JP2014003168A - Lens, luminaire, photoreceiver, and optical device - Google Patents

Lens, luminaire, photoreceiver, and optical device Download PDF

Info

Publication number
JP2014003168A
JP2014003168A JP2012137633A JP2012137633A JP2014003168A JP 2014003168 A JP2014003168 A JP 2014003168A JP 2012137633 A JP2012137633 A JP 2012137633A JP 2012137633 A JP2012137633 A JP 2012137633A JP 2014003168 A JP2014003168 A JP 2014003168A
Authority
JP
Japan
Prior art keywords
light
lens
angle
interface
catadioptric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012137633A
Other languages
Japanese (ja)
Other versions
JP5228217B1 (en
Inventor
Yuichi Suzuki
鈴木優一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012137633A priority Critical patent/JP5228217B1/en
Application granted granted Critical
Publication of JP5228217B1 publication Critical patent/JP5228217B1/en
Publication of JP2014003168A publication Critical patent/JP2014003168A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lens, which collects light from a light emitter and outputs it, capable of enhancing narrow directivity while avoiding loss caused by total reflection at an interface.SOLUTION: A catadioptric interface 1 is arranged to a periphery of a curved surface portion of a lens 6, and a lateral reflection face 2 is installed outside the interface. Light incident on the catadioptric interface 1 from a light source at an angle equal to or more than the critical angle is totally reflected laterally, is incident on the lateral reflection face 2, and is reflected and emitted forward. The catadioptric interface 1 can be configured in a conical face by installing a toroidal face 5 between the catadioptric interface 1 and the optical center. Light whose radiation angle from the light source is within a range exceeding about 50° is reflected at an indirect reflection face 4, is incident on the catadioptric interface 1 within the critical angle, and is emitted forward.

Description

本発明はレンズの側面から光軸の略法線方向に界面を形成し、界面による全反射光を光軸方向に変換しつつ、界面から屈折光を射出するレンズ、およびこのレンズを使用した照明装置、受光装置、光学装置に関するものである。   The present invention relates to a lens that forms an interface in a substantially normal direction of the optical axis from the side surface of the lens, converts the total reflected light from the interface into the optical axis direction, and emits refracted light from the interface, and illumination using the lens The present invention relates to a device, a light receiving device, and an optical device.

発光ダイオード(LED)は金属製リードフレームのカップ内に発光素子を設けて樹脂モールドしたリードフレーム型LEDと、発光素子を基板上に樹脂モールドした表面実装型がある。リードフレーム型LEDの多くが円筒の先端部に球面レンズを形成しているので砲弾型LEDとも呼ばれている。焦点距離が球面レンズの半径の約3倍以上あるため、半球面に繋げた円筒部が長いレンズ形状である。球面レンズは図11に示すように周辺光の収差が大きく、寸法が大きいため特許文献1の従来例や特許文献2など多くは曲率半径の2〜2.5倍程度の位置に発光素子を設け、焦点位置より先端側に設けられている。
樹脂封止表面が平坦な表面実装型LEDの光度半値角は約120°である。照明装置はこれより半値角を狭めて使用する用途が多く、特許文献3は曲率半径の2倍程度の位置に発光素子が設けられた図12のようなレンズが図示されている。曲率半径の2倍程度の位置に発光素子が設けると放射角は約15°で、LEDの光度半値角が30°などの用途に利用されている。発光素子と楕円レンズ面の先端との距離を規定することによってレンズ面の周辺で外側に射出するようにした楕円レンズのLEDが特許文献1に開示されている。
Light emitting diodes (LEDs) include a lead frame type LED in which a light emitting element is provided in a cup of a metal lead frame and resin molded, and a surface mount type in which the light emitting element is resin molded on a substrate. Since many lead frame type LEDs have a spherical lens formed at the tip of a cylinder, they are also called bullet type LEDs. Since the focal length is more than about three times the radius of the spherical lens, the cylindrical portion connected to the hemispherical surface has a long lens shape. As shown in FIG. 11, the spherical lens has large ambient light aberrations and large dimensions. Therefore, many of the conventional examples of Patent Document 1 and Patent Document 2 are provided with a light emitting element at a position about 2 to 2.5 times the radius of curvature. , Provided on the tip side from the focal position.
The light intensity half-value angle of the surface-mounted LED having a flat resin-sealed surface is about 120 °. The illuminating device has many uses in which the half-value angle is narrower than this, and Patent Document 3 shows a lens as shown in FIG. 12 in which a light emitting element is provided at a position about twice the radius of curvature. When the light emitting element is provided at a position about twice the radius of curvature, the emission angle is about 15 °, and the LED is used for applications such as a light intensity half-value angle of 30 °. Patent Document 1 discloses an elliptic lens LED that emits outward around the lens surface by defining the distance between the light emitting element and the tip of the elliptic lens surface.

レンズ付表面実装LEDは先端側に球面レンズが大きく突き出た形状なので、低背化する目的でフレネルレンズを設けた発光装置が特許文献4に開示されている。特許文献4は蛍光体を透明材料に分散して発光素子を覆い、その上部にフレネルレンズを形成した発光装置の提案である。 Since the surface-mounted LED with a lens has a shape in which a spherical lens protrudes greatly on the tip side, a light emitting device provided with a Fresnel lens for the purpose of reducing the height is disclosed in Patent Document 4. Patent Document 4 proposes a light emitting device in which a phosphor is dispersed in a transparent material to cover a light emitting element and a Fresnel lens is formed on the light emitting element.

光度半値角が約120°の表面実装型LEDを照明装置に用いるとき、外部レンズは集光角が約40°以下なので凹面鏡を用いる必要があるが、凹面鏡のような作用をする半球面状レンズが特許文献5に開示されている。特許文献5は射出面を半球面レンズの平面とし、半球面の頂部にLED設置用の凹部入射面が形成された発光装置である。光源からの放射光は凹部入射面を直進して半球面状レンズの内部を拡散し、半球面状レンズの周辺側では臨界角より大きい入射角のため全反射して平面の射出面から射出する。光源からの拡散光も平面の射出面から射出するので、凹面の反射光と光源からの拡散光が混合した光である。放射面側から入射する外光はレンズの頂部付近では臨界角より小さい入射角のため外光を後方へ透過させて擬似点灯を防止する発光装置である。 When a surface-mounted LED with a half-value angle of about 120 ° is used in an illumination device, the external lens has a condensing angle of about 40 ° or less, so a concave mirror must be used. However, a hemispherical lens that acts like a concave mirror Is disclosed in Patent Document 5. Patent Document 5 is a light-emitting device in which an exit surface is a flat surface of a hemispherical lens and a concave incident surface for LED installation is formed on the top of the hemispherical surface. The emitted light from the light source goes straight through the concave incident surface and diffuses inside the hemispherical lens, and is totally reflected at the peripheral side of the hemispherical lens due to an incident angle larger than the critical angle, and exits from the flat exit surface. . Since the diffused light from the light source is also emitted from the flat emission surface, the light reflected by the concave surface and the diffused light from the light source are mixed. Since the external light incident from the radiation surface side is smaller than the critical angle near the top of the lens, the external light is transmitted rearward to prevent pseudo lighting.

特許文献6は特許文献5の凹部入射面の一部にLED素子に対面する凸面入射面を形成し、発光素子からレンズ射出面に向かう光を集光している。前記凸面入射面以外への光は特許文献5と同様である。発光素子の正面の凸面で多くが集光されて光束の不均一度が大きくなるため、射出面に微小なレンズを複数配置して配光制御する信号灯の提案である。特許文献7は特許文献6のレンズ側面の半球面と凹部入射面を拡散処理して励起光と蛍光をレンズ中央部で混色して蛍光変換白色LEDの励起光と蛍光の色むらを低減することを目的としている。 In Patent Document 6, a convex incident surface facing the LED element is formed on a part of the concave incident surface of Patent Document 5, and light directed from the light emitting element toward the lens exit surface is condensed. The light to other than the convex incident surface is the same as in Patent Document 5. This is a proposal of a signal lamp that controls light distribution by arranging a plurality of minute lenses on the exit surface because a large amount of light is concentrated on the convex surface on the front surface of the light emitting element and the non-uniformity of the light flux increases. In Patent Document 7, the hemispherical surface of the lens side surface and the concave incident surface of Patent Document 6 are diffused to mix excitation light and fluorescence at the center of the lens to reduce uneven color of excitation light and fluorescence of the fluorescence conversion white LED. It is an object.

特開平11−46013号公報Japanese Patent Laid-Open No. 11-46013 特開2008−258530号公報JP 2008-258530 A 特許第3995906号公報Japanese Patent No. 3995906 特開2007−88093号公報JP 2007-88093 A 特許第2952127号公報Japanese Patent No. 2952127 特開2006−48165号公報JP 2006-48165 A 特許第4635741号公報Japanese Patent No. 4635774

球面レンズの内部の焦点f2に埋設した発光素子からの近軸光線はほぼ平行光になるが、周辺光は図11に示すように球面収差が大きくなる。球面レンズの内部の焦点距離f2は屈折率1.4のシリコーン樹脂で球面の曲率半径rの3.5倍、屈折率1.47のエポキシ樹脂で球面の曲率半径rの3.1倍が必要なので球面レンズに円筒面を繋げた構造である。周辺光の収差が大きい上に寸法が長いため、多くは曲率半径の2〜2.5倍程度にして寸法を短縮し、周辺光の球面収差を緩和している。2.5倍程度でもレンズ頂部が突き出して発光素子の上部寸法が長く、小型化あるいは低背化が困難になっている。 Paraxial rays from the light-emitting element embedded in the focal point f2 inside the spherical lens become almost parallel light, but the ambient light has large spherical aberration as shown in FIG. The focal length f2 inside the spherical lens needs to be 3.5 times the spherical radius of curvature r of silicone resin with a refractive index of 1.4, and 3.1 times the spherical radius of curvature r of epoxy resin with a refractive index of 1.47. Therefore, it has a structure in which a cylindrical surface is connected to a spherical lens. Since the aberrations of the ambient light are large and the dimensions are long, many of them are shortened by about 2 to 2.5 times the radius of curvature to reduce the spherical aberration of the ambient light. Even at about 2.5 times, the top of the lens protrudes and the upper dimension of the light emitting element is long, making it difficult to reduce the size or height.

狭指向角のLEDはレンズの円筒部が長いため、発光素子から球面と円筒面の境界付近に入射した光は全反射して球面レンズの頂部付近に集光するが、頂部付近で屈折して側面方向に射出する光と、頂部付近で全反射して発光素子側に戻る光がある。このような全反射光の光跡は図11に示しているが、特許文献1の図8にも示されている。球面レンズの頂部付近で全反射して発光素子側に戻ると多重反射して多くは内部損失になる。従来の楕円レンズは楕円面の外周部で臨界角に近いため、これを超えると全反射が発生して側面方向への漏れと発光素子側に戻る光が増える。 The LED with a narrow directivity angle has a long cylindrical part of the lens. Therefore, light incident from the light emitting element near the boundary between the spherical surface and the cylindrical surface is totally reflected and condensed near the top of the spherical lens, but refracted near the top. There are light emitted in the side surface direction and light that is totally reflected near the top and returns to the light emitting element side. Such a trace of the totally reflected light is shown in FIG. 11, but is also shown in FIG. When the light is totally reflected in the vicinity of the top of the spherical lens and returns to the light emitting element side, multiple reflection occurs and most of the internal loss occurs. Since the conventional elliptic lens is close to the critical angle at the outer peripheral portion of the ellipsoid, if it exceeds this, total reflection occurs, and leakage in the side surface direction and light returning to the light emitting element side increase.

曲率半径の2倍程度の位置に発光素子を設けると、球面と円筒面の境界付近に入射した光は入射角が臨界角以内なので上記全反射を避けることが出来るが放射角が増大する。特許文献1は楕円レンズにより頂部における全反射で発光素子側に戻る内部損失を回避したシミュレーション結果を基に提案されている。周辺光と光軸光の光路長を等しくとった楕円レンズは本願の図4などのように平行光として射出可能なので狭指向角の用途に適し、楕円面外周部における入射角は臨界角42.9°に近く、これを超えると全反射が発生する。このため、特許文献1のレンズ面の周辺で外側に射出しているシミュレーション結果は楕円体曲線による効果ではなく、発光素子の位置による効果である。このように全反射を回避して狭指向角を実現するのは従来の楕円レンズでは困難であり、全反射の回避と狭指向角の実現はトレードオフの関係にある。 If the light emitting element is provided at a position about twice the radius of curvature, the light incident near the boundary between the spherical surface and the cylindrical surface can avoid the total reflection because the incident angle is within the critical angle, but the emission angle increases. Patent Document 1 is proposed based on a simulation result in which an internal loss that returns to the light emitting element side by total reflection at the top portion by an elliptic lens is avoided. An elliptic lens having the same optical path length between the ambient light and the optical axis light can be emitted as parallel light as shown in FIG. 4 of the present application, and is therefore suitable for applications with a narrow directivity angle. Near 9 °, beyond this, total reflection occurs. For this reason, the simulation result emitted outside in the vicinity of the lens surface of Patent Document 1 is not the effect of the ellipsoidal curve but the effect of the position of the light emitting element. Thus, it is difficult for a conventional elliptical lens to achieve a narrow directivity while avoiding total reflection, and there is a trade-off between avoiding total reflection and realizing a narrow directivity.

