JP2014002900A - 有機el表示装置の製造方法 - Google Patents

有機el表示装置の製造方法 Download PDF

Info

Publication number
JP2014002900A
JP2014002900A JP2012136986A JP2012136986A JP2014002900A JP 2014002900 A JP2014002900 A JP 2014002900A JP 2012136986 A JP2012136986 A JP 2012136986A JP 2012136986 A JP2012136986 A JP 2012136986A JP 2014002900 A JP2014002900 A JP 2014002900A
Authority
JP
Japan
Prior art keywords
layer
organic
organic compound
electrode
compound layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012136986A
Other languages
English (en)
Inventor
Nozomi Izumi
望 和泉
Atsushi Shiozaki
篤志 塩崎
Kiyoshi Miura
聖志 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012136986A priority Critical patent/JP2014002900A/ja
Publication of JP2014002900A publication Critical patent/JP2014002900A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】 電極の上に形成された発光層を酸素プラズマ処理にて所定のパターンに加工する際、電極の表面が酸化されてキャリア注入性が低下し、発光素子の駆動電圧が上昇する。
【解決手段】 酸化された電極の表面に、電極表面を還元する工程または電極の表面層除去する工程を行って、電極表面の酸素の量を低減した後に有機化合物層を形成する。
【選択図】 図1

