JP2014005370A - Oil and fat purification method - Google Patents

Oil and fat purification method Download PDF

Info

Publication number
JP2014005370A
JP2014005370A JP2012141967A JP2012141967A JP2014005370A JP 2014005370 A JP2014005370 A JP 2014005370A JP 2012141967 A JP2012141967 A JP 2012141967A JP 2012141967 A JP2012141967 A JP 2012141967A JP 2014005370 A JP2014005370 A JP 2014005370A
Authority
JP
Japan
Prior art keywords
adsorbent
fats
sulfur
oils
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012141967A
Other languages
Japanese (ja)
Inventor
Akihiro Moriuchi
章博 森内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2012141967A priority Critical patent/JP2014005370A/en
Publication of JP2014005370A publication Critical patent/JP2014005370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fats And Perfumes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oil and fat-purification method where a sulfur-containing compound in an oil and fat is reduced using a certain adsorbent reusable by reproduction; an adsorbent of a sulfur-containing compound in an oil and fat; and an oil and fat-production method where the content of a sulfur-containing compound is reduced.SOLUTION: Provided are: [1] an oil and fat-purification method where a sulfur-containing compound in an oil and fat is adsorbed using an adsorbent consisting of a carrier having a group represented by the general formula (1) and having a volume change rate of 50% or less, and thereafter the oil and fat and the adsorbent are separated; [2] an adsorbent of a sulfur-containing compound in an oil and fat; and [3] an oil and fat-production method where the content of a sulfur-containing compound is reduced. -R-SOM(1) (In the formula, Rrepresents a saturated or unsaturated hydrocarbon group having a carbon number of 1 to 15, and M represents a cation of at least one kind of atoms selected from Group 10 and Group 11 in the periodic table.)

Description

本発明は、油脂の精製方法に関し、詳しくは、油脂中の硫黄含有化合物を低減する油脂の精製方法、油脂中の硫黄含有化合物吸着剤、及び硫黄含有化合物含量の低減された油脂の製造方法に関する。   TECHNICAL FIELD The present invention relates to a method for purifying fats and oils, and more particularly, to a method for purifying fats and oils for reducing sulfur-containing compounds in fats and oils, a sulfur-containing compound adsorbent in fats and oils, and a method for producing fats and oils with reduced sulfur-containing compound contents. .

油脂又は油脂由来の脂肪酸、脂肪酸エステル中には、通常数〜数十mg/kgの硫黄分が含まれている。これらの油脂又は油脂由来の脂肪酸、脂肪酸エステルを原料として、エステル還元触媒存在下で水素化反応を行ってアルコールを製造する場合、該原料中に含まれる硫黄分が、水素化触媒の触媒毒として作用し、触媒活性を著しく低下させる。特に、固定床連続反応の場合、触媒寿命が非常に短くなるために、頻繁に触媒の交換が必要となり、設備の稼働率低下を余儀なくされる。また、硫黄含有化合物は、天然油脂を加熱する際に臭気を生じる。そのため、硫黄含有量の低い油脂又は油脂由来の脂肪酸、脂肪酸エステルが求められている。   Oils and fats, fatty acids derived from fats and oils, and fatty acid esters usually contain several to several tens of mg / kg of sulfur. When these fats and oils or fatty acids derived from fats and oils and fatty acid esters are used as raw materials to produce an alcohol by performing a hydrogenation reaction in the presence of an ester reduction catalyst, the sulfur content contained in the raw materials is used as a catalyst poison for the hydrogenation catalyst. Acts and significantly reduces the catalytic activity. In particular, in the case of a fixed bed continuous reaction, the catalyst life becomes very short, so that the catalyst needs to be replaced frequently, and the operating rate of the equipment is inevitably lowered. Moreover, a sulfur-containing compound produces an odor when heating natural fats and oils. Therefore, fats and oils or fatty acid esters derived from fats and oils with a low sulfur content are required.

特許文献1には、グリセリド油等の天然油脂由来の油脂材料から硫黄含有化合物を除去する方法として、油脂材料をヒドロシリカゲルと接触させ、該ヒドロシリカゲル上に硫黄を吸着させる工程を有する油脂材料からの硫黄含有化合物の除去方法が開示されている。
特許文献2には、油脂ではないが、燃料油中の硫黄分を低減するものとして、シリカ等の担体に銀を担持し、更に必要に応じてニッケル、ルテニウム等を担持してなる燃料油用脱硫剤が開示されている。
特許文献3には、糖類の分離に適した液体クロマトグラフィ用カラム充填剤として、SO3 -基を有する陽イオン交換樹脂からなり、対イオンとしてAg+並びにアルカリ金属イオン及び/又はアルカリ土類金属イオンを有する金属担持陽イオン交換樹脂が提案されている。
In Patent Document 1, as a method for removing sulfur-containing compounds from oil-and-fat materials derived from natural fats and oils such as glyceride oil, oil-and-fat materials having a step of bringing oil-and-fat material into contact with hydrosilica gel and adsorbing sulfur onto the hydrosilica gel are disclosed. A method for removing the sulfur-containing compound is disclosed.
Patent Document 2 discloses a fuel oil that is not oil and fat, but has silver supported on a carrier such as silica, and further supports nickel, ruthenium, etc., if necessary, to reduce the sulfur content in the fuel oil. A desulfurizing agent is disclosed.
Patent Document 3 discloses a cation exchange resin having a SO 3 - group as a liquid chromatography column filler suitable for separation of saccharides, and Ag + and alkali metal ions and / or alkaline earth metal ions as counter ions. Metal-supported cation exchange resins having the following have been proposed.

特開平6−33086号公報JP-A-6-33086 特開2002−316043号公報JP 2002-316043 A 特開昭61−86654号公報JP-A-61-86654

しかしながら、特許文献1に記載のヒドロシリカゲルは、硫黄含有化合物の低減性能は十分ではなく、また使用済のヒドロシリカゲルは再生・再利用ができないため、吸着処理のコストが高いという問題点を有する。
特許文献2の金属吸着担体は、高極性溶媒を用いて吸着した硫黄含有化合物を除去する再生操作の際に、銀等の金属成分も担体から脱着してしまうため、脱硫剤として再利用することは困難であることが明らかとなった。
特許文献3の金属担持イオン交換樹脂は、高極性溶媒中での使用が可能であるため、再生、再利用は可能であろうと考えられるものの、特許文献3の金属担持イオン交換樹脂の金属陽イオンを特許文献2に記載のものに置換して油脂に応用した場合、硫黄含有化合物の吸着効率が低いことが明らかになった。
本発明は、再生により再利用可能な特定の吸着剤を用いて、油脂中の硫黄含有化合物を低減する油脂の精製方法、油脂中の硫黄含有化合物吸着剤、及び硫黄含有化合物含量の低減された油脂の製造方法を提供することを課題とする。
However, the hydrosilica gel described in Patent Document 1 has a problem that the reduction performance of the sulfur-containing compound is not sufficient, and the used hydrosilica gel cannot be regenerated and reused, so that the cost of the adsorption treatment is high.
The metal adsorbing carrier of Patent Document 2 is reused as a desulfurizing agent because metal components such as silver are also desorbed from the carrier during the regeneration operation to remove the sulfur-containing compound adsorbed using a high-polarity solvent. Proved difficult.
Since the metal-supported ion exchange resin of Patent Document 3 can be used in a high-polarity solvent, it can be regenerated and reused, but the metal cation of the metal-supported ion exchange resin of Patent Document 3 It was revealed that the adsorption efficiency of sulfur-containing compounds is low when the oil is replaced with those described in Patent Document 2 and applied to oils and fats.
The present invention relates to a method for refining fats and oils that reduces sulfur-containing compounds in fats and oils, using specific adsorbents that can be reused by regeneration, sulfur-containing compound adsorbents in fats and oils, and reduced sulfur-containing compound contents. It aims at providing the manufacturing method of fats and oils.

すなわち、本発明は、次の[1]〜[3]を提供する。
[1]下記一般式(1)で表される基が結合した担体からなり、体積変化率が50%以下である吸着剤を用いて油脂中の硫黄含有化合物を吸着し、その後油脂と該吸着剤を分離する油脂の精製方法。
−R1−SO3 -+ (1)
(式中、R1は、炭素数1〜15の飽和又は不飽和の炭化水素基を示し、Mは、周期表第10族及び第11族から選ばれる少なくとも1種の原子の陽イオンを示す。)
[2]前記一般式(1)で表される基が結合した担体からなり、体積変化率が50%以下である油脂中の硫黄含有化合物吸着剤。
[3]油脂と、前記一般式(1)で表される基が結合した担体からなり、体積変化率が50%以下である吸着剤を接触させて、該吸着剤に油脂中の硫黄含有化合物を吸着させた後、油脂と該吸着剤を分離する油脂の精製工程を含む、硫黄含有化合物含量の低減された油脂の製造方法。
That is, the present invention provides the following [1] to [3].
[1] A sulfur-containing compound in an oil or fat is adsorbed by using an adsorbent having a volume change rate of 50% or less, comprising a carrier to which a group represented by the following general formula (1) is bonded. Oil and fat purification method for separating the agent.
-R 1 -SO 3 - M + ( 1)
(In the formula, R 1 represents a saturated or unsaturated hydrocarbon group having 1 to 15 carbon atoms, and M represents a cation of at least one atom selected from Groups 10 and 11 of the periodic table. .)
[2] A sulfur-containing compound adsorbent in fats and oils comprising a carrier to which the group represented by the general formula (1) is bonded, and having a volume change rate of 50% or less.
[3] A sulfur-containing compound in fats and oils is made by contacting an adsorbent comprising a fat and oil and a carrier to which the group represented by the general formula (1) is bonded, and having a volume change rate of 50% or less. A method for producing fats and oils with a reduced content of sulfur-containing compounds, comprising a step of purifying fats and oils after separating the adsorbents from the fats and oils.

本発明の精製方法によれば、再生、再利用が可能な特定の吸着剤を用いて、油脂中の硫黄含有化合物を効率よく低減することができる。また、本発明によれば、油脂中の硫黄含有化合物吸着剤、及び硫黄含有化合物含量の低減された油脂の製造方法を提供することができる。   According to the purification method of the present invention, sulfur-containing compounds in fats and oils can be efficiently reduced using a specific adsorbent that can be regenerated and reused. Moreover, according to this invention, the manufacturing method of the fat and oil in which the sulfur containing compound adsorption agent in fats and oils and the sulfur containing compound content were reduced can be provided.

[油脂の精製方法]
本発明の油脂の精製方法は、下記一般式(1)で表される基が結合した担体からなり、体積変化率が50%以下である吸着剤(以下「本発明の吸着剤」ともいう)を用いて油脂中の硫黄含有化合物を吸着し、その後油脂と該吸着剤を分離する工程を有する。
−R1−SO3 -+ (1)
(式中、R1は、炭素数1〜15の飽和又は不飽和の炭化水素基を示し、Mは、周期表第10族及び第11族から選ばれる少なくとも1種の原子の陽イオンを示す。)
[Oil and fat refining method]
The method for purifying fats and oils of the present invention comprises an adsorbent comprising a carrier bonded with a group represented by the following general formula (1) and having a volume change rate of 50% or less (hereinafter also referred to as “adsorbent of the present invention”). Is used to adsorb sulfur-containing compounds in fats and oils, and then separate the fats and fats and the adsorbent.
-R 1 -SO 3 - M + ( 1)
(In the formula, R 1 represents a saturated or unsaturated hydrocarbon group having 1 to 15 carbon atoms, and M represents a cation of at least one atom selected from Groups 10 and 11 of the periodic table. .)