特許文献4はフレネルレンズによれば低背化出来るという解釈で開口数を非常に大きくしているが、フレネルレンズはレンズ厚自体を薄くすることが出来るだけである。特許文献4の図1のように開口数0.94と無闇に大きくすると、フレネルレンズの周辺部は光源に対向する僅かの屈折面に斜め光が入射して僅かな面だけが射出に関与する上に、光源からの距離の2乗に反比例して光束密度が低い。光軸付近では光源に近接しているので光束密度が高く、フレネル凹凸の陰の面が少ないので光軸付近に励起光が集中して光束むらが大きい。発光素子近傍の蛍光体からの光だけが上記励起光と同等の集光作用を行ない、それ以外の蛍光体からの光はレンズに対して斜光線なので光度半値角が非常に大きくなる。図13に示すように、蛍光体からの光の入射角によってはフレネルレンズ面で蛍光体側に全反射して内部損失を生じる。レンズ幅と同等に蛍光体層が広がっているので全反射による内部損失の割合が増大する。蛍光変換LEDの光軸付近は励起光の青みが強く、周辺側ほど蛍光体層内の光路長が長くなるので周辺側は黄色などの蛍光が強くなる。蛍光体からの斜光線により蛍光だけの指向角が非常に大きく、極端に低背化しているので色むらが顕著になる。 In Patent Document 4, the numerical aperture is very large because the Fresnel lens can be reduced in height, but the Fresnel lens can only reduce the lens thickness itself. As shown in FIG. 1 of Patent Document 4, when the numerical aperture is increased to 0.94, the peripheral portion of the Fresnel lens is obliquely incident on a slight refractive surface facing the light source, and only a small surface is involved in the emission. Furthermore, the light flux density is low in inverse proportion to the square of the distance from the light source. The vicinity of the optical axis is close to the light source, so the light flux density is high, and since there are few shaded surfaces with Fresnel irregularities, the excitation light is concentrated near the optical axis and the unevenness of the light flux is large. Only the light from the phosphor in the vicinity of the light emitting element performs a light collecting action equivalent to that of the excitation light, and the light from other phosphors is an oblique ray with respect to the lens, so the half-value angle is very large. As shown in FIG. 13, depending on the incident angle of light from the phosphor, the Fresnel lens surface is totally reflected to the phosphor side to cause internal loss. Since the phosphor layer spreads as much as the lens width, the ratio of internal loss due to total reflection increases. In the vicinity of the optical axis of the fluorescence conversion LED, the blueness of the excitation light is strong, and since the optical path length in the phosphor layer is longer toward the peripheral side, the fluorescent light such as yellow is strong at the peripheral side. Due to the oblique light from the phosphor, the directivity angle of fluorescence alone is very large and the profile is extremely low, so that the color unevenness becomes remarkable.

特許文献5には「所望角度範囲に放射させる」と記載されているが、光源からの拡散光が平面射出面で屈折すると、臨界角以内では図14のように平面に沿った方向に拡散する。光源からの拡散光が臨界角を超えると平面射出面で全反射して光源側に再帰反射する。球面反射面の周辺部における反射も逆経路で光源側に再帰反射する。半球面方向に射出した光は図14のように半球面に沿って多重反射して周辺部から光軸方向に射出する。このため、光軸方向に射出するのはレンズ中央部と周辺部のみであり、その他は広範囲の拡散光である。このように、前記半球面レンズで所望角度範囲に任意に制御して放射するのは困難である。 Patent Document 5 describes that “radiate in a desired angle range”. However, when diffused light from a light source is refracted on a plane emission surface, the light diffuses in a direction along the plane as shown in FIG. 14 within a critical angle. . When the diffused light from the light source exceeds the critical angle, it is totally reflected on the plane emission surface and retroreflected to the light source side. Reflection at the periphery of the spherical reflecting surface is also retroreflected to the light source side through the reverse path. The light emitted in the hemispherical direction is multiple-reflected along the hemispherical surface as shown in FIG. 14, and is emitted from the peripheral portion in the optical axis direction. For this reason, only the central part and the peripheral part of the lens are emitted in the direction of the optical axis, and the others are a wide range of diffused light. As described above, it is difficult to radiate by controlling the hemispherical lens arbitrarily within a desired angle range.

特許文献6は特許文献5におけるLED設置凹部にLED素子に対面して凸面を形成し、発光素子の正面の凸面で多くが集光され、図15のように狭い射出範囲に集中して光束の不均一度が大きくなる。半球面方向に放射した光は半球面に沿って多重反射して周辺部から光軸方向に射出するので、特許文献5と同様にレンズ中央部と周辺部のみ光軸方向に射出する。このため、光束の不均一度を緩和するために射出面に微小レンズを多数配置して拡散させているが、表示面の輝度むらの改善は困難である。 In Patent Document 6, a convex surface is formed in the LED installation concave portion in Patent Document 5 so as to face the LED element, and a large amount of light is collected on the convex surface in front of the light emitting element, and concentrated in a narrow emission range as shown in FIG. Non-uniformity increases. The light radiated in the hemispherical direction is multiple-reflected along the hemispherical surface and emitted from the peripheral part in the optical axis direction, so that only the central part and the peripheral part of the lens are emitted in the optical axis direction as in Patent Document 5. For this reason, in order to alleviate the non-uniformity of the luminous flux, many microlenses are arranged and diffused on the exit surface, but it is difficult to improve the luminance unevenness of the display surface.

特許文献7は特許文献6における射出面側の微小レンズの代わりに半球面の反射面と凹部入射面に拡散処理し、拡散処理によって励起光と蛍光の色むらを低減と同時に光束の不均一度を改善する提案である。しかし、半球面の反射面に凹凸拡散処理を行なうと図16に示すように、拡散した後に平面射出面で全反射して光源側に戻る光と、別の半球面で透過する光と、凹凸面で屈折・透過して光量損失になる光がある。凹部入射面に拡散処理を行なうと平面射出面の周辺部で全反射した後に光源側に戻る光がある。特許文献7の図2のような凹凸があるとレンズを金型から抜くことが出来ない。白色塗料による凹部入射面の拡散処理は拡散した後に平面射出面で全反射して光源側に戻る光、別の半球面で透過する光、凹凸面で屈折・透過する光および反射率による光量損失がある。白色塗料は凹部入射面では透過率70%以上を有し、半球面の反射面では反射率90%以上を有するという矛盾した特性である。励起光は凹部入射面の凸面でレンズ中心部から垂直方向に射出し、蛍光は半球面の反射面でレンズ中心部に反射すると図16のように射出面に沿って側方に屈折するか全反射するので色むらの低減は出来ない。 In Patent Document 7, diffusion processing is performed on the hemispherical reflecting surface and the concave incident surface instead of the microlens on the exit surface in Patent Document 6, and unevenness of the luminous flux is simultaneously reduced by reducing the uneven color of the excitation light and the fluorescence by the diffusion processing. It is a proposal to improve. However, when the concave and convex diffusion process is performed on the reflecting surface of the hemispheric surface, as shown in FIG. 16, the light that is diffused and then totally reflected by the plane exit surface and returns to the light source side, the light that is transmitted through another hemispherical surface, There is light that is refracted and transmitted through the surface, resulting in light loss. When diffusion treatment is performed on the concave incident surface, there is light that returns to the light source side after being totally reflected at the peripheral portion of the flat emission surface. If there are irregularities as shown in FIG. 2 of Patent Document 7, the lens cannot be removed from the mold. Diffusion treatment of the concave entrance surface with white paint is diffused and then totally reflected on the plane exit surface and returned to the light source side, light transmitted through another hemisphere, light refracted / transmitted on the uneven surface, and light loss due to reflectance There is. The white paint has contradictory characteristics such that the concave incident surface has a transmittance of 70% or more, and the hemispherical reflective surface has a reflectance of 90% or more. When the excitation light is emitted from the center of the lens in the vertical direction on the convex surface of the concave entrance surface, and the fluorescence is reflected on the center of the lens by the reflection surface of the hemispherical surface, it is refracted sideways along the emission surface as shown in FIG. Since the light is reflected, color unevenness cannot be reduced.

LEDレンズの曲面と円筒部の境界付近は入射角が臨界角以上になり、レンズ頂部付近に向けて全反射を生じる領域である。発光素子からの入射角が臨界角以上になる界面は光軸の法線方向にも存在し得る。前方が空気などの低屈折率物質n1で後方が透光物質の高屈折率物質n2の界面をレンズ円筒部と球面の境界付近から光軸の法線方向側に突き出すと図1のようにこの界面が実現する。発光素子の放射角をθ、界面が光軸となす角度をω、臨界角をθcとすると、これらは数1で表され、臨界角θcは数2で表される。

Figure 2014003168

Figure 2014003168

光軸の法線方向側に突き出した界面は後述するように屈折面としても兼用するので反射屈折界面1と呼び、LEDのレンズは球面レンズあるいは楕円レンズが光軸周辺に形成されているので光軸レンズ6と呼ぶことにする。LEDレンズの光軸から曲面辺縁までは光軸レンズ6の曲面で、曲面辺縁の外側に接して反射屈折界面1を設けている。曲率半径の2〜2.5倍程度の位置に発光素子を設けた光軸レンズ6の集光角は約30〜40°である。反射屈折界面1とレンズの境界における発光素子からの放射角θが33°のとき、屈折率1.47のエポキシ樹脂の場合、臨界角は42.9°のため境界における傾斜角ωは数1により80.1°以下の必要がある。このため界面は光軸レンズ6との境界部では漏斗状に窪み、光軸レンズ6との境界線は環状のV字溝である。臨界角余裕をとり約16°を差し引いて図1では境界部の傾斜角ωは64°である。図1は反射屈折界面1が楕円1eの場合を実線、放物線1pを破線で示し、反射屈折界面1が放物線の場合は平行光を射出可能だが光学系が非常に大きくなる。反射屈折界面1を回転楕円体にすると発光素子からの放射角θによる反射光が楕円の焦点近傍に収束するので光学系を小型化可能である。図1の楕円の離心率eは0.83である。 The vicinity of the boundary between the curved surface of the LED lens and the cylindrical portion is a region where the incident angle is greater than the critical angle and total reflection occurs near the top of the lens. The interface where the incident angle from the light emitting element is greater than or equal to the critical angle may also exist in the normal direction of the optical axis. When the front of the low refractive index material n1 such as air and the rear of the high refractive index material n2 of the translucent material protrudes from the vicinity of the boundary between the lens cylindrical portion and the spherical surface toward the normal direction side of the optical axis as shown in FIG. An interface is realized. Assuming that the radiation angle of the light emitting element is θ, the angle between the interface and the optical axis is ω, and the critical angle is θc, these are expressed by Equation 1, and the critical angle θc is expressed by Equation 2.
Figure 2014003168

Figure 2014003168

The interface protruding to the normal direction side of the optical axis is also referred to as a catadioptric interface 1 because it also serves as a refracting surface, as will be described later, and the LED lens is a spherical lens or an elliptical lens formed around the optical axis. It will be called the axial lens 6. From the optical axis of the LED lens to the curved edge, the curved surface of the optical axis lens 6 is provided, and the catadioptric interface 1 is provided in contact with the outside of the curved edge. The condensing angle of the optical axis lens 6 provided with the light emitting element at a position of about 2 to 2.5 times the radius of curvature is about 30 to 40 °. When the radiation angle θ from the light emitting element at the boundary between the catadioptric interface 1 and the lens is 33 °, the epoxy resin having a refractive index of 1.47 has a critical angle of 42.9 °, and the inclination angle ω at the boundary is expressed by the following equation (1). Needs to be 80.1 ° or less. Therefore, the interface is funnel-shaped at the boundary with the optical axis lens 6, and the boundary with the optical axis lens 6 is an annular V-shaped groove. Taking the critical angle margin and subtracting about 16 °, the inclination angle ω at the boundary is 64 ° in FIG. FIG. 1 shows the case where the catadioptric interface 1 is an ellipse 1e as a solid line and the parabola 1p as a dashed line. When the catadioptric interface 1 is a parabola, parallel light can be emitted, but the optical system becomes very large. If the catadioptric interface 1 is a spheroid, the reflected light from the light emitting element due to the radiation angle θ converges in the vicinity of the focal point of the ellipse, so that the optical system can be miniaturized. The eccentricity e of the ellipse in FIG. 1 is 0.83.

反射屈折界面1が光軸で回転している楕円面、放物面などで構成される場合はトロイダル面である。トロイダル面を入射面側に移動して反射屈折界面1を円錐面にした構造は後述する。このトロイダル面は断面視で楕円の一部分なので曲率円で近似し、C1は曲率円の中心である。曲率円とは曲線上の近接3点に接触する円である。曲線を1個の曲率円でなく複数の曲率円で近似することも出来る。トロイダル面は円弧の中心を通らない別の軸を回転軸にして形成される円環状の面で、乱視矯正レンズなどのレンズとして利用されているが、臨界角以上で入射すれば全反射面にもなる。図2は4つのトロイダル面を曲率円で構成した断面図である。曲率円の中心C1、C2、C3を示しているが、C4は曲率半径が大きいので図面範囲外にある。図2は反射屈折界面1の境界における傾斜角ωを65°とし、曲率半径を図1の場合より20%長くしている。 When the catadioptric interface 1 is composed of an ellipsoid rotating around the optical axis, a paraboloid, etc., it is a toroidal surface. A structure in which the toroidal surface is moved to the incident surface side and the catadioptric interface 1 is a conical surface will be described later. Since this toroidal surface is a part of an ellipse in a cross-sectional view, it is approximated by a curvature circle, and C1 is the center of the curvature circle. A curvature circle is a circle in contact with three adjacent points on the curve. The curve can be approximated by a plurality of curvature circles instead of one curvature circle. The toroidal surface is an annular surface formed with another axis that does not pass through the center of the arc as a rotation axis, and is used as a lens such as an astigmatism correction lens. Also become. FIG. 2 is a cross-sectional view in which four toroidal surfaces are configured by a circle of curvature. Although the centers of curvature circles C1, C2, and C3 are shown, C4 is out of the drawing because of its large curvature radius. In FIG. 2, the inclination angle ω at the boundary of the catadioptric interface 1 is 65 °, and the radius of curvature is 20% longer than in the case of FIG.