Description

本発明は有機EL表示装置の製造方法に関するものである。より具体的には、有機化合物層を基板の広い範囲に形成した後に、酸素プラズマエッチング処理にて所定のパターンに加工する工程を有する有機EL表示装置の製造方法に関する。
次世代フラットパネルディスプレイとして、有機EL素子を用いた有機EL表示装置が注目されている。多色表示を行う有機EL表示装置の場合、白色光を発する有機EL素子と赤、緑、青のカラーフィルタを組み合わせた構成や、赤、緑、青のいずれかを表示する3種類の有機EL素子を配置した構成などが採用される。
有機EL素子は、一対の電極と、前記一対の電極の間に配置され少なくとも発光層を含む有機化合物層とを備えており、発光層は有機EL素子で表示させる色に適した材料で構成する。複数種類の有機EL素子を形成するためには、有機EL素子の種類(表示色)毎に発光層を選択的に形成する必要があるため、メタルマスクを用いた真空蒸着法により、発光層を所定の領域に選択的に形成する方法が広く用いられている。
ところが、近年は表示装置の高精細化が進み、より微小な面積に高い精度で膜を形成する技術が求められている。メタルマスクを用いた真空蒸着法は、メタルマスクの加工精度や蒸着時の輻射熱によるメタルマスクの歪み等の問題があり、表示装置の高精細化に対応するのは難しい状況である。
所定の領域に高い精度で発光層を選択的に形成する方法として、特許文献1や特許文献2には、フォトリソグラフィを用いて発光層を含む有機化合物層を所定のパターンに加工する方法が開示されている。具体的には、電極層が形成された基板面全体に形成した有機化合物層の上に、フォトリソグラフィを用いてフォトレジスト層(マスク層)を所定の領域に選択的に形成し、フォトレジスト層に覆われていない領域の有機化合物層を除去して、所定のパターンに加工する。有機化合物層を形成する工程とフォトリソグラフィを利用して所定のパターンに加工する工程とを複数回繰り返すことにより、複数種類の有機化合物層をそれぞれ所定の領域に選択的に形成することができる。
特開2003−36971号公報 特開2007−287537号公報
特許文献1および2には、マスク層に覆われていない領域の有機化合物層を除去する際、加工精度の高いドライエッチングを用いるのが好ましく、特に、酸素単体または酸素を含むガスを用いたドライエッチング(酸素プラズマエッチング処理)が好ましいことが記載されている。酸素プラズマエッチング処理は、有機系材料の酸化反応による分解除去が可能となるため、加工を短時間で行うことができるからである。加えて、電極として用いられるインジウムスズ酸化物(ITO)等の酸化物導電膜をほとんどエッチングすることがないので好ましい。
ところが、有機化合物層を酸素プラズマエッチング処理にて除去した場合、電極の表面はほとんどエッチングされないものの、酸化されてキャリア注入性が低下し発光素子の駆動電圧が上昇するという課題が生じることが分かった。
本発明は上記課題を解決するものであり、酸素プラズマ処理にて有機化合物層を所定のパターンに加工する工程(パターニング工程)を用いて、駆動電圧が低く高精細な有機EL表示装置を製造することを目的としている。
本発明に係る有機EL表示装置の製造方法は、
少なくとも発光層を含む有機化合物層と、前記有機化合物層にキャリアを供給する電極とを備えた有機EL素子を複数有する有機EL表示装置の製造方法であって、
複数の電極が設けられた基板の上に第1有機物化合物層を形成する工程と、
前記複数の電極のうち、一部の電極の上に形成された前記第1有機化合物層を、酸素プラズマを用いて選択的に除去する第1の工程と、
前記第1有機化合物層が除去された一部の電極の表面を、該表面の仕事関数のエネルギーが前記第1の工程直後のそれより低くなるように処理する第2の工程と、
前記第2の工程で処理された一部の電極上に前記第1有機化合物層とは異なる第2の有機化合物層を形成する第3の工程と、
を有することを特徴とする。
本発明によれば、第2の有機化合物層を形成する前に、酸素プラズマエッチング処理によって過度に酸化された電極表面の酸素濃度を調整して仕事関数を低エネルギー化し、キャリア注入性を高めている。その結果、駆動電圧の低い高精細な有機EL表示装置を製造することが可能となる。
本発明の第1の実施形態に係る有機EL表示装置の製造方法を示す図。 本発明の第1および第2の実施形態に係る有機EL表示装置を示す図。 本発明の第2の実施形態に係る有機EL表示装置の製造方法を示す図。
有機EL素子の電極には、自身が接する有機化合物層への高いキャリア注入性が求められる。電極に接する有機化合物層の材料にもよるが、一般的には、陽極であれば、正孔注入性を向上させる為に5.0〜5.4eVの仕事関数の仕事関数を有しているのが好ましい。
例えば、陽極の電極材料として広く用いられるインジウムスズ酸化物(ITO)は、スパッタリング法など公知の成膜方法で形成されただけの状態(as−Depo状態)では仕事関数が4.7eV程度である。このままでは、正孔注入に適した仕事関数の範囲よりも低い。そこで、高精細なメタルマスクを用いて有機化合物層を形成する製造方法では、有機化合物層を形成する前に、オゾン処理や酸素プラズマ処理などの酸化処理を行って電極表面の酸素濃度を制御し、仕事関数を調整している。
ところで、本願発明や引用文献1や2の製造方法において、有機化合物層の除去に用いられる酸素プラズマエッチング処理は、有機化合物層のエッチングレートを高めて加工時間を短縮することに主眼を置いて条件が決められる。そのため、仕事関数の調整に用いられるオゾン処理や酸素プラズマ処理の条件に比べて工程中に高いエネルギーを持った酸素原子が電極表面に衝突することになり、電極表面が過度に酸化されてしまう。以下、酸素プラズマを用いて有機化合物層の除去する条件での処理を酸素プラズマエッチング処理、酸素プラズマを用いて電極表面の仕事関数を調整する条件での処理を酸素プラズマ処理と呼んで区別する。
過度に酸化されたITO電極表面では、仕事関数が有機化合物層へのキャリア注入に適したエネルギー範囲より高くなり、キャリア注入性が低下する。そこで、本発明では、ITO電極表面のキャリア注入性を好ましい範囲に調整するために、過度に酸化されたITO電極表面の酸素濃度を制御して仕事関数を低エネルギー化する。
電極表面の仕事関数を、酸素プラズマエッチング処理にて有機化合物層を除去した直後の値よりも低エネルギー化する工程は、過度に酸化された電極表面の酸素濃度を低減するものであれば良い。具体的には、電極の表面層を除去する工程と電極表面を還元する工程の2つが挙げられる。
過度に酸化された電極の表面層を除去する工程は、電極を酸化させずに除去するのが好ましく、電極材料を酸化させない不活性ガス、例えばアルゴンや窒素などを用いたドライエッチング処理が好ましい。電極表面を還元する工程には、例えば水素などの電極材料を還元する還元ガスを用いたプラズマ処理を用いることができる。いずれの工程でも、電極表面の酸素濃度を調整して仕事関数を低エネルギー化することが可能となる。
電極の表面層を除去する工程あるいは電極表面を還元する工程のみで、仕事関数を調整するのが困難な場合は、オゾン処理または酸素プラズマ処理を組み合わせると良い。電極の表面層を除去する工程あるいは電極表面を還元する工程で一旦as−Depo状態に近い状態まで仕事関数を下げた後、オゾン処理または酸素プラズマ処理を行って仕事関数を有機化合物層へのキャリア注入に適した範囲まで高めることができる。
続いて、本発明にかかる有機EL表示装置の製造方法を、図面を参照しながら詳細に説明する。ここでは、基板1の上に、互いに異なる発光層を含み互いに異なる色を表示する第1有機EL素子、第2有機EL素子、第3有機EL素子を備えた多色表示の有機EL表示装置を例にとって説明する。以下に説明する実施形態は、公知の技術を用いて適宜変更が可能であって、本発明はこれらに限定されるものではない。また、本明細書において、特に図示しない部材あるいは説明しない工程等には、当該技術分野の周知或いは公知の技術を適用することができる。