<油脂>
油脂とは、植物油脂、動物脂、水産油脂等の天然資源由来の天然油脂、及び天然油脂をエステル交換して得られるジグリセリド、モノグリセリド等の天然油脂由来の誘導体を意味する。植物油脂としては、とうもろこし油、綿実油、オリーブ油、落花生油、菜種油、サンフラワー油、ごま油、大豆油、ひまわり油、ヤシ油、パーム油、パーム核油等が挙げられ、動物脂としては、牛脂、豚脂等が挙げられ、水産油脂としては、魚油等が挙げられる。また、天然油脂由来の誘導体としては、脂肪酸、脂肪酸エステル等が挙げられる。
これらの中では、菜種油、ヤシ油、パーム油、パーム核油等の植物油脂、牛脂等の動物脂が好ましく、ヤシ油、パーム核油等の植物油脂がより好ましい。
<Oil and fat>
The fats and oils mean natural fats and oils derived from natural resources such as vegetable fats, animal fats and marine fats and oils, and derivatives derived from natural fats and oils such as diglycerides and monoglycerides obtained by transesterification of natural fats and oils. Examples of vegetable oils include corn oil, cottonseed oil, olive oil, peanut oil, rapeseed oil, sunflower oil, sesame oil, soybean oil, sunflower oil, coconut oil, palm oil, palm kernel oil and the like. Pork fat etc. are mentioned, and fish oil etc. are mentioned as marine oil and fat. Moreover, fatty acid, fatty acid ester, etc. are mentioned as a derivative derived from natural fats and oils.
Among these, vegetable oils such as rapeseed oil, coconut oil, palm oil, and palm kernel oil, and animal fats such as beef tallow are preferable, and vegetable oils such as coconut oil and palm kernel oil are more preferable.

油脂、例えば、ヤシ油、パーム油等の植物油には、ステロール類、カロテノイド、クロロフィル等の有機色素が存在しているため、予め、通常行われる精製処理をしておくことが好ましい。
また、油脂中には、油脂の種類によって異なるが、通常、数〜数十ppmの硫黄含有化合物が含まれている。
本発明の油脂の精製方法によれば、油脂中の硫黄含有化合物の濃度を、好ましくは2.5ppm以下、より好ましくは1ppm以下まで低減させることができる。
油脂中に存在する硫黄含有化合物としては、チオール類、スルフィド類、ジスルフィド類、チオカルボン酸類、チオフェン類等の芳香族含硫黄含有化合物、スルホキシド類、エピスルフィド類、イソチオシアネート類、チオシアネート類、オキサゾリジンチオン類、及び硫黄含有アミノ酸が例示される。油脂中に存在する硫黄含有化合物は、低極性のものから高極性のものまで多種多様であるが、本発明の吸着剤を使用することで、効率よく油脂から硫黄含有化合物を除去することが可能となる。
本発明の吸着剤は、油脂中の硫黄含有化合物の硫黄の酸化数が2価又は4価である場合に、より効率的に硫黄含有化合物の除去が可能であり、該酸化数が2価である場合、更に効率的に硫黄含有化合物の除去が可能である。
In oils and fats, for example, vegetable oils such as coconut oil and palm oil, since organic pigments such as sterols, carotenoids, and chlorophyll are present, it is preferable to carry out a conventional purification treatment in advance.
Moreover, in fats and oils, although it changes with kinds of fats and oils, several to several dozen ppm sulfur containing compound is normally contained.
According to the method for purifying fats and oils of the present invention, the concentration of the sulfur-containing compound in the fats and oils can be reduced to preferably 2.5 ppm or less, more preferably 1 ppm or less.
Sulfur-containing compounds present in fats and oils include aromatic sulfur-containing compounds such as thiols, sulfides, disulfides, thiocarboxylic acids, thiophenes, sulfoxides, episulfides, isothiocyanates, thiocyanates, oxazolidinethiones And sulfur-containing amino acids. There are a wide variety of sulfur-containing compounds present in fats and oils, from low to high polar ones. By using the adsorbent of the present invention, sulfur-containing compounds can be efficiently removed from fats and oils. It becomes.
The adsorbent of the present invention can remove sulfur-containing compounds more efficiently when the oxidation number of sulfur of the sulfur-containing compound in fats and oils is divalent or tetravalent, and the oxidation number is divalent. In some cases, sulfur-containing compounds can be removed more efficiently.

<吸着剤>
本発明の吸着剤は、前記一般式(1)で表される基が結合した担体からなり、体積変化率が50%以下である吸着剤であればよい。
ここで「結合」とは、共有結合を指し、イオン結合、物理吸着等のその他の結合は含まれない。
本発明の吸着剤は、前記一般式(1)で表される基が結合した担体(以下「本発明の担体」ともいう)からなる。
前記一般式(1)で表される基が結合した担体とは、担体に前記一般式(1)で表される基を結合して得られるものに限定されず、吸着剤が、前記一般式(1)で表される基を有していればよい。例えば、架橋化有機高分子化合物をスルホン酸化した後、スルホン酸基の対イオンを銀イオンに交換したものであっても、前記一般式(1)で表される基を有していれば、本発明における、前記一般式(1)で表される基が結合した担体に包含される。
本発明の担体は、無機化合物でも有機化合物でもよいが、使用コストの観点から、無機化合物及び架橋化有機高分子化合物から選ばれる1種又は2種以上が好ましい。
本発明の吸着剤の形状に特に限定はなく、球状、ペレット状、破砕状のいずれであってよいが、硫黄含有化合物の吸着効率の観点から、球状が好ましい。
本発明の吸着剤は、油脂中に含まれる硫黄含有化合物の吸着効率の観点から、油脂中における数平均粒子径が、好ましくは10〜1200μm、より好ましくは20〜800μm、更に好ましくは、30〜600μmである。平均粒子径の測定は、具体的には、実施例に記載の方法で行われる。
本発明の吸着剤は、油脂中に含まれる硫黄含有化合物の吸着効率の観点から、多孔質であることが好ましく、油脂中における平均細孔径は、水銀圧入法による測定値で、好ましくは10〜300Å、より好ましくは40〜150Åである。吸着剤の油脂中における平均細孔径は、具体的には実施例に記載の方法で評価される。
<Adsorbent>
The adsorbent of the present invention may be an adsorbent that is composed of a carrier to which the group represented by the general formula (1) is bonded and has a volume change rate of 50% or less.
Here, “bond” refers to a covalent bond and does not include other bonds such as ionic bond and physical adsorption.
The adsorbent of the present invention comprises a carrier to which the group represented by the general formula (1) is bound (hereinafter also referred to as “the carrier of the present invention”).
The carrier to which the group represented by the general formula (1) is bonded is not limited to one obtained by bonding the group represented by the general formula (1) to the carrier, and the adsorbent is represented by the general formula. What is necessary is just to have group represented by (1). For example, after sulfonating the crosslinked organic polymer compound, the counter ion of the sulfonic acid group is exchanged with silver ion, as long as it has a group represented by the general formula (1), In the present invention, the carrier represented by the general formula (1) is included.
The carrier of the present invention may be an inorganic compound or an organic compound, but from the viewpoint of use cost, one or more selected from an inorganic compound and a crosslinked organic polymer compound are preferable.
The shape of the adsorbent of the present invention is not particularly limited and may be any of a spherical shape, a pellet shape, and a crushed shape, but a spherical shape is preferable from the viewpoint of the adsorption efficiency of the sulfur-containing compound.
From the viewpoint of the adsorption efficiency of the sulfur-containing compound contained in the fat and oil, the adsorbent of the present invention preferably has a number average particle size in the fat and oil of 10 to 1200 μm, more preferably 20 to 800 μm, and still more preferably 30 to 30 μm. 600 μm. Specifically, the average particle size is measured by the method described in the examples.
The adsorbent of the present invention is preferably porous from the viewpoint of the adsorption efficiency of the sulfur-containing compound contained in the oil and fat, and the average pore diameter in the oil and fat is a value measured by a mercury intrusion method, preferably 10 to 10. 300 tons, more preferably 40 to 150 tons. The average pore diameter of the adsorbent in fats and oils is specifically evaluated by the method described in the examples.

本発明の吸着剤は、体積変化率が50%以下であれば、油脂中の硫黄含有化合物に対し、高い吸着能力を有する。吸着剤の体積変化率は、硫黄含有化合物に対する吸着能力の観点から、30%以下が好ましく、15%以下がより好ましく、10%以下が更に好ましい。
本発明において体積変化率とは、水中における吸着剤の体積と油脂中における吸着剤の体積の差を水中における吸着剤の体積で除したものをいい、具体的には、実施例に記載の方法で測定される。ここで、吸着剤の体積とは、吸着剤が水又は油脂により膨潤する場合、膨潤後の水又は油脂を含んだ体積をいう。吸着剤が、実施例に記載の測定条件において、水、又は油脂に完全に溶解してしまう場合は、体積変化率は測定されない。
体積変化率は本発明の担体の性質に依存し、例えば本発明の担体として後述する無機化合物を用いた場合は、水又は油脂による膨潤が見られず、体積変化が見られないため、体積変化率は0%と見なすことができる。一方、本発明の担体が後述する架橋化化である場合には、水又は油脂によって本発明の吸着剤の膨潤が起こる場合があるが、その場合、一般式(1)で表される基が高い極性を有することから、通常、水中における膨潤の度合いが、油脂中における膨潤の度合いよりも大きく、体積変化率は0%以上の値を示す。
If the volume change rate is 50% or less, the adsorbent of the present invention has a high adsorption capacity for sulfur-containing compounds in fats and oils. The volume change rate of the adsorbent is preferably 30% or less, more preferably 15% or less, and still more preferably 10% or less, from the viewpoint of the adsorption capacity for the sulfur-containing compound.
In the present invention, the volume change rate refers to the difference between the volume of the adsorbent in water and the volume of the adsorbent in fats and oils divided by the volume of the adsorbent in water, specifically, the method described in the examples. Measured in Here, the volume of the adsorbent refers to the volume containing water or fat after swelling when the adsorbent swells with water or fat. When the adsorbent is completely dissolved in water or fat under the measurement conditions described in the examples, the volume change rate is not measured.
The volume change rate depends on the properties of the carrier of the present invention.For example, when an inorganic compound described later is used as the carrier of the present invention, swelling due to water or oil is not seen, and no volume change is seen. The rate can be considered as 0%. On the other hand, when the carrier of the present invention is cross-linked as described later, the adsorbent of the present invention may swell due to water or fat, in which case the group represented by the general formula (1) Since it has high polarity, normally, the degree of swelling in water is larger than the degree of swelling in fats and oils, and the volume change rate shows a value of 0% or more.