図2を用いて反射屈折界面1上の傾斜角ωを説明する。発光素子の位置を原点、円の中心C1の座標を(m,n)、半径rとする。光軸レンズ6と反射屈折界面1の境界点のx座標を1とし、図2の円をこの比で表すと、境界に入射する放射角θが33°の直線は数3で示され、境界点のy座標cは1.54である。

Figure 2014003168

円は数4で示され、これらの交点は数5で求められる。
Figure 2014003168

Figure 2014003168

円の数4の代わりに直接に楕円、双曲線、放物線などの式を用いても交点を求めることが出来る。
これを用いて放射角θの交点座標とその接線を求めると数6で示され、傾斜角ωを数7で求めることが出来る。
Figure 2014003168

Figure 2014003168

例えば放射角θ=40°の交点座標はx=1.40,y=1.66である。交点座標の接線方程式から交点の傾斜角ωは75.4°である。 The inclination angle ω on the catadioptric interface 1 will be described with reference to FIG. The position of the light emitting element is the origin, the coordinates of the center C1 of the circle are (m, n), and the radius r. When the x-coordinate of the boundary point between the optical axis lens 6 and the catadioptric interface 1 is 1, and the circle in FIG. 2 is represented by this ratio, a straight line having a radiation angle θ incident on the boundary of 33 ° is expressed by the equation (3). The y coordinate c of the point is 1.54.
Figure 2014003168

A circle is represented by Equation 4, and these intersection points are obtained by Equation 5.
Figure 2014003168

Figure 2014003168

Instead of the number of circles 4, the intersection point can also be obtained directly using an equation such as an ellipse, a hyperbola, or a parabola.
Using this, the coordinates of the intersection of the radiation angle θ and its tangent are obtained as shown in Equation 6 and the inclination angle ω can be obtained as Equation 7.
Figure 2014003168

Figure 2014003168

For example, the intersection coordinates of the radiation angle θ = 40 ° are x = 1.40 and y = 1.66. From the tangent equation of the intersection coordinates, the inclination angle ω of the intersection is 75.4 °.

従来のレンズは円筒面に発光素子からの光が入射すると全反射して球面レンズの頂部付近に集光するが、図2は円筒面の代わりに反射屈折界面1があり、発光素子からの入射光は臨界角以上で入射して側方に全反射する。反射方向が光軸となす角度βは入射角をα、上記ω、θを用いて数8で表される。

Figure 2014003168
In the conventional lens, when light from the light emitting element is incident on the cylindrical surface, the light is totally reflected and condensed near the top of the spherical lens, but FIG. 2 has a catadioptric interface 1 instead of the cylindrical surface, and is incident from the light emitting element. Light enters at a critical angle or more and is totally reflected laterally. The angle β formed by the reflection direction and the optical axis is expressed by Equation 8 using the incident angle α and the above ω and θ.
Figure 2014003168

図2は発光素子から発散される光の放射角θが約33°〜47°の範囲で反射屈折界面1に入射しているが、発光素子の放射角θが約50°を越える領域では別の反射面に入射する。発光素子から放射角θが約50°以上の側面方向に拡散する光を反射屈折界面1の方向に反射する前記反射面を間接反射面4と呼ぶことにする。側面に発光されて間接反射面4で反射すると、前記反射屈折界面1に臨界角以内になるので屈折して前方に射出する。反射屈折界面1は反射面と屈折面を兼用すると前述したが、屈折面にもなる理由は間接反射面4の位置が反射屈折界面1の法線方向側にあるので間接光になり、反射屈折界面1への入射角εが臨界角以内になると屈折するためである。反射屈折界面1は側方反射面2に反射して屈折射出面3から光軸方向に射出するが、その代わりに、間接反射面4の反射光を反射屈折界面1で屈折して光軸方向に射出する構造である。このように、反射屈折界面1は発光素子からの発散光を側方に全反射する機能と、間接反射面4からの反射光を光軸方向に屈折して透過する機能を兼用している。 In FIG. 2, the radiation angle θ of the light emitted from the light emitting element is incident on the catadioptric interface 1 in the range of about 33 ° to 47 °, but is different in the region where the radiation angle θ of the light emitting element exceeds about 50 °. It is incident on the reflective surface of. The reflection surface that reflects light diffusing from the light emitting element in the direction of the side surface having an emission angle θ of about 50 ° or more in the direction of the catadioptric interface 1 will be referred to as an indirect reflection surface 4. When the light is emitted from the side surface and reflected by the indirect reflection surface 4, it falls within the critical angle to the catadioptric interface 1 and is refracted and emitted forward. As described above, the catadioptric interface 1 is used as both a reflecting surface and a refracting surface. However, the reason why the catadioptric surface 1 also serves as a refracting surface is indirect light because the position of the indirect reflecting surface 4 is on the normal direction side of the catadioptric interface 1 and catadioptric. This is because refraction occurs when the incident angle ε to the interface 1 is within a critical angle. The catadioptric interface 1 is reflected by the side reflecting surface 2 and exits from the refractive exit surface 3 in the optical axis direction. Instead, the reflected light of the indirect reflecting surface 4 is refracted by the catadioptric interface 1 to the optical axis direction. It is a structure to inject. As described above, the catadioptric interface 1 has both a function of totally reflecting the diverging light from the light emitting element to the side and a function of refracting and transmitting the reflected light from the indirect reflection surface 4 in the optical axis direction.

反射屈折界面1が凸面の屈折トロイダル面の場合、屈折して平行光に変換するには間接反射面4の反射光は平行光よりもやや拡散光である。凹面、凸面の定義は対象の光に対するものであり、反射屈折界面1が側方に反射する場合は凹面として作用し、屈折して射出する場合は凸面として作用する。LEDは蛍光体を用いる場合も多く、発光素子と蛍光体を総称して光源と呼ぶことにする。間接反射面4は発光素子9からの拡散光を断面視で平行光に近づけ、光軸側に傾いて変換している。このため、間接反射面4は放物面、円錐面、あるいは放物面と円錐面の中間的な曲線で、放物線のy軸より内側に回転軸が傾斜したトロイダル面である。反射屈折界面1の射出光が拡散光の場合は前述の間接反射面4の拡散角度より広くても狭くても可能である。広い場合の間接反射面4は円錐面に近くなり、狭い場合はその逆である。間接反射面4が光軸となす角度をηとすると、光源から放射角θの光の反射光が光軸となす角度ρは数9で表される。

Figure 2014003168

反射屈折界面1の光軸レンズとの境界に入射角εで入射して、反射屈折界面1の傾斜ωにより光軸方向となす角γで射出するとき数10で表される。
Figure 2014003168
When the catadioptric interface 1 is a convex refractive toroidal surface, the reflected light of the indirect reflecting surface 4 is slightly diffused light than the parallel light in order to be refracted and converted into parallel light. The definition of the concave surface and the convex surface is for the target light, and acts as a concave surface when the catadioptric interface 1 reflects sideways, and acts as a convex surface when refracted and emitted. The LED often uses a phosphor, and the light emitting element and the phosphor are collectively referred to as a light source. The indirect reflection surface 4 converts the diffused light from the light emitting element 9 closer to parallel light in a cross-sectional view and converts it by tilting toward the optical axis side. Therefore, the indirect reflecting surface 4 is a parabolic surface, a conical surface, or an intermediate curve between the parabolic surface and the conical surface, and is a toroidal surface whose rotational axis is inclined inward from the y axis of the parabola. When the light emitted from the catadioptric interface 1 is diffused light, it may be wider or narrower than the diffusion angle of the indirect reflecting surface 4 described above. The wide indirect reflecting surface 4 is close to a conical surface, and vice versa when it is narrow. Assuming that the angle formed by the indirect reflection surface 4 with the optical axis is η, the angle ρ formed by the reflected light of the light having the radiation angle θ from the light source with the optical axis is expressed by Equation 9.
Figure 2014003168

When the light enters the boundary of the catadioptric interface 1 with the optical axis lens at an incident angle ε and exits at an angle γ formed with the optical axis direction by the inclination ω of the catadioptric interface 1, it is expressed by Equation 10.
Figure 2014003168

反射屈折界面1の凹反射面のトロイダル面をレンズの入射面に移動して反射屈折界面1を円錐面にすることも出来る。入射面のトロイダル面を入射トロイダル面5と呼ぶと、入射トロイダル面5により断面視で平行に変換出来るので反射屈折界面1が円錐面になり、射出光を光軸に平行にするのが容易になる。円錐面が光軸となす傾斜角ωと側方反射面2が数1と臨界角条件を満たせば良いので数7よりも容易に設定出来る。入射トロイダル面5は次のように構成される。屈折率n2の透光物質で、より低屈折率n1の物質との界面に曲率半径rの凸面円弧を形成し、低屈折率n1側の焦点から凸面で屈折して透光物質中に略平行光が伝播するとき、低屈折率n1側の焦点距離f1と高屈折率n2側の焦点距離f2は近軸光線については数11で表される。

Figure 2014003168

図3の入射トロイダル面5は発光素子9に対面して環状に周回している。円弧だけでなく、楕円、放物線、双曲線など集光作用のある凸面であれば環状の入射トロイダル面5を形成出来る。ここで、光学中心とは発光素子、受光素子、ビームウェスト位置などを表し、平行光に変換する場合は焦点に一致するが、拡散光に変換する場合は後述するように焦点からずれた位置である。入射トロイダル面5を使用して反射屈折界面1から平行光を射出する場合の間接反射面4は放物線のy軸より内側に回転軸を傾斜したトロイダル面である。 The toroidal surface of the concave reflection surface of the catadioptric interface 1 can be moved to the entrance surface of the lens to make the catadioptric interface 1 a conical surface. When the toroidal surface of the incident surface is referred to as the incident toroidal surface 5, the incident toroidal surface 5 can be converted into parallel in a cross-sectional view, so that the catadioptric interface 1 becomes a conical surface and it is easy to make the emitted light parallel to the optical axis. Become. Since the inclination angle ω and the side reflection surface 2 formed by the conical surface as the optical axis need only satisfy the critical angle condition of Equation 1, it can be set more easily than Equation 7. The incident toroidal surface 5 is configured as follows. A convex arc having a radius of curvature r is formed at the interface with a material having a lower refractive index n1, which is a light-transmitting material having a refractive index n2, and is refracted by the convex surface from the focal point on the low refractive index n1 side to be substantially parallel to the light transmitting material. When light propagates, the focal length f1 on the low refractive index n1 side and the focal length f2 on the high refractive index n2 side are expressed by Equation 11 for paraxial rays.
Figure 2014003168

The incident toroidal surface 5 of FIG. 3 faces the light emitting element 9 and circulates in an annular shape. An annular incident toroidal surface 5 can be formed as long as it is not only an arc but also a convex surface having a condensing function such as an ellipse, a parabola, or a hyperbola. Here, the optical center represents a light emitting element, a light receiving element, a beam waist position, and the like. When converted to parallel light, it coincides with the focal point, but when converted to diffused light, it is deviated from the focal point as described later. is there. The indirect reflection surface 4 in the case where parallel light is emitted from the catadioptric interface 1 using the incident toroidal surface 5 is a toroidal surface whose rotational axis is inclined inward from the y-axis of the parabola.

反射屈折界面1による側面方向への反射光を前方に反射する反射面を側方反射面2と呼び、側方反射面2は外周方向に向かう光を斜め前方に反射する。側方反射面2が光軸となす角度χは接線方程式から求められ、側方反射面2の反射光が光軸となす角度をδとすると、これらの関係は数12で表される。

Figure 2014003168

反射屈折界面1は凹面のトロイダル面なので放射角θが増大するに従って反射方向が時計方向に回転して後方になり、反射屈折界面1の反射光は断面視で収束光である。図2では反射屈折界面1の反射光は30°の収束光だが側方反射面2の凸面によって18°に縮小している。 A reflection surface that reflects the light reflected in the side surface direction by the catadioptric interface 1 is referred to as a side reflection surface 2, and the side reflection surface 2 reflects light traveling in the outer peripheral direction obliquely forward. The angle χ formed by the side reflection surface 2 with the optical axis is obtained from a tangent equation. When the angle formed by the reflected light from the side reflection surface 2 with the optical axis is δ, these relationships are expressed by Equation 12.
Figure 2014003168

Since the catadioptric interface 1 is a concave toroidal surface, the reflection direction rotates clockwise as the radiation angle θ increases, and the reflected light of the catadioptric interface 1 is convergent light in a cross-sectional view. In FIG. 2, the reflected light of the catadioptric interface 1 is 30 ° convergent light but is reduced to 18 ° by the convex surface of the side reflecting surface 2.

