基部11の内方に向かって対向する位置に形成される2つの嵌合溝部13と、から形成されている。この場合、V字状屈曲部12のV字部12aの2辺は等しくなっている。   As shown in FIGS. 7 and 8, the heat transfer fin 10 is formed of an extruded shape member made of aluminum (including an aluminum alloy) with high thermal conductivity, and has an opening 11a on one side along the longitudinal direction. The base 11 is formed in a substantially arc shape in cross section and the base 11 is formed in the longitudinal direction of the base 11, and the V is directed inward of the base 11 so that the tip is located at a portion facing the opening 11 a. It is formed from a V-shaped bent portion 12 that is bent in a letter shape, and two fitting groove portions 13 that have a narrow opening in the cross section and are formed at positions facing the inner side of the base portion 11. . In this case, the two sides of the V-shaped portion 12a of the V-shaped bent portion 12 are equal.

上記のように形成される伝熱フィン10は、後述する図9に示すように、開口11aとV字状屈曲部12とを結ぶ線Lに対して直交する方向に力Pを加えると、V字状屈曲部12に応力が集中することが知見されている。これにより、小さい応力によって伝熱フィン10を撓ませることができ、また、撓みに応じて弾発力を持たせることができる。   When the heat transfer fin 10 formed as described above is applied with a force P in a direction perpendicular to the line L connecting the opening 11a and the V-shaped bent portion 12, as shown in FIG. It has been found that stress concentrates on the bent portion 12. Thereby, the heat-transfer fin 10 can be bent by a small stress, and a resilience can be given according to the bending.

この場合、伝熱フィン10の基部11及び嵌合溝部13の肉厚tに対してV字状屈曲部12のV字部12aの肉厚tを薄く形成する方が良い。なお、V字状屈曲部12のV字部12aの先端の円弧部12bの半径rは任意であるが、ここでは肉厚tと同寸法に形成されている(図8(b)参照)。 In this case, it is better to thin the thickness t 2 of the V-shaped portion 12a of the V-shaped bent portion 12 against the wall thickness t 1 of the base portion 11 and the fitting groove 13 of the heat transfer fins 10. Although the radius r of the tip of the arc portion 12b of the V-shaped portion 12a of the V-shaped bent portion 12 is arbitrary, here is formed in the same dimension as the thickness t 1 (see FIG. 8 (b)) .

このようにV字状屈曲部12のV字部12aの肉厚tをそれ以外の部分の肉厚tに対して薄く形成することにより、更に小さい応力で伝熱フィン10を撓ませることができ、伝熱フィン10の二重真空管2の内管2bへの挿入を容易にすることができる。 By thus forming the thin V-shaped section 12a the thickness t 2 of the V-shaped bent portion 12 against the wall thickness t 1 of the other parts of it to deflect the heat transfer fins 10 in a smaller stress The heat transfer fin 10 can be easily inserted into the inner tube 2b of the double vacuum tube 2.

また、伝熱フィン10を少ない応力で撓ませるために、V字状屈曲部12の内角θは、25°〜35°の範囲に設定されている。V字状屈曲部12の内角θが25°よりも小さいと、アルミニウム製押出形材にて形成される伝熱フィン10の加工精度上不良率が高くなり、製品コストが高騰してしまう。また、V字状屈曲部12の内角θが35°よりも大きいと、十分な撓み量が期待できない。   Further, in order to bend the heat transfer fin 10 with a small stress, the internal angle θ of the V-shaped bent portion 12 is set in a range of 25 ° to 35 °. When the internal angle θ of the V-shaped bent portion 12 is smaller than 25 °, the defect rate is high in terms of processing accuracy of the heat transfer fin 10 formed of the aluminum extruded profile, and the product cost increases. Further, when the internal angle θ of the V-shaped bent portion 12 is larger than 35 °, a sufficient amount of bending cannot be expected.

また、伝熱フィン12を少ない応力で撓ませて外向きの弾性的応力を確保すると共に、伝熱フィン10と内管2bの接触面積を増やために、V字状屈曲部12のV字内方向長さ(D){V字部12aの深さ}と伝熱フィン10の半径(R)の比率(D/R)は、4/17〜10/17が好ましく、更に好ましくは5/17〜8/17に設定されている。V字状屈曲部12のV字内方向長さ(D)と伝熱フィンの半径(R)の比率(D/R)が、4/17よりも小さい場合や10/17よりも大きい場合は、十分な変形量を得られず、弾性応力も小さくなるため、二重真空管2の内管2bへの密着性も低下してしまう。   Further, the heat transfer fins 12 are bent with a small amount of stress to ensure outward elastic stress, and in order to increase the contact area between the heat transfer fins 10 and the inner tube 2b, the V-shaped bent portion 12 has a V-shape. The ratio (D / R) of the inward length (D) {the depth of the V-shaped portion 12a} and the radius (R) of the heat transfer fin 10 is preferably 4/17 to 10/17, more preferably 5 /. It is set to 17-8 / 17. When the ratio (D / R) of the length (D) in the V-shape of the V-shaped bent portion 12 to the radius (R) of the heat transfer fin is smaller than 4/17 or larger than 10/17 Since a sufficient amount of deformation cannot be obtained and the elastic stress is reduced, the adhesion of the double vacuum tube 2 to the inner tube 2b is also lowered.