(担体)
本発明の担体である無機化合物の具体例としては、シリカ、アルミナ、シリカアルミナ、ゼオライト、珪藻土、活性白土、チタニア、ジルコニア、活性炭等が挙げられる。
また、本発明の担体である架橋化有機高分子化合物の具体例としては、架橋化ポリスチレン、架橋化ポリビニルアルコール、架橋化ポリメタクリレート等の架橋化合成高分子、架橋化でんぷん、架橋化プルラン、架橋化ヒドロキシエチルセルロース、架橋化メチルセルロース、架橋化カルボキシメチルセルロース等の架橋化多糖が挙げられる。
本発明の担体が架橋化合成高分子、又は架橋化多糖である場合、吸着剤の体積変化率は、架橋化合成高分子又は架橋化多糖の架橋化度により制御可能であって、架橋化度を上げることにより、吸着剤の体積変化率を低下させることが可能である。
架橋化に用いる架橋化剤としては特に限定はない。具体的には、ジビニルベンゼン、メチレンビスアクリルアミド、ポリエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート等の、分子内にビニル基を2つ以上有する架橋化剤、ポリエチレングリコールジグリシジルエーテル等の分子内にグリシジル基を2つ以上有する架橋化剤が挙げられる。
(Carrier)
Specific examples of the inorganic compound that is the carrier of the present invention include silica, alumina, silica alumina, zeolite, diatomaceous earth, activated clay, titania, zirconia, activated carbon and the like.
Specific examples of the crosslinked organic polymer compound that is the carrier of the present invention include crosslinked synthetic polymers such as crosslinked polystyrene, crosslinked polyvinyl alcohol, and crosslinked polymethacrylate, crosslinked starch, crosslinked pullulan, crosslinked And cross-linked polysaccharides such as cross-linked hydroxyethyl cellulose, cross-linked methyl cellulose, and cross-linked carboxymethyl cellulose.
When the carrier of the present invention is a crosslinked synthetic polymer or a crosslinked polysaccharide, the volume change rate of the adsorbent can be controlled by the degree of crosslinking of the crosslinked synthetic polymer or crosslinked polysaccharide, and the degree of crosslinking It is possible to reduce the volume change rate of the adsorbent by increasing the.
There is no limitation in particular as a crosslinking agent used for crosslinking. Specifically, a crosslinking agent having two or more vinyl groups in the molecule, such as divinylbenzene, methylenebisacrylamide, polyethylene glycol diacrylate, trimethylolpropane triacrylate, or the like, or glycidyl in the molecule such as polyethylene glycol diglycidyl ether. Examples thereof include a crosslinking agent having two or more groups.

本発明の吸着剤の製造時の容易さ、及びコストの観点から、本発明の担体は、シリカ、アルミナ、シリカアルミナ又は架橋化ポリスチレンであることが好ましく、架橋化ポリスチレンであることがより好ましく、ジビニルベンゼンで架橋された架橋化ポリスチレンであることが更に好ましい。   From the viewpoint of ease of production of the adsorbent of the present invention and cost, the support of the present invention is preferably silica, alumina, silica alumina or cross-linked polystyrene, more preferably cross-linked polystyrene, More preferably, it is a cross-linked polystyrene cross-linked with divinylbenzene.

(一般式(1)で表される基)
−R1−SO3 -+ (1)
一般式(1)中、R1は、炭素数1〜15の飽和又は不飽和の炭化水素基を示し、Mは、周期表第10族及び第11族から選ばれる少なくとも1種の原子の陽イオンを示す。
一般式(1)のR1で表される炭化水素基は、直鎖状又は分枝鎖状又は環状のいずれであってもよい。一般式(1)中においてM+で表される陽イオンとスルホナート基(−SO3 -)との間のイオン結合形成のしやすさから、R1は下記一般式(2)で表される炭化水素基であることが好ましい。一般式(2)において、一般式(1)におけるスルホナート基は、ベンゼン環側の末端に結合している。
−(CH2n−C64− (2)
一般式(2)中、nは0〜9の整数であるが、より好ましくは0〜5の整数、更に好ましくは0〜3の整数である。
(Group represented by general formula (1))
-R 1 -SO 3 - M + ( 1)
In general formula (1), R 1 represents a saturated or unsaturated hydrocarbon group having 1 to 15 carbon atoms, and M represents a positive atom of at least one atom selected from Groups 10 and 11 of the periodic table. Indicates ions.
The hydrocarbon group represented by R 1 in the general formula (1) may be linear, branched or cyclic. R 1 is represented by the following general formula (2) because of the ease of ionic bond formation between the cation represented by M + and the sulfonate group (—SO 3 ) in the general formula (1). It is preferably a hydrocarbon group. In the general formula (2), the sulfonate group in the general formula (1) is bonded to the terminal on the benzene ring side.
- (CH 2) n -C 6 H 4 - (2)
In general formula (2), n is an integer of 0 to 9, more preferably an integer of 0 to 5, and still more preferably an integer of 0 to 3.

+は、周期表第10族及び第11族から選ばれる少なくとも1種の原子の陽イオンであれば、油脂中の硫黄含有化合物を効率よく吸着することができる。該陽イオンは、吸着効率の観点から、好ましくは銀イオン及び/又はパラジウムイオンであり、より好ましくは銀イオンである。
一般式(1)中のスルホナート基とM+で表される陽イオンとは、イオン結合により強固に結合しているため、油脂中においても、また再生時に高極性溶媒で洗浄した場合であっても、本発明の吸着剤から、一般式(1)においてM+で表される陽イオンが脱着し難いという利点がある。このため、本発明の吸着剤は、油脂中での利用が可能で、かつ油脂中の硫黄含有化合物を吸着した後、高極性溶媒を用いて硫黄含有化合物を選択的に除去することが可能であり、再利用が可能である。本発明の油脂の精製コストの観点から、本発明の吸着剤は再生して、再利用することが好ましい。
If M + is a cation of at least one atom selected from Groups 10 and 11 of the periodic table, it can efficiently adsorb sulfur-containing compounds in fats and oils. From the viewpoint of adsorption efficiency, the cation is preferably a silver ion and / or a palladium ion, and more preferably a silver ion.
Since the sulfonate group in the general formula (1) and the cation represented by M + are strongly bonded by ionic bonds, the sulfonate group is washed with a highly polar solvent in oils and fats or during regeneration. However, there is an advantage that the cation represented by M + in the general formula (1) is difficult to desorb from the adsorbent of the present invention. For this reason, the adsorbent of the present invention can be used in fats and oils, and after adsorbing sulfur-containing compounds in fats and oils, it is possible to selectively remove sulfur-containing compounds using a highly polar solvent. Yes, it can be reused. From the viewpoint of the refining cost of the fats and oils of the present invention, the adsorbent of the present invention is preferably regenerated and reused.

吸着剤中のM+の量は、吸着効率の観点から、0.1mmol/g以上が好ましく、0.3mmol/g以上がより好ましく、0.5mmol/g以上が更に好ましい。吸着剤中のM+の量は、入手容易性の観点から、3.0mmol/g以下が好ましく、2.5mmol/g以下がより好ましく、1.5mmol/g以下が更に好ましい。
吸着剤中のSO3 -量は、上記M+の好適な量を吸着剤中に固定化する観点から、0.1mol/g以上が好ましく、0.3mol/g以上がより好ましく、0.5mol/g以上が更に好ましい。吸着剤中のSO3 -量は、入手容易性の観点から、3.0mmol/g以下が好ましく、2.5mmol/g以下がより好ましく、1.5mmol/g以下が更に好ましい。
なお、吸着剤中のM+量の定量は、ICP(高周波誘導結合プラズマ)発光分光分析によって行うことができ、吸着剤中のSO3 -量の定量は、原子吸光分析よって行うことができる。具体的には実施例に記載の方法により行うことができる。
The amount of M + in the adsorbent is preferably 0.1 mmol / g or more, more preferably 0.3 mmol / g or more, and still more preferably 0.5 mmol / g or more from the viewpoint of adsorption efficiency. The amount of M + in the adsorbent is preferably 3.0 mmol / g or less, more preferably 2.5 mmol / g or less, and still more preferably 1.5 mmol / g or less from the viewpoint of availability.
The SO 3 amount in the adsorbent is preferably 0.1 mol / g or more, more preferably 0.3 mol / g or more, from the viewpoint of immobilizing a suitable amount of M + in the adsorbent, / g or more is more preferable. The amount of SO 3 in the adsorbent is preferably 3.0 mmol / g or less, more preferably 2.5 mmol / g or less, and still more preferably 1.5 mmol / g or less from the viewpoint of availability.
The amount of M + in the adsorbent can be determined by ICP (radio frequency inductively coupled plasma) emission spectroscopic analysis, and the amount of SO 3 in the adsorbent can be determined by atomic absorption analysis. Specifically, it can be carried out by the method described in the examples.

<吸着剤の製造方法>
本発明の吸着剤の製造方法に特に限定はない。本発明の担体が無機化合物、例えばシリカである場合は、(i)シリカと下記一般式(3)で表される剤を反応させて得ることもできるし、(ii)シリカと下記一般式(4)で表される剤を反応させた後、硝酸銀等の周期表第10族及び第11族から選ばれる少なくとも1種の金属塩の水溶液と接触させ、スルホナート基の対イオンを交換することにより得ることができる。
X−R2−SO3 -+ (3)
X−R2−SO3 -+ (4)
一般式(3)及び(4)において、Xは本発明の担体と結合を形成しうる官能基を示し、具体的には、水酸基、アミノ基、ハロゲン原子、トリヒドロキシシラノ基、トリアルコキシ(C1〜3)シラノ基、エポキシ基等が挙げられる。R2は直鎖状又は分枝鎖状又は環状の飽和又は不飽和の炭素数1〜15の炭化水素基を示す。Y+は周期表第10族及び第11族から選ばれる原子の陽イオンを示し、Z+は周期表第10族及び第11族から選ばれる原子の陽イオンを除く、原子の陽イオンを示す。
<Method for producing adsorbent>
There is no limitation in particular in the manufacturing method of the adsorption agent of this invention. When the carrier of the present invention is an inorganic compound such as silica, it can be obtained by reacting (i) silica with an agent represented by the following general formula (3), or (ii) silica and the following general formula ( 4) After the agent represented by 4) is reacted, by contacting with an aqueous solution of at least one metal salt selected from Group 10 and Group 11 of the periodic table such as silver nitrate, the counter ion of the sulfonate group is exchanged. Can be obtained.
X-R 2 -SO 3 - Y + (3)
X-R 2 -SO 3 - Z + (4)
In the general formulas (3) and (4), X represents a functional group capable of forming a bond with the carrier of the present invention. Specifically, a hydroxyl group, an amino group, a halogen atom, a trihydroxysilano group, a trialkoxy (C1 -3) A silano group, an epoxy group, etc. are mentioned. R 2 represents a linear, branched or cyclic saturated or unsaturated hydrocarbon group having 1 to 15 carbon atoms. Y + represents a cation of an atom selected from Groups 10 and 11 of the periodic table, and Z + represents a cation of an atom excluding a cation of an atom selected from Groups 10 and 11 of the periodic table. .