反射屈折界面1の曲率円中心を原点側に近づけると反射角βが増大して側方反射面2の傾斜角χが時計方向に回転する。この反射光を直接屈折射出面3に入射するよりも急傾斜の円錐面で反射した方が容易に射出光を光軸方向に変換する例を図8に示す。側方反射面2が2つになるが、全反射面を1面増やしても効率には影響がないので2番目の円錐の側方反射面2は屈折射出面3から光軸に平行にするためのマッチング機能に専用している。図8の側方反射面2は図2の側方反射面2の中心C2よりも原点側に近づきC1位置に近似している。凹面の反射屈折界面1による集光距離の約半分の焦点距離で凸面の側方反射面2を設けることにより平行光に変換可能である。側方反射面2の反射光は数12を用いて光線追跡すると、ほぼ平行な光が2番目の円錐の側方反射面2に入射している。図3、図4のように入射トロイダル面5で平行光に変換する例と比較すると、図8のように入射面を平面に出来、封止樹脂を注入した直後にレンズ7を被せるので生産性が良い特徴がある。 When the center of curvature of the catadioptric interface 1 is brought closer to the origin, the reflection angle β increases and the inclination angle χ of the side reflection surface 2 rotates in the clockwise direction. FIG. 8 shows an example in which the reflected light is easily converted into the optical axis direction when the reflected light is reflected by a steeply inclined conical surface rather than directly incident on the refractive exit surface 3. Although there are two side reflecting surfaces 2, increasing the total reflecting surface by one does not affect the efficiency, so the side reflecting surface 2 of the second cone is made parallel to the optical axis from the refractive exit surface 3. Dedicated to the matching function. The side reflecting surface 2 in FIG. 8 is closer to the origin side than the center C2 of the side reflecting surface 2 in FIG. Conversion to parallel light is possible by providing the convex side reflection surface 2 with a focal length that is approximately half the condensing distance by the concave catadioptric interface 1. When the reflected light of the side reflecting surface 2 is traced using Equation 12, substantially parallel light is incident on the side reflecting surface 2 of the second cone. Compared with the example in which the incident toroidal surface 5 converts the light into parallel light as shown in FIGS. 3 and 4, the incident surface can be made flat as shown in FIG. 8, and the lens 7 is covered immediately after the sealing resin is injected. There are good features.

側方反射面2による斜め前方への反射光を透明物質中から空気中に射出するのが屈折射出面3である。光軸方向に射出するときの屈折射出面3が光軸となす角度ζは、反射光方向が回転軸となす角度δとして、スネルの法則から数13が導かれる。空気中の場合はn1≒1としてn1を省略している。

Figure 2014003168

図3の構造では屈折射出面3への入射光が断面視で平行光になるが、図2の構造では図8の例を除き拡散光になる。射出光を平行光にする場合は側方反射面2の反射光は断面視で平行よりもやや開いた拡散光を平行光に戻すので図2の屈折射出面3は凸面のトロイダル面である。図2では反射屈折界面1の反射光は30°の収束光だが側方反射面2の凸面によって18°に縮小している。光度半値角がこれより広ければ屈折射出面3は円錐面、凹面も可能である。 The refractive exit surface 3 emits light reflected obliquely forward from the side reflection surface 2 from the transparent material into the air. The angle ζ formed by the refracting exit surface 3 when it is emitted in the optical axis direction is an angle δ formed by the reflected light direction and the rotational axis, and Equation 13 is derived from Snell's law. In the case of air, n1 is omitted and n1 is omitted.
Figure 2014003168

In the structure of FIG. 3, incident light on the refractive exit surface 3 becomes parallel light in a sectional view, but in the structure of FIG. 2, it becomes diffuse light except for the example of FIG. When the emitted light is converted into parallel light, the reflected light from the side reflecting surface 2 returns the diffused light that is slightly more open than parallel in a sectional view to parallel light, so that the refractive exit surface 3 in FIG. 2 is a convex toroidal surface. In FIG. 2, the reflected light of the catadioptric interface 1 is 30 ° convergent light but is reduced to 18 ° by the convex surface of the side reflecting surface 2. If the half-value angle is wider than this, the refractive exit surface 3 can be a conical surface or a concave surface.

発光素子9は約300μm角などのチップが使われ、チップの中心光と周辺光では光軸レンズ6で屈折する方向が異なり、平行性の誤差になる。発光素子9の中心と周辺の寸法差をd、焦点距離をfとすると、拡散角度φは数14で示される。

Figure 2014003168

300μm角の発光素子9はdが0.15mmなので、f=7.8mm、n2=1.47のときの拡散角度φは1.1°である。蛍光変換白色LEDの場合は蛍光体層の寸法dが発光素子より大きく、拡散角度φが大きくなる。例えば、砲弾型LEDのカップ寸法を半径が約0.5mmとすると蛍光体層の寸法d=0.5mm、焦点距離f=7.8mm、n2=1.47のとき拡散角度φは3.7°である。 The light-emitting element 9 uses a chip of about 300 μm square, and the direction of refraction by the optical axis lens 6 differs between the center light and the peripheral light of the chip, resulting in a parallel error. When the dimensional difference between the center and the periphery of the light emitting element 9 is d and the focal length is f, the diffusion angle φ is expressed by the following equation (14).
Figure 2014003168

Since the light emitting element 9 of 300 μm square has d of 0.15 mm, the diffusion angle φ when f = 7.8 mm and n2 = 1.47 is 1.1 °. In the case of a fluorescent conversion white LED, the dimension d of the phosphor layer is larger than that of the light emitting element, and the diffusion angle φ is large. For example, if the cup-type LED has a radius of about 0.5 mm, the diffusion angle φ is 3.7 when the phosphor layer dimension d = 0.5 mm, the focal length f = 7.8 mm, and n2 = 1.47. °.

発光素子9が光軸レンズ6の内部にあるので焦点距離f2は数11で示され、近軸光線は球面で屈折して平行光に変換されるが、放射角θが大きくなるとsinθ≒θの近似による球面収差によって平行光からずれる。発光素子を焦点からずらしても拡散光を生じる。図1の発光素子9の周辺からレンズ口径部に入射する光線が光軸と交差する点をGとすると、Gに点光源を設けても同じ拡散角になる。Fの位置に発光素子を設け、レンズの曲率半径rをf/g倍にしても同じ拡散角φになる。曲率半径を数7のf/g倍にすると拡散光になる。 Since the light emitting element 9 is inside the optical axis lens 6, the focal length f2 is expressed by Equation 11, and the paraxial ray is refracted by the spherical surface and converted into parallel light. Deviation from parallel light due to approximate spherical aberration. Even if the light emitting element is shifted from the focal point, diffused light is generated. Assuming that a point where a light beam incident on the lens aperture from the periphery of the light emitting element 9 in FIG. Even if the light emitting element is provided at the position F and the radius of curvature r of the lens is f / g times, the same diffusion angle φ is obtained. When the radius of curvature is f / g times the number 7, it becomes diffuse light.

球面レンズは球面収差があるので図3、図4、図8の光軸レンズ6は楕円レンズを用いており、周辺光と光軸光の光路長を等しくとった楕円レンズは平行光として射出可能である。楕円面は数15で表され、長軸をxとすると発光素子は射出面から離心率eの遠い側の位置a・eに設ける構造である。

Figure 2014003168

等光路長の原理と楕円の長軸a、短軸bの係数を結びつける直接的な関数がないので反復計算あるいはスネル則に基づいた光線追跡が必要である。これらの方法により屈折率1.47のエポキシ樹脂ではほぼa=4、b=3、 e=0.66である。屈折率が異なる物質ではスネル則に基づいた光線追跡あるいは軸光と周辺光の光路長が等しくなる楕円面形状にするとほぼ平行光を射出することが出来る。楕円レンズ単独の集光角は約30°である。 Since the spherical lens has spherical aberration, the optical axis lens 6 in FIGS. 3, 4 and 8 uses an elliptical lens, and an elliptical lens in which the optical path lengths of the ambient light and the optical axis light are equal can be emitted as parallel light. It is. The ellipsoidal surface is expressed by the following formula (15). When the major axis is x, the light emitting element is provided at a position a · e on the far side of the eccentricity e from the emission surface.
Figure 2014003168

Since there is no direct function that links the principle of the equal optical path length and the coefficients of the major axis a and the minor axis b of the ellipse, ray tracing based on iterative calculation or Snell's law is necessary. With these methods, the epoxy resin having a refractive index of 1.47 has a = 4, b = 3, and e = 0.66. For substances having different refractive indexes, parallel light can be emitted by tracing light based on Snell's law or by using an ellipsoidal shape in which the optical path lengths of axial light and ambient light are equal. The condensing angle of the elliptic lens alone is about 30 °.

蛍光体層が平坦なLEDは傾斜光方向によって蛍光体層の長さが変わるので方向によって色分離が起こり易い。蛍光体層を半球に形成すれば防止出来るが製造が難しくなる。このため、従来は拡散によって励起光と蛍光を混色する提案が多くあるが、狭指向角かつ十分な混色は困難である。
図7は平坦な蛍光体層でも光軸レンズと反射屈折界面1の指向角を一致させれば加法混色で加算平均されるので色分離を防止することが出来る。励起光と蛍光が同一方向に射出すると加法混色によって平均化されるメカニズムについて説明する。光軸レンズ6の射出光は励起光が優勢な青白色だが、間接反射面4の反射光は蛍光が優勢なので黄白色である。図7の光軸レンズ6の光軸左側は左側に励起光が優勢な青白色光を拡散するが、光軸右側の反射屈折界面1から黄白色光を左側に拡散して光軸レンズ6の指向角に概略一致させれば、その指向角範囲は加法混色されて補色の白色に認識される。光軸レンズ6の射出光3本と間接反射面4の反射光3本を比較すると傾斜がほぼ一致している。光軸の右方向も同様な理由で加算平均される。放射角約30〜50°の光は励起光と蛍光がバランスする領域なので補色の白色の光が屈折射出面3から射出する。平均化により光度半値角30°の範囲に色分離なく照明出来る。
An LED having a flat phosphor layer is subject to color separation depending on the direction because the length of the phosphor layer varies depending on the direction of the inclined light. If the phosphor layer is formed in a hemisphere, it can be prevented, but the manufacture becomes difficult. For this reason, conventionally, there are many proposals for mixing excitation light and fluorescence by diffusion, but it is difficult to achieve a narrow directivity and sufficient color mixing.
In FIG. 7, even if the phosphor layer is flat, if the directivity angles of the optical axis lens and the catadioptric interface 1 are made to coincide with each other, the color mixture can be prevented because additive averaging is performed. A mechanism that is averaged by additive color mixture when excitation light and fluorescence are emitted in the same direction will be described. The light emitted from the optical axis lens 6 is bluish white in which excitation light is dominant, but the reflected light from the indirect reflection surface 4 is yellowish white because fluorescence is dominant. The left side of the optical axis lens 6 in FIG. 7 diffuses blue-white light where excitation light is dominant on the left side, but diffuses yellowish white light to the left side from the catadioptric interface 1 on the right side of the optical axis to If the directivity angle is approximately matched, the directivity angle range is additively mixed and recognized as a complementary white color. When the three light beams emitted from the optical axis lens 6 and the three light beams reflected from the indirect reflection surface 4 are compared, the inclinations are substantially the same. The right direction of the optical axis is also averaged for the same reason. Since light having an emission angle of about 30 to 50 ° is a region where excitation light and fluorescence are balanced, white light of a complementary color is emitted from the refractive exit surface 3. By averaging, it is possible to illuminate the light with a half-value angle of 30 ° without color separation.

レンズ半径に対する光源からレンズ先端までの比は図11のレンズが約3倍、従来の楕円レンズはその比が約2.5倍あるが、反射屈折界面1、側方反射面2などで形成したレンズ7はその比を約1〜1.2に薄型化している。更に全反射損失や側面漏れ光がない利点がある。図12のレンズはレンズ半径に対する光源からレンズ先端までの比は約2倍にして光度半値角が15°以上という条件で全反射を回避しているが、本願レンズは約1〜1.2倍に薄型化出来る。放射角は前述のような制約がなく平行光を射出する。光度半値角は15°の例を図6、30°の例を図7に示すように独立して設定出来る。 The ratio from the light source to the lens tip with respect to the lens radius is about 3 times that of the lens of FIG. 11, and the ratio of the conventional elliptic lens is about 2.5 times, but it is formed by the catadioptric interface 1, the side reflecting surface 2, and the like. The ratio of the lens 7 is reduced to about 1 to 1.2. Further, there is an advantage that there is no total reflection loss and side leakage light. The lens of FIG. 12 avoids total reflection under the condition that the ratio from the light source to the lens tip with respect to the lens radius is about twice and the half-value angle is 15 ° or more, but the present lens is about 1 to 1.2 times. Can be made thinner. The radiation angle is not limited as described above and emits parallel light. As shown in FIG. 6 and the example of 30 ° can be set independently as shown in FIG.

光の進行方向をLEDの逆にして、光学中心にフォトダイオード、フォトトランジスタなどの受光素子を設けると、指向角の設定に応じて高効率に集光することが出来る。例えば赤外線センサによる人体検出では図12のように指向角が広すぎると外乱赤外線を感知するが、指向角の要求に合わせて設計が出来る。レンズ7は図3のような単独レンズとして組み合わせて使用するだけでなく、発光素子9をケース内に収めた部品にすることも出来る。レンズが低背なので受光素子の他、フォトインタラプタ、フォトカプラなどを小型に形成することが出来る。 If a light receiving element such as a photodiode or a phototransistor is provided at the optical center with the light traveling direction opposite to that of the LED, light can be condensed with high efficiency according to the setting of the directivity angle. For example, in human body detection using an infrared sensor, disturbance infrared rays are detected when the directivity angle is too wide as shown in FIG. 12, but the design can be made in accordance with the requirement of the directivity angle. The lens 7 can be used not only in combination as a single lens as shown in FIG. 3, but also as a component in which the light emitting element 9 is housed in a case. Since the lens has a low profile, a photo interrupter, a photo coupler, etc. can be formed in a small size in addition to the light receiving element.

