JP2014004705A - Nonwoven fabric excellent in flexibility and water retention ability, and method for producing the same - Google Patents

Nonwoven fabric excellent in flexibility and water retention ability, and method for producing the same Download PDF

Info

Publication number
JP2014004705A
JP2014004705A JP2012140536A JP2012140536A JP2014004705A JP 2014004705 A JP2014004705 A JP 2014004705A JP 2012140536 A JP2012140536 A JP 2012140536A JP 2012140536 A JP2012140536 A JP 2012140536A JP 2014004705 A JP2014004705 A JP 2014004705A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
laminated nonwoven
weight
structure layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012140536A
Other languages
Japanese (ja)
Other versions
JP5945462B2 (en
Inventor
Miyuki Fukui
三由紀 福井
Yukako Kageyama
由佳子 景山
Makoto Satake
真 佐竹
Hiroaki Kaneko
博章 兼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2012140536A priority Critical patent/JP5945462B2/en
Publication of JP2014004705A publication Critical patent/JP2014004705A/en
Application granted granted Critical
Publication of JP5945462B2 publication Critical patent/JP5945462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Multi-Layer Textile Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminate of a filament nonwoven fabric comprising biodegradable polymers which exhibit flexibility and water retention ability on the basis of their structure, without a post treatment.SOLUTION: There is provided a laminated nonwoven fabric obtained by partially heat-bonding and thereby laminating a plurality of filament nonwoven fabrics. The plurality of filament nonwoven fabrics comprises a structure in which a fiber structure layer (A) that is made of filaments of biodegradable polymers and has a bulk density of 150 to 200 kg/mand a fiber structure layer (B) that is made of filaments of biodegradable polymers and has a bulk density of 5 to 30 kg/mare continuously complexed.

Description

本発明は、生分解性ポリマーからなり、嵩密度が厚み方向に連続的に変化している不織布の複数枚を、部分的に熱融着して積層した積層不織布に関する。本発明の積層不織布は、柔軟性と保水性とを備えている。   The present invention relates to a laminated nonwoven fabric in which a plurality of nonwoven fabrics made of a biodegradable polymer and having a bulk density continuously changing in the thickness direction are partially heat-sealed and laminated. The laminated nonwoven fabric of the present invention has flexibility and water retention.

柔軟性の高い不織布を作製する手段として、繊維径を小さくすることが知られており、極細繊維からなる不織布を作製する方法としてエレクトロスピニング法が知られている。エレクトロスピニング法では極細繊維が2次元的に広がった形で紡糸されるため、紡糸後に改めて加工する必要がないという利点がある。特許文献1ではエレクトロスピニング法で繊維径を小さくすることによって柔軟性を向上させた例が示されている。しかしエレクトロスピニング法では比較的繊維密度の高い薄膜状の不織布が得られやすく、嵩高い不織布が得られた例はない。
また不織布に柔軟性を付与する方法として、起毛加工、ニードルパンチ加工といった後加工法や複合繊維を開繊させて極細繊維不織布とすることにより柔軟性を付与する方法が知られている。特許文献2にはニードルパンチ加工やウォータージェットパンチ加工を施して長繊維を絡合させることにより、不織布表面に嵩高さと柔らかい風合いを付与する方法が記載されている。特許文献3には熱可塑性複合連続繊維の繊維束において、所定の単糸繊度、全繊度、顕在捲縮数、繊維束密度及び開繊密度比を満たすことにより、該繊維束から開繊工程を経て均一で嵩高い、風合いに優れたウェブを提供する方法が記載されている。しかし、これらの方法では製造工程が増えるため、製造コストが増加し、生産性が低下する。
As a means for producing a highly flexible nonwoven fabric, it is known to reduce the fiber diameter, and as a method for producing a nonwoven fabric made of ultrafine fibers, an electrospinning method is known. The electrospinning method has an advantage that ultrafine fibers are spun in a two-dimensionally spread form, so that there is no need to process again after spinning. Patent Document 1 shows an example in which flexibility is improved by reducing a fiber diameter by an electrospinning method. However, the electrospinning method easily obtains a thin-film nonwoven fabric having a relatively high fiber density, and there is no example of obtaining a bulky nonwoven fabric.
As methods for imparting flexibility to a nonwoven fabric, post-processing methods such as raising and needle punching, and methods for imparting flexibility by opening a composite fiber to form an ultrafine fiber nonwoven fabric are known. Patent Document 2 describes a method of imparting bulkiness and a soft texture to the nonwoven fabric surface by performing needle punching or water jet punching to entangle long fibers. Patent Document 3 discloses that in a fiber bundle of thermoplastic composite continuous fibers, a fiber opening process is performed from the fiber bundle by satisfying a predetermined single yarn fineness, total fineness, actual crimp number, fiber bundle density, and spread density ratio. After that, a method for providing a uniform, bulky and excellent web is described. However, these methods increase the number of manufacturing steps, which increases the manufacturing cost and decreases the productivity.

また、融点の異なるポリマーからなる複合繊維の低融点ポリマーのみを硬化させることで柔軟性不織布を作製する方法が知られている。特許文献4にはポリ乳酸系重合体とポリ乳酸系重合体よりも低い融点を有するポリオレフィン系重合体を、ポリ乳酸系重合体が芯部を形成し、ポリオレフィン系重合体が鞘部を形成してなる芯鞘型複合長繊維とすることで柔軟性と機械的強度を合わせ持った不織布が得られると記載されている。しかし生分解性ポリマー単独で、後加工を施すことなく柔軟な不織布を作製する方法は知られていない。
一方、不織布の保水性を高める方法として吸水性成分を含有させる方法が知られている。特許文献5には保湿成分としてグリセリン等の水溶性成分を塗布する方法が記載されているが、このような添加剤なしに保水性を高める方法は知られていない。
In addition, a method for producing a flexible nonwoven fabric by curing only a low melting point polymer of a composite fiber made of polymers having different melting points is known. In Patent Document 4, a polylactic acid polymer and a polyolefin polymer having a melting point lower than that of the polylactic acid polymer, the polylactic acid polymer forms a core portion, and the polyolefin polymer forms a sheath portion. It is described that a non-woven fabric having both flexibility and mechanical strength can be obtained by using the core-sheath type composite continuous fiber. However, there is no known method for producing a flexible non-woven fabric using a biodegradable polymer alone without post-processing.
On the other hand, a method of incorporating a water-absorbing component is known as a method for increasing the water retention of a nonwoven fabric. Patent Document 5 describes a method of applying a water-soluble component such as glycerin as a moisturizing component, but a method for increasing water retention without such an additive is not known.

特開2011−56047号公報JP 2011-56047 A 特開2006−104603号公報JP 2006-104603 A 特開2008−63712号公報JP 2008-637112 A 特開2009−22747号公報JP 2009-22747 A 特開2008−208492号公報JP 2008-208492 A

本発明が解決しようとする課題は、後加工を施すことなく、その構造から柔軟性と保水性を発揮する生分解性ポリマーからなる長繊維不織布の積層体を提供することである。   The problem to be solved by the present invention is to provide a laminate of long-fiber non-woven fabric made of a biodegradable polymer that exhibits flexibility and water retention from its structure without post-processing.

本発明は、生分解性ポリマーの長繊維からなり且つ嵩密度が150から200kg/mである繊維構造体層(A)と、生分解性ポリマーの長繊維からなり且つ嵩密度が5から30kg/mである繊維構造体層(B)とが連続的に複合化された構造からなる長繊維不織布の複数枚を、部分的に熱融着して積層してなる積層不織布である。 The present invention comprises a fiber structure layer (A) comprising a long fiber of a biodegradable polymer and having a bulk density of 150 to 200 kg / m 3 , and comprising a long fiber of a biodegradable polymer and having a bulk density of 5 to 30 kg. This is a laminated nonwoven fabric in which a plurality of long-fiber nonwoven fabrics having a structure in which the fiber structure layer (B) of / m 3 is continuously combined are partially heat-sealed and laminated.

本発明の積層不織布は、柔軟性と保水性に優れている。   The laminated nonwoven fabric of the present invention is excellent in flexibility and water retention.

本発明で用いる生分解性ポリマーとしては、例えばポリ乳酸、ポリグリコール酸、ポリカプロラクトン、ポリジオキサノン、乳酸−グリコール酸共重合体、乳酸−カプロラクトン共重合体、ポリグリセロールセバシン酸、ポリヒドロキシアルカン酸、ポリブチレンサクシネートなどの脂肪族ポリエステル、ポリメチレンカーボネートなどの脂肪族ポリカーボネートが挙げられる。好ましくはポリ乳酸、ポリグリコール酸、乳酸−グリコール酸共重合体などの脂肪族ポリエステルであり、さらに好ましくはポリ乳酸、乳酸−グリコール酸共重合体である。いずれの生分解性ポリマーも疎水性ポリマーであるため、ポリマーそのものは保水性を保有していない。そのため、本発明では、ポリマーの性質による保水ではなく、構造による保水である。よって、いずれの生分解性ポリマーでも同様の保水性を達成することができる。
ポリ乳酸を用いる場合、ポリマーを構成するモノマーには、L−乳酸、D−乳酸があるが、特に制限はない。またポリマーの光学純度や分子量、L体とD体の組成比や配列には特に制限はないが、好ましくはL体の多いポリマーがよく、ポリL乳酸とポリD乳酸のステレオコンプレックスを用いてもよい。
Examples of the biodegradable polymer used in the present invention include polylactic acid, polyglycolic acid, polycaprolactone, polydioxanone, lactic acid-glycolic acid copolymer, lactic acid-caprolactone copolymer, polyglycerol sebacic acid, polyhydroxyalkanoic acid, poly Examples include aliphatic polyesters such as butylene succinate and aliphatic polycarbonates such as polymethylene carbonate. Preferred are aliphatic polyesters such as polylactic acid, polyglycolic acid, and lactic acid-glycolic acid copolymer, and more preferred are polylactic acid and lactic acid-glycolic acid copolymer. Since any biodegradable polymer is a hydrophobic polymer, the polymer itself does not retain water retention. Therefore, in this invention, it is not the water retention by the property of a polymer but the water retention by a structure. Therefore, the same water retention can be achieved with any biodegradable polymer.
In the case of using polylactic acid, the monomers constituting the polymer include L-lactic acid and D-lactic acid, but there is no particular limitation. The optical purity and molecular weight of the polymer and the composition ratio and arrangement of the L-form and D-form are not particularly limited, but a polymer with many L-forms is preferred, and a stereo complex of poly-L lactic acid and poly-D lactic acid may be used. Good.

本発明で用いる生分解性ポリマーは高純度であることが好ましく、とりわけポリマー中に含まれる添加剤や可塑剤、残存触媒、残存モノマー、成型加工に用いた残留溶媒などの残留物は少ないほうが好ましい。特に医療に用いる場合は、安全性の基準値未満に抑えることが求められる。
また、本発明で用いる生分解性ポリマーの重量平均分子量としては、1×10〜5×10が好ましく、より好ましくは1×10〜1×10、さらに好ましくは5×10〜5×10である。またポリマーの末端構造やポリマーを重合する触媒は任意に選択できる。
本発明の積層不織布を構成する繊維には、所期の目的を損なわない範囲で他のポリマーや他の化合物を混合してもよい。例えばポリマー共重合、ポリマーブレンド、化合物混合である。
The biodegradable polymer used in the present invention preferably has a high purity, and in particular, it is preferable that there are few residues such as additives, plasticizers, residual catalysts, residual monomers, and residual solvents used in the molding process. . In particular, when used for medical treatment, it is required to be less than the safety standard value.
The weight average molecular weight of the biodegradable polymer used in the present invention, preferably 1 × 10 3 ~5 × 10 6 , more preferably 1 × 10 4 ~1 × 10 6 , more preferably 5 × 10 4 ~ 5 × 10 5 . The terminal structure of the polymer and the catalyst for polymerizing the polymer can be arbitrarily selected.
Other fibers and other compounds may be mixed in the fibers constituting the laminated nonwoven fabric of the present invention as long as the intended purpose is not impaired. For example, polymer copolymerization, polymer blending, and compound mixing.