本発明の担体が、架橋化有機高分子化合物である場合は、(iii)原料モノマーの重合及び架橋化を行った後、又は多糖への架橋化を行った後、前記(i)又は(ii)の場合と同様に前記一般式(3)又は(4)で表される剤を用いて製造することもできるし、(iv)対イオンがM+でない点を除き一般式(1)で表される基を有する市販の強酸性イオン交換樹脂を、硝酸銀等の周期表第10族及び第11族から選ばれる少なくとも1種の金属塩の水溶液と接触させ、スルホナート基の対イオンを交換することもできる。なお、前記(iii)の製造法においては、架橋化と一般式(3)又は(4)の剤との反応は、同時であってもよい。 When the carrier of the present invention is a cross-linked organic polymer compound, (iii) after polymerization and cross-linking of the raw material monomer or after cross-linking to polysaccharide, the above (i) or (ii ) In the same manner as in the case of), and (iv) represented by the general formula (1) except that the counter ion is not M +. A commercially available strongly acidic ion exchange resin having a group to be exchanged with an aqueous solution of at least one metal salt selected from Group 10 and Group 11 of the periodic table such as silver nitrate, to exchange the counter ion of the sulfonate group You can also. In the production method (iii), the crosslinking and the reaction with the agent of the general formula (3) or (4) may be performed simultaneously.

<硫黄含有化合物の吸着・分離方法>
本発明の油脂の精製方法は、本発明の吸着剤に油脂中の硫黄含有化合物を吸着させ、その後、油脂と該吸着剤を分離する工程を有する。
本発明の吸着剤を用いて、油脂中の硫黄含有化合物を吸着する方法としては、本発明の吸着剤を対象となる油脂と接触させる方法であれば特に限定はないが、(i)本発明の吸着剤が充填されたカラムに油脂を流通させる方法(以下「カラム法」ともいう)、又は(ii)油脂に本発明の吸着剤を添加、又は本発明の吸着剤に油脂を添加する方法(以下「添加法」ともいう)を好適に採用することができる。
カラム法の場合は、本発明の吸着剤による硫黄含有化合物の吸着と、該吸着剤の分離を同時に行うことができる。添加法の場合は、本発明の吸着剤による油脂中の硫黄含有化合物の吸着後、油脂と該吸着剤との分離をろ過等の公知の方法によって行う。これらの中では、吸着効率の観点から、カラム法がより好ましい。
カラム法の場合、液空間速度は、硫黄含有化合物の吸着剤への吸着効率の吸着効率の観点から、0.12〜120h-1が好ましく、1.2〜30h-1がより好ましく、1.2〜12h-1が更に好ましい。
<Method for adsorption / separation of sulfur-containing compounds>
The method for purifying fats and oils of the present invention includes a step of adsorbing a sulfur-containing compound in fats and oils to the adsorbent of the present invention and then separating the fats and oils and the adsorbent.
The method for adsorbing sulfur-containing compounds in fats and oils using the adsorbent of the present invention is not particularly limited as long as it is a method for bringing the adsorbent of the present invention into contact with the target fats and oils, but (i) the present invention. (2) A method of adding the adsorbent of the present invention to a fat or oil, or a method of adding a fat to the adsorbent of the present invention (hereinafter also referred to as “column method”) (Hereinafter also referred to as “addition method”) can be suitably employed.
In the case of the column method, adsorption of the sulfur-containing compound by the adsorbent of the present invention and separation of the adsorbent can be performed simultaneously. In the case of the addition method, after the adsorption of the sulfur-containing compound in the fat and oil by the adsorbent of the present invention, the fat and oil and the adsorbent are separated by a known method such as filtration. Among these, the column method is more preferable from the viewpoint of adsorption efficiency.
In the case of the column method, the liquid space velocity is preferably 0.12 to 120 h −1 , more preferably 1.2 to 30 h −1 , from the viewpoint of the adsorption efficiency of the adsorption efficiency of the sulfur-containing compound to the adsorbent. 2 to 12 h −1 is more preferable.

添加法の場合、本発明の吸着剤使用量は、吸着効率の観点から、油脂に対し好ましくは0.1〜20質量%、より好ましくは1〜10質量%である。
油脂と本発明の吸着剤との接触時間は、好ましくは0.1〜12時間、より好ましくは、0.5〜2時間である。硫黄含有化合物の吸着速度の観点から、該吸着剤添加後の油脂は、振盪又は撹拌して混合することが好ましい。
カラム法又は添加法において、本発明の吸着剤により油脂中の硫黄含有化合物を吸着させる際の温度は、硫黄含有化合物の分解防止、及び吸着効率の観点から、好ましくは5〜80℃、より好ましくは15〜30℃である。
In the case of the addition method, the amount of the adsorbent used in the present invention is preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass, based on the fat and oil, from the viewpoint of adsorption efficiency.
The contact time between the oil and fat and the adsorbent of the present invention is preferably 0.1 to 12 hours, more preferably 0.5 to 2 hours. From the viewpoint of the adsorption rate of the sulfur-containing compound, it is preferable to mix the oil after addition of the adsorbent with shaking or stirring.
In the column method or the addition method, the temperature at which the sulfur-containing compound in the fat or oil is adsorbed by the adsorbent of the present invention is preferably from 5 to 80 ° C., more preferably from the viewpoint of preventing decomposition of the sulfur-containing compound and adsorption efficiency. Is 15-30 ° C.

カラム法、添加法、どちらの場合においても、油脂の粘度低減を目的として、溶媒を使用することができる。
用いられる溶媒に特に限定はないが、本発明の吸着剤による油脂中の硫黄含有化合物の吸着効率の観点から、中〜低極性溶媒が好ましく、低極性溶媒がより好ましい。具体的にはヘキサン、オクタン、イソオクタン、トルエン等の炭化水素溶媒;酢酸エチル等のエステル溶媒が好ましく、ヘキサン、オクタン、イソオクタン、トルエン等の炭化水素溶媒がより好ましく、精製後、油脂からの分離容易性の観点から、ヘキサンが更に好ましい。
In both the column method and the addition method, a solvent can be used for the purpose of reducing the viscosity of the oil.
Although there is no limitation in particular in the solvent used, from a viewpoint of the adsorption | suction efficiency of the sulfur containing compound in fats and oils by the adsorption agent of this invention, a medium-low polarity solvent is preferable and a low polarity solvent is more preferable. Specifically, hydrocarbon solvents such as hexane, octane, isooctane, and toluene; ester solvents such as ethyl acetate are preferable, hydrocarbon solvents such as hexane, octane, isooctane, and toluene are more preferable, and separation from oils and fats is easy after purification. From the viewpoint of properties, hexane is more preferable.

<吸着剤の再生処理>
本発明の吸着剤は、該吸着剤中に担持されているM+の量によって、硫黄含有化合物の吸着可能量が決まっているため、油脂中の硫黄含有化合物を吸着させることで、該吸着可能量は低下する。このように、本発明の油脂の精製方法に用いた後の吸着剤(以下「使用後の吸着剤」ともいう)の該吸着可能量は、使用前に比べて低下するが、使用後の吸着剤と高極性溶媒を接触させて、該吸着剤から硫黄含有化合物を除去することにより、再び硫黄含有化合物の吸着可能量を回復することができる(以下「再生処理」ともいう)。再生処理した本発明の吸着剤は、本発明の油脂の精製方法に再利用することが可能である。
<Regeneration treatment of adsorbent>
The adsorbent of the present invention is adsorbable by adsorbing sulfur-containing compounds in fats and oils because the amount of sulfur-containing compounds that can be adsorbed is determined by the amount of M + supported in the adsorbent. The amount drops. Thus, although the adsorbable amount of the adsorbent after use in the method for purifying fats and oils of the present invention (hereinafter also referred to as “adsorbent after use”) is lower than before use, the adsorbent after use is reduced. By removing the sulfur-containing compound from the adsorbent by bringing the agent into contact with the highly polar solvent, the adsorbable amount of the sulfur-containing compound can be recovered again (hereinafter also referred to as “regeneration treatment”). The adsorbent of the present invention that has been regenerated can be reused in the method for purifying fats and oils of the present invention.

再生処理に用いる高極性溶媒としては、炭素数1〜3の低級アルコール、アセトニトリル等が挙げられるが、油脂及び硫黄含有化合物に対し高い溶解性を有し、吸着剤からの除去を容易にする観点から、エタノール又はイソプロパノールが好ましい。
高極性溶媒の使用量は、吸着剤からの移行化合物の除去率の観点、及びコストの観点から、使用後の吸着剤に対して1〜100体積倍が好ましく、5〜50体積倍がより好ましく、10〜30体積倍が更に好ましい。
使用後の吸着剤と高極性溶媒を接触させる方法に特に限定はないが、カラムに該吸着剤を充填し、その後、高極性溶媒を流通させることが、硫黄含有化合物の除去効率の観点から好ましい。
再生処理後の吸着剤は、再利用前に前記炭化水素溶媒と接触させて、該吸着剤に付着した高極性溶媒を前記溶媒で置換しておくことが好ましい。
Examples of the highly polar solvent used for the regeneration treatment include lower alcohols having 1 to 3 carbon atoms, acetonitrile, and the like, but they have high solubility in fats and oils and sulfur-containing compounds, and are easy to remove from the adsorbent. Therefore, ethanol or isopropanol is preferable.
The amount of the highly polar solvent used is preferably 1 to 100 times by volume, more preferably 5 to 50 times by volume with respect to the adsorbent after use, from the viewpoint of the removal rate of the migration compound from the adsorbent and from the viewpoint of cost. 10-30 volume times is still more preferable.
The method for contacting the adsorbent after use with the highly polar solvent is not particularly limited, but it is preferable from the viewpoint of the removal efficiency of the sulfur-containing compound that the adsorbent is packed in a column and then the highly polar solvent is circulated. .
The adsorbent after the regeneration treatment is preferably brought into contact with the hydrocarbon solvent before reuse, and the highly polar solvent adhering to the adsorbent is replaced with the solvent.

[硫黄含有化合物吸着剤]
本発明の油脂中の硫黄含有化合物吸着剤は、前記一般式(1)で表される基が結合した担体からなり、体積変化率が50%以下である吸着剤である。
油脂中の硫黄含有化合物は、前記のとおり、チオール類、スルフィド類、ジスルフィド類、チオカルボン酸類、チオフェン類等の芳香族含硫黄含有化合物、スルホキシド類、エピスルフィド類、イソチオシアネート類、チオシアネート類、オキサゾリジンチオン類、及び硫黄含有アミノ酸等、低極性のものから高極性のものまで多種多様であるが、本発明の吸着剤を使用することで、効率よく油脂から硫黄含有化合物を除去することが可能となる。
本発明の吸着剤は、油脂中の硫黄含有化合物の硫黄の酸化数が2価又は4価である場合に、より効率的に硫黄化合物の除去が可能であり、該酸化数が2価である場合、更に効率的に硫黄含有化合物の除去が可能である。
[Sulfur-containing compound adsorbent]
The sulfur-containing compound adsorbent in the fats and oils of the present invention is an adsorbent comprising a carrier to which the group represented by the general formula (1) is bonded and having a volume change rate of 50% or less.
As described above, sulfur-containing compounds in fats and oils are aromatic sulfur-containing compounds such as thiols, sulfides, disulfides, thiocarboxylic acids, thiophenes, sulfoxides, episulfides, isothiocyanates, thiocyanates, oxazolidinethiones. And low-polarity to high-polarity amino acids such as sulfur-containing amino acids, but by using the adsorbent of the present invention, it becomes possible to efficiently remove sulfur-containing compounds from fats and oils. .
The adsorbent of the present invention can remove sulfur compounds more efficiently when the sulfur oxidation number of the sulfur-containing compound in the fat is divalent or tetravalent, and the oxidation number is divalent. In this case, the sulfur-containing compound can be removed more efficiently.