レンズ7は開口数NAが大きく、光束密度の均一度が高いので光ディスク装置の集光レンズや対物レンズなどに使用することが出来る。対物レンズの場合は平行光を焦点に集光するので光の進行方向をLEDの場合の逆にした利用方法である。回転軸方向から平行光を入射して光学中心位置に集光する対物レンズのとき、この光学中心の寸法はビームウェスト径と呼ばれ、ビームウェスト径は開口数NAと波長λにより0.82λ/NAで設定可能なので、光軸レンズ6をNA0.45のCD用、屈折射出面3をNA0.65のDVD用、反射屈折界面1をNA0.85のBD用にして、ディスク厚に応じて焦点距離を変えれば光ディスク用多焦点レンズに利用出来る。 Since the lens 7 has a large numerical aperture NA and a high uniformity of the light flux density, it can be used for a condensing lens or an objective lens of an optical disc apparatus. In the case of an objective lens, parallel light is focused on the focal point, so that the traveling direction of the light is reversed from that in the case of an LED. In the case of an objective lens that injects parallel light from the direction of the rotation axis and collects it at the optical center position, the dimension of this optical center is called the beam waist diameter, and the beam waist diameter is 0.82λ / Since it can be set by NA, the optical axis lens 6 is used for CD of NA 0.45, the refractive exit surface 3 is used for DVD of NA 0.65, and the catadioptric interface 1 is used for BD of NA 0.85. If the distance is changed, it can be used for a multifocal lens for an optical disc.

焦点からレンズの開口径に入射する範囲を口径角θと呼び、この正弦値sinθを開口数NAで表示してレンズの明るさの指標に利用されている。照明装置では光源側の口径角を集光角θと呼んでいるが、放射角が大きければ集光角を大きくすることが出来るので照明装置の放射角に依存する。平行光に変換するコリメーターで集光角を比較すると、図11の発光素子が半径の約3倍位置の球面レンズは約25°、図12の発光素子が半径の約2倍位置の球面レンズは約47°、図4の楕円レンズ単体では約30°である。これに対して、図2の反射屈折界面1、間接反射面4などを組み合わせたレンズ全体は焦点を取り囲むように配置されているため80°の範囲から集光出来る。
発光素子表面を均等拡散面としてランベルトの余弦則を積分すると光源から半球面に放射された光のレンズへの集光率が数16により求められる。集光率の残余は側方に射出されて多くは損失になる。

Figure 2014003168

約4%の界面反射を差し引いて各レンズの集光率を比較すると、図11の球面レンズは約0.38、図12の球面レンズは約0.69、楕円レンズ単体が約0.46、図4の楕円レンズと反射屈折界面1などを組み合わせたレンズ全体は約0.94である。従来の楕円レンズは約半分が発光素子側に全反射あるいは側方に射出して有効に活用出来ない光である。反射屈折界面1と間接反射面4でこの光を集光して効率が約2倍になる。図12の発光素子が半径の約2倍位置の球面レンズに比べて約1.4倍の集光率による効率向上になり、同一光束を得る場合にLED数を27%削減出来る。狭指向角の図11のレンズに比べて約2.5倍の集光率のためLED数を60%削減し、大幅にコストダウンが可能である。効率向上により発熱量も低下するので信頼性が向上する。あるいは同一温度上昇にしてヒートシンクの表面積を削減することも可能である。 The range from the focal point to the aperture diameter of the lens is called the aperture angle θ, and this sine value sin θ is displayed as a numerical aperture NA and used as an indicator of the brightness of the lens. In the illuminating device, the aperture angle on the light source side is called the condensing angle θ, but if the radiating angle is large, the converging angle can be increased, and therefore depends on the radiating angle of the illuminating device. Comparing the condensing angle with a collimator that converts to parallel light, the spherical lens in which the light emitting element in FIG. 11 is about 3 times the radius is about 25 °, and the light emitting element in FIG. Is about 47 °, and about 30 ° for the elliptical lens shown in FIG. On the other hand, the entire lens in which the catadioptric interface 1 and the indirect reflection surface 4 in FIG. 2 are combined is arranged so as to surround the focal point, so that light can be collected from a range of 80 °.
When Lambert's cosine law is integrated using the light emitting element surface as a uniform diffusing surface, the condensing rate of the light emitted from the light source to the hemispherical surface to the lens can be obtained by Equation 16. The remainder of the light collection rate is emitted to the side and a lot is lost.
Figure 2014003168

When the condensing rate of each lens is compared by subtracting the interface reflection of about 4%, the spherical lens of FIG. 11 is about 0.38, the spherical lens of FIG. 12 is about 0.69, the elliptical lens alone is about 0.46, The total lens combining the elliptical lens of FIG. 4 and the catadioptric interface 1 is about 0.94. In the conventional elliptic lens, about half of the light is totally reflected to the light emitting element side or emitted to the side and cannot be used effectively. The light is collected by the catadioptric interface 1 and the indirect reflection surface 4 to double the efficiency. The light-emitting element of FIG. 12 improves efficiency by a light collection rate of about 1.4 times compared to a spherical lens at a position about twice the radius, and the number of LEDs can be reduced by 27% when obtaining the same luminous flux. Compared with the lens of FIG. 11 having a narrow directivity angle, the condensing rate is about 2.5 times, so that the number of LEDs can be reduced by 60%, and the cost can be greatly reduced. Since the amount of heat generation is reduced due to the improved efficiency, the reliability is improved. Alternatively, it is possible to reduce the surface area of the heat sink by increasing the same temperature.

LED射出面の輝度むらが天井灯などの照明装置で問題にされることはないが、信号灯の表示面はLEDの高輝度部分とその周囲の暗部が顕著で輝度むらが非常に大きい。従来例の図15は全光の約64%が光軸近傍の面積比約8%の領域に集中し、残りの36%はレンズ周辺部から射出するので輝度比は87:0:13である。
これに対して図4は楕円レンズの外側の反射屈折界面1は間接反射面4に入射した光が射出し、屈折射出面3は間接反射面4に入射した光が射出する。これらの射出光の比率を数16により求めると、楕円レンズが50%、反射屈折界面1が13%、屈折射出面3が37%である。レンズ面の射出面積比は約1:2.2:2.4なので輝度比は約74:16:11であり、従来例に比べて輝度むらが改善される。
Although the brightness unevenness of the LED exit surface is not a problem in an illumination device such as a ceiling lamp, the display surface of the signal light has a significant brightness unevenness due to the high brightness part of the LED and the dark part around it. In FIG. 15 of the conventional example, about 64% of the total light is concentrated in a region with an area ratio of about 8% near the optical axis, and the remaining 36% is emitted from the lens periphery, so the luminance ratio is 87: 0: 13. .
On the other hand, in FIG. 4, the light incident on the indirect reflection surface 4 is emitted from the catadioptric interface 1 outside the elliptical lens, and the light incident on the indirect reflection surface 4 is emitted from the refraction exit surface 3. When the ratio of these emitted lights is calculated by Equation 16, the elliptic lens is 50%, the catadioptric interface 1 is 13%, and the refractive exit surface 3 is 37%. Since the emission area ratio of the lens surface is about 1: 2.2: 2.4, the luminance ratio is about 74:16:11, and the luminance unevenness is improved as compared with the conventional example.

1.従来のレンズ付LEDは球面レンズ円筒部のレンズ長/半径比3.1、楕円レンズ円筒部のレンズ長/半径比2.5でレンズ寸法が長いが、本願レンズはレンズ長/半径比が約1.0〜1.2で半分以下に小型化される。
2.従来のLEDは球面と円筒面の境界付近で全反射して頂部付近で側面に漏れるか発光素子方向に多重反射して損失になるが、本願レンズは発光素子から反射屈折界面1と間接反射面4に入射して屈折射出面3から射出するのでこのような全反射損失が存在せず、光路が明確である。
3.従来のLEDで全反射損失回避するには広指向角にせざるを得ないが、本願レンズはトレードオフの関係がないので全反射損失を伴わずに狭指向角配光を独立して設定出来る。
4.従来の球面レンズのLEDは周辺光が球面収差により約10°の拡散光になるが、図4のレンズは光学中心からの光をほぼ平行光にすることが出来る。
5.集光角を約80°に高めることが出来、光度半値角120°の表面実装型LEDを使用しても、発光素子からの殆どの放射光を活用でき、効率改善に寄与する
6.フレネルレンズ付表面実装型LEDのような励起光と蛍光の光束むら、色むらや蛍光の再帰反射損失がなく、光軸レンズ6と反射屈折界面1の指向角に概略一致させれば、加法混色されて補色の白色に認識される。
7.半球面レンズは光束むらが大きく、拡散処理によりレンズ中心部に反射させても射出面で側面方向に屈折するので均一化出来ない。本願レンズは反射屈折界面1、屈折射出面3から射出して輝度比を均一化出来、光軸レンズ6と反射屈折界面1の指向角の一致により励起光と蛍光を加法混色して平均化可能である。
1. A conventional LED with a lens has a lens length / radius ratio of 3.1 for a spherical lens cylindrical part and a lens length / radius ratio of 2.5 for an elliptical lens cylindrical part, but the lens size is long. The size is reduced to less than half by 1.0 to 1.2.
2. The conventional LED is totally reflected near the boundary between the spherical surface and the cylindrical surface and leaks to the side surface near the top or multiple reflections in the direction of the light emitting element, resulting in a loss. 4 and exits from the refractive exit surface 3, such total reflection loss does not exist, and the optical path is clear.
3. In order to avoid total reflection loss with a conventional LED, a wide directivity angle is unavoidable. However, since the lens of the present application has no trade-off relationship, a narrow directivity distribution can be set independently without total reflection loss.
4). In the conventional spherical lens LED, ambient light becomes diffuse light of about 10 ° due to spherical aberration, but the lens in FIG. 4 can make light from the optical center almost parallel.
5. The light collection angle can be increased to about 80 °, and even if a surface-mounted LED having a light intensity half-value angle of 120 ° is used, most of the radiated light from the light emitting element can be utilized, contributing to efficiency improvement. If there is no unevenness of excitation light and fluorescent light flux, color unevenness and retroreflective loss of fluorescence as in a surface-mounted LED with a Fresnel lens, additive color mixing is possible if the directivity angle between the optical axis lens 6 and the catadioptric interface 1 is approximately matched. And is recognized as a complementary white color.
7). A hemispherical lens has large light flux unevenness, and even if it is reflected to the center of the lens by a diffusion process, it is refracted in the lateral direction at the exit surface and cannot be made uniform. The lens of the present application can be emitted from the catadioptric interface 1 and the refractive exit surface 3 to make the luminance ratio uniform, and the excitation light and fluorescence can be additively mixed and averaged by matching the directivity angles of the optical axis lens 6 and the catadioptric interface 1 It is.

球面レンズの辺縁部に接して反射屈折界面1、側方反射面2、屈折射出面3、間接反射面4を設けたレンズの構造の原理を示す断面図Sectional drawing which shows the principle of the structure of the lens which provided the catadioptric interface 1, the side reflective surface 2, the refractive exit surface 3, and the indirect reflective surface 4 in contact with the edge part of a spherical lens 球面レンズの辺縁部に接して反射屈折界面1、側方反射面2、屈折射出面3、間接反射面4を設けたレンズの機能を説明するための断面図Sectional drawing for demonstrating the function of the lens which provided the catadioptric interface 1, the side reflective surface 2, the refractive exit surface 3, and the indirect reflective surface 4 in contact with the edge part of a spherical lens 楕円レンズの辺縁部に接して反射屈折界面1、側方反射面2、屈折射出面3、間接反射面4を設け、入射面に入射トロイダル面5を設けたレンズの断面図A sectional view of a lens in which a catadioptric interface 1, a side reflecting surface 2, a refractive exit surface 3 and an indirect reflecting surface 4 are provided in contact with the edge of an elliptic lens, and an incident toroidal surface 5 is provided on the incident surface. 楕円レンズの辺縁部に接して反射屈折界面1、側方反射面2、屈折射出面3、間接反射面4を設け、入射面に入射トロイダル面5を設けた表面実装型LEDの断面図Cross-sectional view of a surface-mounted LED in which a catadioptric interface 1, a side reflecting surface 2, a refractive exit surface 3, an indirect reflecting surface 4 are provided in contact with the edge of an elliptic lens, and an incident toroidal surface 5 is provided on an incident surface. 球面レンズの辺縁部に接して反射屈折界面1、側方反射面2、屈折射出面3、間接反射面4を設けた表面実装型LEDの断面図Cross-sectional view of a surface-mounted LED in which a catadioptric interface 1, a side reflecting surface 2, a refractive exit surface 3, and an indirect reflecting surface 4 are provided in contact with the edge of a spherical lens 球面レンズの辺縁部に接して反射屈折界面1、側方反射面2、屈折射出面3、間接反射面4を設けたリードフレーム型LEDの断面図Cross-sectional view of a lead frame type LED in which a catadioptric interface 1, a side reflecting surface 2, a refractive exit surface 3, and an indirect reflecting surface 4 are provided in contact with the edge of a spherical lens 球面レンズの辺縁部に接して反射屈折界面1、側方反射面2、屈折射出面3、間接反射面4を設けたリードフレーム型LEDの断面図Cross-sectional view of a lead frame type LED in which a catadioptric interface 1, a side reflecting surface 2, a refractive exit surface 3, and an indirect reflecting surface 4 are provided in contact with the edge of a spherical lens 楕円レンズの辺縁部に接して反射屈折界面1、2つの側方反射面2、屈折射出面3、間接反射面4を設けた表面実装型LEDの断面図Cross-sectional view of a surface-mounted LED provided with a catadioptric interface 1, two side reflecting surfaces 2, a refractive exit surface 3, and an indirect reflecting surface 4 in contact with the edge of an elliptic lens 反射屈折界面1、側方反射面2、屈折射出面3、間接反射面4からなるアダプターを楕円レンズの辺縁部に設けたリードフレーム型LEDの断面図Cross-sectional view of a lead frame type LED in which an adapter comprising a catadioptric interface 1, a side reflecting surface 2, a refractive exit surface 3, and an indirect reflecting surface 4 is provided at the edge of an elliptic lens. 屈折射出面3の位置を移動して形成したレンズアレイの断面図Sectional view of a lens array formed by moving the position of the refractive exit surface 3 球面レンズの内部焦点に発光素子を設ける構造の従来のレンズConventional lens having a structure in which a light emitting element is provided at the internal focal point of a spherical lens 球面レンズの内部焦点より先端側に発光素子を設ける構造の従来のレンズA conventional lens having a structure in which a light emitting element is provided on the tip side from the internal focal point of a spherical lens フレネルレンズを用いた従来の表面実装型蛍光白色LEDConventional surface-mount fluorescent white LED using Fresnel lens 半球面レンズの側面の全反射光と光源からの拡散光を平面から射出する従来のレンズConventional lens that emits totally reflected light from the side of hemispherical lens and diffused light from light source from flat surface 図14の凹部入射面の発光素子対向面に凸面を設けた従来のレンズA conventional lens having a convex surface on the light-emitting element facing surface of the concave incident surface of FIG. 図15の半球面レンズの反射面と凹部入射面に拡散処理した従来のレンズConventional lens in which the reflection surface and the concave incident surface of the hemispherical lens of FIG.