図1は、本発明の第1の実施形態にかかる有機EL表示装置の製造方法の各工程を示す図である。図2は、図1の製造方法により製造される有機EL表示装置例を示している。基板1には表示領域10と外部接続端子11が設けられている。表示領域10には、一対の電極と一対の電極に挟まれた第1有機化合物層3とを備える第1有機EL素子、第1有機EL素子と同様の構成の第2有機化合物層7を備える第2有機EL素子および第3有機化合物層8を備える第3有機EL素子の複数種類の有機EL素子が配置されている。外部接続端子11は、不図示の配線によって、有機EL素子を駆動するための駆動回路(不図示)に電気的に接続されている。
[第1電極を形成する工程]
まず、基板1の上に、第1有機EL素子、第2有機EL素子、第3有機EL素子のそれぞれを構成する第1電極2a、2b、2cを形成する(図1(a))。
基板1には、有機EL表示装置を安定に製造することができかつ駆動できるものであれば、特に形状や材質の制限なく用いることができる。有機EL表示装置の用途にもよるが、変形の小さいガラス基板やSiウェハが好適である。基板1には、必要に応じて有機EL表示装置を駆動するための駆動回路による凹凸を平坦化するための平坦化層や、電極間に設けて発光領域を区画する分離層などを設けてもよい。
第1電極2a、2b、2cは、基板1の片面全体に、真空蒸着法、スパッタリング法、CVD法などの公知の方法にて導電層を形成した後、公知のフォトリソグラフィにて導電層をパターニングして形成する。パターニングによって第1電極2a、2b、2cを互いに分離し、各有機EL素子が発光を独立して制御可能としている。
第1電極は、第1電極と接する有機化合物層に対する正孔注入性が高く、公知の方法でパターニング可能な導電性材料で構成する。例えば、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(InZnO)などの酸化物導電材料や、Al、Tiなどの金属材料、これらの材料からなる層を積層した膜などを用いることができる。
[第1有機化合物層を形成する工程]
形成した第1電極2a、2b、2cの表面の仕事関数は、as−Depo状態と同等の仕事関数であるため、従来技術と同様に、オゾン処理によって酸化して正孔注入に適した仕事関数の範囲に調整しておく。続いて、第1電極2a、2b、2cが形成された基板1の上に、第1有機化合物層3を形成する(図1(b))。第1有機化合物層3を構成する材料は、公知の低分子系材料或いは高分子系材料の中から選択し、選択した材料に応じて真空蒸着法や塗布法を適宜用いることができる。本発明の有機化合物層は、少なくとも発光層を含んでいる。つまり、本発明において、有機化合物層は、1層若しくは複数層の発光層から構成される場合、またはこのような発光層に加えて更に電子注入層、電子輸送層、正孔注入層、正孔輸送層などから成る他の層を1層以上含んだ複数の層の積層体から構成される場合を包含するものである。また、本発明において、互いに「異なる有機化合物層」とは、発光層の材料、組成、膜厚、発光層を形成する場合の成膜方法、成膜条件、発光層以外の他の層の材料、組成、膜厚、他の層を形成する場合の成膜方法、成膜条件等のうち、少なくとも一つが互いに異なる有機化合物層のことを言う。発光層には、アリールアミン誘導体、スチルベン誘導体、ポリアリーレン、縮合多環炭化水素化合物、複素環式芳香族化合物、複素環式縮合多環化合物、有機金属錯体化合物等及びこれらの単独オリゴ体あるいは複合オリゴ体などから選択して使用することができる。後述する第2有機化合物層、第3有機化合物層も、用いることのできる材料、成膜方法等は第1有機化合物層3と同様である。
[剥離層を形成する工程]
次に、第1電極2aの上に形成された第1有機化合物層3の上に、剥離層4aを所定のパターンに選択的に形成する。剥離層4aは、それ自身が溶解することにより、剥離層4aの上に形成された層を、第1有機化合物層3や後に形成される第2有機化合物層7が設けられた基板の上から剥離(リフトオフ)するために設ける層である。従って、剥離層4aには、第1有機化合物層3および第2有機化合物層7の溶解度が低い溶解液(剥離液)に対する溶解度が高く、かつ、剥離層4aの形成時に第1有機化合物層3にダメージを与えない材料を用いる。例えば、第1有機化合物層3に、アリールアミン誘導体、スチルベン誘導体、ポリアリーレン、縮合多環炭化水素化合物など、水にほとんど溶解しない材料を用いた場合、剥離層4aを溶解する剥離液として水を好適に用いることができる。そして、剥離層4aには、LiF、NaClなどの水溶性無機材料、或いは、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)などの水に溶解し易い水溶性高分子材料を用いることができる。
剥離層4aを選択的に形成する方法には、剥離層4aに用いる材料の特性に応じて様々な方法を採用することができる。例えば、第1有機化合物層3が形成された基板面全体に剥離層4aとフォトレジスト層とを順次形成した場合は、フォトレジスト層をフォトリソグラフィでパターニングし、パターニングされたフォトレジスト層をマスク層として剥離層4aをパターニングすることができる。剥離層4aが感光性材料からなる場合は、第1有機化合物層3が形成された基板面全体に剥離層4aを形成した後、剥離層4a自体をフォトリソグラフィで所定のパターンにパターニングすることができる。また、剥離層4aが高分子系の材料の場合は、インクジェット法や印刷法などを用いて所定のパターンに選択的に形成することもできる。
本実施形態では、基板1の第1有機化合物層3が形成された面全体に、剥離層4aとフォトレジスト層5aとを順次形成し(図1(c))、第1電極2aの上にフォトレジスト層5aが残存するよう、フォトレジスト層5aをフォトリソグラフィにてパターニングしている(図1(d))。この場合、フォトレジスト層5aの現像に用いられる現像液に対するフォトレジスト層5aのエッチングレートが、剥離層4aのそれよりも大きいフォトレジスト材料を用いる。もしフォトレジスト層5aの現像液が、剥離層4aや第1有機化合物層3の溶解や変質を引き起こす場合には、剥離層4aとフォトレジスト層5aとの間に保護層を設けておくのが好ましい。保護層には、それ自体が有機溶媒には溶解せずかつ有機溶媒を透過しない材料が好ましく、窒化シリコンや酸化シリコンなどの無機材料が好適である。保護層を用いることで、フォトレジスト層5aの形成によって生じる剥離層4aや第1有機化合物層3の溶解や変質を抑制することができ、剥離層4aの上に形成するフォトレジスト層5aに用いることのできる材料の選択肢を増やすことができる。
パターニングされたフォトレジスト層5aに覆われていない領域の剥離層4aを除去すれば、所定の領域に剥離層4aを選択的に形成することができる。剥離層4aを水溶性高分子材料で形成した場合は、酸素プラズマを用いてエッチングすることができるため、剥離層4aと第1有機化合物層とを連続してエッチングし、パターニングすることができる。
剥離層4aとフォトレジスト層5aとの間に無機材料からなる保護層を形成した場合は、酸素プラズマを用いて剥離層4aを除去した後、第1有機化合物層を除去する前にフッ素系ガスを用いたドライエッチングにて保護層を除去しておく。
本実施形態では、工程簡略化のため、剥離層4aを水溶性高分子材料で形成するものとし、剥離層4aのパターニングは第1有機化合物層3のパターニングと連続して行う。従って、剥離層4aのパターニングについては、次の第1有機化合物層3のパターニング工程の中で説明する。
なお、剥離層4aは、第1有機化合物層3の上に形成された層を基板1から剥離できれば、必ずしも層全体が剥離液に対する溶解度の高い材料で構成されている必要はない。例えば、剥離層4aを複数の層からなる積層体で形成し、第1有機化合物層3に接する一層のみを剥離液に溶解する材料で形成することもできる。
[第1有機化合物層のパターニング工程]
次に、フォトレジスト層5aに覆われていない領域、即ち第1電極2b、2cの上に形成されている剥離層4aおよび第1有機化合物層3を除去して、第1有機化合物層3をパターニングする(図1(e))。本発明において、第1有機化合物層3の除去は、パターニング精度が高くかつ有機系材料のエッチングレートが高い、酸素を用いたドライエッチング(酸素プラズマエッチング)にて行う。酸素に、アルゴンやヘリウムなどの希ガスや窒素を添加したガスを用いてエッチングを行ってもよい。
酸素プラズマエッチングにおける無機材料のエッチングレートは、有機系材料のエッチングレートに比べて十分に遅いため、酸化物導電材料などからなる第1電極2b、2cは、ほとんどエッチングされない。従って、第1電極2b、2c上の第1有機化合物層3を選択的に除去することができる。