[油脂の製造方法]
本発明の硫黄含有化合物含量の低減された油脂の製造方法は、油脂と、前記一般式(1)で表される基が結合した担体からなり、体積変化率が50%以下である吸着剤を接触させて、該吸着剤に油脂中の硫黄含有化合物を吸着させた後、油脂と該吸着剤を分離する油脂の精製工程を含む。
本発明の油脂の製造方法によれば、硫黄含有化合物含量の低減された油脂を効率的に製造することができる。
[Oil production method]
The method for producing a fat with reduced sulfur-containing compound content according to the present invention comprises an adsorbent comprising a fat and fat and a carrier to which a group represented by the general formula (1) is bound, and having a volume change rate of 50% or less. After making it contact and adsorb | suck the sulfur containing compound in fats and oils to this adsorbent, the refinement | purification process of the fats and oils which isolate | separates fats and oils and this adsorbent is included.
According to the method for producing fats and oils of the present invention, fats and oils having a reduced sulfur-containing compound content can be efficiently produced.

上述した実施形態に関し、本発明はさらに以下の油脂の精製方法、製造方法、及び吸着剤を開示する。
<1>
下記一般式(1)で表される基が結合した担体からなり、体積変化率が50%以下である吸着剤を用いて油脂中の硫黄含有化合物を吸着し、その後油脂と該吸着剤を分離する、油脂の精製方法。
−R1−SO3 -+ (1)
(式中、R1は、炭素数1〜15の飽和又は不飽和の炭化水素基を示し、Mは、周期表第10族及び第11族から選ばれる少なくとも1種の原子の陽イオンを示す。)
In relation to the above-described embodiment, the present invention further discloses the following oil and fat purification method, production method, and adsorbent.
<1>
It consists of a carrier bonded with a group represented by the following general formula (1), adsorbs sulfur-containing compounds in fats and oils using an adsorbent whose volume change rate is 50% or less, and then separates the fats and fats and the adsorbents. A method for purifying oils and fats.
-R 1 -SO 3 - M + ( 1)
(In the formula, R 1 represents a saturated or unsaturated hydrocarbon group having 1 to 15 carbon atoms, and M represents a cation of at least one atom selected from Groups 10 and 11 of the periodic table. .)

<2>
一般式(1)におけるR1が、下記一般式(2)で表される炭化水素基である、前記<1>に記載の油脂の精製方法。
−(CH2n−C64− (2)
(式中、nは0〜9、好ましくは0〜5、より好ましくは0〜3の整数である。)
<3>
一般式(1)におけるM+が、銀イオン又はパラジウムイオンである、前記<1>又は<2>に記載の油脂の精製方法。
<4>
担体が、無機化合物及び架橋化有機高分子化合物から選ばれる1種又は2種以上である、前記<1>〜<3>のいずれかに記載の油脂の精製方法。
<5>
体積変化率が、30%以下、好ましくは15%以下、より好ましくは10%以下である、前記<1>〜<4>のいずれかに記載の油脂の精製方法。
<2>
The method for purifying fats and oils according to <1>, wherein R 1 in the general formula (1) is a hydrocarbon group represented by the following general formula (2).
- (CH 2) n -C 6 H 4 - (2)
(In the formula, n is an integer of 0 to 9, preferably 0 to 5, more preferably 0 to 3.)
<3>
The method for purifying fats and oils according to <1> or <2>, wherein M + in the general formula (1) is silver ion or palladium ion.
<4>
The method for purifying fats and oils according to any one of <1> to <3>, wherein the carrier is one or more selected from an inorganic compound and a crosslinked organic polymer compound.
<5>
The method for purifying fats and oils according to any one of <1> to <4>, wherein the volume change rate is 30% or less, preferably 15% or less, more preferably 10% or less.

<6>
下記一般式(1)で表される基が結合した担体からなり、体積変化率が50%以下である、油脂中の硫黄含有化合物吸着剤。
−R1−SO3 -+ (1)
(式中、R1は、炭素数1〜15の飽和又は不飽和の炭化水素基を示し、Mは、周期表第10族及び第11族から選ばれる少なくとも1種の原子の陽イオンを示す。)
<7>
一般式(1)におけるR1が、下記一般式(2)で表される炭化水素基である、前記<6>に記載の硫黄含有化合物吸着剤。
−(CH2n−C64− (2)
(式中、nは0〜9、好ましくは0〜5、より好ましくは0〜3の整数であり、更に好ましくは3である。)
<8>
一般式(1)におけるM+が、銀イオン又はパラジウムイオンである、前記<6>又は<7>に記載の硫黄含有化合物吸着剤。
<9>
担体が、無機化合物及び架橋化有機高分子化合物から選ばれる1種又は2種以上である、前記<6>〜<8>のいずれかに記載の硫黄含有化合物吸着剤。
<10>
油脂中の硫黄含有化合物を除去することに用いる、前記<6>〜<9>のいずれかに記載の硫黄含有化合物吸着剤。
<6>
A sulfur-containing compound adsorbent in fats and oils, comprising a carrier to which a group represented by the following general formula (1) is bonded, and having a volume change rate of 50% or less.
-R 1 -SO 3 - M + ( 1)
(In the formula, R 1 represents a saturated or unsaturated hydrocarbon group having 1 to 15 carbon atoms, and M represents a cation of at least one atom selected from Groups 10 and 11 of the periodic table. .)
<7>
The sulfur-containing compound adsorbent according to <6>, wherein R 1 in the general formula (1) is a hydrocarbon group represented by the following general formula (2).
- (CH 2) n -C 6 H 4 - (2)
(In the formula, n is an integer of 0 to 9, preferably 0 to 5, more preferably 0 to 3, more preferably 3.)
<8>
The sulfur-containing compound adsorbent according to <6> or <7>, wherein M + in the general formula (1) is silver ion or palladium ion.
<9>
The sulfur-containing compound adsorbent according to any one of <6> to <8>, wherein the carrier is one or more selected from an inorganic compound and a crosslinked organic polymer compound.
<10>
The sulfur-containing compound adsorbent according to any one of <6> to <9>, which is used for removing sulfur-containing compounds in fats and oils.

<11>
油脂と、前記<1>に記載の一般式(1)で表される基が結合した担体からなり、体積変化率が50%以下である吸着剤を接触させて、該吸着剤に油脂中の硫黄含有化合物を吸着させた後、油脂と該吸着剤を分離する油脂の精製工程を含む、硫黄含有化合物含量の低減された油脂の製造方法。
<11>
An oil and fat and a carrier to which the group represented by the general formula (1) described in <1> is bonded, and an adsorbent having a volume change rate of 50% or less are brought into contact with the adsorbent. A method for producing fats and oils with a reduced content of sulfur-containing compounds, comprising a step of purifying fats and oils after separating the sulfur-containing compounds and separating the adsorbents from the fats and oils.

以下の実施例における、各測定の具体的操作を以下に示す。
<油脂中の硫黄濃度の測定>
油脂中の硫黄濃度の測定は燃焼酸化/UV蛍光法(Antek Instruments社製、低濃度硫黄分析計9000LLS)により測定した。希釈溶媒としてイソオクタンを用い、50質量%溶液を調製し、燃焼管温度1050℃、サンプルの導入量60μLで測定を行った。
Specific operations of each measurement in the following examples are shown below.
<Measurement of sulfur concentration in fats and oils>
The sulfur concentration in the fat was measured by combustion oxidation / UV fluorescence method (Antek Instruments, low concentration sulfur analyzer 9000 LLS). Using isooctane as a diluent solvent, a 50% by mass solution was prepared, and measurement was performed at a combustion tube temperature of 1050 ° C. and a sample introduction amount of 60 μL.

<体積変化率の測定方法>
メスシリンダー(直径20mm)に、大過剰量の水中で24時間膨潤させた充填剤を、メスシリンダーに充填後の充填上面をできる限り平坦に、かつ、メスシリンダーの底面と平行になるように均しながら、10mLの目盛まで充填した。該充填剤を100mLのエタノール、100mLのヘキサンの順で洗浄した後、充填剤に対し、大過剰のヘキサン中で1時間放置した後、前記メスシリンダーに前記と同様の方法で再度充填し、充填上面の位置の目盛(A(mL))を読み取った。
体積変化率は、以下の計算式から算出した。
体積変化率(%)={10(mL)−A(mL)}/10(mL)×100
<Measurement method of volume change rate>
Fill a graduated cylinder (20 mm in diameter) with a filler swollen in a large excess of water for 24 hours so that the top surface after filling the graduated cylinder is as flat as possible and parallel to the bottom of the graduated cylinder. While filling up to 10 mL scale. The filler is washed with 100 mL of ethanol and 100 mL of hexane in this order, and then left for 1 hour in a large excess of hexane with respect to the filler. Then, the graduated cylinder is refilled with the same method as described above, and then filled. The scale of the upper surface position (A (mL)) was read.
The volume change rate was calculated from the following calculation formula.
Volume change rate (%) = {10 (mL) −A (mL)} / 10 (mL) × 100

