JP2014005200A - Artificial superlattice particle, and method of manufacturing the same - Google Patents

Artificial superlattice particle, and method of manufacturing the same Download PDF

Info

Publication number
JP2014005200A
JP2014005200A JP2013175436A JP2013175436A JP2014005200A JP 2014005200 A JP2014005200 A JP 2014005200A JP 2013175436 A JP2013175436 A JP 2013175436A JP 2013175436 A JP2013175436 A JP 2013175436A JP 2014005200 A JP2014005200 A JP 2014005200A
Authority
JP
Japan
Prior art keywords
particle
compound
artificial superlattice
particles
superlattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013175436A
Other languages
Japanese (ja)
Other versions
JP5810424B2 (en
Inventor
Tomoshi Wada
智志 和田
Takayuki Goto
隆幸 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Priority to JP2013175436A priority Critical patent/JP5810424B2/en
Publication of JP2014005200A publication Critical patent/JP2014005200A/en
Application granted granted Critical
Publication of JP5810424B2 publication Critical patent/JP5810424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a novel-structured artificial superlattice nano particle that is expected to have relative dielectric constant one order or more higher than the ceramic particle of general film capacitors, unlike the general film capacitor consisting of the ceramic particles having high dielectric constant, of which relative dielectric constant has limit and cannot provide necessary capacity density, and polymers having low dielectric constant.SOLUTION: A novel-structured spherical type artificial superlattice nano particle is formed by alternatively laminating two or more types of oxides having different chemical compositions concentrically on a spherical core.

Description

本発明は、人工超格子誘電体ナノ粒子の作製方法に関するものであり、大容量密度のフィルムキャパシタに用いられる誘電体ナノ粒子として利用できるものである。   The present invention relates to a method for producing artificial superlattice dielectric nanoparticles, and can be used as dielectric nanoparticles used in a film capacitor having a large capacity density.

化学組成の異なる2種類以上の単位格子を自然界に存在しない周期構造で積層した人工超格子は、現在は単結晶を基板とし、超高真空下で超格子薄膜として作製される。しかし、薄膜では変調構造が膜厚方向にしか存在せず、従って変調構造より期待できる巨大物性は1次元のみに留まる。また、人工超格子薄膜の作製には500℃以上の高温が必要であり、その結果、化学組成の急峻な界面を保つことが困難であった。特許文献1には、酸化物人工超格子薄膜とその製造方法について開示されているが、薄膜の製造であり、本発明である球状粒子の製造に関しては、記載も示唆もされていない。特許文献2には、正方晶チタン酸バリウム粒子の製造方法が開示されているが、本発明のナノ粒子の積層化に関しては、記載も示唆もされていない。特許文献3には、カルシウムドープチタン酸バリウムの製造方法が開示されているが、ナノ粒子の積層化に関しては記載も示唆もされていない。   Artificial superlattices in which two or more types of unit cells with different chemical compositions are stacked in a periodic structure that does not exist in nature are currently manufactured as superlattice thin films under ultrahigh vacuum using a single crystal as a substrate. However, in a thin film, the modulation structure exists only in the film thickness direction, and therefore the giant physical properties that can be expected from the modulation structure are limited to one dimension. In addition, the production of the artificial superlattice thin film requires a high temperature of 500 ° C. or higher, and as a result, it has been difficult to maintain an interface having a steep chemical composition. Patent Document 1 discloses an oxide artificial superlattice thin film and a method for producing the same, but it is the production of a thin film, and there is no description or suggestion regarding the production of spherical particles according to the present invention. Patent Document 2 discloses a method for producing tetragonal barium titanate particles, but does not describe or suggest the lamination of the nanoparticles of the present invention. Patent Document 3 discloses a method for producing calcium-doped barium titanate, but neither describes nor suggests the lamination of nanoparticles.

特開2000−154100JP 2000-154100 A 特開2005−272295JP 2005-272295 A 特開2005−281092JP 2005-281092 A

例えば、現在、将来の超高速大容量通信を実現するための高周波回路素子として、電子基板内にL、C、R素子を3次元で実装するシステムインパッケージ(SIP)の実現が期待されているが、その課題となっているのが、C(キャパシタ)であり、10nF/mm2以上の容量密度を持つフィルムキャパシタが必要とされている。しかし、現時点でその容量密度は1桁小さく、その向上が求められている。3次元の変調構造を持つ人工超格子ナノ粒子を300℃以下の低温で作製することができれば、あらゆる方向に変調構造を持ち、その結果、すべての方位に対して巨大物性を持つ新材料を創生できる。一般にフィルムキャパシタは、高誘電率のセラミックス粒子と低誘電率のポリマーで構成されているが、セラミックス粒子の比誘電率には限界があり、どうしても必要となる容量密度を達成できない。しかし、このセラミックス粒子の代わりに、比誘電率が1桁以上も高いことが予測できる新規な構造の人工超格子ナノ粒子を用いることができれば、上記容量密度を超えるフィルムキャパシタの提供が可能となる。 For example, as a high-frequency circuit element for realizing future ultra-high-speed and large-capacity communication, it is expected to realize a system-in-package (SIP) in which L, C, and R elements are three-dimensionally mounted on an electronic board. However, the problem is C (capacitor), and a film capacitor having a capacity density of 10 nF / mm 2 or more is required. However, at present, its capacity density is an order of magnitude smaller and its improvement is required. If artificial superlattice nanoparticles with a three-dimensional modulation structure can be fabricated at a low temperature of 300 ° C or lower, a new material with a modulation structure in all directions and huge physical properties in all directions can be created. I can live. In general, a film capacitor is composed of ceramic particles having a high dielectric constant and a polymer having a low dielectric constant. However, the relative dielectric constant of ceramic particles is limited, and a necessary capacity density cannot be achieved. However, if artificial superlattice nanoparticles with a novel structure that can be predicted to have a relative dielectric constant higher by an order of magnitude or more can be used in place of the ceramic particles, it is possible to provide a film capacitor that exceeds the above capacity density. .