本実施形態では、フォトレジスト層5aをマスクとして、剥離層4aと第1有機化合物層3とを酸素プラズマエッチングにて連続して除去することができる。この間に、有機系材料であるフォトレジスト層5aも、第1有機化合物層3と共にエッチングされる。第1有機化合物層3の除去が完了するまでに、除去しない領域の第1有機化合物層3の表面が露出したり、剥離層4aが薄くなりすぎたりしないよう、フォトレジスト層5aや剥離層4aの膜厚を決める必要がある。
[第1電極2b、2cの仕事関数を低エネルギー化する工程]
前述したように、第1電極2b、2cは、前段工程である酸素プラズマエッチングによって表面が過度に酸化され、仕事関数が正孔注入に適したエネルギー範囲よりも高くなる。そこで、上昇してしまったITO電極(第1電極2b、2c)の表面の仕事関数を、第2有機化合層を形成する前に、前記1有機化合物層を酸素プラズマエッチングにて除去する工程直後よりも低エネルギー化する工程を行う(図1(f))。
電極表面の仕事関数を低エネルギー化するためには、過度に酸化された電極表面の酸素濃度を低減するとよい。具体的には、過度に酸化された電極表面を除去するか、還元するすればばよい。図1(f)の符号6は、ITO表面の仕事関数を下げるための手段を示しており、不活性ガスのプラズマや電極材料を還元する水素ガス等を用いた還元プラズマである。
電極の仕事関数と電極が接する正孔輸送層あるいは正孔注入層のHOMO準位とが互いに近いエネルギー値である方が、正孔は注入し易くなる。従って、電極表面の仕事関数を低エネルギー化する工程によって、電極の仕事関数が、電極が接する正孔輸送層あるいは正孔注入層のHOMO準位に近いエネルギーとなるのが好ましく、HOMO準位±0.2eVの範囲となるのが特に好ましい。ところが、第1有機化合物層のパターニング工程の酸素プラズマエッチングによって強く酸化されるのは、第1電極表面から数nm程度の深さであるため、電極表面の仕事関数を低エネルギー化する工程の条件を精度よく制御しないと、ITO表面の仕事関数が好ましいエネルギー範囲を超えて低くなってしまう場合がある。例えば、用いる装置の構成によっては、電極表面の仕事関数を好ましいエネルギー範囲に調整するための条件がうまく定まらない場合が考えられる。
ITO表面の仕事関数が低くなりすぎた場合は、電極表面を除去する工程または還元する工程の後に、さらにオゾン処理または酸素プラズマ処理を行って適度に酸化することで、仕事関数を調整することが可能である。仕事関数の調整を行うオゾン処理または酸素プラズマ処理は、再び好ましいエネルギー範囲を超えないよう、従来のように酸化速度の遅い条件で行うことが好ましい。
[第2有機化合物層を形成する工程]
第1電極の仕事関数を低エネルギー化する工程に続いて、第1有機化合物層3と同様にして、第1電極2bおよび2cの上に、第1有機化合物層3とは異なる第2有機化合物層7を形成する(図1(g))。第1電極の仕事関数を低エネルギー化する工程と、第2有機化合物層7を形成する工程とは、真空状態を開放することのない一連の工程で行うのが好ましい。
[第2有機化合物層をリフトオフする工程]
剥離層4aに剥離液を接触させて剥離層を溶解し、同時に剥離層4aの上に形成された第2有機化合物層7をリフトオフする(図1(h))。前述したように、剥離液には、第1有機化合物層3および第2有機化合物層7の溶解度が低く、かつ、剥離層4aの溶解度が高い物質を用いるので、選択的に剥離層4を溶解することができる。
第2有機化合物層7は剥離液に溶解しないため、剥離層4aが溶解すると、剥離層4aの上に形成された第2有機化合物層7は第1有機化合物層3の表面から剥がれる。第2有機化合物層7が容易に剥がれなかったり、剥がれた第2有機化合物層7が基板1に再付着したりする場合は、超音波や水流などの物理的な力を加えながら剥離するのが好ましい。
[新たな剥離層を形成する工程]
第1有機化合物層3、および、第1電極2bの上に設けられた第2有機化合物層7の上に、剥離層4aと同様に、新たな剥離層4bを形成する。剥離層4aは、剥離層4aと同様にして形成することができる。ここでは、先に説明した剥離層4aの形成工程と同様に、剥離層4bとフォトレジスト層5bとを第1有機化合物層3および第2有機化合物層7の上全体に形成し(図1(i))、フォトリソグラフィを用いてフォトレジスト層5bをパターニングする(図1(j))。この時、剥離層4bには、第1有機化合物層3、第2有機化合物層7、および第3有機化合物層8の溶解度が低い剥離液に対する溶解度が高く、かつ、剥離層4bの形成時に第1有機化合物層3および第2有機化合物層7にダメージを与えない材料を用いる必要がある。フォトレジスト層5bの現像液が、剥離層4bや第1有機化合物層3、第2有機化合物層7の溶解や変質を引き起こす場合には、剥離層4bとフォトレジスト層5bとの間に不図示の保護層を設けておくとよい。
本実施形態では、剥離層4bを剥離層4aと同じ水溶性高分子材料で形成するものとして説明する。この場合、剥離層4bと第2有機化合物層7とを連続してエッチングしてパターニングするのが好ましいため、剥離層4bのパターニング工程は次の第2有機化合物層7のパターニング工程の中で説明する。
[第2有機化合物層をパターニングする工程]
フォトレジスト層5bに覆われていない領域即ち第1電極2c上の領域に形成されている、剥離層4bと第2有機化合物層7とを酸素プラズマエッチングにて連続的にエッチングし、剥離層4bおよび第2有機化合物層7をパターニングする(図1(k))。酸素プラズマエッチングは、第1有機化合物層3と同様の条件で行うことができる。
[第1電極2cの仕事関数を低エネルギー化する工程]
次に、第2有機化合物層7を酸素プラズマエッチングにより除去する間に酸化され、仕事関数が上昇してしまった第1電極2c表面を、前記2有機化合物層を酸素プラズマエッチングにて除去する工程直後よりも低エネルギー化する工程を行う。低エネルギー化する工程は、先に行った第1電極2b、2cの仕事関数を低エネルギー化する工程と同様に、電極表面を除去する工程あるいは電極表面を還元する工程で、あるいは、電極表面を除去する工程または電極表面を還元する工程とオゾン処理または酸素プラズマ処理とを組み合わせて行うことができる。
[第3有機化合物層を形成する工程]
第1電極2cの仕事関数を低エネルギー化する工程に続いて、第2有機化合物層7と同様の方法で、第1電極2cの上に第3有機化合物層8を形成する(図1(m))。調整した電極表面の仕事関数が変化しないように、第1電極2cの仕事関数を低エネルギー化する工程と、第3有機化合物層8を形成する工程とは、真空状態を開放することのない一連の工程で行うのが好ましい。
[第3有機化合物層のリフトオフ工程]
剥離層4bに剥離液を接触させて剥離層を溶解し、剥離層4bの上に形成された第3有機化合物層8をリフトオフする(図1(n))。前述したように、剥離液には、第1有機化合物層3、第2有機化合物層7および第3有機化合物層8の溶解度が低く、かつ、剥離層4bの溶解度が高い液体を用いるので、選択的に剥離層4bを溶解することができる。第3有機化合物層8の剥離を補助したり、剥がれた第3有機化合物層8が基板1に再付着したりするのを抑制するため、超音音波や水流などの物理的な力を加えながら剥離してもよい。
[第2電極を形成する工程]
所定の領域に選択的に形成された第1有機化合物層3、第2有機化合物層7、第3有機化合物層8の上に共通の第2電極9を形成して、有機EL表示装置の基本構成が完成する(図1(o))。
第2電極9を形成する前に、第1有機化合物層3、第2有機化合物層7、第3有機化合物層8の上に共通の有機化合物層を形成してもよい。共通の有機化合物層は、発光層より後に形成する層であれば、特に限定されない。発光層は、有機EL素子の種類に応じてパターニングする必要があるが、例えば正孔輸送層や正孔注入層など他の層は、種類の異なる有機EL素子に共通する層であっても構わないからである。
第2電極9には、Al、Agなどの金属材料や、ITO、インジウム亜鉛酸化物などの透明電極材料、或いはそれらの積層膜など、公知の電極材料を用いることができる。有機化合物層で発せられた光を外部に出射させるためには、第1電極および第2電極8の少なくとも一方に、透明あるいは半透明の材料を用いる。ここで言う透明とは、可視光に対して80%以上の透過率を有するもの、半透明とは、可視光に対して20%以上80%未満の透過率を有するものをいう。第2電極9を形成した後、有機EL素子に外部から水分が浸入するのを抑制するため、公知の封止部材(不図示)を設けるのが好ましい。
図3に第2の実施形態にかかる有機EL表示装置の製造方法を示す。図3に示した製造方法は、剥離層4aとフォトレジスト層5aとの間、及び剥離層4bとフォトレジスト層5bとの間に、それぞれ保護層12aおよび12bを設けた点で、図1で説明した実施形態と相違し、その他は同一のプロセスである。前述したように、保護層にはそれ自体が有機溶媒には溶解せずかつ有機溶媒を透過しない材料が好ましく、窒化シリコンや酸化シリコンなどの無機材料が好適である。保護層を用いることで、フォトレジスト層5aや5bを形成する際に用いる溶媒や現像液等によって、剥離層4aや4b、第1有機化合物層3や第2有機化合物層7が溶解や変質を抑制することができる。その結果、剥離層4aや4bの上に形成するフォトレジスト層5aや5bに用いることのできる材料の選択肢を増やすことができる。
(実験例1)
第1電極にITO、第1電極と接する有機化合物層として下記構造式で示される化合物(以下、化合物1と記述)からなる正孔輸送層を用いた有機EL表示装置の製造方法において、酸化されたITO電極表面の仕事関数を、電極表面を除去する工程により低エネルギー化する工程について説明する。
Figure 2014002900
本実験例では、電極表面を除去する工程にアルゴンプラズマプラズマを用い、低エネルギー化するための条件出しを行った。
電極表面の仕事関数を低エネルギー化する工程の条件は、後で説明する実施例で作製する有機EL素子と同等の試料を複数作製し、各試料の電極を別々の条件で処理し、電極表面の仕事関数を評価することにより決定した。
まず、ガラス基板にスパッタリング法によりAlNd膜とITO膜とを順次成膜し、AlNd膜とITO膜の積層膜からなる電極を形成した。電極の上に、化合物1からなる正孔輸送層を膜厚120nm、公知の青色発光材料からなる青色発光層を膜厚30nmで順次形成した。
続いて、プラズマ処理を行うチャンバーに青色発光層が形成された基板を投入し、チャンバー内に酸素を30ml/min導入して圧力0.3Paに制御した。そして、1000Wの電力を投入して酸素プラズマを発生させて、正孔輸送層および青色発光層を連続してエッチング除去した。エッチングを始めて約50secで、電極上の正孔輸送層および青色発光層を除去することができた。
酸素プラズマエッチング処理にて表面の有機化合物層が除去された電極表面の仕事関数を、公知の方法を用いて測定したところ、5.80eVであった。正孔輸送層に化合物1を用いる本実験例の場合、第1電極表面の好ましい仕事関数は、5.0〜5.3eVである。そこで、電極表面の仕事関数を5.0〜5.3eVの範囲に調整するための条件出しを行った。本実験例では、電極表面の仕事関数を低エネルギー化する工程として、電極表面を除去する工程の一例である、アルゴンプラズマエッチング処理(以下、Arプラズマエッチング処理と記述)の条件出しを行った。Arプラズマエッチング処理の条件出しは、処理の間に基板1の温度が既に形成されている有機化合物層のガラス転移点を超え、有機化合物層にダメージを与えることのないよう留意して行った。
アルゴン流量を30ml/min、圧力を1.0Pa、投入電力を1000Wに固定し、アルゴンプラズマエッチング処理における処理時間と仕事関数との関係を調べた結果を表1に示す。
Figure 2014002900
アルゴン流量を30ml/min、投入電力を1000W、処理時間を20secに固定し、Arプラズマエッチング処理における圧力と仕事関数との関係を調べた結果を表2に示す。
Figure 2014002900
アルゴン流量を30ml/min、圧力を10Pa、処理時間を20secに固定し、Arプラズマエッチング処理における投入電力と仕事関数との関係を調べた結果を表3に示す。
Figure 2014002900
以上の結果から、Arプラズマエッチング処理のみで電極表面の仕事関数を調整するための条件、アルゴン流量30ml/min、圧力10Pa、投入電力を1000W、処理時間を20secが得られた。
表1〜3から分かるように、Arプラズマエッチング処理のみで電極表面の仕事関数を調整する条件はかなり限定されており、装置上の制約が大きいと考えられる。そこで、Arプラズマエッチング処理にて一旦電極表面の仕事関数をas−Depoに近い状態まで下げた後、オゾン処理にて徐々に酸化して、正孔注入に適した仕事関数に調整する条件出しを行った。
電極表面の仕事関数をas−Depoに近い状態まで下げる条件は、アルゴン流量30ml/min、圧力1.0Pa、投入電力を1000W、処理時間を12secに固定した。オゾン処理は、ドライエアーを2l/min流して圧力を1000Paに制御し、室温において出力110Wで低圧水銀ランプから波長185nmのUV光を照射して行った。オゾン処理時間をふって、電極表面の仕事関数の変化を調べた。結果を表4に示す。
Figure 2014002900
表4から、必ずしもArプラズマエッチング処理のみで電極表面の仕事関数を調整する必要はないことがわかる。酸化して仕事関数が上昇した電極表面を、一旦as−Depo状態に近い状態に戻し、オゾン処理を用いて仕事関数を好ましい範囲に調整してもよい。
(実験例2)
酸素プラズマにて表面の有機化合物層が除去された電極表面の仕事関数を、電極表面を還元する工程により低エネルギー化する工程について説明する。本実験例では、電極表面を還元する工程に還元ガスとして水素ガスを用いた水素プラズマ処理を用い、電極を低エネルギー化するための条件出しを行った。プラズマ処理を行うチャンバーに導入するガスを、アルゴンガスから水素ガスおよび窒素ガスに変更した点を除いて、実験例1と同様の手法で条件出しを行った。
水素ガスと窒素ガスそれぞれの流量を0.1l/min、1.9l/min、チャンバー内の圧力を106Pa、投入電力を75Wに固定し、水素プラズマ処理における処理時間と仕事関数との関係を調べた結果を表5に示す。
Figure 2014002900
表5から、水素プラズマ処理のみで電極表面の仕事関数を調整する場合の条件として、水素および窒素の流量をそれぞれ0.1l/min、1.9l/min、圧力を106Pa、投入電力を75W、処理時間10secを得た。
Arプラズマエッチング処理と同様に、水素プラズマ処理にて一旦電極表面の仕事関数をas−Depoに近い状態まで下げた後、オゾン処理にて徐々に酸化して正孔注入に適した仕事関数に調整する条件についても確認した。結果を表6に示す。水素プラズマ処理にて一旦電極表面の仕事関数をas−Depoに近い状態に下げる条件は、水素および窒素の流量をそれぞれ0.1l/min、1.9l/min、圧力を106Pa、投入電力を75W、処理時間を60secに固定した。オゾン処理の条件は実験例1と同じ条件で行った。
Figure 2014002900
表6から、電極表面の仕事関数をas−Depoに近い状態に下げる手法が、Arプラズマエッチング処理か水素プラズマ処理かにかかわらず、オゾン処理によって電極表面の仕事関数を調整できることが確認できた。
(実施例)
第2の実施形態を適用した実施例について示す。
図3に示す工程に従って、図2に示した赤、青、緑の3種類の有機EL素子を備える有機EL表示装置を作製した。本実施例では、酸素プラズマにて有機化合物層をエッチング除去した後の第1電極の仕事関数を低エネルギー化する工程に、実験例1および実験例2で得られた条件を適用した。
まず、有機EL素子を駆動するための回路(不図示)を備える基板1の片面全体に、スパッタリング法によりAlNd膜とITO膜とを順次成膜し、積層膜を形成した。公知のフォトリソグラフィを用い、AlNd膜とITO膜との積層膜を有機EL素子の配置に応じてパターニングし、第1電極2a〜2bとした。第1有機EL素子を構成する第1電極2a、第2有機EL素子を構成する第1電極2b、第3有機EL素子を構成する第1電極2cは、それぞれ複数個ずつ形成した(図3(a)、図2)。図では省略しているが、各第1電極は、それぞれ所定の回路と電気的に接続されている。