<吸着剤中のM+の量の測定方法>
(i)本発明の担体が架橋化有機高分子化合物である場合のM+の量の測定方法
窒素気流下、80℃で10時間乾燥した吸着剤(以下「乾燥吸着剤」ともいう)を0.1g採取し、濃硫酸(98質量%)1mL、濃硝酸(60質量%)5mLで加熱分解処理分解を行った。その後、更に過酸化水素水(30質量%)、濃硝酸を適宜添加しながら分解処理を行い、放冷後、濃硝酸1mLを加えた後、超純水で20mLに定溶したものを試料溶液とした。ICP(高周波誘導結合プラズマ)発光分光分析装置(パーキンエルマー社製、Optima 5300DV、高周波出力:1.3kW、試料導入量:1mL/min、サンプルフラッシュ時間:20秒、測定高さ:15mm、測定波長 Ag:328.068nm、Pd:340.458mm)により測定することでM+の量を算出した。
(ii)本発明の担体がシリカである場合のM+の量の測定方法
乾燥吸着剤0.01gを白金ルツボに採取後、アルカリ融剤(炭酸ナトリウム:ホウ酸=5:2(質量比))2gを加え、950℃で溶融する。放冷後、塩酸(13.5質量%)4mLで溶解し、水で希釈して100mLとしたものを試料溶液とした。前記の「(i)本発明の担体が架橋化有機高分子化合物である場合のM+の量の測定方法」と同様にICP発光分光分析を行ってM+の量を算出した。
<Method for measuring the amount of M + in the adsorbent>
(I) Method for measuring the amount of M + when the carrier of the present invention is a cross-linked organic polymer compound An adsorbent (hereinafter also referred to as “dry adsorbent”) dried at 80 ° C. for 10 hours under a nitrogen stream is 0. 0.1 g was collected and subjected to thermal decomposition treatment with 1 mL of concentrated sulfuric acid (98% by mass) and 5 mL of concentrated nitric acid (60% by mass). Subsequently, decomposition treatment is performed while adding hydrogen peroxide (30% by mass) and concentrated nitric acid as appropriate. After cooling, 1 mL of concentrated nitric acid is added, and then the sample solution is dissolved in 20 mL with ultrapure water. It was. ICP (high frequency inductively coupled plasma) emission spectrometer (Perkin Elmer, Optima 5300 DV, high frequency output: 1.3 kW, sample introduction amount: 1 mL / min, sample flash time: 20 seconds, measurement height: 15 mm, measurement wavelength (Ag: 328.068 nm, Pd: 340.458 mm), the amount of M + was calculated.
(Ii) Method for measuring the amount of M + when the carrier of the present invention is silica After collecting 0.01 g of the dry adsorbent in a platinum crucible, an alkali flux (sodium carbonate: boric acid = 5: 2 (mass ratio)) ) Add 2g and melt at 950 ° C. After cooling, the sample solution was dissolved in 4 mL of hydrochloric acid (13.5% by mass) and diluted with water to 100 mL. The amount of M + was calculated by ICP emission spectroscopic analysis in the same manner as in “(i) Method for measuring the amount of M + when the carrier of the present invention is a crosslinked organic polymer compound”.

<比較吸着剤A中のNa+量の測定方法>
乾燥吸着剤を0.1g採取し、濃硫酸1mL、濃硝酸5mLで加熱分解処理分解を行った。その後、更に過酸化水素(30質量%)、濃硝酸を適宜添加しながら分解処理を行い、放冷後、濃硝酸1mLを加えた後、超純水で20mLに定溶したものを試料溶液とした。原子吸光分析装置(バリアン社製、Spectra AA220、測定波長:589nm、フレームタイプ:空気/アセチレン、空気流量:13.5 L/min、アセチレン流量:2 L/min)により測定することでM+の量を算出した。
<Measurement method of Na + amount in comparative adsorbent A>
0.1 g of the dried adsorbent was sampled and subjected to thermal decomposition treatment with 1 mL of concentrated sulfuric acid and 5 mL of concentrated nitric acid. Thereafter, decomposition treatment is performed while appropriately adding hydrogen peroxide (30% by mass) and concentrated nitric acid, and after standing to cool, 1 mL of concentrated nitric acid is added, and then dissolved in 20 mL with ultrapure water as a sample solution. did. Atomic absorption spectrometer (Varian Co., Spectra AA220, measurement wavelength: 589 nm, Frame Type: Air / acetylene, air flow rate: 13.5 L / min, acetylene flow: 2 L / min) of the M + by measuring the The amount was calculated.

<吸着剤中のSO3 -量の測定方法>
カラムに充填した乾燥吸着剤5gに1M−NaCl水溶液20gを通液して吸着剤中のSO3 -の対イオンをNa+に交換した後、100mLのイオン交換水を通液して、余剰のNa+の除去を行った。その後、1M−KCl水溶液20gを通液して吸着剤中のSO3 -の対イオンをK+に交換し、その際の排液中に含まれるNa+量を原子吸光分析(バリアン社製、Spectra AA220、測定波長:589nm、フレームタイプ:空気/アセチレン、空気流量:13.5L/min、アセチレン流量:2L/min)により測定した。排液中のNa+量と吸着剤中のSO3 -量は略同一であると見なして、吸着剤中のSO3 -量を算出した。
<SO 3 in the adsorbent - the amount of measurement methods>
After passing 20 g of 1M-NaCl aqueous solution through 5 g of the dry adsorbent packed in the column to exchange the counter ion of SO 3 in the adsorbent with Na + , 100 mL of ion-exchanged water was passed through the surplus adsorbent. Na + removal was performed. Thereafter, 20 g of a 1M-KCl aqueous solution was passed through to exchange the SO 3 counter ion in the adsorbent with K + , and the amount of Na + contained in the effluent at that time was analyzed by atomic absorption spectrometry (manufactured by Varian, (Spectra AA220, measurement wavelength: 589 nm, frame type: air / acetylene, air flow rate: 13.5 L / min, acetylene flow rate: 2 L / min). SO 3 in the Na + amount in the effluent sorbent - amount is regarded as substantially the same, SO 3 in the adsorbent - was calculated quantities.

<トリラウリン量及びジドデシルスルフィド量の測定方法>
トリラルリン及びジドデシルスルフィドはガスクロマトグラフ法(GC―FID)で定量した。測定条件は以下のとおりである。
ガスクロマトグラフ測定装置:Agilent社製6890
カラム:HP−1 (30m×0.32mm×0.25μm)
オーブン昇温条件:40℃(0分)→10℃/分→300℃(15分)
キャリアーガス:He(カラム流量:1.0mL/min)
注入方法:スプリット10:1、注入口温度:300℃、サンプル注入量:1μL
検出器:FID(300℃)
測定サンプルには、下記参考例1のトリラウリン及びジドデシルスルフィドを含む各溶液を、窒素気流下80℃で乾固させたものに、ヘキサン1mLを加えて溶解させた溶液を用いた。
<Method for measuring the amount of trilaurin and didodecyl sulfide>
Trirallin and didodecyl sulfide were quantified by gas chromatography (GC-FID). The measurement conditions are as follows.
Gas chromatograph measuring device: 6890 manufactured by Agilent
Column: HP-1 (30 m × 0.32 mm × 0.25 μm)
Oven temperature rising condition: 40 ° C (0 min) → 10 ° C / min → 300 ° C (15 min)
Carrier gas: He (column flow rate: 1.0 mL / min)
Injection method: split 10: 1, inlet temperature: 300 ° C., sample injection volume: 1 μL
Detector: FID (300 ° C)
As a measurement sample, a solution prepared by adding 1 mL of hexane to each solution containing trilaurin and didodecyl sulfide in Reference Example 1 below, which was dried at 80 ° C. under a nitrogen stream, was used.

<平均細孔径の評価方法>
乾燥時における吸着剤の平均細孔径を、水銀圧入法(Micromeritics社製、PoreSizer 9320)で測定した。水銀圧入の最大圧力は207MPaとした。本発明の実施例における吸着剤は乾燥状態及び油脂中における体積変化がほぼないと見なせるので、上記方法で得られた値を油脂中における本発明の吸着剤の平均細孔径の値と見なした。
<Evaluation method of average pore diameter>
The average pore diameter of the adsorbent at the time of drying was measured by a mercury intrusion method (Micromeritics, PoreSizer 9320). The maximum pressure of mercury intrusion was 207 MPa. Since the adsorbent in the examples of the present invention can be regarded as having almost no volume change in the dry state and in the fats and oils, the value obtained by the above method was regarded as the value of the average pore diameter of the adsorbent of the present invention in the fats and oils. .

<吸着剤の平均粒子径の測定方法>
(1)担体がシリカである場合
乾燥時における平均粒子径を下記方法により測定した。
試験用ふるい(JIS−Z8801−1参照)を、上から目開き106μm、90μm、53μm、32μm、受け皿、の順に組み合わせ、最上のふるいに吸水性樹脂を約50g入れ、ロータップ式自動ふるい振とう器にて10分間振とうした。
各ふるいに残留した吸着剤の重さを測定してから、各ふるいに残留した吸着剤の全体に対する質量比(残留百分率)Rを片対数グラフ(横軸:粒径(対数目盛)、縦軸:残留百分率)にプロットし、R=50%に相当する粒径を求めて平均粒子径とした。
実施例における吸着剤は乾燥状態及び油脂中における体積変化がほぼないと見なせるので、上記方法で得られた値を油脂中における吸着剤の平均粒子径の値と見なした。
(2)担体が架橋化有機高分子化合物である場合
乾燥時における平均粒子径を下記方法により測定した。
上記(1)の方法において、試験用ふるいを、上から目開き850μm、600μm、500μm、355μm、106μm、受け皿、の順に組み合わせた以外は、上記(1)と同様にして測定した。
実施例における吸着剤は、乾燥状態及び油脂中における体積変化がほぼないと見なせるので、上記方法で得られた値を油脂中における吸着剤の平均粒子径の値と見なした。
<Measurement method of average particle diameter of adsorbent>
(1) When support | carrier is a silica The average particle diameter at the time of drying was measured by the following method.
Combine the test sieve (see JIS-Z8801-1) from the top in the order of openings 106 μm, 90 μm, 53 μm, 32 μm, and saucer, put about 50 g of water-absorbing resin in the top sieve, and roll tap type automatic sieve shaker And shaken for 10 minutes.
After measuring the weight of the adsorbent remaining on each sieve, the mass ratio (residual percentage) R to the whole adsorbent remaining on each sieve is a semi-logarithmic graph (horizontal axis: particle size (logarithmic scale), vertical axis : Residual percentage), and the particle diameter corresponding to R = 50% was determined to obtain the average particle diameter.
Since the adsorbents in the examples can be regarded as having almost no volume change in the dry state and in the fats and oils, the value obtained by the above method was regarded as the value of the average particle diameter of the adsorbents in the fats and oils.
(2) When the carrier is a crosslinked organic polymer compound The average particle size during drying was measured by the following method.
In the method (1) above, the test sieve was measured in the same manner as (1) above except that the test sieves were combined in the order of 850 μm, 600 μm, 500 μm, 355 μm, 106 μm, and pan from the top.
Since the adsorbents in the examples can be regarded as having almost no volume change in the dry state and in the fats and oils, the value obtained by the above method was regarded as the value of the average particle diameter of the adsorbents in the fats and oils.

実施例1(吸着剤1の調製)
(1)硝酸銀溶液の作製
硝酸銀1.5gを秤量し、超純水1.5mLに徐々に添加しながら溶解した。
(2)吸着剤1の作製
窒素気流下、80℃で10時間乾燥させたベンゼンスルホン酸基を有する強カチオン交換シリカ5g(バリアン社製、商品名;固相抽出用カートリッジボンドエルート、ベンゼンスルホン酸SCX) に、前記(1)で調製した硝酸銀溶液3.0gを充填し、銀イオンを担体に担持させた。その後、超純水、エタノール、クロロホルム、ヘキサンの順で、各100mLを流し込み洗浄を行なった。
得られた吸着剤の平均粒子径は45μm、体積変化率は0%、油脂中における吸着剤の平均細孔径は60Å、吸着剤中のAg+量は0.64mmol/g、SO3 -量は0.79mmol/gであった。
Example 1 (Preparation of adsorbent 1)
(1) Preparation of silver nitrate solution 1.5 g of silver nitrate was weighed and dissolved while gradually adding to 1.5 mL of ultrapure water.
(2) Preparation of adsorbent 1 5 g of strong cation exchange silica having a benzenesulfonic acid group dried at 80 ° C. for 10 hours under a nitrogen stream (manufactured by Varian, trade name; cartridge bond elute for solid phase extraction, benzenesulfone) The acid SCX) was filled with 3.0 g of the silver nitrate solution prepared in the above (1), and silver ions were supported on the carrier. Thereafter, 100 ml of each was poured in the order of ultrapure water, ethanol, chloroform, and hexane for washing.
The obtained adsorbent has an average particle size of 45 μm, a volume change rate of 0%, the average pore size of the adsorbent in fats and oils is 60 mm, the Ag + amount in the adsorbent is 0.64 mmol / g, and the SO 3 amount is It was 0.79 mmol / g.