本発明の積層不織布はリン脂質を含有してもよい。リン脂質はポリマー重量に対して0.1〜10重量%含有することができる。リン脂質の含有量が0.1重量%より少ないと、生分解性ポリマーの疎水性性質のため濡性が好ましくなく、10重量%よりも多いと、繊維構造体自体の耐久性が低下するため好ましくない。好ましい含有量は0.2〜5重量%であり、さらに好ましくは0.3〜3重量%である。
かかるリン脂質は動物組織から抽出したものでも人工的に合成したものでもよく、例えばホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルグリセロールなどが挙げられる。これらから1種類を選択してもよいし、2種類以上の混合物で用いてもよい。好ましくはホスファチジルコリンまたはホスファチジルエタノールアミンであり、さらに好ましくはジラウロイルホスファチジルコリンまたはジオレオイルホスファチジルエタノールアミンである。
The laminated nonwoven fabric of the present invention may contain a phospholipid. The phospholipid can be contained in an amount of 0.1 to 10% by weight based on the polymer weight. If the phospholipid content is less than 0.1% by weight, the wettability is not preferred due to the hydrophobic nature of the biodegradable polymer, and if it is more than 10% by weight, the durability of the fiber structure itself decreases. It is not preferable. The preferred content is 0.2 to 5% by weight, more preferably 0.3 to 3% by weight.
Such phospholipids may be extracted from animal tissues or artificially synthesized, and examples thereof include phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol. One type may be selected from these, or a mixture of two or more types may be used. Preferred is phosphatidylcholine or phosphatidylethanolamine, and more preferred is dilauroylphosphatidylcholine or dioleoylphosphatidylethanolamine.

本発明の積層不織布は長繊維よりなり、紡糸から不織布への加工にいたるプロセスの中で、繊維を切断する工程を加えずに形成される。繊維長は300mm以上が好ましい。
こうした長繊維を得る方法のひとつがエレクトロスピニング法である。エレクトロスピニング法は、ポリマーを溶媒に溶解させた溶液に高電圧を印加することで、電極上に繊維成形体を得る方法である。
The laminated nonwoven fabric of the present invention comprises long fibers, and is formed without adding a step of cutting the fibers in the process from spinning to processing of the nonwoven fabric. The fiber length is preferably 300 mm or more.
One method for obtaining such long fibers is the electrospinning method. The electrospinning method is a method of obtaining a fiber molded body on an electrode by applying a high voltage to a solution in which a polymer is dissolved in a solvent.

本発明の不織布の平均繊維径は好ましくは0.5から10μmであの、より好ましくは3から5μmである。0.5μmよりも小さいか10μmよりも大きいと、それを積層不織布にして医療用品として用いた場合に良好な特性が得られない。なお、繊維径とは繊維断面の直径を表す。繊維断面の形状は円形に限らず、楕円形や異形になることもありうる。楕円形の場合の繊維径とは、その長軸方向の長さと短軸方向の長さの平均をその繊維径として算出する。また、繊維断面が円形でも楕円形でもないときには円または楕円に近似して繊維径を算出する。   The average fiber diameter of the nonwoven fabric of the present invention is preferably 0.5 to 10 μm, more preferably 3 to 5 μm. If it is smaller than 0.5 μm or larger than 10 μm, good properties cannot be obtained when it is used as a medical article by making it into a laminated nonwoven fabric. In addition, a fiber diameter represents the diameter of a fiber cross section. The shape of the fiber cross section is not limited to a circle, and may be an ellipse or an irregular shape. For the fiber diameter in the case of an ellipse, the average of the length in the major axis direction and the length in the minor axis direction is calculated as the fiber diameter. When the fiber cross section is neither circular nor elliptical, the fiber diameter is calculated by approximating a circle or ellipse.

本発明の積層不織布を構成する不織布を得る方法の一例を説明する。エレクトロスピニング法において、捕集電極を絶縁体で被覆し、30kV以下の電圧を印加して紡糸することにより嵩密度が150から200kg/mである繊維構造体層(A)を得て、その上に35kV以上の高電圧を印加して紡糸することにより、嵩密度が5から30kg/mである繊維構造体層(B)が連続的に複合化された不織布を得ることができる。紡糸の際の電極間距離は10〜50cm、吐出速度は3〜20ml/hが好ましい。
なお、ここでいう「連続」とは、繊維構造体層(A)と(B)をそれぞれ作製して積層するのではなく、製造途中での条件変更により一工程で(A)と(B)の積層体相当の構造を作製するなどして、繊維構造体層(A)と(B)との間に、嵩密度が変化すること以外の不連続性がない状態をいう。そして、後工程で積層したような不連続性がない構造であることを明確化するため、本発明で用いる不織布の層状構造をつくることを「複合化」と表現している。これに対し、後述する熱融着による積層は一般的意味の積層である。
An example of a method for obtaining a nonwoven fabric constituting the laminated nonwoven fabric of the present invention will be described. In the electrospinning method, the collection electrode is covered with an insulator, and a fiber structure layer (A) having a bulk density of 150 to 200 kg / m 3 is obtained by spinning by applying a voltage of 30 kV or less. By applying a high voltage of 35 kV or higher and spinning, a nonwoven fabric in which the fiber structure layer (B) having a bulk density of 5 to 30 kg / m 3 is continuously combined can be obtained. The distance between the electrodes during spinning is preferably 10 to 50 cm, and the discharge speed is preferably 3 to 20 ml / h.
The term “continuous” as used herein does not mean that the fiber structure layers (A) and (B) are produced and laminated, but by changing the conditions in the course of manufacturing, (A) and (B). In other words, a structure corresponding to the above laminate is produced, and thus there is no discontinuity between the fiber structure layers (A) and (B) except that the bulk density is changed. And, in order to clarify that the structure has no discontinuity as laminated in a subsequent process, creating a layered structure of the nonwoven fabric used in the present invention is expressed as “composite”. On the other hand, the lamination | stacking by the heat sealing mentioned later is a lamination | stacking of a general meaning.

柔軟性と保水性の二つの特徴を保持するためには、繊維構造体層(B)のような疎な構造が重要となる。柔軟性と保水性を上げるためには、嵩密度を低下させることが重要となるが、嵩密度を低下させると不織布の構造保持力に欠け、毛羽立ちやすくなるため取扱性が低下する。本発明では、嵩密度が150から200kg/mである繊維構造体層(A)を複合化させていることから、繊維構造体層(B)の構造保持力の低下が補われ、さらには毛羽立ちが抑えられている。繊維構造体層(A)と(B)のそれぞれの嵩密度は、(A)では150から200kg/mである。150kg/m以下では構造保持が難しく、200kg/m以上では自己支持性が高くなり、柔軟性が得られない。一方、(B)は5から30kg/mである。5kg/m以下では水分を保持した際に構造保持が難しく、30kg/m以上では柔軟性が得られない。
繊維構造体層(A)と(B)のそれぞれの厚みは、(A)では5から30μmであることが好ましい。5μm以下では構造保持が難しく、30μm以上では自己支持性が高くなり柔軟性が得られない。一方、(B)は200から1000μmであることが好ましい。200μm以下では保水性に乏しく、1000μm以上では積層後の柔軟性が低下する。
In order to maintain the two characteristics of flexibility and water retention, a sparse structure such as the fiber structure layer (B) is important. In order to increase flexibility and water retention, it is important to lower the bulk density. However, if the bulk density is reduced, the structure holding power of the nonwoven fabric is lacking and fuzziness tends to occur, resulting in a decrease in handleability. In the present invention, since the fiber structure layer (A) having a bulk density of 150 to 200 kg / m 3 is composited, the decrease in the structure holding power of the fiber structure layer (B) is compensated, Fluff is suppressed. The bulk density of each of the fiber structure layers (A) and (B) is 150 to 200 kg / m 3 in (A). At 150 kg / m 3 or less, it is difficult to maintain the structure, and at 200 kg / m 3 or more, the self-supporting property becomes high and flexibility cannot be obtained. On the other hand, (B) is 5 to 30 kg / m 3 . At 5 kg / m 3 or less, it is difficult to maintain the structure when moisture is held, and at 30 kg / m 3 or more, flexibility cannot be obtained.
The thickness of each of the fiber structure layers (A) and (B) is preferably 5 to 30 μm in (A). If the thickness is 5 μm or less, it is difficult to maintain the structure. On the other hand, (B) is preferably 200 to 1000 μm. If it is 200 μm or less, the water retention is poor, and if it is 1000 μm or more, the flexibility after lamination decreases.

部分的熱融着の方法は特に限定されるものではないが、熱した金型等を押し付ける方法が好ましい。熱融着は、十分に融着することができればシート片面のみの処理であっても両面からの処理であってもよい。熱融着に用いる金型等の温度は用いた生分解性ポリマーのガラス転移点より10℃以上、好ましくは30℃以上高い温度条件である。熱融着温度が用いた生分解性ポリマーのガラス転移点より10℃以上高温でない場合、シート裏面もしくは内部まで熱が伝わらず、本発明の積層不織布を製造することができない。
熱融着面積は5から20%、好ましくは5から10%である。5%以下では積層構造の維持が困難であり、20%以上では嵩高さと柔軟性を欠くものとなる。
積層枚数は好ましくは3から10枚、より好ましくは3から5枚である。2枚以下であると保水量が不十分となり易く、11枚以上であると柔軟性が低下する傾向を示す。
The method of partial heat fusion is not particularly limited, but a method of pressing a heated mold or the like is preferable. The heat fusion may be a process for only one side of the sheet or a process for both sides as long as it can be sufficiently fused. The temperature of the mold or the like used for heat fusion is a temperature condition that is 10 ° C. or more, preferably 30 ° C. or more higher than the glass transition point of the biodegradable polymer used. When the heat fusion temperature is not higher than 10 ° C. or higher than the glass transition point of the biodegradable polymer used, heat is not transmitted to the back surface or inside of the sheet, and the laminated nonwoven fabric of the present invention cannot be produced.
The heat fusion area is 5 to 20%, preferably 5 to 10%. If it is 5% or less, it is difficult to maintain the laminated structure, and if it is 20% or more, it lacks bulkiness and flexibility.
The number of laminated layers is preferably 3 to 10, more preferably 3 to 5. If it is 2 sheets or less, the water retention amount tends to be insufficient, and if it is 11 sheets or more, the flexibility tends to decrease.

本発明の不織布は保水性に優れており、医療用品として体内で使用する際に体液や血液が保持される。本発明の積層不織布の保水率は1200から2200重量%、好ましくは1500から2200重量%である。
シート状不織布の柔軟性は、剛軟性で測定することができる。具体的には、JIS L1096 8.19.2 B法(スライド法)などを用いて測定することができる。剛軟度は2.0mN・cm以下であることが好ましく、より好ましくは1.5mN・cm以下である。2.0mN・cm以上であると不織布は柔軟性に欠け、表面が凹凸な組織表面への追従性に欠けるので好ましくない。
The nonwoven fabric of the present invention is excellent in water retention, and retains body fluids and blood when used in the body as medical supplies. The water retention of the laminated nonwoven fabric of the present invention is 1200 to 2200% by weight, preferably 1500 to 2200% by weight.
The softness of the sheet-like nonwoven fabric can be measured by bending resistance. Specifically, it can be measured using JIS L1096 8.19.2 B method (slide method) or the like. The bending resistance is preferably 2.0 mN · cm or less, more preferably 1.5 mN · cm or less. If it is 2.0 mN · cm or more, the nonwoven fabric lacks flexibility and is not preferred because it lacks the ability to follow a textured surface.

本発明の積層不織布の表面に、さらに綿状の繊維構造物を積層することや、綿状構造物を本発明の不織布ではさんでサンドイッチ構造にするなどの加工は、所期の目的を損ねない範囲で任意に実施しうる。
本発明の積層不織布やそれを構成する長繊維には、医療応用において抗血栓性を付与するためのコーティング処理、あるいは抗体や生理活性物質で表面をコーティングすることも任意に実施できる。このときのコーティング方法や処理条件、その処理に用いる化学薬品は、繊維の構造を極端に破壊せず、本発明の目的を損なわない範囲で任意に選択できる。
Processing such as laminating a cotton-like fiber structure on the surface of the laminated nonwoven fabric of the present invention or forming a sandwich structure with the cotton-like structure sandwiched by the nonwoven fabric of the present invention does not impair the intended purpose. It can be arbitrarily implemented within a range.
The laminated nonwoven fabric of the present invention and the long fibers constituting it can optionally be subjected to a coating treatment for imparting antithrombogenicity in medical applications, or a surface coating with an antibody or a physiologically active substance. The coating method and treatment conditions at this time, and the chemicals used for the treatment can be arbitrarily selected within a range that does not damage the fiber structure and impair the purpose of the present invention.

本発明の積層不織布を構成する繊維内部にも任意に薬剤を含ませることができる。エレクトロスピニング法で成型する場合は、揮発性溶媒に可溶であり、溶解によりその生理活性を損なわないものであれば、使用する薬剤に特に制限はない。かかる薬剤の具体例としては、タクロリムスもしくはその類縁体、スタチン系、またはタキサン系抗癌剤が例示できる。また、揮発性溶媒中において活性を維持できるものであれば、タンパク質製剤、核酸医薬であってもよい。また、薬剤以外でも、金属、多糖、脂肪酸、界面活性剤、揮発性溶媒耐性微生物を含んでいてもよい。
本発明の積層不織布は医療用品、とりわけ臓器表面や創傷部位の保護材、被覆材、シール材として、人工硬膜、癒着防止材、止血材などに好適に用いられる。
A drug can be optionally contained in the fibers constituting the laminated nonwoven fabric of the present invention. In the case of molding by the electrospinning method, the drug used is not particularly limited as long as it is soluble in a volatile solvent and does not impair the physiological activity by dissolution. Specific examples of such drugs include tacrolimus or its analogs, statins, and taxane anticancer agents. Moreover, as long as activity can be maintained in a volatile solvent, a protein formulation and a nucleic acid pharmaceutical may be sufficient. In addition to drugs, metals, polysaccharides, fatty acids, surfactants, and volatile solvent resistant microorganisms may be included.
The laminated nonwoven fabric of the present invention is suitably used as an artificial dura mater, an adhesion prevention material, a hemostatic material, etc., as a medical article, particularly as a protective material, covering material, or sealing material for an organ surface or wound site.

以下の実施例において、保水率、柔軟性は次のようにして求めた。   In the following examples, the water retention rate and flexibility were determined as follows.

保水率:1cm×1cm角の試料を切り取り、試料に5μLずつ水を含浸させ、含水量を求めた。
保水率(重量%)=(W2−W1)/W1×100
W1:初期試料重量 W2:含水時試料重量
柔軟性:(JIS−L−1906 8.19.2 B法)スライド法で、試験片の大きさを1cm×7.5cmとして剛軟度測定を行った。
Water retention: A sample of 1 cm × 1 cm square was cut out, and the sample was impregnated with 5 μL of water to determine the water content.
Water retention rate (% by weight) = (W2−W1) / W1 × 100
W1: Initial sample weight W2: Sample weight when containing water Flexibility: (JIS-L-1906 8.19.2 B method) Bias softness measurement was performed with a test piece size of 1 cm × 7.5 cm by slide method It was.

実施例1
0.4重量%のホスファチジルコリンジラウロイルを添加したポリ乳酸(重量平均分子量13万3千、PURAC)11重量部を、79重量部のジクロロメタンと10重量部のエタノールに溶解し、均一な溶液を得た。これを用いてエレクトロスピニング法で紡糸し、シート状の不織布を調製した。噴出ノズルの内径は0.8mm、噴出ノズルから陰極平板までの距離は35cm、吐出速度は10ml/h、湿度31%であった。陰極平板には絶縁体として、縦糸がレーヨンであり横糸がポリエステルである編み布を貼付した。印加電圧は紡糸開始時は23kVとし、3分後に45kVに変更した。得られた不織布の繊維の繊維径は4.4μmであった。また、その不織布の疎構造の嵩密度は16kg/m、厚みは425μm、密構造の嵩密度は172kg/m、厚みは11μmであった。この不織布を部分的熱融着により4枚積層した。熱融着には100℃に熱した金型を用い、片面のみ処理した。融着面積は9%とした。得られた積層不織布の目付けは2.5mg/cm、保水率は1600重量%、柔軟性は0.96mN・cmであった。
Example 1
11 parts by weight of polylactic acid (weight average molecular weight 133,000, PURAC) added with 0.4% by weight of phosphatidylcholine dilauroyl was dissolved in 79 parts by weight of dichloromethane and 10 parts by weight of ethanol to obtain a uniform solution. It was. This was spun by electrospinning to prepare a sheet-like nonwoven fabric. The inner diameter of the ejection nozzle was 0.8 mm, the distance from the ejection nozzle to the cathode flat plate was 35 cm, the ejection speed was 10 ml / h, and the humidity was 31%. A knitted fabric in which the warp is rayon and the weft is polyester is attached to the cathode flat plate as an insulator. The applied voltage was 23 kV at the start of spinning and changed to 45 kV after 3 minutes. The fiber diameter of the obtained non-woven fabric was 4.4 μm. The bulk density of the sparse structure of the nonwoven fabric was 16 kg / m 3 , the thickness was 425 μm, the bulk density of the dense structure was 172 kg / m 3 , and the thickness was 11 μm. Four sheets of this nonwoven fabric were laminated by partial heat fusion. For heat sealing, a mold heated to 100 ° C. was used, and only one side was processed. The fusion area was 9%. The weight of the obtained laminated nonwoven fabric was 2.5 mg / cm 2 , the water retention rate was 1600% by weight, and the flexibility was 0.96 mN · cm.

実施例2
0.4重量%のホスファチジルコリンジラウロイルを添加したポリ乳酸(重量平均分子量13万3千、PURAC)11重量部を、79重量部のジクロロメタンと10重量部のエタノールに溶解し、均一な溶液を得た。これを用いてエレクトロスピニング法で紡糸し、シート状の不織布を調製した。噴出ノズルの内径は0.8mm、噴出ノズルから陰極平板までの距離は35cm、吐出速度は6ml/h、湿度26%であった。陰極平板には絶縁体として、縦糸がレーヨンであり横糸がポリエステルである編み布を貼付した。印加電圧は紡糸開始時は23kVとし、3分後に45kVに変更した。得られた不織布の繊維の繊維径は3.3μmであった。また、その不織布の疎構造の嵩密度は13kg/m、厚みは650μm、密構造の嵩密度は158kg/m、厚みは17μmであった。この不織布を部分的熱融着により3枚積層した。熱融着には100℃に熱した金型を用い、片面のみ処理した。融着面積は9%とした。得られた積層不織布の目付けは2.8mg/cm、保水率は2075重量%、柔軟性は0.96mN・cmであった。
Example 2
11 parts by weight of polylactic acid (weight average molecular weight 133,000, PURAC) added with 0.4% by weight of phosphatidylcholine dilauroyl was dissolved in 79 parts by weight of dichloromethane and 10 parts by weight of ethanol to obtain a uniform solution. It was. This was spun by electrospinning to prepare a sheet-like nonwoven fabric. The inner diameter of the ejection nozzle was 0.8 mm, the distance from the ejection nozzle to the cathode flat plate was 35 cm, the ejection speed was 6 ml / h, and the humidity was 26%. A knitted fabric in which the warp is rayon and the weft is polyester is attached to the cathode flat plate as an insulator. The applied voltage was 23 kV at the start of spinning and changed to 45 kV after 3 minutes. The fiber diameter of the obtained nonwoven fabric was 3.3 μm. Moreover, the bulk density of the sparse structure of the nonwoven fabric was 13 kg / m 3 , the thickness was 650 μm, the bulk density of the dense structure was 158 kg / m 3 , and the thickness was 17 μm. Three sheets of this nonwoven fabric were laminated by partial heat fusion. For heat sealing, a mold heated to 100 ° C. was used, and only one side was processed. The fusion area was 9%. The weight of the obtained laminated nonwoven fabric was 2.8 mg / cm 2 , the water retention rate was 2075% by weight, and the flexibility was 0.96 mN · cm.

実施例3
0.4重量%のホスファチジルコリンジラウロイルを添加した乳酸−グリコール酸共重合体(重量平均分子量12万6千、モル比=50/50、PURAC)12重量部を、88重量部のジクロロメタンに溶解し、均一な溶液を得た。これを用いてエレクトロスピニング法で紡糸し、シート状の不織布を調製した。噴出ノズルの内径は0.8mm、噴出ノズルから陰極平板までの距離は30cm、吐出速度は10ml/h、湿度11%であった。陰極平板には絶縁体として、縦糸がレーヨンであり横糸がポリエステルである編み布を貼付した。印加電圧は23kVとし、3分後に45kVに変更した。得られた不織布の繊維の繊維径は5.2μmであった。その不織布の疎構造の嵩密度は18kg/m、厚みは833μm、密構造の嵩密度は152kg/m、厚みは14.5μmであった。この不織布を部分的熱融着により2枚積層した。熱融着には100℃に熱した金型を用い、片面のみ処理した。融着面積は9%とした。得られた積層不織布の目付けは3.9mg/cm、保水率は1282重量%、柔軟性は1.24mN・cmであった。
Example 3
12 parts by weight of lactic acid-glycolic acid copolymer (weight average molecular weight 126,000, molar ratio = 50/50, PURAC) added with 0.4% by weight of phosphatidylcholine dilauroyl was dissolved in 88 parts by weight of dichloromethane. A homogeneous solution was obtained. This was spun by electrospinning to prepare a sheet-like nonwoven fabric. The inner diameter of the ejection nozzle was 0.8 mm, the distance from the ejection nozzle to the cathode flat plate was 30 cm, the ejection speed was 10 ml / h, and the humidity was 11%. A knitted fabric in which the warp is rayon and the weft is polyester is attached to the cathode flat plate as an insulator. The applied voltage was 23 kV and changed to 45 kV after 3 minutes. The fiber diameter of the obtained non-woven fabric fiber was 5.2 μm. The bulk density of the sparse structure of the nonwoven fabric was 18 kg / m 3 , the thickness was 833 μm, the bulk density of the dense structure was 152 kg / m 3 , and the thickness was 14.5 μm. Two sheets of this nonwoven fabric were laminated by partial heat fusion. For heat sealing, a mold heated to 100 ° C. was used, and only one side was processed. The fusion area was 9%. The weight of the obtained laminated nonwoven fabric was 3.9 mg / cm 2 , the water retention rate was 1282% by weight, and the flexibility was 1.24 mN · cm.

比較例1
0.4重量%のホスファチジルコリンジラウロイルを添加したポリ乳酸(重量平均分子量13万3千、PURAC)11重量部を、79重量部のジクロロメタンと10重量部のエタノールに溶解し、均一な溶液を得た。これを用いてエレクトロスピニング法で紡糸し、シート状の不織布を調製した。噴出ノズルの内径は0.8mm、噴出ノズルから陰極平板までの距離は35cm、吐出速度は6ml/h、湿度22%であった。陰極平板には絶縁体として、縦糸がレーヨンであり横糸がポリエステルである編み布を貼付した。印加電圧は23kVとした。得られた不織布の繊維の繊維径は4.1μm、不織布の嵩密度は121kg/m、厚みは105μmであった。この不織布を部分的熱融着により3枚積層した。熱融着には100℃に熱した金型を用い、片面のみ処理した。融着面積は9%とした。得られた積層不織布の目付けは4.0mg/cm、保水率は750重量%、柔軟性は7.55mN・cmであった。
Comparative Example 1
11 parts by weight of polylactic acid (weight average molecular weight 133,000, PURAC) added with 0.4% by weight of phosphatidylcholine dilauroyl was dissolved in 79 parts by weight of dichloromethane and 10 parts by weight of ethanol to obtain a uniform solution. It was. This was spun by electrospinning to prepare a sheet-like nonwoven fabric. The inner diameter of the ejection nozzle was 0.8 mm, the distance from the ejection nozzle to the cathode flat plate was 35 cm, the ejection speed was 6 ml / h, and the humidity was 22%. A knitted fabric in which the warp is rayon and the weft is polyester is attached to the cathode flat plate as an insulator. The applied voltage was 23 kV. The fiber diameter of the obtained nonwoven fabric was 4.1 μm, the bulk density of the nonwoven fabric was 121 kg / m 3 , and the thickness was 105 μm. Three sheets of this nonwoven fabric were laminated by partial heat fusion. For heat sealing, a mold heated to 100 ° C. was used, and only one side was processed. The fusion area was 9%. The basis weight of the obtained laminated nonwoven fabric was 4.0 mg / cm 2 , the water retention rate was 750% by weight, and the flexibility was 7.55 mN · cm.

本発明の積層不織布は疎な部分構造を有しているために柔軟性が高く、表面が凹凸な組織表面への追従性が高い。また、保水性も兼ね備えており、医療用品、とりわけ臓器表面や創傷部位の保護材、被覆材として有用である。
Since the laminated nonwoven fabric of the present invention has a sparse partial structure, it has high flexibility and high followability to a tissue surface with an uneven surface. It also has water retention and is useful as a medical product, particularly as a protective material or covering material for organ surfaces and wound sites.

Claims (8)

生分解性ポリマーの長繊維かりなり且つ嵩密度が150から200kg/mである繊維構造体層(A)と、生分解性ポリマーの長繊維かりなり且つ嵩密度が5から30kg/mである繊維構造体層(B)とが連続的に複合化された構造からなる長繊維不織布の複数枚を、部分的に熱融着して積層してなる積層不織布。 A fiber structure layer (A) having a long fiber of a biodegradable polymer and a bulk density of 150 to 200 kg / m 3 , and a fiber structure layer (A) having a bulk density of 5 to 30 kg / m 3 of a biodegradable polymer. A laminated nonwoven fabric obtained by laminating a plurality of long-fiber nonwoven fabrics having a structure in which a certain fiber structure layer (B) is continuously combined and partially heat-sealing. 生分解性ポリマーが、ポリ乳酸、ポリグリコール酸、ポリカプロラクトン、ポリジオキサノン、乳酸−グリコール酸共重合体、乳酸−カプロラクトン共重合体、およびそれらを主成分とする共重合体よりなる群から選択された一つ以上である、請求項1に記載の積層不織布。   The biodegradable polymer was selected from the group consisting of polylactic acid, polyglycolic acid, polycaprolactone, polydioxanone, lactic acid-glycolic acid copolymer, lactic acid-caprolactone copolymer, and copolymers based on them. The laminated nonwoven fabric according to claim 1, which is one or more. 長繊維の平均繊維径0.5から10μmである請求項1または2に記載の積層不織布。   The laminated nonwoven fabric according to claim 1 or 2, wherein the average fiber diameter of the long fibers is 0.5 to 10 µm. 長繊維が生分解性ポリマーに対してリン脂質を0.1から10重量%含有する請求項1から3のいずれかに記載の積層不織布。   The laminated nonwoven fabric according to any one of claims 1 to 3, wherein the long fibers contain 0.1 to 10% by weight of phospholipid with respect to the biodegradable polymer. リン脂質がホスファチジルコリンまたはホスファチジルエタノールアミンである請求項4に記載の積層不織布。   The laminated nonwoven fabric according to claim 4, wherein the phospholipid is phosphatidylcholine or phosphatidylethanolamine. リン脂質がジラウロイルホスファチジルコリンである請求項4に記載の積層不織布。   The laminated nonwoven fabric according to claim 4, wherein the phospholipid is dilauroyl phosphatidylcholine. リン脂質がジオレオイルホスファチジルエタノールアミンである請求項4に記載の積層不織布。   The laminated nonwoven fabric according to claim 4, wherein the phospholipid is dioleoylphosphatidylethanolamine. エレクトロスピニング法において、捕集電極が絶縁体で被覆されており、繊維構造体層(A)を30kV以下の電圧を印加して作製する工程、繊維構造体層(B)を35kV以上の電圧を印加して作製する工程、および前記工程を経て得られた長繊維不織布の複数枚を部分的に熱融着する工程を含む、請求項1から7のいずれかに記載の積層不織布の製造方法。
In the electrospinning method, the collecting electrode is coated with an insulator, and the fiber structure layer (A) is produced by applying a voltage of 30 kV or less, and the fiber structure layer (B) is applied with a voltage of 35 kV or more. The manufacturing method of the laminated nonwoven fabric in any one of Claim 1 to 7 including the process of applying and producing, and the process of partially heat-sealing several sheets of the long-fiber nonwoven fabric obtained through the said process.
JP2012140536A 2012-06-22 2012-06-22 Nonwoven fabric excellent in flexibility and water retention and method for producing the same Active JP5945462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012140536A JP5945462B2 (en) 2012-06-22 2012-06-22 Nonwoven fabric excellent in flexibility and water retention and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012140536A JP5945462B2 (en) 2012-06-22 2012-06-22 Nonwoven fabric excellent in flexibility and water retention and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014004705A true JP2014004705A (en) 2014-01-16
JP5945462B2 JP5945462B2 (en) 2016-07-05

Family

ID=50102908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012140536A Active JP5945462B2 (en) 2012-06-22 2012-06-22 Nonwoven fabric excellent in flexibility and water retention and method for producing the same

Country Status (1)

Country Link
JP (1) JP5945462B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005557A (en) * 2012-06-22 2014-01-16 Teijin Ltd Nonwoven fabric excellent in flexibility and water retentivity and method for manufacturing the same
WO2020013199A1 (en) 2018-07-09 2020-01-16 国立研究開発法人物質・材料研究機構 Nonwoven fabric, method for manufacturing same, and composition for electrospinning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477603A (en) * 1987-08-04 1989-03-23 Kimberly Clark Co Absorbing structure planned so as to absorb body fluids
JP2004238749A (en) * 2003-02-04 2004-08-26 Japan Vilene Co Ltd Electrostatic spinning method and electrostatic spinning apparatus
JP2004263344A (en) * 2003-03-04 2004-09-24 Asahi Kasei Fibers Corp Nonwoven fabric for simple mask and simple mask
WO2006022430A1 (en) * 2004-08-26 2006-03-02 Teijin Limited Fiber structure containing phospholipid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477603A (en) * 1987-08-04 1989-03-23 Kimberly Clark Co Absorbing structure planned so as to absorb body fluids
JP2004238749A (en) * 2003-02-04 2004-08-26 Japan Vilene Co Ltd Electrostatic spinning method and electrostatic spinning apparatus
JP2004263344A (en) * 2003-03-04 2004-09-24 Asahi Kasei Fibers Corp Nonwoven fabric for simple mask and simple mask
WO2006022430A1 (en) * 2004-08-26 2006-03-02 Teijin Limited Fiber structure containing phospholipid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005557A (en) * 2012-06-22 2014-01-16 Teijin Ltd Nonwoven fabric excellent in flexibility and water retentivity and method for manufacturing the same
WO2020013199A1 (en) 2018-07-09 2020-01-16 国立研究開発法人物質・材料研究機構 Nonwoven fabric, method for manufacturing same, and composition for electrospinning
KR20210029148A (en) 2018-07-09 2021-03-15 코쿠리츠켄큐카이하츠호징 붓시쯔 자이료 켄큐키코 Nonwoven fabric, manufacturing method of nonwoven fabric, and composition for electric field spinning

Also Published As

Publication number Publication date
JP5945462B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
EP3004438B1 (en) Heat-bondable conjugate fiber with excellent softness and nonwoven fabric using the same
JP6714982B2 (en) Bulky composite long fiber non-woven fabric
KR20170015924A (en) Hollow porous fibers
JP2012075858A (en) Implantable polymeric film
KR101194359B1 (en) Polyester nonwoven fabrics, its preparation method and carpet primary backing substrate
JP6555125B2 (en) Multilayer sheet, integrated sheet using the same, and method for producing the same
CN103154345A (en) Dimensionally stable nonwoven fibrous webs, and methods of making and using the same
CN103774410A (en) Hydrophilic medical device
JP5542080B2 (en) Nonwoven fabric excellent in flexibility and water retention and method for producing the same
JP2006299425A (en) Water-absorbing nonwoven fabric laminate
JP5945462B2 (en) Nonwoven fabric excellent in flexibility and water retention and method for producing the same
US10751293B2 (en) Polymer fiber scaffolds and uses thereof
CN1968664A (en) Compression resistant nonwovens
JP6027787B2 (en) Nonwoven fabric excellent in flexibility and water retention and method for producing the same
JP5927061B2 (en) Sheet hemostatic material
JP5646820B2 (en) Wound treatment material
Sosiati et al. The influence of ALOEVERA concentration on morphology and tensile properties of electrospun ALOEVERA-PVA NANOFIBER
CN114786738B (en) 3D patterned fibrous material for localized delivery of nucleic acids and method of making the same
JP5933365B2 (en) Sheet hemostatic material
JP3556089B2 (en) Biodegradable long-fiber nonwoven fabric and method for producing the same
JP5519793B2 (en) Low-chargeable fiber and method for producing the same
JPH0434058A (en) Production of nonwoven fabric of ultrafine short fiber
US11913151B2 (en) Nonwoven fabric having a single layer with a plurality of different fiber types, and an apparatus, system, and method for producing same
JP5856785B2 (en) Sheet-like hemostatic material with excellent hemostatic effect
TWI423829B (en) Wound healing scaffold and method for fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R150 Certificate of patent or registration of utility model

Ref document number: 5945462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150