パターニングされた第1電極2a、2b、2cが形成された基板面全体に、青色を発する発光層を含む第1有機化合物層3を真空蒸着法にて成膜した(図3(b))。まず、正孔輸送層として化合物1を膜厚120nmで形成した後、青色発光層を膜厚30nm形成した。青色発光層の材料は、公知の材料から選択して用いることが可能である。
次に、水溶性高分子材料のポリビニルピロリドン(PVP)と水とを混合してPVP水溶液を調製した。調製したPVP水溶液を第1有機化合物層3の上全体にスピンコート法にて塗布し、乾燥させて膜厚500nmの剥離層4aを形成した。剥離層4aの上に、保護層12aを形成した。保護層は、2nmの窒化珪素をCVD法にて形成した。さらに、第1剥離層4aの上に、市販のポジ型のフォトレジスト材料(AZエレクトロニックマテリアルズ製、製品名「AZ1500」)をスピンコート法により成膜し、フォトレジスト材料中の溶剤を飛ばしてフォトレジスト層5aを形成した(図3(c))。フォトレジスト層6aの膜厚は1000nmとした。
フォトレジスト層5aまでが形成された基板1を露光装置にセットし、フォトマスクを介して第1電極2b、2cの上に形成されたフォトレジスト層5aに40秒間露光を行った。露光後、フォトレジスト層5aの現像液(AZエレクトロニックマテリアルズ製、製品名「312MIF」を水で希釈し濃度を50%としたもの)を用いて1分間現像した。この現像処理により第1電極2b、2cの上に形成されたフォトレジスト層5を除去した。基板1をエッチング装置に搬送し、基板1に残るフォトレジスト層5aをマスクとして、CF4ガスを30ml/min流して保護層12aをエッチング除去した(図3(d))。
続いて、別のチャンバーに移して酸素を流量30ml/min流し、圧力1Pa、出力150Wの条件で酸素プラズマを生成し、フォトレジスト層5aで被覆されていない剥離層4aおよび第1有機化合物層3を除去した(図3(e))。第1有機化合物層3のエッチングが完了した時点で、第1電極2aの上の剥離層4aを覆うフォトレジスト層5aはエッチングされてなくなっていたが、エッチングは保護層12aで止まっており、剥離層4aはエッチングされなかった。
次に、第1有機化合物層が除去された第1電極2b、2cの表面にArプラズマエッチング処理を行い、第1電極2b、2cの表面の仕事関数を低エネルギー化した。Arプラズマエッチング処理は下記の通りである。
導入ガス(流量) :アルゴン(30ml/min)
圧力 :10Pa
投入電力 :1000W
処理時間 :20sec
第1電極2b、2c表面のArプラズマエッチング処理が完了した後、一連の真空下で基板1を真空蒸着装置へと搬送し、赤色を発する発光層を含む第2有機化合物層7を第1有機化合物層3と同様の方法で形成した。まず、化合物1からなる正孔輸送層を膜厚200nmで形成した後、公知の赤発光材料を含む発光層を膜厚30nmで形成した(図3(g))。
第2有機化合物層7までを形成した基板1を、剥離層4aの剥離液である水(流水)に接触させた。水溶性のポリビニルピロリドンからなる剥離層4aの水に対するエッチングレートは、第2有機化合物層7の水に対するエッチングレートよりも100倍以上大きいため、剥離層4aを選択的に溶解させることができた。剥離層4aが溶解することで、剥離層4aの上に形成された層をリフトオフすることができた。
次に、剥離層4a、保護層12aと同様にして、ポリビニルピロリドンをスピンコート法で塗布して新たに剥離層4bを成膜し、その上に新たな保護層12bを形成した。保護層12aの上に、フォトレジスト層5aと同様にしてフォトレジスト層5bを形成した(図3(i))。フォトリソグラフィを用いて、第1電極2cの上からフォトレジスト層5bを選択的に除去し、さらに保護層12bをエッチングにより除去した(図3(j))。第1電極2a、2bの上に残存するフォトレジスト層5bをマスクとして、第1電極2cの上に形成された剥離層4bおよび第2有機化合物層7を、酸素プラズマ処理にて連続的にエッチングし除去した(図3(k))。酸素プラズマ処理の条件は、剥離層4aと第1有機化合物層の除去で用いた条件と同じである。第2有機化合物層7のエッチングが完了した時点で、第1電極2a、2bの上の剥離層4bを覆うフォトレジスト層5bはエッチングされてなくなっていた。
続いて、第2有機化合物層7の除去が完了した第1電極2cの表面に、Arプラズマエッチング処理を行った(図3(l))。Arプラズマエッチング処理の条件は、図3(f)で第1電極2b、2cの表面を処理した条件と同じである。
第1電極2c表面のArプラズマエッチング処理が完了した後、一貫する真空下で基板1を真空蒸着装置へと搬送し、緑色を発する発光層を含む第3有機化合物層8を、第1有機化合物層と同様に形成した(図3(m))。第3有機化合物層8は、化合物1からなる正孔輸送層を膜厚160nm、公知の緑発光材料を含む発光層を膜厚30nmで順次積層してものである。
次に、第3有機化合物層8までを形成した基板1を、剥離層4bの剥離液である水(流水)に接触させた。水溶性のポリビニルピロリドンからなる剥離層4bの水に対するエッチングレートは、第1〜第3有機化合物層3、7、8の水に対するエッチングレートよりも100倍以上大きいため、剥離層4bが選択的に溶解した。その結果、剥離層4bの上に形成された層がリフトオフされた(図3(n))。
第1〜第3有機化合物層3、7、8それぞれの上に、共通する電子輸送層(不図示)を真空蒸着法で形成した後、スパッタリング法により、膜厚16nmのAgからなる半透明な第2電極9を形成した(図3(o))。
第2電極9を形成した後、大気に曝すことなく基板1を窒素雰囲気下に設置し、封止ガラス(不図示)をUV硬化樹脂からなる接着剤にて素子基板1に接着して有機EL発光装置を完成させた。以上の手順で作製した有機EL表示装置を、3−aとする。
第1電極の仕事関数を低エネルギー化する工程を、Arプラズマエッチング処理とオゾン処理で行った以外は有機EL表示装置3−aと同様に作製した有機EL表示装置を3−bとする。同様に、仕事関数を低エネルギー化する工程を、水素プラズマ処理のみで行った有機EL表示装置を3−c、水素プラズマ処理とオゾン処理とを行った有機EL表示装置を3−dとする。各有機EL表示装置の第1電極の仕事関数を低エネルギー化する工程における条件は、それぞれ次のとおりである。
有機EL表示装置3−b
Arプラズマエッチング処理
導入ガス(流量) :アルゴン(30ml/min)
圧力 :1.0Pa
投入電力 :1000W
処理時間 :12sec
オゾン処理
導入ガス(流量) :ドライエアー(2l/min)
圧力 :1000Pa
使用ランプ :低圧水銀ランプ
出力 :110W
処理時間 :10min
有機EL表示装置3−c
水素プラズマ処理
導入ガス(流量) :水素(0.1l/min)
窒素(1.9l/min)
圧力 :106Pa
投入電力 :75W
処理時間 :10sec
有機EL表示装置3−d
水素プラズマ処理
導入ガス(流量) :水素(0.1l/min)
窒素(1.9l/min)
圧力 :106Pa
投入電力 :75W
処理時間 :60sec
オゾン処理
導入ガス(流量) :ドライエアー(2l/min)
圧力 :1000Pa
使用ランプ :低圧水銀ランプ
出力 :110W
処理時間 :10min
比較例ref−1として、第2有機化合物層7、第3有機化合物層8を形成する前に、第1電極の仕事関数を低エネルギー化する工程を省略した点を除いて、有機EL表示装置3−aと同様に作製した。
作製した有機EL表示装置のそれぞれに全面緑色を表示させた、その時の駆動電圧を公知の方法にて測定した。結果を表7に示す。
Figure 2014002900
電極の表面層を除去する工程または電極表面を還元する工程を施した有機EL表示装置3−a〜dは、電極の表面層を除去する工程または電極表面を還元する工程を施さなかった有機EL表示装置ref−1に比べて格段に駆動電圧が低くなった。結果から、電極表面の酸素量を、酸素プラズマエッチングで有機化合物層を除去した直後の値よりも低減し、電極表面の仕事関数を低エネルギー化することで、電極表面でのキャリア生成を可能とし、キャリア注入性を改善できることが確認できた。
1 基板
2a、2b、2c 第1電極
3 第1有機化合物層
4a、4b 剥離層
5a、5b フォトレジスト層
7 第2有機化合物層
8 第3有機化合物層
9 第2電極
12a、12b 保護層

Claims (20)

  1. 少なくとも発光層を含む有機化合物層と、前記有機化合物層にキャリアを供給する電極とを備えた有機EL素子を複数有する有機EL表示装置の製造方法であって、
    複数の電極が設けられた基板の上に第1有機物化合物層を形成する工程と、
    前記複数の電極のうち、一部の電極の上に形成された前記第1有機化合物層を、酸素プラズマを用いて選択的に除去する第1の工程と、
    前記第1有機化合物層が除去された一部の電極の表面を、該表面の仕事関数のエネルギーが前記第1の工程直後のそれより低くなるように処理する第2の工程と、
    前記第2の工程で処理された一部の電極上に前記第1有機化合物層とは異なる第2有機化合物層を形成する第3の工程と、
    を有することを特徴とする有機EL表示装置の製造方法。
  2. 前記第2の工程は、前記電極表面を還元する工程を含むことを特徴とする請求項1に記載の有機EL表示装置の製造方法。
  3. 前記電極表面を還元する工程は、還元ガスを用いたプラズマ処理であることを特徴とする請求項2に記載の有機EL表示装置の製造方法。
  4. 前記還元ガスは、水素ガスであることを特徴とする請求項3に記載の有機EL表示装置の製造方法。
  5. 前記第2の工程は、前記電極表面を還元する工程の後にオゾン処理工程を含むことを特徴とする請求項2乃至4のいずれか1項に記載の有機EL表示装置の製造方法。
  6. 前記第2の工程は、前記電極の表面層を除去する工程を含むことを特徴とする請求項1に記載の有機EL表示装置の製造方法。
  7. 前記電極の表面層を除去する工程は、不活性ガスを用いたエッチング工程であることを特徴とする請求項6に記載の有機EL表示装置の製造方法。
  8. 前記不活性ガスはアルゴンガスであることを特徴とする請求項7に記載の有機EL表示装置の製造方法。
  9. 前記第2の工程は、前記電極の表面層を除去する工程の後にオゾン処理工程を含むことを特徴とする請求項6乃至8のいずれか1項に記載の有機EL表示装置の製造方法。
  10. 前記第2有機化合物層が形成された電極のうち、一部の電極の上に形成された前記第2有機化合物層を、酸素プラズマを用いて選択的に除去する第4の工程と、
    前記第2有機化合物層が除去された一部の電極の表面を、該表面の仕事関数のエネルギーが前記第4の工程直後のそれより低くなるように処理する第5の工程と、
    前記第5の工程で処理された一部の電極上に、前記第1有機化合物層および第2有機化合物層とは異なる第3有機化合物層を形成する第6の工程と、
    をさらに有することを特徴とする請求項1乃至9のいずれか1項に記載の有機EL表示装置の製造方法。
  11. 第5の工程は、前記電極表面を還元する工程を含むことを特徴とする請求項10に記載の有機EL表示装置の製造方法。
  12. 前記電極表面を還元する工程は、還元ガスを用いたプラズマ処理であることを特徴とする請求項11に記載の有機EL表示装置の製造方法。
  13. 前記還元ガスは、水素ガスであることを特徴とする請求項12に記載の有機EL表示装置の製造方法。
  14. 前記第5の工程は、前記電極表面を還元する工程の後にオゾン処理工程を含むことを特徴とする請求項11乃至13のいずれか1項に記載の有機EL表示装置の製造方法。
  15. 前記第5の工程は、前記電極の表面層を除去する工程を含むことを特徴とする請求項10に記載の有機EL表示装置の製造方法。
  16. 前記電極の表面層を除去する工程は、不活性ガスを用いたエッチング工程であることを特徴とする請求項15に記載の有機EL表示装置の製造方法。
  17. 前記不活性ガスはアルゴンガスであることを特徴とする請求項16に記載の有機EL表示装置の製造方法。
  18. 前記第5の工程は、前記電極の表面層を除去する工程の後にオゾン処理工程を含むことを特徴とする請求項15乃至17のいずれか1項に記載の有機EL表示装置の製造方法。
  19. 少なくとも発光層を含む有機化合物層と、前記有機化合物層にキャリアを供給する電極とを備えた有機EL素子を複数有する有機EL表示装置の製造方法であって、
    複数の電極が設けられた基板の上に第1有機物化合物層を形成する工程と、
    前記複数の電極のうち、一部の電極の上に形成された前記第1有機化合物層を、酸素プラズマを用いて選択的に除去する第1の工程と、
    前記第1有機化合物層が除去された一部の電極の表面を、アルゴンプラズマまたは水素プラズマにて処理する第2の工程と、
    前記第2の工程で処理された一部の電極上に前記第1有機化合物層とは異なる第2有機化合物層を形成する第3の工程と、
    を有することを特徴とする有機EL表示装置の製造方法。
  20. 前記電極が酸化物導電材料からなることを特徴とする請求項1乃至19のいずれか1項に記載の有機EL表示装置の製造方法。
JP2012136986A 2012-06-18 2012-06-18 有機el表示装置の製造方法 Pending JP2014002900A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012136986A JP2014002900A (ja) 2012-06-18 2012-06-18 有機el表示装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012136986A JP2014002900A (ja) 2012-06-18 2012-06-18 有機el表示装置の製造方法

Publications (1)

Publication Number Publication Date
JP2014002900A true JP2014002900A (ja) 2014-01-09

Family

ID=50035888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012136986A Pending JP2014002900A (ja) 2012-06-18 2012-06-18 有機el表示装置の製造方法

Country Status (1)

Country Link
JP (1) JP2014002900A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6355288B1 (ja) * 2017-04-26 2018-07-11 国立大学法人九州大学 電極、構造体およびその製造方法、接続構造体、並びに、その電極を用いた素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6355288B1 (ja) * 2017-04-26 2018-07-11 国立大学法人九州大学 電極、構造体およびその製造方法、接続構造体、並びに、その電極を用いた素子
JP2018186261A (ja) * 2017-04-26 2018-11-22 国立大学法人九州大学 電極、構造体およびその製造方法、接続構造体、並びに、その電極を用いた素子

Similar Documents

Publication Publication Date Title
JP6016407B2 (ja) 有機el表示装置の製造方法
JP5901325B2 (ja) 有機el表示装置の製造方法
US7776645B2 (en) Organic semiconductor device and its manufacturing method
JP6653316B2 (ja) 有機el素子のフォトリソグラフィによるパターン形成
JP5854794B2 (ja) 有機el装置の製造方法
JP2007080569A (ja) 有機エレクトロルミネッセンス素子の製造方法
US20140197394A1 (en) Organic light emitting device and manufacturing method therefor
TW201240078A (en) Method of manufacturing organic electroluminescence display device
JP2011107476A (ja) 電子デバイスの製造方法
TW201314884A (zh) 製造有機發光裝置之方法
JP2014029851A (ja) 有機el表示装置の製造方法
JP2005108437A (ja) 有機エレクトロルミネセンス表示素子、有機エレクトロルミネセンス表示装置および有機エレクトロルミネセンス表示素子の製造方法
US20130134452A1 (en) Display device
CN102709487B (zh) 一种有机发光显示面板及其制造方法
US20080268567A1 (en) Method for fabricating organic light emitting display
JP2013109920A (ja) 有機el装置の製造方法
JP2014002900A (ja) 有機el表示装置の製造方法
JP2007095595A (ja) 機能層の形成方法、有機半導体素子、発光素子及び電子機器
JP2011091093A (ja) 有機el素子
WO2013129613A1 (ja) 有機電界発光素子の製造方法
JP2014110135A (ja) 有機el装置の製造方法
JP2013258020A (ja) 有機el表示装置の製造方法
WO2020194633A1 (ja) 表示装置
TW200901818A (en) Method of producing organic light emitting apparatus
WO2015027606A1 (zh) 薄膜及其制备方法、发光显示器件