本願発明による人工超格子粒子の製造方法は、核となる粒子と、前記核となる粒子とは化学組成の異なる化合物の材料を密閉容器に入れる工程と、加熱保持により、前記核となる粒子の表面に前記化合物をヘテロエピタキシャル成長により積層する工程と、を備えたことを特徴とする。   The method for producing artificial superlattice particles according to the present invention includes a step of placing a core particle and a compound material having a different chemical composition from the core particle into a sealed container, and heating and holding the core particle. And a step of stacking the compound on the surface by heteroepitaxial growth.

化学組成の異なる2種類以上の単位格子を自然界に存在しない周期構造で積層した人工超格子は、現在は単結晶を基板とし、超高真空下で薄膜として作製される。従って、変調構造より期待できる巨大物性は1次元のみに留まり、また高温での成膜の結果、化学組成の急峻な界面を保つことが困難であった。そこで、3次元の変調構造を持つ人工超格子ナノ粒子を300℃以下で作製することができれば、あらゆる方向に巨大物性を持つ新材料を創生できる。従って、3次元の人工超格子ナノ粒子ができれば、これまでにない巨大な物性や多機能を併せ持った夢の新材料を創生することができ、本発明はその根幹をなすものである。   Artificial superlattices in which two or more types of unit cells with different chemical compositions are stacked with a periodic structure that does not exist in nature are currently manufactured as a thin film under ultrahigh vacuum using a single crystal as a substrate. Therefore, the giant physical properties that can be expected from the modulation structure remain only in one dimension, and as a result of film formation at a high temperature, it is difficult to maintain an interface having a sharp chemical composition. Therefore, if artificial superlattice nanoparticles with a three-dimensional modulation structure can be fabricated at 300 ° C or lower, new materials with huge physical properties in all directions can be created. Therefore, if a three-dimensional artificial superlattice nanoparticle can be created, a new material of a dream that has unprecedented physical properties and multiple functions can be created, and the present invention forms the basis thereof.

本発明では、誘電体ナノ粒子に注目したが、誘電体以外に磁性体や半導体でも歪み変調構造による巨大特性を期待することができる。   In the present invention, attention has been paid to dielectric nanoparticles, but a giant characteristic due to a strain modulation structure can be expected even in a magnetic substance or a semiconductor other than a dielectric substance.

人工超格子ナノ粒子の概念図Conceptual diagram of artificial superlattice nanoparticles オートクレーブ装置Autoclave equipment BTのXRDの水/エタノール比依存性BT XRD water / ethanol ratio dependence BTのXRDの反応温度依存性BT XRD reaction temperature dependence BTのXRDのBa/Ti比依存性BT XRD Ba / Ti ratio dependence BTの生成領域BT generation area STのXRDの水/エタノール比依存性ST / XRD dependence of water / ethanol ratio BTのXRDの反応温度比依存性Dependence of BT XRD on reaction temperature ratio STのXRDのSr/Ti比依存性ST XRD dependence of Sr / Ti ratio STの生成領域ST generation area ST/BT複合粒子の第1段階のXRD結果First stage XRD results of ST / BT composite particles ST/BT複合粒子の1段階のSEM写真One-stage SEM photograph of ST / BT composite particles ST/BT複合粒子の第1段階のTEM写真First stage TEM photograph of ST / BT composite particles ST/BT複合粒子の第2段階のXRD結果Second stage XRD results of ST / BT composite particles ST/BT複合粒子の第2段階のSEM写真Second stage SEM photograph of ST / BT composite particles

図1に本発明の構造の概念図を示す。本発明の人工超格子ナノ粒子を構成する酸化物であるBaTiO3、SrTiO3についての条件検討結果を示すが、酸化物として、他にCaTiO3、PbTiO3、PbZrO3、CaZrO3、SrZrO3、BaZrO3についても用いることができ、またこれらに限定されるものではない。 FIG. 1 shows a conceptual diagram of the structure of the present invention. Shows the condition examination results for BaTiO 3, SrTiO 3 is an oxide which constitutes the artificial superlattice nanoparticles of the present invention, as the oxide, other CaTiO 3, PbTiO 3, PbZrO 3 , CaZrO 3, SrZrO 3, BaZrO 3 can also be used, but is not limited thereto.

(1)出発原料の選択
本発明における出発原料として、Ba源、Sr源、Ti源、O源の4種類の元素を含む原料が必要である。この中でO(酸素)については、アルコールや水などのOHから得ることができるため、検討から除外する。また、Ba、Srは溶解度が高いものから低いものまで様々な原料形態が存在する。本発明では、BaTiO3(BT)、SrTiO3(ST)をそれぞれ独立に合成するため、Ba、Sr原料については一般的な原料である無水水酸化バリウム(Ba(OH)2)、無水水酸化ストロンチウム(Sr(OH)2)を使用し、その代わりに、両方の合成反応に共通するTi源について制御することで、反応全体の制御を試みた。
(1) Selection of starting material As a starting material in the present invention, a raw material containing four kinds of elements of Ba source, Sr source, Ti source and O source is required. Of these, O (oxygen) can be obtained from OH such as alcohol and water, and is therefore excluded from the study. In addition, Ba and Sr have various raw material forms from high to low solubility. In the present invention, BaTiO 3 (BT) and SrTiO 3 (ST) are synthesized independently, so that Ba and Sr raw materials are general raw materials such as anhydrous barium hydroxide (Ba (OH) 2 ) and anhydrous hydroxide. Instead of using strontium (Sr (OH) 2 ), we tried to control the overall reaction by controlling the Ti source common to both synthesis reactions.

一般に、Tiは溶液中で不安定であり、水酸化チタン(ゲル状)のような形で存在する。また、酸化チタンナノ粒子のような形態での使用も報告され、この場合は塩基性が高い場合にTiイオンとして溶解することが知られている。しかし、理想的には溶液に溶けた錯体形状で安定に存在していることが、反応の均一性からも望ましい。一般にはアルコキシドであるチタンテトライソプロポキシド(Ti(iPrO)4、TP)がアルコールを溶媒として用いられるが、反応性が高いため室温でも僅かな水分で反応、分解し、最終的に水酸化チタンゲルを生成する。セラミックス粒子の合成には、核生成とそれに続く核成長という2つの過程が存在し、核生成速度、各成長速度ともに温度に対して正規分布を示す。また、それぞれの最大速度を示す温度は、核生成の方が核成長よりも一般的に低くなることが知られている。従って、溶液中に錯体の形で安定に存在するものの、高温まで反応せず、核成長がより支配的になる温度で、不安定になるようなTi源が存在すれば、核生成を起こさず、核成長のみを起こすのに最適なTi源となることができる。 In general, Ti is unstable in a solution and exists in a form like titanium hydroxide (gel). In addition, use in a form such as titanium oxide nanoparticles has been reported, and in this case, it is known that when the basicity is high, it dissolves as Ti ions. However, it is ideally desirable from the uniformity of reaction that it exists stably in the form of a complex dissolved in a solution. In general, titanium tetraisopropoxide (Ti (iPrO) 4 , TP), which is an alkoxide, is used with alcohol as a solvent, but because of its high reactivity, it reacts and decomposes with a little moisture even at room temperature, and finally titanium hydroxide gel Is generated. There are two processes in the synthesis of ceramic particles: nucleation and subsequent nucleation. Both the nucleation rate and each growth rate show a normal distribution with respect to temperature. In addition, it is known that the temperature at which each maximum speed is shown is generally lower in nucleation than in nucleation. Therefore, nucleation does not occur if there is a Ti source that is stable in the form of a complex in solution but does not react to high temperatures and becomes unstable at a temperature at which nucleation becomes more dominant. It can be an optimal Ti source for causing only nuclear growth.

そこで、TPのイソプロキシル基の一部をキレート配位子で置換し、高温まで安定に配位している化合物について検討し、TPの4つのイソプロキシル基の内、2つをアセチルアセトンというキレート配位子で置換したチタンジイソプロポキシドジアセチルアセトナート(Ti(iPrO)2(AcAc)2、TPA)をTi源として使用することにした。以下にTPAを用いたBTやSTの生成機構について示す。
Therefore, a part of the TP isoproxil group was replaced with a chelate ligand, and a compound that was stably coordinated to high temperatures was studied. Two of the TP isoproxyl groups of TP were chelated with acetylacetone. It was decided to use titanium diisopropoxide diacetylacetonate (Ti (iPrO) 2 (AcAc) 2 , TPA) substituted with ligand as the Ti source. The generation mechanism of BT and ST using TPA is shown below.

(2)TPAを用いたBTの核生成をせずに、ヘテロ核成長のみがおこる条件
(ア)水‐エタノール溶媒混合比依存性
まず、ソルボサーマル法によるBTの合成を、溶媒混合比を0〜1.0まで変えて行った。 Ba/Ti仕込み比を1.5とし、Ba(OH)2 2.570 g(0.015 mol)と TPA 4.820ml(0.010 mol) を、混合比を変えた水-エタノール混合溶液(250 ml) に入れ5分程度攪拌を行った。できた溶液を500 ml のオートクレーブ内に移し変えた。(図2)のような装置に取り付け、密閉状態で260℃、18時間保持し、昇温速度は120℃/hとした。オートクレーブ内は、密閉中は常時、300 rpmで攪拌した。その後、容器内が室温まで冷めるまで空冷し、反応物を取り出して高速遠心分離機を用いてろ過採集を行い、採取した沈殿物を20時間程度乾燥した。得られた試料は乳鉢で軽く粉砕し、X線回折測定 (XRD)、または56走査型電子顕微鏡 (FE-SEM) および透過型電子顕微鏡(TEM)による観察を行った。電子顕微鏡観察用の試料はエタノールに混ぜ、超音波によって分散処理を行った。また、不純物である炭酸バリウム(BaCO3)、炭酸ストロンチウム(SrCO3)が多く含まれている粉体は、薄い酢酸溶液により10分程度洗浄を行い、高速遠心分離機でろ過採集した後、乾燥機内で乾燥した。
(2) Conditions where only heteronuclear growth occurs without BT nucleation using TPA (a) Dependence of water-ethanol solvent mixing ratio First, BT synthesis by solvothermal method, solvent mixing ratio of 0 Changed to ~ 1.0. Ba / Ti charge ratio is 1.5, Ba (OH) 2 2.570 g (0.015 mol) and TPA 4.820 ml (0.010 mol) are put into water-ethanol mixed solution (250 ml) with different mixing ratio and stirred for about 5 minutes. Went. The resulting solution was transferred into a 500 ml autoclave. It was attached to a device as shown in (FIG. 2), kept in a sealed state at 260 ° C. for 18 hours, and the heating rate was 120 ° C./h. The inside of the autoclave was constantly stirred at 300 rpm during sealing. Thereafter, the container was air-cooled until it cooled to room temperature, the reaction product was taken out, collected by filtration using a high-speed centrifuge, and the collected precipitate was dried for about 20 hours. The obtained sample was lightly pulverized with a mortar and observed with an X-ray diffraction measurement (XRD), or a 56 scanning electron microscope (FE-SEM) and a transmission electron microscope (TEM). The sample for electron microscope observation was mixed with ethanol and subjected to dispersion treatment by ultrasonic waves. In addition, powder containing a large amount of impurities such as barium carbonate (BaCO 3 ) and strontium carbonate (SrCO 3 ) is washed with a thin acetic acid solution for about 10 minutes, collected by filtration with a high-speed centrifuge, and then dried. Dried in-flight.

水‐エタノール溶媒混合比をエタノールの割合0〜100%(以下、Et0〜Et1.0)をEt0、Et0.3、Et0.5、Et0.7、Et1.0の6点に決め、合成したもののXRD測定を行った。(図3)この結果からEt0.3、Et0.5、Et0.7の3点においてBTの生成が確認できた。Et0、Et1.0においてはBTの生成はみられず、Et0ではXRDのプロファイルからBa4Ti12O27、Ba6Ti17O40等のTiリッチのバリウムチタン酸化物が含まれており、それ以外の4点においては、不純物である炭酸バリウム(BaCO3)が含まれていた。 The water-ethanol solvent mixing ratio was determined by combining ethanol ratios of 0-100% (hereinafter Et0-Et1.0) to Et0, Et0.3, Et0.5, Et0.7, Et1.0. XRD measurement was performed. (Fig. 3) From this result, the formation of BT was confirmed at three points of Et0.3, Et0.5, and Et0.7. In Et0 and Et1.0, no BT was formed, and Et0 contains Ti-rich barium titanium oxides such as Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 from the XRD profile. The other four points contained barium carbonate (BaCO 3 ) as an impurity.

(イ)反応温度依存性
溶媒混合比を0.5水:0.5エタノール、Ba/Ti仕込み比を1.5、Ti濃度を0.04mol/lに固定し、反応温度を170〜260℃で変化させ実験を行った。反応温度を170〜260℃で合成した7点のXRD測定を行った結果、180℃以上の反応温度においてBTが生成し、175℃以下ではBTの生成が確認できなかった。(図4)また、BTが生成した5点では、高温になるにつれてX線の回折強度が強くなった。
(B) Reaction temperature dependence The experiment was carried out with the solvent mixture ratio fixed at 0.5 water: 0.5 ethanol, the Ba / Ti feed ratio fixed at 1.5, the Ti concentration fixed at 0.04 mol / l, and the reaction temperature varied from 170 to 260 ° C. . As a result of XRD measurement of seven points synthesized at a reaction temperature of 170 to 260 ° C., BT was generated at a reaction temperature of 180 ° C. or higher, and formation of BT could not be confirmed at 175 ° C. or lower. (Fig. 4) Also, at the five points where BT was generated, the X-ray diffraction intensity increased as the temperature increased.

(ウ)Ba/Ti仕込み比依存性
溶媒混合比を0.5水:0.5エタノール、反応温度を240℃、Ba濃度を0.06mol/lに固定し、Ba/Ti仕込み比を0.75〜15で変化させ、実験を行った。Ba/Ti仕込み比を0.75 〜15まで変化させて合成した4点のXRD測定を行った結果、Ba/Ti=1.5〜15においてBTの生成が確認できた。(図5)Ba/Ti=3のメインピークが最も高くなっており、不純物であるBaCO3のメインピークがBa/Ti=15と比較して3分の1程度になっていることがわかる。Ba/Ti=0.75ではBTは生成されず、非晶質がほとんどであった。
(C) Ba / Ti charge ratio dependency The solvent mixing ratio is 0.5 water: 0.5 ethanol, the reaction temperature is 240 ° C., the Ba concentration is fixed at 0.06 mol / l, and the Ba / Ti charge ratio is changed from 0.75 to 15. The experiment was conducted. As a result of XRD measurement of four points synthesized by changing the Ba / Ti charge ratio from 0.75 to 15, formation of BT was confirmed at Ba / Ti = 1.5 to 15. (FIG. 5) It can be seen that the main peak of Ba / Ti = 3 is the highest, and the main peak of BaCO 3 as an impurity is about one third of that of Ba / Ti = 15. When Ba / Ti = 0.75, BT was not generated and almost amorphous.

(エ)BT生成反応におけるまとめ
図6は3軸のそれぞれを水‐エタノール比、Ba/Ti比、反応温度とし、BTが生成した領域を示した3次元図である。BT生成はBTの核生成、核成長が実際に起きたことを意味する。従って、BTが生成しなかった領域では、BTの核生成が起らなかったことを示唆する。
(D) Summary of BT generation reaction Fig. 6 is a three-dimensional diagram showing the region where BT is generated, with the three axes as water-ethanol ratio, Ba / Ti ratio, and reaction temperature. BT generation means that BT nucleation and growth actually occurred. This suggests that BT nucleation did not occur in areas where BT did not form.

(3)TPAを用いたSTの核生成をせずに、ヘテロ核成長のみがおこる条件
(ア)水‐エタノール溶媒混合比依存性
STにおいてもBTと同様の実験を行った。反応温度240℃、Sr/Ti仕込み比を1.5に固定し、Sr(OH)2 1.825 g(0.015 mol)と TPA 4.820ml(0.010 mol)として、
水‐エタノール溶媒混合比を0〜1.0まで変化させた。STでは、Et0、Et0.5、Et1.0の3点の合成を行った。このXRD測定結果を図7に示す。この結果から、BTとは異なりEt0.5だけでなく、Et0、Et1.0の点においてもSTの合成が確認できた。また、BTと比較して全体的にX線の回折強度がはるかに強くなっていることがわかった。
(3) Conditions where only heteronuclear growth occurs without ST nucleation using TPA (a) Dependence on water-ethanol solvent mixture ratio
In ST, the same experiment as BT was conducted. The reaction temperature is 240 ° C, the Sr / Ti feed ratio is fixed at 1.5, and Sr (OH) 2 1.825 g (0.015 mol) and TPA 4.820 ml (0.010 mol)
The water-ethanol solvent mixing ratio was varied from 0 to 1.0. In ST, synthesis of three points of Et0, Et0.5, and Et1.0 was performed. The XRD measurement results are shown in FIG. From this result, unlike BT, synthesis of ST was confirmed not only at Et0.5 but also at Et0 and Et1.0. It was also found that the X-ray diffraction intensity was much stronger overall than BT.

(イ)反応温度依存性
溶媒混合比を0.5水:0.5エタノール、Sr/Ti仕込み比を1.5、Ti濃度を0.04mol/lに固定し、反応温度を180〜260℃で変化させた。反応温度180〜260℃の7点で変化させた合成のXRD測定結果を図8に示す。この結果から190℃以上の温度でSTが生成し、185℃以下の温度では不純物であるSrCO3のみの生成であることがわかった。
(A) The reaction temperature-dependent solvent mixing ratio was fixed at 0.5 water: 0.5 ethanol, the Sr / Ti feed ratio was fixed at 1.5, the Ti concentration was fixed at 0.04 mol / l, and the reaction temperature was changed at 180 to 260 ° C. FIG. 8 shows the XRD measurement results of the synthesis changed at 7 points of the reaction temperature of 180 to 260 ° C. From this result, it was found that ST was produced at a temperature of 190 ° C. or higher, and that only the impurity SrCO 3 was produced at a temperature of 185 ° C. or lower.

(ウ) Ba/Ti仕込み比依存性
溶媒混合比を0.5水:0.5エタノール、反応温度を240℃、Sr濃度を0.06mol/lに固定し、Sr/Ti仕込み比を0.75〜3で変化させた。Sr/Ti仕込み比を0.75〜3で変化させ合成した4点のXRD測定結果を図9に示す。この測定結果からSr/Ti=1.5、3においてSTの生成し、Sr/Ti=0.75では酸化チタン(TiO2(Anatase))が生成することが確認できた。さらにSTの生成ポイントとTiO2のそれとの間のSr/Ti=1.0においても実験を行ったところ、大部分が非晶質で、少量のSrCO3が生成していた。
(C) Ba / Ti charge ratio dependency The solvent mixing ratio was fixed at 0.5 water: 0.5 ethanol, the reaction temperature was fixed at 240 ° C., the Sr concentration was fixed at 0.06 mol / l, and the Sr / Ti charge ratio was varied between 0.75 and 3. . FIG. 9 shows the XRD measurement results of four points synthesized by changing the Sr / Ti feed ratio from 0.75 to 3. From this measurement result, it was confirmed that ST was produced at Sr / Ti = 1.5 and 3, and titanium oxide (TiO 2 (Anatase)) was produced at Sr / Ti = 0.75. Furthermore, when an experiment was conducted at Sr / Ti = 1.0 between the ST formation point and that of TiO 2 , most of them were amorphous and a small amount of SrCO 3 was formed.

(エ) ST生成反応におけるまとめ
図10は3軸のそれぞれを水‐エタノール比、Sr/Ti比、反応温度とし、STが生成した領域を示した3次元図である。ST生成はSTの核生成、核成長が実際におこったことを意味する。従って、STが生成しなかった領域が、STの核生成が起らなかったことを示唆する。
(D) Summary of ST Generation Reaction FIG. 10 is a three-dimensional view showing the region where ST is generated, with each of the three axes being water-ethanol ratio, Sr / Ti ratio, and reaction temperature. ST generation means that ST nucleation and growth have actually occurred. Therefore, the region where ST was not generated suggests that ST nucleation did not occur.

(4) BTとST生成機構
反応温度を変化させる実験において、BTでは180℃以上、STでは190℃以上でそれぞれの生成が確認できた。これはBa(OH)2、Sr(OH)2の溶解度を考慮すると、どちらも水に対してよく溶け、密閉容器内の温度が180℃になる前に溶解していると考えられるので、TPAからTiが溶解し始める温度とほぼ同じと考えられる。また、BT とSTのどちらにおいても生成し始める温度は5℃以内の差であることは、実験結果から明白であるのでTi濃度がBTでは175〜180℃、STでは185〜190℃の間で急激に高くなっていると考えられる。
(4) BT and ST formation mechanism In experiments in which the reaction temperature was changed, formation was confirmed at 180 ° C or higher for BT and 190 ° C or higher for ST. Considering the solubility of Ba (OH) 2 and Sr (OH) 2 , both are well dissolved in water and are considered to be dissolved before the temperature in the sealed container reaches 180 ° C. This is considered to be almost the same as the temperature at which Ti begins to dissolve. Also, it is clear from the experimental results that the temperature at which BT and ST begin to form is within 5 ° C, so the Ti concentration is between 175-180 ° C for BT and 185-190 ° C for ST. It is thought that it has increased rapidly.

このBTとSTにおけるTiの溶解開始温度の違いは、Ba(OH)2とSr(OH)2の溶解度の違いが関係していると考えられる。Ba(OH)2の溶解度はSr(OH)2のそれと比べ80℃において5倍以上の差がある。また、反応温度を変化させる実験では、0.5水‐0.5エタノール混合溶液を溶媒として用いているので、Ba(OH)2、Sr(OH)2ともに溶解度は低下する。これにより、溶解度は溶媒に水のみを用いる条件より温度依存性が高くなり、それに伴いBa(OH)2とSr(OH)2の溶解度の違いが溶媒中のpHの違いとして現れると考えられる。したがって、このpHの差により、通常では溶け出しにくいTiの溶解を補助し、pH値が高いBa(OH)2を含む溶液の方が若干、BTの生成が低温側で起こったと考えられる。このTiの溶解反応を以下に示す。 This difference in the melting start temperature of Ti between BT and ST is considered to be related to the difference in solubility between Ba (OH) 2 and Sr (OH) 2 . The solubility of Ba (OH) 2 is more than 5 times different at 80 ° C. compared to that of Sr (OH) 2 . In the experiment for changing the reaction temperature, since the 0.5 water-0.5 ethanol mixed solution is used as the solvent, the solubility of both Ba (OH) 2 and Sr (OH) 2 decreases. As a result, the solubility becomes higher in temperature dependency than the condition using only water as a solvent, and accordingly, the difference in solubility between Ba (OH) 2 and Sr (OH) 2 appears as a difference in pH in the solvent. Therefore, it is considered that due to this difference in pH, dissolution of Ti which is usually difficult to dissolve is assisted, and the solution containing Ba (OH) 2 having a high pH value has slightly produced BT on the low temperature side. The dissolution reaction of Ti is shown below.

Ti(i-PrO)2(AcAc)2 + 4H2O → Ti(OH)4 +
2i-PrOH + 2AcAc …(※)
これ以下の反応として、TiO2が生成される場合の反応は、
Ti(OH)4 → TiO2 + 2H2O
となり、BT生成の反応としては以下のようになると考えられる。
Ti (i-PrO) 2 (AcAc) 2 + 4H 2 O → Ti (OH) 4 +
2i-PrOH + 2AcAc… (*)
As a reaction below this, the reaction when TiO 2 is produced is
Ti (OH) 4 → TiO 2 + 2H 2 O
Therefore, the reaction of BT generation is considered as follows.

Ti(OH)4 + Ba(OH)2 → BaTiO3
+ 3H2O
TiO2 + Ba(OH)2 → BaTiO3 + H2O
Ti仕込み比を変化させる実験以外では、Ba/Ti=1.5を基本とし、STの合成においても同様にSr/Ti=1.5で実験を行ったが、BTとSTの回折強度を比較すると非常に大きな差があることがわかる。溶媒混合比がEt0とEt1.0においても比較すると、BTの実験においてはBTの生成がみられなかったのに対し、STの合成ではどちらの点においてもSTが生成している。これにより、BTとSTではその生成に適したTi仕込み比が異なっており、実験結果よりBa/Ti=3、STにおいてはSr/Ti=1.5が効率よく生成していると考えられる。ここで、BT およびSTの生成において仕込み原料比が1ではないということについて、BTを例に次のように考えた。
Ti (OH) 4 + Ba (OH) 2 → BaTiO 3
+ 3H 2 O
TiO 2 + Ba (OH) 2 → BaTiO 3 + H 2 O
Except for changing the Ti charging ratio, Ba / Ti = 1.5 was used as the basis, and ST was synthesized in the same way with Sr / Ti = 1.5 in the synthesis of ST, but it was very large when comparing the diffraction intensities of BT and ST. You can see that there is a difference. When the solvent mixing ratio is also compared between Et0 and Et1.0, BT was not produced in the BT experiment, whereas ST was produced at both points in the synthesis of ST. As a result, the Ti preparation ratio suitable for the generation differs between BT and ST. From the experimental results, it is considered that Ba / Ti = 3 and Sr / Ti = 1.5 is generated efficiently in ST. Here, the BT and ST were considered as follows with respect to the fact that the raw material ratio was not 1 in the production of BT and ST.

nAcAc + Ba(OH)2 → Ba(OH)2(AcAc)n
このような反応が(※)式に示した反応とともに起こったとすると仮定すると、AcAc(アセチルアセトン)に攻撃されたBaイオンは不活性となり、BT生成反応に使われなくなる。また、ST生成の反応においても、Sr イオン1つに対してAcAcが3ないし4配位することにより、BTの生成と同様のことがいえる。
nAcAc + Ba (OH) 2 → Ba (OH) 2 (AcAc) n
Assuming that such a reaction occurred together with the reaction shown in the formula (*), Ba ions attacked by AcAc (acetylacetone) become inactive and cannot be used for the BT formation reaction. In addition, in the reaction of ST formation, the same thing can be said for the formation of BT by 3-4 coordination of AcAc to one Sr ion.

以下に、市販のBT球状ナノ粒子の上に、ST層をエピタキシャルに成長させることを目的としたBT/ST複合ナノ粒子の作製方法について、説明する。   A method for producing BT / ST composite nanoparticles for the purpose of epitaxially growing an ST layer on commercially available BT spherical nanoparticles will be described below.

まず、第1段階(低温)において、Sr/Ti仕込み比を1.1とし、Sr(OH)2 1.338 g(0.011 mol)と TPA 4.820ml(0.010 mol) を、0.5水-0.5エタノール混合溶液(250 ml) に入れ5分程度攪拌した溶液に結晶核となる市販のBT球状ナノ粒子BT-01(堺化学工業、100nm)2.33g (0.010mol:STの理論生成量と同mol)とともに500 ml の密閉容器内に移し変えた。オートクレーブ装置に入れ、密閉状態で190℃、18時間加熱保持した。昇温速度は120℃/hとした。オートクレーブ内は、常時300 rpmで撹拌した。その後、容器内が室温になるまで放冷し、反応物を取り出して高速遠心分離機を用いてろ過採集を行い、採取した沈殿物を20時間程度乾燥した。得られた試料は乳鉢で軽く粉砕し、X線回折測定 (XRD)、または走査型電子顕微鏡 (FE-SEM) および透過型電子顕微鏡(TEM)による観察を行った。 First, in the first stage (low temperature), the Sr / Ti feed ratio was 1.1, Sr (OH) 2 1.338 g (0.011 mol) and TPA 4.820 ml (0.010 mol) were mixed with 0.5 water-0.5 ethanol mixed solution (250 ml ) In a solution stirred for about 5 minutes, a commercial BT spherical nanoparticle BT-01 (Sakai Chemical Industry Co., Ltd., 100 nm) 2.33 g (0.010 mol: the same as the theoretical amount of ST) and 500 ml sealed Transferred into the container. It was put in an autoclave apparatus and kept heated at 190 ° C. for 18 hours in a sealed state. The heating rate was 120 ° C./h. The inside of the autoclave was constantly stirred at 300 rpm. Thereafter, the vessel was allowed to cool to room temperature, the reaction product was taken out, collected by filtration using a high-speed centrifuge, and the collected precipitate was dried for about 20 hours. The obtained sample was lightly pulverized with a mortar and observed with an X-ray diffraction measurement (XRD), or a scanning electron microscope (FE-SEM) and a transmission electron microscope (TEM).

次に、第2段階として、そのままの装置状態で、190℃から、冷却せず、そのまま加熱温度を240℃まで120℃/hで昇温し、18時間保持した後、空冷により室温まで冷却した。   Next, as the second stage, without cooling from 190 ° C. in the same apparatus state, the heating temperature was raised to 240 ° C. at 120 ° C./h, held for 18 hours, and then cooled to room temperature by air cooling. .

低温において合成された複合粒子のXRD測定結果およびSEMおよびTEM観察写真を(図11、12、13)に示す。まず、SEM観察によりBT-01の周囲を層が覆っていることがわかる。(図12)BT-01の周囲を覆う層から、キューブ状で30から40nmの粒子が部分的に生成されている粒子も見られた。このキューブ状の粒子はXRD測定結果(図11)よりSTであることを確認した。さらにTEMによる観察(図13)を行った。このTEM観察の結果から、内側に見られる100nm程度の球状粒子はBa元素とTi元素が同一の座標に存在することから、BT-01であることが確認できたが、表面にみられる層状の物質はSr元素のみ存在していることから、ストロンチウム酸化物等のSrを含むアモルファス物質、つまりSTの前駆体であることを確認した。   The XRD measurement results and SEM and TEM observation photographs of the composite particles synthesized at low temperature are shown in (FIGS. 11, 12, and 13). First, SEM observation shows that the layer covers BT-01. (FIG. 12) From the layer covering the periphery of BT-01, there were also particles in which cube-shaped particles of 30 to 40 nm were partially generated. These cube-shaped particles were confirmed to be ST from the XRD measurement results (FIG. 11). Furthermore, observation by TEM (FIG. 13) was performed. From the results of this TEM observation, the spherical particles of about 100 nm seen on the inside were confirmed to be BT-01 because the Ba element and the Ti element existed at the same coordinates, but the layered layer seen on the surface Since only the Sr element exists, it was confirmed that the substance is an amorphous substance containing Sr such as strontium oxide, that is, a precursor of ST.

高温において合成された複合粒子のXRD測定結果およびSEM観察写真を図14、15に示す。高温で合成されたため、XRDプロファイルにはSTのX線回折強度がBT-01と同程度検出され、高い結晶性のSTが含まれることが分かった。また、SEM写真による観察においては、STの粒子がBT-01に付着するものもみられるが、同程度の頻度でSTの結晶がBT-01の周囲を覆い、多層を形成している。これにより、BT- ST系の多層構造を持つ複合粒子であることを確認した。   14 and 15 show the XRD measurement results and SEM observation photographs of the composite particles synthesized at high temperature. Since it was synthesized at high temperature, the XRD profile detected the same X-ray diffraction intensity as ST BT-01, and it was found that ST with high crystallinity was included. In addition, in the observation by the SEM photograph, some ST particles adhere to BT-01, but ST crystals cover the periphery of BT-01 at the same frequency to form a multilayer. As a result, it was confirmed that the composite particles had a BT-ST multilayer structure.

Claims (15)

核となる粒子と、前記核となる粒子とは化学組成の異なる化合物の材料を密閉容器に入れる工程と、
加熱保持により、前記核となる粒子の表面に前記化合物をヘテロエピタキシャル成長により積層する工程と、
を備えたことを特徴とする人工超格子粒子の製造方法。
A step of putting a core particle and a compound material having a chemical composition different from the core particle into a sealed container;
A step of laminating the compound by heteroepitaxial growth on the surface of the core particles by heating and holding;
A method for producing artificial superlattice particles, comprising:
前記化合物は、チタン酸バリウムまたはチタン酸ストロンチウムを含み、チタン源はジイソプロポキシドジアセチルアセトナートであることを特徴とする請求項1に記載の人工超格子粒子の製造方法。   2. The method for producing artificial superlattice particles according to claim 1, wherein the compound contains barium titanate or strontium titanate, and the titanium source is diisopropoxide diacetylacetonate. 前記化合物が、チタン酸ストロンチウムを含み、前記チタン酸ストロンチウムを含む化合物の積層を行う溶液の溶媒が水とエタノールの混合液であることを特徴とする請求項1又は2のいずれかに記載の人工超格子粒子の製造方法。   3. The artificial material according to claim 1, wherein the compound contains strontium titanate, and a solvent of a solution for laminating the compound containing strontium titanate is a mixed solution of water and ethanol. A method for producing superlattice particles. 前記化合物が、チタン酸ストロンチウムを含み、前記チタン酸ストロンチウムを含む化合物の積層を行う温度が、190℃以上であることを特徴とする請求項1から3のいずれかに記載の人工超格子粒子の製造方法。   The artificial superlattice particle according to any one of claims 1 to 3, wherein the compound contains strontium titanate, and a temperature at which the compound containing the strontium titanate is stacked is 190 ° C or higher. Production method. 前記化合物が、チタン酸ストロンチウムを含み、前記チタン酸ストロンチウムを含む化合物の積層を行うSr原料とTi源のSr/Tiモル比が、1.0以上であることを特徴とする請求項1から4のいずれかに記載の人工超格子粒子の製造方法。   5. The Sr / Ti molar ratio of an Sr raw material and a Ti source for laminating the compound containing the strontium titanate, the compound containing strontium titanate, is 1.0 or more. A method for producing the artificial superlattice particles according to claim 1. 前記化合物が、チタン酸バリウムを含み、前記チタン酸バリウムを含む化合物の積層を行う溶液の溶媒が水とエタノールの混合液であり、前記混合液の水とエタノールの溶媒比が、0.3以上、0.7以下であることを特徴とする請求項1又は2のいずれかに記載の人工超格子粒子の製造方法。   The compound contains barium titanate, the solvent of the solution for laminating the compound containing barium titanate is a mixed solution of water and ethanol, and the solvent ratio of water to ethanol in the mixed solution is 0.3 or more, 0.7 3. The method for producing artificial superlattice particles according to claim 1, wherein: 前記化合物が、チタン酸バリウムを含み、前記チタン酸バリウムを含む化合物の積層を行う温度が、180℃以上であることを特徴とする請求項1、2又は6のいずれかに記載の人工超格子粒子の製造方法。   7. The artificial superlattice according to claim 1, wherein the compound contains barium titanate, and a temperature at which the compound containing the barium titanate is stacked is 180 ° C. or higher. Particle production method. 前記化合物が、チタン酸バリウムを含み、前記チタン酸バリウムを含む化合物の積層を行うBa原料とTi源のBa/Tiモル比が、1.5以上であることを特徴とする請求項1、2、6又は7のいずれかに記載の人工超格子粒子の製造方法。   The said compound contains barium titanate, and a Ba / Ti molar ratio of a Ba raw material and a Ti source for stacking the compound containing said barium titanate is 1.5 or more, characterized in that: Or the manufacturing method of the artificial superlattice particle | grains in any one of 7. 核となる粒子と、
前記核となる粒子の表面にヘテロエピタキシャル成長により積層した、前記核となる粒子とは化学組成の異なる化合物の層と、
を備えたことを特徴とする人工超格子粒子。
The core particles,
Layered by heteroepitaxial growth on the surface of the core particle, the compound layer having a different chemical composition from the core particle;
An artificial superlattice particle characterized by comprising:
前記核となる粒子と、前記化合物は、誘電特性を有する化合物であることを特徴とする請求項9に記載の人工超格子粒子。   10. The artificial superlattice particle according to claim 9, wherein the core particle and the compound are compounds having dielectric properties. 前記核となる粒子及び前記化合物は、それぞれ金属酸化物であることを特徴とする請求項9又は10のいずれかに記載の人工超格子粒子。   11. The artificial superlattice particle according to claim 9, wherein each of the core particle and the compound is a metal oxide. 前記核となる粒子及び前記化合物は、それぞれ、Ba,Sr,Ca,Pbの中から選ばれる少なくとも1種以上の第1の金属と、Ti、Zrの中から選ばれる少なくとも1種以上の第2の金属とを含む金属酸化物であることを特徴とする請求項9から11のいずれかに記載の人工超格子粒子。   The core particle and the compound are each at least one first metal selected from Ba, Sr, Ca, and Pb, and at least one second selected from Ti and Zr. 12. The artificial superlattice particle according to claim 9, wherein the artificial superlattice particle is a metal oxide containing any of the above metals. 前記核となる粒子と前記化合物は、それぞれ、一方がチタン酸バリウムを含み、他方がチタン酸ストロンチウムを含むことを特徴とする請求項9から12のいずれかに記載の人工超格子粒子。   13. The artificial superlattice particle according to claim 9, wherein one of the core particle and the compound contains barium titanate and the other contains strontium titanate. 前記核となる粒子はチタン酸バリウムであることを特徴とする請求項9から13のいずれかに記載の人工超格子粒子。   14. The artificial superlattice particle according to claim 9, wherein the core particle is barium titanate. 前記請求項9から14のいずれかに記載の人工超格子粒子を備えたことを特徴とするフィルムキャパシタ。   15. A film capacitor comprising the artificial superlattice particles according to claim 9.
JP2013175436A 2013-08-27 2013-08-27 Artificial superlattice particles and manufacturing method thereof Active JP5810424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013175436A JP5810424B2 (en) 2013-08-27 2013-08-27 Artificial superlattice particles and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013175436A JP5810424B2 (en) 2013-08-27 2013-08-27 Artificial superlattice particles and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009059753A Division JP5463582B2 (en) 2009-03-12 2009-03-12 Artificial superlattice particles

Publications (2)

Publication Number Publication Date
JP2014005200A true JP2014005200A (en) 2014-01-16
JP5810424B2 JP5810424B2 (en) 2015-11-11

Family

ID=50103293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013175436A Active JP5810424B2 (en) 2013-08-27 2013-08-27 Artificial superlattice particles and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5810424B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155700A (en) * 2015-02-24 2016-09-01 神島化学工業株式会社 Nanocomposite oxide and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155700A (en) * 2015-02-24 2016-09-01 神島化学工業株式会社 Nanocomposite oxide and method for producing the same

Also Published As

Publication number Publication date
JP5810424B2 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP5463582B2 (en) Artificial superlattice particles
Palchik et al. Microwave assisted preparation of binary oxide nanoparticles
Pithan et al. Progress in the synthesis of nanocrystalline BaTiO3 powders for MLCC
TWI290539B (en) Barium titanate and capacitor
KR100497938B1 (en) Method for producing complex oxide powder and complex oxide powder
TWI380970B (en) Process for preparing advanced ceramic powders using onium dicarboxylates
JP5779803B2 (en) Substrate particles or aggregates, and methods for producing them
JP2010208923A5 (en)
JP5002208B2 (en) Method for producing metal oxide nanocrystals
Inada et al. Facile synthesis of nanorods of tetragonal barium titanate using ethylene glycol
Schneller et al. Nanocomposite thin films for miniaturized multi-layer ceramic capacitors prepared from barium titanate nanoparticle based hybrid solutions
JP5270528B2 (en) Amorphous fine particle powder, method for producing the same, and perovskite-type barium titanate powder using the same
JP5932397B2 (en) Method for producing ceramic powder having perovskite structure and ceramic powder having perovskite structure produced thereby
Behnoudnia et al. Synthesis and characterization of novel three-dimensional-cauliflower-like nanostructure of lead (II) oxalate and its thermal decomposition for preparation of PbO
JP3751304B2 (en) Barium titanate and electronic components using the same
US9409789B2 (en) Strontium titanate powder and method of preparing the same
JP5810424B2 (en) Artificial superlattice particles and manufacturing method thereof
KR101730195B1 (en) A manufacturing method of Barium-Titanate and Barium-Titanate powder manufactured by the same
Kameda et al. Crystallization of lead zirconate titanate without passing through pyrochlore by new solution process
JP5848053B2 (en) Method for producing boehmite nanorods, method for producing alumina nanorods, and method for producing CuAlO2 film
Kubo et al. Synthesis of Nano‐sized BaTiO3 Powders by the Rotary‐Hydrothermal Process
US20060275201A1 (en) Production of perovskite particles
WO2021251451A1 (en) Barium titanyl oxalate, method for producing same, and method for producing barium titanate
Mohammadi et al. Water-based sol–gel nanocrystalline barium titanate: controlling the crystal structure and phase transformation by Ba: Ti atomic ratio
Bangi et al. Cost-effective synthesis of ultrafine BaTiO 3 nanoparticles: Some structural and morphological observations

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150825

R150 Certificate of patent or registration of utility model

Ref document number: 5810424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250