実施例1
図3は入射トロイダル面5を用いたレンズ7を単独で示した断面図である。入射トロイダル面5の曲率半径と焦点距離f1はレンズ材料に屈折率n2=1.49のポリメチルメタクリレートを使用し、曲率半径r=1mmとすると数11により焦点距離f1=2.04mmである。入射トロイダル面5で断面視平行光に変換出来るため、θを36°に設定すると反射屈折界面1が回転軸となす傾斜角ω68°、側方反射面2の傾斜角χ50°の円錐面である。屈折射出面3は数12により光軸に平行に射出することが出来る。反射屈折界面1が円錐面なので間接反射面4の反射光は断面視で平行である。このため、間接反射面4は放物線のy軸より内側に回転軸が傾斜したトロイダル面である。光軸レンズ6は数15による楕円レンズを用いると平行光を射出することが出来る。
図3では焦点を1点で示しているが、光ディスク用多焦点レンズとして用いる場合は焦点位置がディスク厚に応じて複数になる。図3では平行光の例を示しているが拡散光に変更することも可能である。拡散光の場合の光軸レンズ6は光学中心位置を曲率半径比が小さい位置に変更し、入射トロイダル面5の光学中心を焦点からずらし、間接反射面4を円錐面に近づければ反射屈折界面1の射出光を拡散光に変更することが出来る。
図3はレンズを支持部材に嵌合するための連結部17を間接反射面4の下部と上部に2ヶ所例示したものである。この連結部17はネジ加工を施し、位置調整して指向角を調整することが可能な例を示しているが、テーパーなどにして嵌め込む構造などに変更可能である。このレンズ7と任意のLED、受光素子などと組み合わせて照明装置、光学装置などを製造することが出来る。支持基板の形状・寸法を変更により任意の照明装置を製造することが出来るので設計自由度が高い特徴がある。
発光素子が埋設されたLEDは指向角を調整するには外部にレンズを設ける必要があるが、図3のレンズ7は連結部17のネジ加工により位置調整して指向角調整が可能なのでスポット照明装置などに有用である。スポット照明装置など頻繁に位置調整する用途では金属製ネジ加工部品をレンズ7に嵌合しても良い。図3で示したレンズ7を使用して大光量のヘッドライトなどの狭指向角用途に応用する場合は基板に複数のレンズ7を嵌合して照明装置を製造することが出来る。
Example 1
FIG. 3 is a sectional view showing the lens 7 using the incident toroidal surface 5 alone. The curvature radius and the focal length f1 of the incident toroidal surface 5 are such that when polymethyl methacrylate having a refractive index n2 = 1.49 is used as the lens material and the curvature radius r = 1 mm, the focal length f1 = 2.04 mm according to Equation 11. Since the incident toroidal surface 5 can be converted into parallel light in cross-section, when θ is set to 36 °, it is a conical surface having an inclination angle ω 68 ° formed by the catadioptric interface 1 and the rotation axis and an inclination angle χ 50 ° of the side reflection surface 2. . The refractive exit surface 3 can be emitted parallel to the optical axis according to Equation 12. Since the catadioptric interface 1 is a conical surface, the reflected light of the indirect reflection surface 4 is parallel in cross section. For this reason, the indirect reflection surface 4 is a toroidal surface whose rotation axis is inclined inward from the y-axis of the parabola. The optical axis lens 6 can emit parallel light when an elliptical lens according to Equation 15 is used.
In FIG. 3, the focal point is indicated by one point. However, when it is used as a multifocal lens for an optical disc, there are a plurality of focal positions according to the disc thickness. FIG. 3 shows an example of parallel light, but it can be changed to diffused light. In the case of diffuse light, the optical axis lens 6 changes the optical center position to a position having a small curvature radius ratio, shifts the optical center of the incident toroidal surface 5 from the focal point, and brings the indirect reflection surface 4 closer to the conical surface. 1 emission light can be changed to diffused light.
FIG. 3 illustrates two connecting portions 17 for fitting the lens to the support member at the lower portion and the upper portion of the indirect reflection surface 4. The connecting portion 17 is shown as an example in which a threading process can be performed and the directivity angle can be adjusted by adjusting the position, but the connecting portion 17 can be changed to a taper-like structure or the like. An illumination device, an optical device, or the like can be manufactured by combining the lens 7 with an arbitrary LED, light receiving element, or the like. Since an arbitrary lighting device can be manufactured by changing the shape and dimensions of the support substrate, there is a feature that design freedom is high.
The LED in which the light emitting element is embedded needs to be provided with an external lens to adjust the directivity angle. However, the lens 7 in FIG. Useful for devices. In an application where the position is frequently adjusted such as a spot lighting device, a metal threaded part may be fitted to the lens 7. When the lens 7 shown in FIG. 3 is used for narrow directivity application such as a headlight with a large amount of light, a lighting device can be manufactured by fitting a plurality of lenses 7 to a substrate.

実施例2
入射トロイダル面5を用いた表面実装型LEDの例を図4に示す。発光素子9は封止樹脂10に埋設し、入射トロイダル面5の焦点20に設ければ断面視で平行に変換出来る。入射トロイダル面5を用いた表面実装型LEDは封止樹脂10との間に空気などの低屈折率層が必要なので封止樹脂とレンズ7が分離した構造になる。反射膜を形成する場合を除き間接反射面4と側方反射面2を全反射面にするための空隙8が必要である。図面では要部を図示し、発光素子9の接続などは省略している。
屈折射出面3を光軸に垂直な例を示すと、入射トロイダル面5によるθを38°に設定すると反射屈折界面1の傾斜ωは64°、側方反射面2の傾斜χは45°の円錐面である。屈折射出面3に垂直に入射するので直進して光軸に平行に射出することが出来るが、曲面にして拡散光を射出することも容易である。屈折射出面3から拡散光を射出する場合は間接反射面4を放物面でなく円錐面に近くすると拡散角度を一致させることが出来る。光軸レンズ6は数15による楕円レンズを用いると平行光を射出することが出来る。この構造は発光素子9から屈折射出面3に直射しない構造なので拡散角約80°の光を全て光軸にほぼ平行に射出することが出来る。
Example 2
An example of a surface mount LED using the incident toroidal surface 5 is shown in FIG. If the light emitting element 9 is embedded in the sealing resin 10 and provided at the focal point 20 of the incident toroidal surface 5, the light emitting element 9 can be converted into parallel in a sectional view. Since the surface-mounted LED using the incident toroidal surface 5 requires a low refractive index layer such as air between the sealing resin 10, the sealing resin and the lens 7 are separated. Except when a reflective film is formed, a gap 8 is required to make the indirect reflection surface 4 and the side reflection surface 2 a total reflection surface. In the drawing, the main part is shown, and the connection of the light emitting element 9 and the like are omitted.
In an example in which the refractive exit surface 3 is perpendicular to the optical axis, when the angle θ of the incident toroidal surface 5 is set to 38 °, the inclination ω of the catadioptric interface 1 is 64 ° and the inclination χ of the side reflection surface 2 is 45 °. It is a conical surface. Since it enters perpendicularly to the refractive exit surface 3, it can go straight and exit parallel to the optical axis, but it is also easy to emit diffused light with a curved surface. When diffusing light is emitted from the refractive exit surface 3, the diffusion angles can be matched by making the indirect reflection surface 4 close to a conical surface rather than a parabolic surface. The optical axis lens 6 can emit parallel light when an elliptical lens according to Equation 15 is used. Since this structure is a structure in which the light emitting element 9 does not directly irradiate the refractive exit surface 3, all light having a diffusion angle of about 80 ° can be emitted almost parallel to the optical axis.

実施例3
図2の構造を用いた拡散角12°の表面実装型LEDの断面図を図5に示す。単独のレンズ7として利用する場合は入射面を凹球面に変更すれば良い。光軸レンズ6は先端から曲率半径の約2.3倍の位置に発光素子9を設けると拡散角10°、光軸を基準に対称で表示すると±5°である。これに発光素子寸法による誤差を含め拡散角約12°である。光軸レンズ6と反射屈折界面1の境界は放射角θが33°の点に設定し、境界の座標(1,1.54)の比率で各寸法を設定出来る。反射屈折界面1の曲率円中心C1(1.9,−0.28)、半径1.73である。反射屈折界面1の反射光は収束光になり、凸面の側方反射面2に入射角48°〜50°で入射する。側方反射面2の反射光は断面視で平行に近い光を屈折射出面3に入射するが、屈折射出面3は傾斜した湾曲面のため射出方向を光軸に対し0〜12°の範囲で射出する。最も辺縁部の射出光の指向角は約12°あるが、光軸レンズ6の放射角±7.5°よりも大きい比率は全光の約4%である。発光素子9から側方に発光した光は間接反射面4で反射し、反射屈折界面1に入射して屈折し、±3°の範囲で前方に射出している。間接反射面4は放物面と円錐面の中間的なトロイダル面で、回転軸が放物線のy軸より内側に傾斜している。
図5はレンズの発光素子側を平坦にして封止樹脂の余剰量を流出させる例で示しているが、発光素子9周囲の封止樹脂を球面で成型すれば空隙が生じても直進するのでレンズ7を凹球面で形成しても良い。封止樹脂の余剰量を流出させるには間接反射面4とケース間の空隙8の下部に空間を設け、封止空間体積より過剰な封止樹脂を注入してからレンズを被せれば余剰量がこの空間に流出するので間接反射面4に付着を防止することが出来る。
レンズ7と封止樹脂の屈折率が異なる場合は屈折の影響を考慮して各反射面を設計する。屈折射出面3には発光素子9からの放射角θが47〜50°間の約3°の直接光が入射し、屈折して光軸から60°の方向に射出する。この光量比率は全体の約4%なので従来の円筒面を有するレンズの約30〜60%に比べて極めて小さいが、これをケース反射面15で光軸方向に反射して改善している。
Example 3
FIG. 5 shows a cross-sectional view of a surface-mounted LED having a diffusion angle of 12 ° using the structure of FIG. When used as a single lens 7, the incident surface may be changed to a concave spherical surface. The optical axis lens 6 has a diffusion angle of 10 ° when the light emitting element 9 is provided at a position approximately 2.3 times the radius of curvature from the tip, and ± 5 ° when displayed symmetrically with respect to the optical axis. This includes a diffusion angle of about 12 ° including an error due to the size of the light emitting element. The boundary between the optical axis lens 6 and the catadioptric interface 1 is set at a point where the radiation angle θ is 33 °, and each dimension can be set by the ratio of the coordinates (1, 1.54) of the boundary. The center of curvature C1 (1.9, −0.28) of the catadioptric interface 1 and the radius 1.73. The reflected light from the catadioptric interface 1 becomes convergent light and enters the convex side reflecting surface 2 at an incident angle of 48 ° to 50 °. The reflected light from the side reflecting surface 2 is incident on the refracting exit surface 3 as light that is nearly parallel in a cross-sectional view. The refracting exit surface 3 is an inclined curved surface, and the exit direction is in the range of 0 to 12 ° with respect to the optical axis. Inject at. The directivity angle of the emitted light at the most peripheral portion is about 12 °, but the ratio larger than the radiation angle ± 7.5 ° of the optical axis lens 6 is about 4% of the total light. The light emitted from the light emitting element 9 to the side is reflected by the indirect reflection surface 4, is incident on the catadioptric interface 1 and refracted, and is emitted forward within a range of ± 3 °. The indirect reflection surface 4 is a toroidal surface intermediate between the paraboloid and the conical surface, and the rotation axis is inclined inward from the y-axis of the parabola.
FIG. 5 shows an example in which the light emitting element side of the lens is flattened and the excess amount of the sealing resin flows out. However, if the sealing resin around the light emitting element 9 is molded with a spherical surface, the lens goes straight even if a gap is generated. The lens 7 may be formed of a concave spherical surface. In order to flow out the surplus amount of the sealing resin, a space is provided below the gap 8 between the indirect reflection surface 4 and the case, and the surplus amount is obtained by injecting the sealing resin more than the sealing space volume and then covering the lens. Can be prevented from adhering to the indirect reflecting surface 4.
When the refractive indexes of the lens 7 and the sealing resin are different, each reflecting surface is designed in consideration of the influence of refraction. Direct light having a radiation angle θ from the light emitting element 9 of about 3 ° between 47 and 50 ° is incident on the refractive exit surface 3 and refracted and emitted in the direction of 60 ° from the optical axis. This light quantity ratio is about 4% of the whole, so it is extremely small compared to about 30 to 60% of the conventional lens having a cylindrical surface, but this is improved by reflecting the case reflecting surface 15 in the optical axis direction.