このように構成することにより伝熱フィン10の外向きの弾性的応力を確実に確保することができるため、伝熱フィン10と内管2bの接触面積を増やし、密着性を更に向上させることができる。   By configuring in this way, the outward elastic stress of the heat transfer fin 10 can be reliably ensured, so that the contact area between the heat transfer fin 10 and the inner tube 2b can be increased and the adhesion can be further improved. it can.

また、上記伝熱フィン10の外表面には、図7に示すように、陽極酸化皮膜処理(以下にアルマイト処理という)が施されている。アルマイト処理は、例えば、脱脂処理とエッチング、そしてアルマイト処理を経た後、90℃前後の熱水中にて陽極酸化皮膜14の孔を塞ぐ方法にて行う。陽極酸化皮膜14の膜厚は2μm以上から20μm以下の範囲が好ましい。その理由は、2μm未満であると下地の反射率が反映されるため2μm以上が好ましく、逆に膜厚が20μmを超過すると生産性が低下したり、陽極酸化皮膜14の熱抵抗が無視できなくなり、伝熱フィン10への入熱が減少する虞があるためである。   Further, as shown in FIG. 7, the outer surface of the heat transfer fin 10 is subjected to an anodic oxide film treatment (hereinafter referred to as alumite treatment). The alumite treatment is performed by, for example, a method of plugging the pores of the anodized film 14 in hot water at around 90 ° C. after degreasing treatment, etching, and alumite treatment. The film thickness of the anodized film 14 is preferably in the range of 2 μm to 20 μm. The reason is that if it is less than 2 μm, the reflectivity of the substrate is reflected, so that it is preferably 2 μm or more. Conversely, if the film thickness exceeds 20 μm, productivity decreases or the thermal resistance of the anodized film 14 cannot be ignored. This is because heat input to the heat transfer fins 10 may be reduced.

伝熱フィン10の外表面にアルマイト処理を施すことにより、伝熱フィン10外表面の反射率を抑制することができるため、伝熱フィン10への放射伝熱を改善し、集熱効率が向上する。また、伝熱フィン10の外表面にアルマイト処理を施すことにより、すべり性が向上し、内管2bへの伝熱フィン10の挿入の際の摩擦を軽減することができるため、二重真空管2の内管2bに伝熱フィン10を装着する際、二重真空管2の破損率を抑制することができる。   Since the reflectance of the outer surface of the heat transfer fin 10 can be suppressed by applying the alumite treatment to the outer surface of the heat transfer fin 10, the radiant heat transfer to the heat transfer fin 10 is improved and the heat collection efficiency is improved. . Further, by applying alumite treatment to the outer surface of the heat transfer fin 10, the slip property is improved and the friction at the time of inserting the heat transfer fin 10 into the inner tube 2 b can be reduced. When mounting the heat transfer fin 10 to the inner tube 2b, the breakage rate of the double vacuum tube 2 can be suppressed.

図7に示した取付前の伝熱フィン10の外径Yは、図5に示した二重真空管2の内管2bの内径Xと同径以上に形成されている。しかし、伝熱フィン10の基部11の長手方向に開口11aが設けられ断面略円弧状に形成されると共に、開口11aと対向する部位に先端が位置すべく基部11の内方に向かってV字状に屈曲するV字状屈曲部12が形成されることにより、上述したように、小さい応力によって伝熱フィン10を撓ませることができるため、伝熱フィン10を内管2bへの挿入が可能となる。また、撓みに応じて弾発力を持たせることができるため、挿入された伝熱フィン10は外向きの弾性的応力によって伝熱フィン10と内管2bの接触面積を増やすことができる。   The outer diameter Y of the heat transfer fin 10 before mounting shown in FIG. 7 is formed to be equal to or larger than the inner diameter X of the inner tube 2b of the double vacuum tube 2 shown in FIG. However, an opening 11a is provided in the longitudinal direction of the base portion 11 of the heat transfer fin 10 and is formed in a substantially arc shape in cross section, and V-shaped toward the inside of the base portion 11 so that the tip is located at a portion facing the opening 11a. By forming the V-shaped bent portion 12 bent in a shape, the heat transfer fin 10 can be bent by a small stress as described above, so that the heat transfer fin 10 can be inserted into the inner tube 2b. It becomes. Further, since the elastic force can be given according to the bending, the inserted heat transfer fin 10 can increase the contact area between the heat transfer fin 10 and the inner tube 2b by the outward elastic stress.