実施例2(吸着剤2の調製)
(1)硝酸銀溶液の作製
硝酸銀1.5gを秤量し、超純水1.5mLに徐々に添加しながら溶解した。
(2)吸着剤2の作製
窒素気流下、80℃で10時間乾燥させたベンゼンスルホン酸基を有する強カチオン交換樹脂7.5g(三菱化学株式会社製、スチレン−ジビニルベンゼン系合成高分子、ハイポーラスタイプ強酸性陽イオン交換樹脂RCP160) に、(1)で調製した硝酸銀溶液3.0gを充填し、担体に銀イオンを担持させた。その後、超純水、エタノール、クロロホルム、ヘキサンの順で、各100mLを流し込み洗浄を行なった。
得られた吸着剤の平均粒子径は519μm、体積変化率は10%、油脂中における吸着剤の平均細孔径は100Å、吸着剤中のAg+量は1.2mmol/g、SO3 -量は1.5mmol/gであった。
Example 2 (Preparation of adsorbent 2)
(1) Preparation of silver nitrate solution 1.5 g of silver nitrate was weighed and dissolved while gradually adding to 1.5 mL of ultrapure water.
(2) Preparation of adsorbent 2 7.5 g of a strong cation exchange resin having a benzenesulfonic acid group dried at 80 ° C. for 10 hours under a nitrogen stream (manufactured by Mitsubishi Chemical Corporation, styrene-divinylbenzene synthetic polymer, high A porous type strongly acidic cation exchange resin RCP160) was filled with 3.0 g of the silver nitrate solution prepared in (1), and silver ions were supported on the carrier. Thereafter, 100 ml of each was poured in the order of ultrapure water, ethanol, chloroform, and hexane for washing.
The obtained adsorbent has an average particle size of 519 μm, a volume change rate of 10%, the average pore size of the adsorbent in fats and oils is 100 kg, the Ag + amount in the adsorbent is 1.2 mmol / g, and the SO 3 amount is It was 1.5 mmol / g.

調製例1(比較吸着剤Aの調製)
硝酸銀溶液の代わりに、1M 酢酸ナトリウム水溶液を用いた他は、吸着剤2と同様にして、比較吸着剤Aを得た。
得られた吸着剤の平均粒子径は519μm、体積変化率は10%、油脂中における吸着剤の平均細孔径は100Å、吸着剤中のNa+量は1.2mmol/g、SO3 -量は1.5mmol/gであった。
Preparation Example 1 (Preparation of Comparative Adsorbent A)
Comparative Adsorbent A was obtained in the same manner as Adsorbent 2 except that 1M aqueous sodium acetate solution was used instead of the silver nitrate solution.
The obtained adsorbent has an average particle size of 519 μm, a volume change rate of 10%, the average pore size of the adsorbent in fats and oils is 100 mm, the Na + amount in the adsorbent is 1.2 mmol / g, and the SO 3 amount is It was 1.5 mmol / g.

調製例2(比較吸着剤Bの調製)
市販の10質量%の硝酸銀を吸着させたシリカゲル(和光純薬工業株式会社製、商品名10% 硝酸銀シリカゲル)を使用した。
Preparation Example 2 (Preparation of comparative adsorbent B)
A commercially available silica gel adsorbing 10% by mass of silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd., trade name: 10% silver nitrate silica gel) was used.

調製例3(比較吸着剤Cの調製)
強カチオン交換樹脂として、三菱化学株式会社製スチレン−ジビニルベンゼン系合成高分子、商品名;強酸性陽イオン交換樹脂SK1Bを用いた点を除き、吸着剤2と同様の操作を行って、比較吸着剤Cを調製した。
得られた吸着剤の平均粒子径は731μm、体積変化率は40%、油脂中における吸着剤の平均細孔径は100Å、吸着剤中のAg+量は1.3mmol/g、SO3 -量は1.6mmol/gであった。
Preparation Example 3 (Preparation of comparative adsorbent C)
As a strong cation exchange resin, a styrene-divinylbenzene synthetic polymer manufactured by Mitsubishi Chemical Co., Ltd., trade name; comparative adsorption by performing the same operation as that of the adsorbent 2 except that the strong acid cation exchange resin SK1B was used. Agent C was prepared.
The obtained adsorbent has an average particle diameter of 731 μm, a volume change rate of 40%, an average pore diameter of the adsorbent in fats and oils of 100 kg, an Ag + amount in the adsorbent of 1.3 mmol / g, and an SO 3 amount of It was 1.6 mmol / g.

参考例1
本発明の吸着剤による硫黄含有化合物の選択的吸着を行えることと、使用後の吸着剤が再生処理により再利用可能であることを確認するため、モデル的に以下の実験を行った。
Reference example 1
In order to confirm that the sulfur-containing compound can be selectively adsorbed by the adsorbent of the present invention and that the adsorbent after use can be reused by the regeneration treatment, the following experiment was conducted as a model.

(選択的吸着の確認)
実施例1及び2、調製例1及び2で得られた吸着剤1、2及び比較吸着剤A、Bを各々カラムカートリッジに5g充填し、ヘキサンを流して含浸させた。トリラウリン(和光純薬工業株式会社製)とジドデシルスルフィド(和光純薬工業株式会社製)の各500μg混合物を1mLのヘキサンに溶解させ、上記カラムカートリッジに室温で注入した。その後、ヘキサンを該カラムカートリッジに1mL/minの流速で30mL流通させ、その後、エタノールを1mL/minの流速で30mL流通させて、各々の排液中のトリラウリン及びジドデシルスルフィド量を定量し、初期量(500μg)で除した値を回収率(%)とした。結果を表1に示す。
(Confirmation of selective adsorption)
Each column cartridge was filled with 5 g of the adsorbents 1 and 2 and the comparative adsorbents A and B obtained in Examples 1 and 2 and Preparation Examples 1 and 2, and impregnated with flowing hexane. Each 500 μg mixture of trilaurin (manufactured by Wako Pure Chemical Industries, Ltd.) and didodecyl sulfide (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 1 mL of hexane and injected into the column cartridge at room temperature. Thereafter, 30 mL of hexane is circulated through the column cartridge at a flow rate of 1 mL / min, and then 30 mL of ethanol is circulated at a flow rate of 1 mL / min to quantify the amounts of trilaurin and didodecyl sulfide in each effluent. The value divided by the amount (500 μg) was defined as the recovery rate (%). The results are shown in Table 1.

Figure 2014005370
Figure 2014005370

銀イオンを有する吸着剤1,2と比較吸着剤Bでは、流通後のヘキサン溶媒中にはジドデシルスルフィドは検出されず、トリラウリンのみが溶出しており、選択的にジドデシルスルフィドが吸着していることが確認された。また、比較吸着剤Bでは流通後のエタノール溶媒中に銀イオンが確認され、エタノールによる銀イオンの脱着が確認された。   In adsorbents 1 and 2 having silver ions and comparative adsorbent B, didodecyl sulfide was not detected in the hexane solvent after distribution, but only trilaurin was eluted, and didodecyl sulfide was selectively adsorbed. It was confirmed that In Comparative Adsorbent B, silver ions were confirmed in the ethanol solvent after distribution, and the desorption of silver ions by ethanol was confirmed.

(再生処理による再利用可能性の確認)
前記(選択的吸着の確認)で使用したカラムカートリッジ内の吸着剤1及び吸着剤2に対し、1mL/minの流速でエタノール、クロロホルム、ヘキサンの順で、各100mLを流し込み再生処理を行った後、再度、前記(選択的吸着の確認)と同様の操作を行った。結果を表2に示す。
(Confirmation of reusability by reprocessing)
After performing regeneration treatment by pouring 100 mL each of ethanol, chloroform, and hexane at a flow rate of 1 mL / min into the adsorbent 1 and adsorbent 2 in the column cartridge used in the above (confirmation of selective adsorption). Again, the same operation as described above (confirmation of selective adsorption) was performed. The results are shown in Table 2.

Figure 2014005370
Figure 2014005370

表1と表2の対比から、本発明の吸着剤は、再生処理によって、再利用が可能であることが分かる。   From the comparison between Table 1 and Table 2, it can be seen that the adsorbent of the present invention can be reused by the regeneration treatment.

実施例3(油脂中の硫黄含有化合物の吸着)
吸着剤1をカラムカートリッジに5g充填し、ヘキサン20mLを流して含浸させた。その後、硫黄濃度が3.5ppmとなる硫黄含有化合物を含有したヤシ由来の油脂(フィリピン産、酸価:10.3mgKOH/g、水酸価:7.8mgKOH/g、ヨウ素価:8.3g I2/100g、水分量0.05%)2gをヘキサン1mLに溶解したものをカートリッジカラムに室温で0.3mL/minの流速で注入した。その後ヘキサンを1mL/minの流速で20mL通液し、油脂を回収した。回収されたヘキサン溶媒中の硫黄濃度は、油脂質量基準で0.4ppmとなった。
Example 3 (Adsorption of sulfur-containing compounds in fats and oils)
Adsorbent 1 was filled in 5 g in a column cartridge, and impregnated by flowing 20 mL of hexane. Thereafter, oil derived from palm containing a sulfur-containing compound having a sulfur concentration of 3.5 ppm (Philippines, acid value: 10.3 mg KOH / g, hydroxy value: 7.8 mg KOH / g, iodine value: 8.3 g I2 / 100 g, water content 0.05%) 2 g dissolved in 1 mL of hexane was injected into the cartridge column at a flow rate of 0.3 mL / min at room temperature. Thereafter, 20 mL of hexane was passed at a flow rate of 1 mL / min, and the oils and fats were collected. The sulfur concentration in the recovered hexane solvent was 0.4 ppm on the basis of the amount of oil lipid.

ヘキサンで油脂を回収した後のカラムカートリッジ内の吸着剤を、1mL/minの流速で、クロロホルム、酢酸エチル、アセトニトリル、エタノール各100mlを順に流してカラムを洗浄することで、硫黄含有化合物を脱離・回収し、吸着剤を再生させた。
得られた再生処理吸着剤を用いた点を除き、上記と同様の操作を行った。回収されたヘキサン溶媒中の硫黄濃度は、油脂質量基準で0.4ppmとなった。
Sulfur-containing compounds are desorbed by washing the column by flowing 100 ml each of chloroform, ethyl acetate, acetonitrile, and ethanol in order at a flow rate of 1 mL / min. -Collected and regenerated the adsorbent.
The same operation as described above was performed except that the obtained regeneration-treated adsorbent was used. The sulfur concentration in the recovered hexane solvent was 0.4 ppm on the basis of the amount of oil lipid.