実施例4
図2の構造によるリードフレーム型LEDを形成したのが図6である。光軸レンズは球面レンズ半径の約2.1倍の位置に発光素子を設けると発光素子からの光の拡散角度φは15°である。反射屈折界面1の射出光の拡散角度を広げるため間接反射面4はほぼ円錐面である。図5は蛍光体11を用いた例で図示しており、蛍光体の寸法に基づく拡散角度を含めると拡散角度φは約20°である。蛍光体を使用したLEDは傾斜光方向によって蛍光体層の長さが変わるので色分離が起こり易いが、図6の光軸レンズと反射屈折界面1の指向角が一致し、ほぼ光軸方向に射出するので励起光と蛍光が加算平均されて色分離を防止することが出来る。
側方反射面2による口径が従来の円筒面より突出するスペースを利用してリードフレームを側方に伸ばし、底面側の寸法を短縮しても半田実装時の半田槽から発光素子までの距離および熱抵抗が同等である。この構造により従来の砲弾のような長い形状に比べて背丈を縮小し、高さを直径の約0.6倍にすることが出来る。図11の砲弾型LEDは直径5mm、高さ10mm、リードフレーム間距離2.5mmと縦長なので実装時の安定性が悪いが、これと同一体積で構成すると直径約7mm、高さ約5mm、リードフレーム間距離5mmになり安定性が良いので実装効率が向上する。
Example 4
FIG. 6 shows a lead frame type LED having the structure shown in FIG. When a light emitting element is provided at a position about 2.1 times the spherical lens radius in the optical axis lens, the diffusion angle φ of light from the light emitting element is 15 °. The indirect reflection surface 4 is substantially a conical surface in order to widen the diffusion angle of the emitted light from the catadioptric interface 1. FIG. 5 shows an example in which the phosphor 11 is used. When the diffusion angle based on the size of the phosphor is included, the diffusion angle φ is about 20 °. In the LED using the phosphor, the length of the phosphor layer changes depending on the direction of the inclined light, so that color separation is likely to occur. However, the directivity angles of the optical axis lens and the catadioptric interface 1 in FIG. Since the light is emitted, the excitation light and the fluorescence are added and averaged to prevent color separation.
Even if the lead frame is extended to the side by using a space where the diameter of the side reflection surface 2 protrudes from the conventional cylindrical surface, and the bottom side dimension is shortened, the distance from the solder tank to the light emitting element during solder mounting and Thermal resistance is equivalent. With this structure, the height can be reduced and the height can be about 0.6 times the diameter compared to a long shape like a conventional shell. 11 has a diameter of 5 mm, a height of 10 mm, and a distance between lead frames of 2.5 mm, so the stability during mounting is poor. However, when configured with the same volume as this, the diameter is about 7 mm, the height is about 5 mm, the lead Since the distance between the frames is 5 mm and the stability is good, the mounting efficiency is improved.

実施例5
図7は図6の曲率半径よりも小さくした拡散角30°のリードフレーム型LEDの例である。この光学系は図1のように、反射屈折界面1の曲率半径が小さいので径が図6よりも約10%小型化される。光軸レンズ6は球面レンズ半径の約2倍の位置に発光素子を設けると発光素子と蛍光体からの拡散角度φは約30°である。これに合わせて反射屈折界面1、側方反射面2、屈折射出面3、間接反射面4を拡散角度φ約30°に設定している。実施例5は段落0027で説明したように拡散角度φ30°にわたって励起光と蛍光を同一方向に平均化して混色することにより色分離を防止出来る特徴がある。反射屈折界面1の射出光の拡散角度を広げるため間接反射面4は円錐面である。この光学系を使用して拡散角30°の表面実装型LEDに変更することも出来る。
側方反射面2による口径が従来の円筒面より突出するのでこのスペースを利用してリードフレームを側方に伸ばして低背化した形状である。実施例4よりも直径を小型化することが可能である。
Example 5
FIG. 7 shows an example of a lead frame type LED having a diffusion angle of 30 ° smaller than the radius of curvature of FIG. In this optical system, as shown in FIG. 1, the radius of curvature of the catadioptric interface 1 is small, so that the diameter is about 10% smaller than that in FIG. When the optical axis lens 6 is provided with a light emitting element at a position about twice the radius of the spherical lens, the diffusion angle φ from the light emitting element and the phosphor is about 30 °. In accordance with this, the catadioptric interface 1, the side reflecting surface 2, the refractive exit surface 3, and the indirect reflecting surface 4 are set to have a diffusion angle φ of about 30 °. As described in paragraph 0027, the fifth embodiment has a feature that color separation can be prevented by averaging and mixing excitation light and fluorescence in the same direction over a diffusion angle of φ30 °. The indirect reflection surface 4 is a conical surface in order to widen the diffusion angle of the light emitted from the catadioptric interface 1. This optical system can be used to change to a surface-mounted LED having a diffusion angle of 30 °.
Since the diameter of the side reflecting surface 2 protrudes from the conventional cylindrical surface, the space is used to extend the lead frame to the side to reduce the height. It is possible to make the diameter smaller than in the fourth embodiment.

実施例6
光軸に平行光を射出する図8による表面実装型LEDの実施例を説明する。側方反射面2は図1〜3よりも曲率半径を大きく設定出来るので、楕円の焦点20までの収束距離に等しい側方反射面2の焦点距離の設定で平行光に変換している。反射屈折界面1の曲率円中心C1(1.92,−0.38)、r=2.31、側方反射面2の曲率円中心C1(2.27,0)、r=1.5、としてほぼ平行光を射出できる。側方反射面2は数12により斜め上方に反射し、屈折射出面3で数13により光軸に平行に変換する。
入射トロイダル面5で変換する例と比べると、この構造は入射面を平面にして生産性が向上する特徴がある。封止樹脂の余剰量を流出させるにはケース内の空隙8の下部にV字型で示した空間を設け、封止樹脂を注入してからレンズを被せれば余剰量がこの空間に流出するので間接反射面4への影響を防止することが出来る。レンズ7と封止樹脂の屈折率が異なる場合は屈折の影響を考慮する必要がある。封止樹脂10を球面で成型し、レンズ7の入射面を球面にすれば空間が生じても直進するので影響を生じない。
Example 6
An embodiment of the surface-mounted LED according to FIG. 8 that emits parallel light to the optical axis will be described. Since the radius of curvature of the side reflecting surface 2 can be set larger than that of FIGS. 1 to 3, the side reflecting surface 2 is converted into parallel light by setting the focal length of the side reflecting surface 2 equal to the convergence distance to the focal point 20 of the ellipse. Center of curvature C1 of the catadioptric interface 1 (1.92, -0.38), r = 2.31, Center of curvature C1 of the side reflecting surface 2 (2.27, 0), r = 1.5, As a result, almost parallel light can be emitted. The side reflecting surface 2 is reflected obliquely upward by the equation (12), and is converted by the refractive exit surface 3 to be parallel to the optical axis by the equation (13).
Compared with the example in which the incident toroidal surface 5 is used for conversion, this structure is characterized in that the incident surface is made flat and the productivity is improved. In order to allow the surplus amount of the sealing resin to flow out, a space indicated by a V-shape is provided below the gap 8 in the case, and if the sealing resin is injected and then covered with a lens, the surplus amount flows out into this space. Therefore, the influence on the indirect reflection surface 4 can be prevented. When the refractive indexes of the lens 7 and the sealing resin are different, it is necessary to consider the influence of refraction. If the sealing resin 10 is molded in a spherical shape and the incident surface of the lens 7 is made spherical, even if there is a space, it will go straight, so there will be no effect.

実施例7
反射屈折界面1、側方反射面2、屈折射出面3、間接反射面4と光軸レンズ6で構成されるレンズ7を集合してレンズアレイにするとLED16と組み合わせて照明装置を構成することが出来る。成型時にレンズアレイを構成した例を連結部に重点を置いて図10に示している。図2の屈折射出面3の構造では連結部の厚さ確保が難しいので、屈折射出面3を互いに連結相手側に移動すると連結部の厚さを増大する。屈折射出面3が互いに連結相手側に移動しても屈折方向は変化しないので指向角を維持して照明装置を構成することが出来る。
レンズアレイは多点で繋げて平面を構成し、LED16は基板14上にレンズアレイのピッチで配置すれば容易に面照明装置を製造することが出来る。図10のように2点で繋げると棒状、円環状などのレンズアレイになるが、支持体(図示せず)でレンズを挟めば支持体による強度確保が出来る。棒状、円環状などのレンズアレイをLED16などと共に基板14上に配置すれば直線蛍光管、円環蛍光管を用いた照明装置に電源部の変更で容易に置き換えることが出来る。
成型時にレンズアレイを構成する以外に、図3のレンズ7の単体を穴明き支持基板に複数嵌合してレンズアレイにすることも可能である。
Example 7
When the lens 7 composed of the catadioptric interface 1, the side reflecting surface 2, the refractive exit surface 3, the indirect reflecting surface 4 and the optical axis lens 6 is assembled into a lens array, an illumination device can be configured in combination with the LED 16. I can do it. An example in which a lens array is configured at the time of molding is shown in FIG. Since it is difficult to secure the thickness of the connecting portion in the structure of the refractive exit surface 3 in FIG. 2, the thickness of the connecting portion increases when the refractive exit surfaces 3 are moved to the connection counterpart side. Since the refraction direction does not change even if the refracting light exit surfaces 3 move toward each other, the illuminating device can be configured while maintaining the directivity angle.
If the lens array is connected at multiple points to form a plane, and the LEDs 16 are arranged on the substrate 14 at the pitch of the lens array, a surface illumination device can be easily manufactured. When connected at two points as shown in FIG. 10, a rod-shaped or annular lens array is formed. However, if a lens is sandwiched by a support (not shown), strength can be ensured by the support. If a rod-like or annular lens array is arranged on the substrate 14 together with the LEDs 16 or the like, it can be easily replaced with a lighting device using a linear fluorescent tube or an annular fluorescent tube by changing the power supply unit.
In addition to forming the lens array at the time of molding, it is also possible to form a lens array by fitting a plurality of lenses 7 in FIG.

実施例8
反射屈折界面1、側方反射面2、屈折射出面3、間接反射面4で構成される領域をアダプターとして従来のレンズ付LED16に被せれば、頂部に向けて全反射する光を反射屈折界面1と屈折射出面4から光軸方向に射出することが出来る。反射屈折界面1、側方反射面2、屈折射出面3、間接反射面4で構成される領域のアダプターを楕円レンズに被せた状態を図9に示す。従来のLEDレンズとこのアダプターの界面に空隙が生じると効果が低下するので接合面17に接着剤を塗って被せると空隙の反射を防止することが出来る。
Example 8
If an area composed of the catadioptric interface 1, the side reflecting surface 2, the refracting exit surface 3 and the indirect reflecting surface 4 is used as an adapter and is put on the conventional LED 16 with a lens, the light that is totally reflected toward the top portion is reflected and reflected. 1 and the refractive exit surface 4 can be emitted in the optical axis direction. FIG. 9 shows a state in which an adapter in a region constituted by the catadioptric interface 1, the side reflecting surface 2, the refractive exit surface 3, and the indirect reflecting surface 4 is put on an elliptic lens. If a gap is generated at the interface between the conventional LED lens and the adapter, the effect is reduced. Therefore, if the adhesive surface 17 is covered with an adhesive, reflection of the gap can be prevented.