また、図4〜7に示すように、伝熱フィン10の内側面に、断面が狭隘開口状であって、基部11の内方に向かって対向する位置に形成される2つの嵌合溝部13が基部11の長手方向に沿ってそれぞれ形成され、嵌合溝部13内に熱媒管15が嵌合されることにより、伝熱フィン10と熱媒管15との接触面積を増やすことができると共に、確実に面接触することができ、伝熱フィン10と熱媒管15の密着性が向上する。   As shown in FIGS. 4 to 7, the two fitting groove portions 13 are formed on the inner surface of the heat transfer fin 10 at a position where the cross section is a narrow opening and faces the inside of the base portion 11. Are formed along the longitudinal direction of the base portion 11 and the heat medium pipe 15 is fitted into the fitting groove 13, whereby the contact area between the heat transfer fin 10 and the heat medium pipe 15 can be increased. The surface contact can be ensured, and the adhesion between the heat transfer fins 10 and the heat transfer tube 15 is improved.

なお、上記熱媒管15は、例えば銅やアルミニウムなどの熱伝導率の良い金属から形成されるU字状の管体にて形成されており、熱媒体例えば水が流れる。   In addition, the said heat-medium pipe | tube 15 is formed with the U-shaped pipe body formed from a metal with good heat conductivity, such as copper and aluminum, for example, and a heat medium, for example, water flows.

上記のように構成される二重真空管2,選択吸収膜3,伝熱フィン10,熱媒管15は、以下の手順で組み立てることができる。まず、外表面に選択吸収膜3が被覆された内管2bと外管2aを重ね合わせ、外管2aと内管2bの一方の端面を閉じる。そして、他方の端面側を真空ポンプによって減圧し、外管2aを封止する。これにより、内管2bの外周面に選択吸収膜3が被覆された二重真空管2が形成される。次に、内管2bの開口から、伝熱フィン10を撓ませて内管2bに挿入して、伝熱フィン10の弾発力によって伝熱フィン10を内管2bの内周面に密接する。なお、伝熱フィン10の外表面にアルマイト処理を施してあることにより、すべり性が向上し、内管2bへの伝熱フィン10の挿入の際の摩擦を軽減することができるため、二重真空管2の内管2bに伝熱フィン10を装着する際、二重真空管2の破損率を抑制する。   The double vacuum tube 2, the selective absorption film 3, the heat transfer fin 10, and the heat medium tube 15 configured as described above can be assembled in the following procedure. First, the inner tube 2b and the outer tube 2a whose outer surfaces are covered with the selective absorption film 3 are overlapped, and one end face of the outer tube 2a and the inner tube 2b is closed. And the other end surface side is pressure-reduced with a vacuum pump, and the outer tube | pipe 2a is sealed. Thereby, the double vacuum tube 2 in which the selective absorption film 3 is coated on the outer peripheral surface of the inner tube 2b is formed. Next, the heat transfer fin 10 is bent from the opening of the inner tube 2b and inserted into the inner tube 2b, and the heat transfer fin 10 is brought into close contact with the inner peripheral surface of the inner tube 2b by the elastic force of the heat transfer fin 10. . Since the outer surface of the heat transfer fin 10 is anodized, the slip property is improved and the friction during insertion of the heat transfer fin 10 into the inner tube 2b can be reduced. When the heat transfer fin 10 is attached to the inner tube 2b of the vacuum tube 2, the damage rate of the double vacuum tube 2 is suppressed.

次に、上記のようにして二重真空管2に挿入された伝熱フィン10の嵌合溝部13を、給水管33と給湯管34に溶接固定されている熱媒管15に嵌合するように挿入する。伝熱フィン10の弾発力及び熱媒管15の挿入により、内管2bの外周方向への圧力が発生するが、伝熱フィン10の外表面にアルマイト処理を施してあるので、陽極酸化皮膜14の緩衝機能により、伝熱フィン10から内管2bへの圧力を均等にすることができるため、伝熱フィン10と内管2bの密着性を向上させることができる。   Next, the fitting groove 13 of the heat transfer fin 10 inserted into the double vacuum tube 2 as described above is fitted to the heat transfer pipe 15 welded and fixed to the water supply pipe 33 and the hot water supply pipe 34. insert. The elastic force of the heat transfer fin 10 and the insertion of the heat transfer medium tube 15 generate pressure in the outer peripheral direction of the inner tube 2b. However, since the outer surface of the heat transfer fin 10 is anodized, an anodized film Since the pressure from the heat transfer fin 10 to the inner tube 2b can be made uniform by the buffering function 14, the adhesion between the heat transfer fin 10 and the inner tube 2b can be improved.

その後、二重真空管2の基端部を側枠部材35に形成された取付孔35aに嵌合し、先端部を真空管受け36に取り付けられたキャップ36aで保持する。   Thereafter, the base end portion of the double vacuum tube 2 is fitted into an attachment hole 35 a formed in the side frame member 35, and the distal end portion is held by a cap 36 a attached to the vacuum tube receiver 36.

上記実施形態に係る太陽光集熱装置によれば、伝熱フィン10の開口11aとV字状屈曲部12とを結ぶ線Lに対して直交する方向から伝熱フィン10に力Pを加えると、V字状屈曲部12に応力が集中するため、小さい応力で伝熱フィン10を撓ませることができる。これにより、外径Yが二重真空管2の内管2bの内径Xと同径以上に形成された伝熱フィン10の二重真空管2の内管2bへの挿入を容易にすることができる。伝熱フィン10の撓みに応じた弾発力によって伝熱フィン10の外表面を内管の内周面に密着させることができる。   According to the solar heat collecting apparatus which concerns on the said embodiment, when force P is applied to the heat-transfer fin 10 from the direction orthogonal to the line L which ties the opening 11a of the heat-transfer fin 10 and the V-shaped bending part 12. Since the stress concentrates on the V-shaped bent portion 12, the heat transfer fin 10 can be bent with a small stress. Thereby, insertion of the heat transfer fin 10 formed with the outer diameter Y equal to or larger than the inner diameter X of the inner tube 2b of the double vacuum tube 2 into the inner tube 2b of the double vacuum tube 2 can be facilitated. The outer surface of the heat transfer fin 10 can be brought into close contact with the inner peripheral surface of the inner tube by the elastic force according to the bending of the heat transfer fin 10.

また、伝熱フィン10の外表面に陽極酸化皮膜14を施すことにより、伝熱フィン10を二重真空管2の内管2bに挿入する際の摩擦を低減することができると共に、緩衝作用を持たせることができるので、伝熱フィン10の撓み及び弾発力の作用と相俟って伝熱フィン10の二重真空管2の内管2bへの挿入を容易にし、伝熱フィン10と二重真空管2の内管2bとの接触面積を増やし、伝熱フィン10と二重真空管2の内管2bとの密着性を向上させることができる。   Further, by applying the anodic oxide film 14 to the outer surface of the heat transfer fin 10, it is possible to reduce friction when the heat transfer fin 10 is inserted into the inner tube 2 b of the double vacuum tube 2 and to have a buffering action. Therefore, the heat transfer fin 10 can be easily inserted into the inner tube 2b of the double vacuum tube 2 in combination with the action of the heat transfer fin 10 and the elastic force. The contact area between the vacuum tube 2 and the inner tube 2b can be increased, and the adhesion between the heat transfer fin 10 and the inner tube 2b of the double vacuum tube 2 can be improved.

また、伝熱フィン10は、V字状屈曲部12のV字部の肉厚tがそれ以外の部分の肉厚tよりも薄く形成することにより、更に小さい応力で伝熱フィン10を撓ませることができ、伝熱フィン10の二重真空管2の内管2bへの挿入を更に容易にすることができる。 Further, the heat transfer fin 10 is formed with the thickness t 2 of the V-shaped portion of the V-shaped bent portion 12 thinner than the thickness t 1 of the other portion, so that the heat transfer fin 10 can be formed with a smaller stress. The heat transfer fin 10 can be bent and inserted into the inner tube 2b of the double vacuum tube 2 more easily.

また、伝熱フィン10の内側面に、断面が狭隘開口状の嵌合溝部13を長手方向に沿って設けることにより、伝熱フィン10の内側面に熱媒管15の接触面積を増やすことができると共に、確実に面接触することができるため、伝熱フィン10と熱媒管15の密着性が向上する。   Further, by providing the inner groove of the heat transfer fin 10 with the narrow groove-shaped fitting groove 13 along the longitudinal direction, the contact area of the heat transfer tube 15 can be increased on the inner surface of the heat transfer fin 10. In addition, since the surface contact can be ensured, the adhesion between the heat transfer fins 10 and the heat transfer tube 15 is improved.

更に、伝熱フィン10は、アルミニウム製押出形材にて形成することにより、伝熱フィン10は良好な熱伝導性を確保することができるため、熱伝導性が向上し集熱効率が増大する。また、アルミニウムはリサイクル性が良好である。   Furthermore, since the heat transfer fins 10 can be made of an aluminum extruded profile, the heat transfer fins 10 can ensure good heat conductivity, so that the heat conductivity is improved and the heat collection efficiency is increased. Aluminum has good recyclability.

なお、上記実施形態では、V字状屈曲部12のV字部12aの2辺は等しい場合について説明したが、少なくともV字状屈曲部12のV字部12aの先端部が開口11aと対向する部位に位置していれば、V字部12aの2辺の長さは必ずしも等しくなくても良い。   In the above embodiment, the case where the two sides of the V-shaped portion 12a of the V-shaped bent portion 12 are the same is described. However, at least the tip of the V-shaped portion 12a of the V-shaped bent portion 12 faces the opening 11a. As long as it is located at the site, the lengths of the two sides of the V-shaped portion 12a are not necessarily equal.

次に、この発明に係る太陽光集熱装置について、図8及び図9を参照して、アルミニウム製押出形材にて形成された伝熱フィン10のV字状屈曲部12のV字部12aの形状と応力の関係を調べるために、下記の条件等にて実験を行った結果について説明する。   Next, with respect to the solar heat collecting apparatus according to the present invention, with reference to FIGS. 8 and 9, the V-shaped portion 12 a of the V-shaped bent portion 12 of the heat transfer fin 10 formed of an aluminum extruded profile. In order to investigate the relationship between the shape and the stress, the results of experiments conducted under the following conditions will be described.

<実験条件>
・角度θ:V字部の内角
・深さD:V字状屈曲部の先端部と伝熱フィンの曲線への直線距離
(V字部の2辺は等しいものとする)
・変位量(撓み)δ:応力を10N加えた時の、伝熱フィンの変形量
(静止状態の変形量を0とする)
・伝熱フィンの半径R:17mm
・伝熱フィンの板厚(肉厚)t:0.8mm
・V字部の板厚(肉厚)t:0.66mm
・伝熱フィン(試料)の厚さ(奥行き):10mm
・比較例a,b,c:図10に示す伝熱フィン100の肉厚を0.6mm,0.7mm,0.8mmとした、厚さ(奥行き):10mmの試料。
<Experimental conditions>
・ Angle θ: Inner angle of V-shaped part ・ Depth D: Linear distance between the tip of V-shaped bent part and the curve of heat transfer fin
(The two sides of the V-shaped part shall be equal)
・ Displacement amount (deflection) δ: Deformation amount of heat transfer fin when 10N stress is applied
(The amount of deformation in the stationary state is 0)
-Radius R of heat transfer fin: 17mm
・ Plate thickness (wall thickness) t 1 of heat transfer fin: 0.8 mm
・ V-shaped plate thickness (thickness) t 2 : 0.66 mm
-Heat transfer fin (sample) thickness (depth): 10 mm
Comparative examples a, b, and c: Samples having a thickness (depth) of 10 mm in which the thickness of the heat transfer fin 100 shown in FIG. 10 is 0.6 mm, 0.7 mm, and 0.8 mm.

<実験方法>
上記条件の伝熱フィン(試料){深さ(D)が3mm,5mm,8mm、但し、実施品(θ=26°)については、5.3mm}を、図9に示すように、伝熱フィン10の直径より大きい曲率の円弧状の上面を有する固定台Fの上に、開口11aとV字状屈曲部12とを結ぶ線Lが固定台Fと平行になるように載置する。この状態で、開口11aとV字状屈曲部12とを結ぶ線Lと直交する中心点直上から下方向に荷重10Nを加えて、V字部12aの深さ(D)と変位量(撓み)(δ)との関係について、構造解析ソフトを用いて調べたところ、表1に示すような結果が得られた。

Figure 2014005958
<Experiment method>
Heat transfer fin (sample) under the above conditions {depth (D) is 3 mm, 5 mm, 8 mm, but for the product (θ = 26 °) 5.3 mm}, as shown in FIG. On the fixed base F having an arcuate upper surface with a curvature larger than the diameter of the fin 10, the line L connecting the opening 11 a and the V-shaped bent portion 12 is placed in parallel with the fixed base F. In this state, a load 10N is applied from directly above the center point perpendicular to the line L connecting the opening 11a and the V-shaped bent portion 12, and the depth (D) and the amount of displacement (deflection) of the V-shaped portion 12a are applied. When the relationship with (δ) was examined using structural analysis software, the results shown in Table 1 were obtained.
Figure 2014005958

上記実験において、伝熱フィンの肉厚が0.6mmでは押出加工上、実施が不可能(×)であり、また、肉厚が0.7mmでは不良率の可能性(△)があるため、評価実績がない。肉厚が0.8mmにおいては押出加工が良好(○)で、評価実績が得られた。実験の結果、角度(θ)が25°〜35°の範囲が現実的と考えられる。   In the above experiment, when the thickness of the heat transfer fin is 0.6 mm, the extrusion process is impossible (×), and when the thickness is 0.7 mm, there is a possibility of a defect rate (Δ). There is no evaluation result. When the wall thickness was 0.8 mm, the extrusion process was good (◯), and the evaluation results were obtained. As a result of the experiment, it is considered realistic that the angle (θ) is in the range of 25 ° to 35 °.

次に、V字状屈曲部12の深さ(D)と撓み(δ)との関係を考察するために、角度(θ)が25°の場合を代表して、実験を行ったところ、表2及び図11に示すような結果が得られた、

Figure 2014005958
Next, in order to consider the relationship between the depth (D) and the deflection (δ) of the V-shaped bent portion 12, an experiment was conducted on behalf of the case where the angle (θ) was 25 °. 2 and the results shown in FIG. 11 were obtained.
Figure 2014005958

上記実験の結果、深さ(D)が4mm〜10mmの範囲では、変位量(撓み)(δ)が5.76mm〜5.779mm{最大:6.025(深さ7mm)}で良好であり、深さ(D)が5mm〜8mmの範囲では、変位量(撓み)(δ)が5.942mm〜5.958mm{最大:6.025(深さ7mm)}で更に良好であることが判った。     As a result of the above experiment, when the depth (D) is in the range of 4 mm to 10 mm, the displacement (deflection) (δ) is 5.76 mm to 5.779 mm {maximum: 6.025 (depth 7 mm)}. When the depth (D) is in the range of 5 mm to 8 mm, the displacement (deflection) (δ) is 5.942 mm to 5.958 mm {maximum: 6.025 (depth 7 mm)}. It was.

角度(θ)が30°,35°における深さ(D)が5mm、8mmの場合の変位量(撓み)(δ)も、表1に記載のように5.863mm〜5.975mmであり、角度(θ)が25°の場合と同様に良好であることが推測できる。     The displacement (deflection) (δ) when the angle (θ) is 30 ° and the depth (D) at 35 ° is 5 mm and 8 mm is also 5.863 mm to 5.975 mm as shown in Table 1. It can be estimated that the angle (θ) is as good as when the angle is 25 °.

上記実験の結果より、伝熱フィン10に設けられたV字状屈曲部12のV字部12aの内角が25°〜35°で、V字状屈曲部12の深さ(V字内方向長さ)(D)と伝熱フィン10の半径(R)の比率(D/R)は、4/17〜10/17が好ましく、5/17〜8/17が更に好ましいことが判った。     As a result of the above experiment, the inner angle of the V-shaped portion 12a of the V-shaped bent portion 12 provided in the heat transfer fin 10 is 25 ° to 35 °, and the depth of the V-shaped bent portion 12 (the length in the V-shaped inward direction). It has been found that the ratio (D / R) of (D) to the radius (R) of the heat transfer fin 10 is preferably 4/17 to 10/17, more preferably 5/17 to 8/17.

なお、実施例では、伝熱フィン10の板厚(肉厚)に対してV字部12aの板厚(肉厚)が薄い場合について説明したが、伝熱フィン10とV字部12aの板厚(肉厚)を同じにした場合でも、凹状湾曲部130を有する伝熱フィン100(比較例)(図10参照)に比べてV字部12aに応力が集中するため、撓みの変位量は大きくなる。     In addition, although the Example demonstrated the case where the plate | board thickness (thickness) of the V-shaped part 12a was thin with respect to the plate | board thickness (thickness) of the heat-transfer fin 10, the board | plate of the heat-transfer fin 10 and the V-shaped part 12a was demonstrated. Even when the thickness (thickness) is the same, stress is concentrated on the V-shaped portion 12a as compared to the heat transfer fin 100 (comparative example) having the concave curved portion 130 (see FIG. 10). growing.

また、比較例a,b、cから判るように、肉厚を薄くすれば変位量(撓み)は劇的に良好になるが、薄くし過ぎると不良率が増加してしまう。したがって、応力集中箇所をV字状とし、V字部の角度(内角)と長さ(深さ)を上記のように調節することで、肉厚の薄い伝熱フィンの変位量(撓み)に近づけることができる。     As can be seen from Comparative Examples a, b, and c, if the thickness is reduced, the amount of displacement (deflection) is dramatically improved. However, if the thickness is excessively decreased, the defect rate is increased. Therefore, the stress concentration location is V-shaped, and by adjusting the angle (inner angle) and length (depth) of the V-shaped portion as described above, the amount of displacement (deflection) of the thin heat transfer fin can be reduced. You can get closer.

1 集熱部
2 二重真空管
2a 外管
2b 内管
3 選択吸収膜
10 伝熱フィン
11a 開口
12 V字状屈曲部
12a V字部
13 嵌合溝部
14 陽極酸化皮膜(陽極酸化皮膜処理、アルマイト処理)
15 熱媒管
θ V字状屈曲部の内角
D V字状屈曲部のV字内方向の長さ(深さ)
R 伝熱フィンの半径
δ 撓み(変位量)
X 内管の内径
Y 伝熱フィンの外径
DESCRIPTION OF SYMBOLS 1 Heat collection part 2 Double vacuum tube 2a Outer tube 2b Inner tube 3 Selective absorption film 10 Heat transfer fin 11a Opening 12 V-shaped bending part 12a V-shaped part 13 Fitting groove part 14 Anodized film (anodized film process, anodized process) )
15 Heat transfer tube θ Inner angle D of V-shaped bent portion Length (depth) of V-shaped bent portion in V-shaped direction
R Radius of heat transfer fin δ Deflection (displacement)
X Inner tube inner diameter Y Heat transfer fin outer diameter

Claims (7)

太陽放射エネルギを集熱部に集中させ、上記集熱部内を流れる熱媒体を温める太陽光集熱装置であって、
透明なガラス製の二重真空管と、上記二重真空管の内管の外周面に被覆される選択吸収膜と、弾発力によって上記二重真空管の内管の内周面に面接触可能な伝熱フィンと、上記伝熱フィンの内側面に面接触する熱媒管とを具備し、
上記伝熱フィンの外表面には陽極酸化皮膜処理が施され、かつ、伝熱フィンの外径が上記二重真空管の内管の内径と同径以上に形成され、更に上記伝熱フィンは、一側が開口した断面円弧状に形成されると共に、上記開口と対向する部位に先端が位置すべく円弧状部の内方に向かってV字状に屈曲するV字状屈曲部が設けられている、
ことを特徴とする太陽光集熱装置。
A solar heat collecting apparatus that concentrates solar radiation energy on a heat collecting part and heats a heat medium flowing in the heat collecting part,
A transparent glass double vacuum tube, a selective absorption film coated on the outer peripheral surface of the inner tube of the double vacuum tube, and a transmission capable of surface contact with the inner peripheral surface of the inner tube of the double vacuum tube by elasticity. Comprising a heat fin and a heat transfer tube in surface contact with the inner surface of the heat transfer fin,
The outer surface of the heat transfer fin is subjected to an anodic oxide film treatment, and the outer diameter of the heat transfer fin is formed to be equal to or larger than the inner diameter of the inner tube of the double vacuum tube. A V-shaped bent part that is formed in a circular arc shape with an opening on one side and bent in a V shape toward the inside of the arc-shaped part is provided so that the tip is located at a portion facing the opening. ,
A solar heat collector characterized by that.
請求項1記載の太陽光集熱装置において、
上記伝熱フィンのV字状屈曲部分の肉厚が、それ以外の伝熱フィン部分よりも薄く形成されていることを特徴とする太陽光集熱装置。
The solar heat collecting apparatus according to claim 1,
The solar heat collecting apparatus according to claim 1, wherein a thickness of the V-shaped bent portion of the heat transfer fin is thinner than other heat transfer fin portions.
請求項1又は2に記載の太陽光集熱装置において、
上記伝熱フィンに設けられた上記V字状屈曲部のV字部の内角が25°〜35°である、ことを特徴とする太陽光集熱装置。
In the solar heat collecting apparatus of Claim 1 or 2,
A solar heat collecting apparatus, wherein an inner angle of a V-shaped portion of the V-shaped bent portion provided on the heat transfer fin is 25 ° to 35 °.
請求項1ないし3のいずれかに記載の太陽光集熱装置において、
上記伝熱フィンの半径(R)と上記V字状屈曲部のV字内方向長さ(D)の比率(D/R)が4/17〜10/17である、ことを特徴とする太陽光集熱装置。
The solar heat collecting apparatus according to any one of claims 1 to 3,
The ratio (D / R) of the radius (R) of the heat transfer fin and the V-shaped inward direction length (D) of the V-shaped bent portion is 4/17 to 10/17. Light heat collector.
請求項1ないし3のいずれかに記載の太陽光集熱装置において、
上記伝熱フィンの半径(R)と上記V字状屈曲部のV字内方向長さ(D)の比率(D/R)が5/17〜8/17である、ことを特徴とする太陽光集熱装置。
The solar heat collecting apparatus according to any one of claims 1 to 3,
The ratio (D / R) of the radius (R) of the heat transfer fin and the V-shaped inward direction length (D) of the V-shaped bent portion is 5/17 to 8/17. Light heat collector.
請求項1ないし5のいずれかに記載の太陽光集熱装置において、
上記伝熱フィンの内側面に、断面が狭隘開口状の嵌合溝部が長手方向に沿って設けられ、上記嵌合凹溝部内に上記熱媒管が嵌合されている、ことを特徴とする太陽光集熱装置。
In the solar heat collecting apparatus in any one of Claim 1 thru | or 5,
A fitting groove with a narrow opening is provided along the longitudinal direction on the inner surface of the heat transfer fin, and the heat transfer pipe is fitted in the fitting groove. Solar heat collector.
請求項1ないし6のいずれかに記載の太陽光集熱装置において、
上記伝熱フィンは、アルミニウム製押出形材にて形成されている、ことを特徴とする太陽光集熱装置。
The solar heat collecting apparatus according to any one of claims 1 to 6,
The solar heat collecting apparatus according to claim 1, wherein the heat transfer fin is formed of an aluminum extruded profile.
JP2012140411A 2012-06-22 2012-06-22 Solar collector Active JP5904667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012140411A JP5904667B2 (en) 2012-06-22 2012-06-22 Solar collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012140411A JP5904667B2 (en) 2012-06-22 2012-06-22 Solar collector

Publications (2)

Publication Number Publication Date
JP2014005958A true JP2014005958A (en) 2014-01-16
JP5904667B2 JP5904667B2 (en) 2016-04-13

Family

ID=50103846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012140411A Active JP5904667B2 (en) 2012-06-22 2012-06-22 Solar collector

Country Status (1)

Country Link
JP (1) JP5904667B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016156332A1 (en) * 2015-03-31 2016-10-06 Commissariat à l'énergie atomique et aux énergies alternatives Multi-element thermal conductor for a vacuum tube of a solar thermal collector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586153U (en) * 1981-07-06 1983-01-14 日東工器株式会社 Vacuum double tube solar collector tube
JPS62195044U (en) * 1986-05-30 1987-12-11
JPS6343045U (en) * 1986-09-06 1988-03-22
DE102005010461A1 (en) * 2004-12-04 2006-06-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solar collector, has protective screen rotatable around vacuum tube between two positions, where screen shields tube against solar radiation in one position, and screen exposes tube to solar radiation in another position
JP2011202910A (en) * 2010-03-26 2011-10-13 Nikkeikin Aluminium Core Technology Co Ltd Sunlight heat collecting apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586153U (en) * 1981-07-06 1983-01-14 日東工器株式会社 Vacuum double tube solar collector tube
US4440156A (en) * 1981-07-06 1984-04-03 Nitto Kohki Co., Ltd. Solar heat collector
JPS62195044U (en) * 1986-05-30 1987-12-11
JPS6343045U (en) * 1986-09-06 1988-03-22
DE102005010461A1 (en) * 2004-12-04 2006-06-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solar collector, has protective screen rotatable around vacuum tube between two positions, where screen shields tube against solar radiation in one position, and screen exposes tube to solar radiation in another position
JP2011202910A (en) * 2010-03-26 2011-10-13 Nikkeikin Aluminium Core Technology Co Ltd Sunlight heat collecting apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016156332A1 (en) * 2015-03-31 2016-10-06 Commissariat à l'énergie atomique et aux énergies alternatives Multi-element thermal conductor for a vacuum tube of a solar thermal collector
FR3034506A1 (en) * 2015-03-31 2016-10-07 Commissariat Energie Atomique MULTI-ELEMENT THERMAL CONDUCTOR FOR VACUUM TUBE OF A THERMAL SOLAR SENSOR WITH DUAL VACUUM TUBES

Also Published As

Publication number Publication date
JP5904667B2 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5025750B2 (en) Solar collector
CN100582600C (en) Solar energy vacuum heat collection tube with clinging type metal wings
CN203554879U (en) Heat conduction structure and heat conduction base thereof
JP5904667B2 (en) Solar collector
CN104296396B (en) Solar energy high-temperature heat collection equipment
US4440156A (en) Solar heat collector
CN2849599Y (en) Solar vacuum heat collecting device
JP2013217559A (en) Solar heat collection heat exchanger
CN103925724A (en) Solar heat collection board high in heat transfer efficiency
CN204141864U (en) Solar energy high-temperature heat collection equipment
JP2005283092A (en) Solar heat collecting and radiating device, and manufacturing method therefor
CN1573255A (en) Heat transferring core bar of solar energy collector
CN106679196A (en) Straight ribbed pipe fin inserting trough-type condensation vacuum solar heat collector
US20130333384A1 (en) Solar power system and solar energy collection device thereof
US4076076A (en) Mechanical heat exchange joint
CN2757035Y (en) Heat transfer core strip of solar energy collector
CN217844330U (en) Solar vacuum heat collecting tube and solar water heater
CN205606933U (en) Area reflection separates solar energy high temperature thermal -collecting tube of heat exchanger and support frame
WO2007135419A2 (en) Solar collector
CN211208884U (en) Laser generator end plate
CN210441457U (en) Straight-through type metal glass vacuum solar heat collecting pipe and trough type heat collector composed of same
CN202166223U (en) Solar flat plate collector welding-free heat collecting fin assembly
CN108856944B (en) Solar heat absorption fin wrapped with copper pipe and welding method thereof
KR101180728B1 (en) Solar Collector Module
CN2830979Y (en) Novel solar vacuum heat collecting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5904667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250