実施例4(油脂の中の硫黄含有化合物の吸着)
実施例1で用いた油脂5gに対し、吸着剤1を0.05g添加し、室温で2時間振盪させた。その後、ろ過を行い、吸着剤と油脂を分離した。得られた油脂中の硫黄濃度は2.4ppmとなった。
Example 4 (Adsorption of sulfur-containing compounds in fats and oils)
0.05 g of the adsorbent 1 was added to 5 g of the fat used in Example 1, and the mixture was shaken at room temperature for 2 hours. Thereafter, filtration was performed to separate the adsorbent and the fats and oils. The sulfur concentration in the obtained oil and fat was 2.4 ppm.

実施例5(油脂の中の硫黄含有化合物の吸着)
油脂5gに対し、吸着剤2を0.05g添加し、室温で2時間振盪させ、その後、ろ過を行い、吸着剤と油脂を分離した。得られた油脂中の硫黄濃度は1.9ppmとなった。
Example 5 (Adsorption of sulfur-containing compounds in fats and oils)
0.05 g of adsorbent 2 was added to 5 g of oil and fat, and the mixture was shaken at room temperature for 2 hours, and then filtered to separate the adsorbent and oil and fat. The sulfur concentration in the obtained oil and fat was 1.9 ppm.

比較例1(油脂の中の硫黄含有化合物の吸着)
油脂5gに対し、比較吸着剤Cを0.05g添加し、2時間振盪させ、その後、ろ過を行い、吸着剤と油脂を分離した。得られた油脂中の硫黄濃度は3.5ppmとなった。
Comparative Example 1 (Adsorption of sulfur-containing compounds in fats and oils)
0.05 g of the comparative adsorbent C was added to 5 g of the oil and fat, and the mixture was shaken for 2 hours, followed by filtration to separate the adsorbent and the oil and fat. The sulfur concentration in the obtained fat was 3.5 ppm.

Claims (10)

下記一般式(1)で表される基が結合した担体からなり、体積変化率が50%以下である吸着剤を用いて油脂中の硫黄含有化合物を吸着し、その後油脂と該吸着剤を分離する、油脂の精製方法。
−R1−SO3 -+ (1)
(式中、R1は、炭素数1〜15の飽和又は不飽和の炭化水素基を示し、Mは、周期表第10族及び第11族から選ばれる少なくとも1種の原子の陽イオンを示す。)
It consists of a carrier bonded with a group represented by the following general formula (1), adsorbs sulfur-containing compounds in fats and oils using an adsorbent whose volume change rate is 50% or less, and then separates the fats and fats and the adsorbents. A method for purifying oils and fats.
-R 1 -SO 3 - M + ( 1)
(In the formula, R 1 represents a saturated or unsaturated hydrocarbon group having 1 to 15 carbon atoms, and M represents a cation of at least one atom selected from Groups 10 and 11 of the periodic table. .)
一般式(1)におけるR1が、下記一般式(2)で表される炭化水素基である、請求項1に記載の油脂の精製方法。
−(CH2n−C64− (2)
(式中、nは0〜9の整数である。)
The method for purifying fats and oils according to claim 1, wherein R 1 in the general formula (1) is a hydrocarbon group represented by the following general formula (2).
- (CH 2) n -C 6 H 4 - (2)
(In the formula, n is an integer of 0 to 9.)
一般式(1)におけるM+が、銀イオン又はパラジウムイオンである、請求項1又は2に記載の油脂の精製方法。 The method for purifying fats and oils according to claim 1 or 2, wherein M + in the general formula (1) is silver ion or palladium ion. 担体が、無機化合物及び架橋化有機高分子化合物から選ばれる1種又は2種以上である、請求項1〜3のいずれかに記載の油脂の精製方法。   The method for purifying fats and oils according to any one of claims 1 to 3, wherein the carrier is one or more selected from inorganic compounds and crosslinked organic polymer compounds. 下記一般式(1)で表される基が結合した担体からなり、体積変化率が50%以下である、油脂中の硫黄含有化合物吸着剤。
−R1−SO3 -+ (1)
(式中、R1は、炭素数1〜15の飽和又は不飽和の炭化水素基を示し、Mは、周期表第10族及び第11族から選ばれる少なくとも1種の原子の陽イオンを示す。)
A sulfur-containing compound adsorbent in fats and oils comprising a carrier to which a group represented by the following general formula (1) is bonded, and having a volume change rate of 50% or less.
-R 1 -SO 3 - M + ( 1)
(In the formula, R 1 represents a saturated or unsaturated hydrocarbon group having 1 to 15 carbon atoms, and M represents a cation of at least one atom selected from Groups 10 and 11 of the periodic table. .)
一般式(1)におけるR1が、下記一般式(2)で表される炭化水素基である、請求項5に記載の硫黄含有化合物吸着剤。
−(CH2n−C64− (2)
(式中、nは1〜9の整数である。)
The sulfur-containing compound adsorbent according to claim 5, wherein R 1 in the general formula (1) is a hydrocarbon group represented by the following general formula (2).
- (CH 2) n -C 6 H 4 - (2)
(In the formula, n is an integer of 1 to 9.)
一般式(1)におけるM+が、銀イオン又はパラジウムイオンである、請求項5又は6に記載の硫黄含有化合物吸着剤。 The sulfur-containing compound adsorbent according to claim 5 or 6, wherein M + in the general formula (1) is a silver ion or a palladium ion. 担体が、無機化合物及び架橋化有機高分子化合物から選ばれる1種又は2種以上である、請求項5〜7のいずれかに記載の硫黄含有化合物吸着剤。   The sulfur-containing compound adsorbent according to any one of claims 5 to 7, wherein the carrier is one or more selected from inorganic compounds and crosslinked organic polymer compounds. 油脂中の硫黄含有化合物を除去することに用いる、請求項5〜8のいずれかに記載の硫黄含有化合物吸着剤。   The sulfur-containing compound adsorbent according to claim 5, which is used for removing sulfur-containing compounds in fats and oils. 油脂と、請求項1に記載の一般式(1)で表される基が結合した担体からなり、体積変化率が50%以下である吸着剤を接触させて、該吸着剤に油脂中の硫黄含有化合物を吸着させた後、油脂と該吸着剤を分離する油脂の精製工程を含む、硫黄含有化合物含量の低減された油脂の製造方法。   An oil and fat and a carrier having the group represented by the general formula (1) according to claim 1 bonded thereto, and an adsorbent having a volume change rate of 50% or less are brought into contact with the adsorbent, and sulfur in the oil and fat is brought into contact with the adsorbent. A method for producing fats and oils with a reduced content of sulfur-containing compounds, comprising the step of refining fats and oils after adsorbing the containing compounds and separating the fats and oils and the adsorbent.
JP2012141967A 2012-06-25 2012-06-25 Oil and fat purification method Pending JP2014005370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012141967A JP2014005370A (en) 2012-06-25 2012-06-25 Oil and fat purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012141967A JP2014005370A (en) 2012-06-25 2012-06-25 Oil and fat purification method

Publications (1)

Publication Number Publication Date
JP2014005370A true JP2014005370A (en) 2014-01-16

Family

ID=50103399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012141967A Pending JP2014005370A (en) 2012-06-25 2012-06-25 Oil and fat purification method

Country Status (1)

Country Link
JP (1) JP2014005370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190382161A1 (en) * 2018-06-17 2019-12-19 Rohm And Haas Electronic Materials Llc Containers with active surface and methods of forming such containers
JP2023090713A (en) * 2018-07-25 2023-06-29 東洋製罐グループホールディングス株式会社 Porous silica, deodorant, and method for producing deodorant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190382161A1 (en) * 2018-06-17 2019-12-19 Rohm And Haas Electronic Materials Llc Containers with active surface and methods of forming such containers
JP2023090713A (en) * 2018-07-25 2023-06-29 東洋製罐グループホールディングス株式会社 Porous silica, deodorant, and method for producing deodorant
JP7527548B2 (en) 2018-07-25 2024-08-05 東洋製罐グループホールディングス株式会社 Porous silica, deodorant, and method for producing deodorant

Similar Documents

Publication Publication Date Title
Sarda et al. Deep desulfurization of diesel fuel by selective adsorption over Ni/Al2O3 and Ni/ZSM-5 extrudates
Bacsik et al. Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56
Santiago et al. Encapsulated ionic liquids to enable the practical application of amino acid-based ionic liquids in CO2 capture
Zhao et al. Confinement of microporous MOF-74 (Ni) within mesoporous γ-Al2O3 beads for excellent ultra-deep and selective adsorptive desulfurization performance
US8598072B2 (en) Mercury-removal adsorbent, method of producing mercury-removal adsorbent, and method of removing mercury by adsorption
Palomino et al. Mesoporous silica nanoparticles for high capacity adsorptive desulfurization
Yin et al. Cuprous/vanadium sites on MIL-101 for selective CO adsorption from gas mixtures with superior stability
CN102671622B (en) Combined adsorbent, preparation method thereof and method for removing and recycling thiophene by using combined adsorbent
Laredo et al. Comparison of the metal–organic framework MIL-101 (Cr) versus four commercial adsorbents for nitrogen compounds removal in diesel feedstocks
CN107338069A (en) A kind of method of micro organic oxygen-containing compound in removing light oil
KR20120051073A (en) Sorbent
CN106573224B (en) Sodium-containing, alkali metal element-doped alumina-based adsorbents for capturing acidic molecules
Kim et al. Removal of sulfur compounds in FCC raw C 4 using activated carbon impregnated with CuCl and PdCl 2
HU et al. Molecular recognition and adsorption performance of benzothiophene imprinted polymer on silica gel surface
She et al. Highly efficient and selective removal of N-heterocyclic aromatic contaminants from liquid fuels in a Ag (I) functionalized metal-organic framework: Contribution of multiple interaction sites
CN105561929B (en) The modification organic framework material of dibenzothiophenes in a kind of efficient removal fuel oil
JP2014005370A (en) Oil and fat purification method
Lu et al. Construction of rational defective CPO-27-Ni using N, N-dimethyloctadecylamine as template towards enhanced adsorptive desulfurization from fuel
JP7550030B2 (en) Method for producing purified organic impurity adsorbent, purification device, and use of said organic impurity adsorbent in a chemical liquid purification device
CN108893138A (en) Ag2O/SiO2-ZrO2Composite aerogel is the method that adsorbent removes thiophene-type sulfide in fuel oil
JP3766771B2 (en) Adsorbent
CN112844315B (en) Photoresponse complexing adsorbent and preparation method and application thereof
CN113461513A (en) Porous cobalt formate material, preparation method and application thereof, and separation method of alkane isomer mixture
CN108949220A (en) One kind is with Pd (II)-SiO2Composite aerogel is the method that adsorbent removes thiophene-type sulfide in fuel oil
Li et al. Selective solid-phase extraction of α-tocopherol by functionalized ionic liquid-modified mesoporous SBA-15 adsorbent