1:反射屈折界面 2:側方反射面
3:屈折射出面 4:間接反射面
5:入射トロイダル面 6:光軸レンズ
7:レンズ 8:空隙
9:発光素子 10:封止樹脂
11:蛍光体 12:ケース
13:電極・リードフレーム 14:基板
15:ケース反射面 16:LED
17:接合・連結部 18:ボンディングワイヤ
19:回転軸 20:焦点
1: catadioptric interface 2: side reflecting surface 3: refractive exit surface 4: indirect reflecting surface 5: incident toroidal surface 6: optical axis lens 7: lens 8: air gap
9: Light emitting element 10: Sealing resin 11: Phosphor 12: Case 13: Electrode / lead frame 14: Substrate 15: Case reflecting surface 16: LED
17: Joining / connecting part 18: Bonding wire 19: Rotating shaft 20: Focus

Claims (12)

光軸レンズの辺縁に接する反射屈折界面を光学中心に対して臨界角以上となる角度で設け、光学中心の側方に間接反射面を設けた構造を有し、
光学中心からの光が前記反射屈折界面で側方に全反射し、かつ光学中心からの光が前記間接反射面で反射した後に前記反射屈折界面で屈折して前方に射出することを特徴とするレンズ。
A structure in which a catadioptric interface in contact with the edge of the optical axis lens is provided at an angle that is not less than a critical angle with respect to the optical center, and an indirect reflecting surface is provided on the side of the optical center,
The light from the optical center is totally reflected laterally at the catadioptric interface, and the light from the optical center is reflected by the indirect reflecting surface and then refracted at the catadioptric interface and emitted forward. lens.
前記反射屈折界面は曲率円、放物線、あるいは直線を光軸で回転したトロイダル面あるいは円錐面であることを特徴とする請求項1に記載のレンズ。 The lens according to claim 1, wherein the catadioptric interface is a toroidal surface or a conical surface obtained by rotating a curvature circle, a parabola, or a straight line about the optical axis. 請求光1に記載のレンズの前記反射屈折界面と光学中心との間に凸面トロイダル面を設け、凸面トロイダル面による屈折光を前記反射屈折界面に入射することを特徴とするレンズ。 A lens having a convex toroidal surface between the catadioptric interface and the optical center of the lens according to claim 1, and refracted light from the convex toroidal surface is incident on the catadioptric interface. 前記反射屈折界面の側方に側方反射面あるいは円錐反射面と屈折射出面を設けた構造からなり、側方反射面は反射屈折界面からの反射光を反射して屈折射出面から前方に射出することを特徴とする請求項1に記載のレンズ。 It has a structure in which a side reflection surface or a cone reflection surface and a refractive exit surface are provided on the side of the catadioptric interface, and the side reflective surface reflects the reflected light from the catadioptric interface and emits it forward from the refractive exit surface. The lens according to claim 1, wherein: 前記間接反射面は放物線、直線、曲率円、あるいはこれらを組み合わせた曲線の回転面であることを特徴とする請求項1に記載のレンズ。 The lens according to claim 1, wherein the indirect reflection surface is a paraboloid, a straight line, a curvature circle, or a curved rotation surface that is a combination thereof. 前記側方反射面は前記反射屈折界面で反射した光を臨界角以上で入射する配置であることを特徴とする請求項4に記載のレンズ。 5. The lens according to claim 4, wherein the side reflecting surface is disposed so that light reflected by the catadioptric interface is incident at a critical angle or more. 前記間接反射面に接して嵌合部を設けた構造から成り、位置調整可能なことを特徴とする請求項1に記載のレンズ。 The lens according to claim 1, wherein the lens has a structure in which a fitting portion is provided in contact with the indirect reflection surface, and the position can be adjusted. 光軸レンズの辺縁部に接する反射屈折界面を光学中心に対して臨界角以上となる角度で設け、その側方に側方反射面、屈折射出面、間接反射面、及び光学中心の位置に光源を設けたことを特徴とする照明装置。 A catadioptric interface that touches the edge of the optical axis lens is provided at an angle that is greater than or equal to the critical angle with respect to the optical center, and the side reflecting surface, the refractive exit surface, the indirect reflecting surface, and the position of the optical center are located on the side. An illumination device comprising a light source. 前記間接反射面の反射光を前記反射屈折界面で屈折して射出する光の指向角を光軸レンズの指向角と概略一致させて励起光と蛍光を混色することを特徴とする請求項8に記載の照明装置。 9. The excitation light and the fluorescence are mixed by making the directivity angle of the light refracted by the reflected light of the indirect reflection surface at the catadioptric interface substantially coincide with the directivity angle of the optical axis lens. The lighting device described. 前記間接反射面とケース間の空隙の下部に空間を設け、封止樹脂を注入してからレンズを被せることにより封止樹脂の余剰量をこの空間に流出することを特徴とする請求項8に記載の照明装置。 9. The method according to claim 8, wherein a space is provided below the gap between the indirect reflection surface and the case, and the sealing resin is poured and then the lens is covered to discharge an excess amount of the sealing resin into the space. The lighting device described. 光軸レンズの辺縁部に接する反射屈折界面を光学中心に対して臨界角以上となる角度で設け、その側方に側方反射面、屈折射出面、間接反射面、及び光学中心の位置に受光素子を設けたことを特徴とする受光装置。 A catadioptric interface that touches the edge of the optical axis lens is provided at an angle that is greater than or equal to the critical angle with respect to the optical center, and the side reflecting surface, the refractive exit surface, the indirect reflecting surface, and the optical center are located on the sides A light receiving device comprising a light receiving element. 光軸レンズの辺縁部に接する反射屈折界面を光学中心に対して臨界角以上となる角度で設け、その側方に側方反射面、屈折射出面、間接反射面、及び光学中心の位置を光ディスク装置のビームウェスト位置とすることを特徴とする光学装置。
The catadioptric interface in contact with the edge of the optical axis lens is provided at an angle that is equal to or greater than the critical angle with respect to the optical center, and the side reflecting surface, the refractive exit surface, the indirect reflecting surface, and the position of the optical center are located on the sides. An optical apparatus characterized in that the optical waist is a beam waist position of an optical disk apparatus.
JP2012137633A 2012-06-19 2012-06-19 Lens, illumination device, light receiving device, and optical device Expired - Fee Related JP5228217B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012137633A JP5228217B1 (en) 2012-06-19 2012-06-19 Lens, illumination device, light receiving device, and optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012137633A JP5228217B1 (en) 2012-06-19 2012-06-19 Lens, illumination device, light receiving device, and optical device

Publications (2)

Publication Number Publication Date
JP5228217B1 JP5228217B1 (en) 2013-07-03
JP2014003168A true JP2014003168A (en) 2014-01-09

Family

ID=48913937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137633A Expired - Fee Related JP5228217B1 (en) 2012-06-19 2012-06-19 Lens, illumination device, light receiving device, and optical device

Country Status (1)

Country Link
JP (1) JP5228217B1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150093282A (en) * 2014-02-06 2015-08-18 삼성디스플레이 주식회사 Led light source package
JP6074630B2 (en) * 2013-07-10 2017-02-08 パナソニックIpマネジメント株式会社 Lighting device and automobile equipped with the lighting device
JPWO2015133233A1 (en) * 2014-03-04 2017-04-06 三菱電機株式会社 Light source device and illumination device
JP2017510850A (en) * 2014-06-02 2017-04-13 フィリップス ライティング ホールディング ビー ヴィ Optical system for light collimation
KR101787175B1 (en) * 2014-12-30 2017-10-18 한국광기술원 Optical lens for dental lighting device
JP2018517292A (en) * 2015-05-29 2018-06-28 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic parts
WO2018207501A1 (en) * 2017-05-11 2018-11-15 Scivax株式会社 Optical element and optical system device
US10408430B2 (en) 2016-09-23 2019-09-10 Samsung Electronics Co., Ltd. Asymmetric lighting lens, lighting lens array, and lighting apparatus therewith
JP2020502783A (en) * 2016-11-10 2020-01-23 ホンコン ベイダ ジェイド バード ディスプレイ リミテッド Multi-color micro LED array light source
JP2021026158A (en) * 2019-08-08 2021-02-22 パナソニックIpマネジメント株式会社 Lens and lighting apparatus
TWI783088B (en) * 2017-12-14 2022-11-11 日商Scivax股份有限公司 Optical components and optical system devices
EP4328633A1 (en) * 2022-08-23 2024-02-28 Hamamatsu Photonics K.K. Concentrating lens, photodetector with concentrating lens, concentrating lens unit technical field

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025028A1 (en) 2013-08-22 2015-02-26 Koninklijke Philips N.V. An optical system for producing uniform illumination
CN103759221B (en) * 2014-01-06 2016-02-03 深圳市星标机电设施工程有限公司 LED lens and lighting device
CN107062026B (en) * 2017-03-30 2022-12-27 佛山指南针光学科技有限公司 Compound total reflection LED shot-light lens
CN109973927B (en) * 2018-12-28 2024-03-22 华域视觉科技(上海)有限公司 Matrix type high beam module and condenser thereof
CN113900343B (en) * 2021-10-19 2023-10-27 马瑞利汽车零部件(芜湖)有限公司 Large-angle car body projection optical system
CN115508924B (en) * 2022-10-25 2023-10-27 扬州雷笛克光学有限公司 Rotary zoom lens assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237463A (en) * 2000-02-24 2001-08-31 Matsushita Electric Works Ltd Led module
JP2002094129A (en) * 1999-11-30 2002-03-29 Omron Corp Optical device and apparatus using the same
JP2006278309A (en) * 2005-03-01 2006-10-12 Toshiba Lighting & Technology Corp Lighting system
JP2011100134A (en) * 2009-11-04 2011-05-19 Nalux Co Ltd Lighting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094129A (en) * 1999-11-30 2002-03-29 Omron Corp Optical device and apparatus using the same
JP2001237463A (en) * 2000-02-24 2001-08-31 Matsushita Electric Works Ltd Led module
JP2006278309A (en) * 2005-03-01 2006-10-12 Toshiba Lighting & Technology Corp Lighting system
JP2011100134A (en) * 2009-11-04 2011-05-19 Nalux Co Ltd Lighting device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6074630B2 (en) * 2013-07-10 2017-02-08 パナソニックIpマネジメント株式会社 Lighting device and automobile equipped with the lighting device
KR20150093282A (en) * 2014-02-06 2015-08-18 삼성디스플레이 주식회사 Led light source package
KR102142388B1 (en) 2014-02-06 2020-08-10 삼성디스플레이 주식회사 Led light source package
JPWO2015133233A1 (en) * 2014-03-04 2017-04-06 三菱電機株式会社 Light source device and illumination device
US10458624B2 (en) 2014-06-02 2019-10-29 Signify Holding B.V. Optical system for collimation of light
JP2017510850A (en) * 2014-06-02 2017-04-13 フィリップス ライティング ホールディング ビー ヴィ Optical system for light collimation
KR101787175B1 (en) * 2014-12-30 2017-10-18 한국광기술원 Optical lens for dental lighting device
JP2018517292A (en) * 2015-05-29 2018-06-28 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic parts
US10175465B2 (en) 2015-05-29 2019-01-08 Osram Opto Semiconductors Gmbh Optoelectronic component having a radiation source
US10408430B2 (en) 2016-09-23 2019-09-10 Samsung Electronics Co., Ltd. Asymmetric lighting lens, lighting lens array, and lighting apparatus therewith
JP7149939B2 (en) 2016-11-10 2022-10-07 ジェイド バード ディスプレイ(シャンハイ) リミテッド Multicolor micro LED array light source
JP2020502783A (en) * 2016-11-10 2020-01-23 ホンコン ベイダ ジェイド バード ディスプレイ リミテッド Multi-color micro LED array light source
US10823371B2 (en) 2017-05-11 2020-11-03 Scivax Corporation Optical device and optical system apparatus
WO2018207501A1 (en) * 2017-05-11 2018-11-15 Scivax株式会社 Optical element and optical system device
CN109247025A (en) * 2017-05-11 2019-01-18 Scivax株式会社 Optical element and optical system device
EP3623693A4 (en) * 2017-05-11 2021-01-06 Scivax Corporation Optical element and optical system device
CN109247025B (en) * 2017-05-11 2021-10-01 Scivax株式会社 Optical element and optical system device
JP7075668B2 (en) 2017-05-11 2022-05-26 Scivax株式会社 Optical elements and optical system equipment
JPWO2018207501A1 (en) * 2017-05-11 2020-03-12 Scivax株式会社 Optical element and optical system device
TWI783088B (en) * 2017-12-14 2022-11-11 日商Scivax股份有限公司 Optical components and optical system devices
JP2021026158A (en) * 2019-08-08 2021-02-22 パナソニックIpマネジメント株式会社 Lens and lighting apparatus
JP7394335B2 (en) 2019-08-08 2023-12-08 パナソニックIpマネジメント株式会社 lenses and lighting equipment
EP4328633A1 (en) * 2022-08-23 2024-02-28 Hamamatsu Photonics K.K. Concentrating lens, photodetector with concentrating lens, concentrating lens unit technical field

Also Published As

Publication number Publication date
JP5228217B1 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5228217B1 (en) Lens, illumination device, light receiving device, and optical device
EP2276076B1 (en) Light emitting unit with lens
JP5571251B2 (en) Lens member and light emitting device using the lens member
US20160195243A1 (en) Optical system for producing uniform illumination
US9039222B2 (en) Backlight module with light-guiding portions
TWI537523B (en) Optical lens and lighting element using the same
US20130083541A1 (en) Optical lens, light-emitting diode optical component and light-emitting diode illumination lamp
JP2011198473A (en) Condensing optical element and device using the same
JP2013214449A (en) Toroidal lens and lighting device
JP6089107B2 (en) Lighting device and wide light distribution lens
JP2014060047A (en) Vehicular lighting fixture
JP2009027199A (en) Light-emitting diode
JP2012209049A (en) Led lighting device and lens
TWI418853B (en) Optical lens module and lighting apparatus thereof
TWI521165B (en) High beam collimated light emitting module having light color mixed chamber
TWI441362B (en) Lighting module and lighting device thereof
TWI545376B (en) Led unit and lens thereof
US10794565B2 (en) Dielectric collimator with a rejecting center lens
TWI532222B (en) Lighting apparatus and lens structure thereof
JPWO2008143183A1 (en) Glass-coated light emitting element, lighting device and projector device
JP6749084B2 (en) LED lighting device
US9784428B2 (en) Lighting device with optoelectronic light source
JP2015002025A (en) Illumination device
TWM478106U (en) Reflection structure for LED
JP7300879B2 (en) Optical lens, light source device and illumination device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees