JP2014002270A - Camera nd filter and method of manufacturing the same - Google Patents

Camera nd filter and method of manufacturing the same Download PDF

Info

Publication number
JP2014002270A
JP2014002270A JP2012137530A JP2012137530A JP2014002270A JP 2014002270 A JP2014002270 A JP 2014002270A JP 2012137530 A JP2012137530 A JP 2012137530A JP 2012137530 A JP2012137530 A JP 2012137530A JP 2014002270 A JP2014002270 A JP 2014002270A
Authority
JP
Japan
Prior art keywords
film
filter
camera
light absorption
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012137530A
Other languages
Japanese (ja)
Inventor
Muneo Nakagawa
宗生 中川
Tetsuo Ozaki
哲生 小崎
Yuji Kato
祐史 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Optical Co Ltd
Original Assignee
Tokai Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Optical Co Ltd filed Critical Tokai Optical Co Ltd
Priority to JP2012137530A priority Critical patent/JP2014002270A/en
Publication of JP2014002270A publication Critical patent/JP2014002270A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide camera ND filters having different properties on top of the property that uniformly reduces light, and to provide a method of manufacturing the same.SOLUTION: A camera ND filter of the present invention has a light absorbing film and a dielectric film laminated on one or both surfaces of a transparent base material. The camera ND filter also has a fluorine-based resin film which is located more externally than the light absorbing film and the dielectric film and constitutes the outermost layer. The light absorbing film, the dielectric film, and the fluorine-based resin film of the camera ND filter are formed by evaporation.

Description

本発明は、透過光量を均一に減衰させることができるカメラ用のND(Neutral Density)フィルタ、及びその製造方法に関する。   The present invention relates to an ND (Neutral Density) filter for a camera that can attenuate the amount of transmitted light uniformly, and a method for manufacturing the same.

カメラ用のNDフィルタとして、下記特許文献1に記載のものが知られている。このNDフィルタは、光吸収膜と積層誘電体膜を有しており、光吸収膜として単体ゲルマニウムや単体シリコンが用いられている。   As an ND filter for a camera, the one described in Patent Document 1 below is known. This ND filter has a light absorption film and a laminated dielectric film, and single germanium or single silicon is used as the light absorption film.

特開2009−265579号公報JP 2009-265579 A

特許文献1のものでは、可視領域や赤外領域における透過率の分光分布が平坦となり、透過光量を均一に減衰させることが可能となって、NDフィルタの本来の機能を充分に発揮させることができる。
しかし、特許文献1では、当該本来の機能以外の機能につき言及されていない。
そこで、請求項1,5に記載の発明は、均一に減光する機能を保持しながら、他の機能を併せ持つカメラ用NDフィルタ、あるいはその製造方法を提供することを目的としたものである。
With the thing of patent document 1, the spectral distribution of the transmittance | permeability in a visible region or an infrared region becomes flat, it becomes possible to attenuate | dampen transmitted light amount uniformly, and it can fully exhibit the original function of ND filter. it can.
However, Patent Document 1 does not mention a function other than the original function.
Accordingly, an object of the present invention is to provide a camera ND filter having other functions while maintaining a function of uniformly dimming, or a manufacturing method thereof.

上記目的を達成するために、請求項1に記載の発明は、透明な基材の一方の面あるいは両面に対し、光吸収膜と誘電体膜が積層されると共に、フッ素系樹脂膜が最外層に配置されていることを特徴とするものである。
請求項2に記載の発明は、上記発明において、前記基材のコバ面には、前記フッ素系樹脂膜が及ばないことを特徴とするものである。
請求項3に記載の発明は、上記発明において、前記光吸収膜が導電性を有することを特徴とするものである。
請求項4に記載の発明は、上記発明において、前記フッ素系樹脂膜の物理膜厚が10ナノメートル以下であることを特徴とするものである。
In order to achieve the above object, the invention described in claim 1 is characterized in that a light absorption film and a dielectric film are laminated on one side or both sides of a transparent base material, and the fluororesin film is an outermost layer. It is characterized by being arranged.
The invention described in claim 2 is characterized in that, in the above-mentioned invention, the fluororesin film does not reach the edge surface of the base material.
According to a third aspect of the present invention, in the above invention, the light absorption film has conductivity.
The invention according to claim 4 is characterized in that, in the above invention, the fluororesin film has a physical film thickness of 10 nanometers or less.

上記目的を達成するために、請求項5に記載の発明は、上記のカメラ用NDフィルタを製造する方法であって、前記光吸収膜及び前記誘電体膜を積層した後、前記フッ素系樹脂膜を蒸着することを特徴とするものである。
請求項6に記載の発明は、上記発明において、更に前記光吸収膜及び前記誘電体膜を蒸着することを特徴とするものである。
In order to achieve the above object, the invention according to claim 5 is a method of manufacturing the above-described ND filter for a camera, wherein the light-absorbing film and the dielectric film are laminated, and then the fluororesin film. Is characterized by vapor deposition.
The invention described in claim 6 is characterized in that, in the above invention, the light absorption film and the dielectric film are further deposited.

請求項1に記載の発明によれば、NDフィルタにおいて更に反射防止機能や撥水機能を発揮させることができる。
請求項2,4に記載の発明によれば、新たに反射防止機能や撥水機能を発揮させながら、光学性能に影響を与えないようにすることができる。
請求項3に記載の発明によれば、更に帯電防止機能を付与することができる。
請求項5,6に記載の発明によれば、上記のNDフィルタを容易かつ確実に製造することができる。
According to the first aspect of the present invention, the ND filter can further exhibit an antireflection function and a water repellent function.
According to the second and fourth aspects of the invention, it is possible to prevent the optical performance from being affected while newly exhibiting the antireflection function and the water repellent function.
According to the invention described in claim 3, an antistatic function can be further provided.
According to invention of Claim 5, 6, said ND filter can be manufactured easily and reliably.

実施例1の分光透過率分布を示すグラフである。3 is a graph showing a spectral transmittance distribution of Example 1. 実施例1の(a)第1面,(b)第2面の分光反射率分布を示すグラフである。It is a graph which shows the spectral reflectance distribution of (a) 1st surface of Example 1, and (b) 2nd surface. 実施例2の分光透過率分布を示すグラフである。6 is a graph showing the spectral transmittance distribution of Example 2. 実施例2の(a)第1面,(b)第2面の分光反射率分布を示すグラフである。It is a graph which shows the spectral reflectance distribution of (a) 1st surface of Example 2, and (b) 2nd surface. 比較例1の片面の分光反射率分布を示すグラフである。6 is a graph showing the spectral reflectance distribution on one side of Comparative Example 1.

以下、本発明に係る実施の形態の例につき説明する。なお、本発明の形態は、以下のものに限定されない。   Hereinafter, examples of embodiments according to the present invention will be described. In addition, the form of this invention is not limited to the following.

本発明に係るカメラ用NDフィルタでは、透明な基材の一方の面あるいは両面に対し、光吸収膜と誘電体膜が積層される。
透明とは、透光性を有する意であり、半透明を含むものである。
光吸収膜及び誘電体膜は積層されていれば良く、基材に光吸収膜が接しても良いし、誘電体膜が接しても良い。又、好ましくは、光吸収膜及び誘電体膜は交互に積層される。更に、好ましくは、光吸収膜及び誘電体膜の少なくとも一方が蒸着により形成され、この場合には、コバ面に各種の膜が形成されることでNDフィルタの光学特性に影響を与えてしまう事態を防止することができる。
In the ND filter for a camera according to the present invention, a light absorption film and a dielectric film are laminated on one surface or both surfaces of a transparent substrate.
The term “transparent” means translucency and includes translucency.
The light absorption film and the dielectric film may be laminated, and the light absorption film may be in contact with the substrate, or the dielectric film may be in contact therewith. Preferably, the light absorption film and the dielectric film are alternately laminated. Further, preferably, at least one of the light absorption film and the dielectric film is formed by vapor deposition, and in this case, various films are formed on the edge surface, thereby affecting the optical characteristics of the ND filter. Can be prevented.

光吸収膜は、可視領域あるいはこれに隣接する赤外領域や紫外領域を適宜含む波長領域の通過光を吸収により減光するものである。光吸収膜(複数ある場合はその組合せ)は、当該波長領域において分光透過率分布が平坦となるように、通過光を減光する。平坦とは、当該領域における透過率の最大値と最小値の差が少ないことを指し、平坦性は当該差で示すことができる。平坦性は、好適には8.0以下とし、更に好適には4.0以下とする。
光吸収膜の具体例として、チタン(Ti),クロム(Cr),ニッケル(Ni)等の金属材料又はこれらのうち何れかの酸化物若しくは合金、あるいはこれらの組合せが挙げられる。
光吸収膜の成膜において、金属単体と金属酸化物の混合体を始めとする導電性材料を用いると、光吸収膜に導電性を付与することができ、もってNDフィルタに対し帯電を防止する機能を加えることができて、塵が付着し難く、手入れの際に塵を巻き込む事態が防止され、よって扱い易いものとすることが可能となる。
又、光吸収膜として、単体ゲルマニウム(Ge)や単体シリコン(Si)のような半導体を用いることもでき、この場合、可視領域に加え赤外領域まで分光透過率分布を平坦にすることができる。
The light absorption film attenuates light passing through a visible region or a wavelength region appropriately including an infrared region or an ultraviolet region adjacent thereto by absorption. The light absorption film (or a combination thereof when there are a plurality of light absorption films) attenuates the passing light so that the spectral transmittance distribution is flat in the wavelength region. Flat means that the difference between the maximum value and the minimum value of the transmittance in the region is small, and the flatness can be indicated by the difference. The flatness is preferably 8.0 or less, and more preferably 4.0 or less.
Specific examples of the light-absorbing film include metal materials such as titanium (Ti), chromium (Cr), nickel (Ni), oxides or alloys thereof, or combinations thereof.
In the formation of the light absorption film, when a conductive material such as a mixture of a single metal and a metal oxide is used, conductivity can be imparted to the light absorption film, thereby preventing the ND filter from being charged. It is possible to add a function, and it is difficult for dust to adhere to it, so that it is possible to prevent dust from being involved during cleaning, and thus to be easy to handle.
In addition, a semiconductor such as simple germanium (Ge) or simple silicon (Si) can be used as the light absorption film, and in this case, the spectral transmittance distribution can be flattened to the infrared region in addition to the visible region. .

誘電体膜は、主に(光吸収膜あるいはこれと後述のフッ素樹脂膜とを適宜合わせて)反射防止機能を付与するための多層膜(反射防止膜)の構成要素として用いられる。
誘電体膜の具体例として、二酸化チタン(TiO),五酸化二タンタル(Ta),二酸化ジルコニウム(ZrO),三酸化二アルミニウム(Al),五酸化二ニオブ(Nb),二酸化シリコン(SiO),二フッ化マグネシウム(MgF)等の金属酸化物あるいはフッ化物が挙げられる。
The dielectric film is mainly used as a component of a multilayer film (antireflection film) for imparting an antireflection function (by appropriately combining a light absorption film or a fluororesin film described later).
Specific examples of the dielectric film include titanium dioxide (TiO 2 ), ditantalum pentoxide (Ta 2 O 5 ), zirconium dioxide (ZrO 2 ), dialuminum trioxide (Al 2 O 3 ), niobium pentoxide (Nb). 2 O 5 ), silicon dioxide (SiO 2 ), magnesium oxide difluoride (MgF 2 ) and other metal oxides or fluorides.

又、本発明に係るカメラ用NDフィルタでは、光吸収膜及び誘電体膜の積層膜より外側にフッ素系樹脂膜が配置されており、当該膜が最外層となっている。
フッ素系樹脂は、成膜により撥水性を呈するものであれば良く、適宜市販のものを用いることができる。
フッ素系樹脂は、好適には蒸着により成膜され、更に好適には真空蒸着法により成膜される。
蒸着法によれば、ディップコーティング法等と異なり、基材のコバ面にフッ素樹脂膜を付与せずに済み、フッ素樹脂膜をコバ面に及ばない状態とすることができる。この場合、コバ面の膜がNDフィルタの光学特性に影響を与えることが防止され、又コバ面に平滑性が付与されてコバ面を利用した取付強度が低下する事態が防止され、更にコバ面に墨塗りを施そうとしても弾かれてうまく付与できない事態が防止されてコバ面が墨塗り可能とされる。
又、蒸着法によれば、フッ素樹脂膜を比較的に薄く成膜することができ、好適には物理膜厚で10ナノメートル(nm)以下とする。この場合、NDフィルタに撥水機能を付与しながら、NDフィルタの本来的機能である均一な減光特性を損なうことなく保持することができる。加えて、蒸着法の場合、フッ素樹脂剤は加熱蒸発させて成膜するために低分子量となるが、低分子量の状態で厚い膜とすると、基材側に対する密着強度が弱くなり、膜に白濁が発生する可能性を生じる。このような密着強度の低下や白濁の発生は、フッ素樹脂が架橋反応をしないことが要因と考えられる。即ち、フッ素樹脂は、架橋反応しないことで、厚い膜の場合、単に重なっていく状態となり、よって密着強度が確保されず、又白く濁っていく。かような事象を考慮し、フッ素樹脂膜を厚くないように(物理膜厚で10nm以下として)成膜すれば、密着強度の低下や白濁の発生を防止することができる。
In the ND filter for a camera according to the present invention, a fluororesin film is disposed outside the laminated film of the light absorption film and the dielectric film, and the film is the outermost layer.
The fluororesin is not particularly limited as long as it exhibits water repellency by film formation, and a commercially available resin can be used as appropriate.
The fluororesin is preferably formed by vapor deposition, and more preferably by vacuum vapor deposition.
According to the vapor deposition method, unlike the dip coating method or the like, it is not necessary to provide the fluororesin film on the edge surface of the substrate, and the fluororesin film does not reach the edge surface. In this case, it is possible to prevent the film on the edge surface from affecting the optical characteristics of the ND filter, and to prevent the situation where the edge surface is provided with smoothness and the attachment strength using the edge surface is reduced. Even if an attempt is made to smear the surface, it is prevented from being played well and is prevented from being applied well, and the edge surface can be painted.
Further, according to the vapor deposition method, the fluororesin film can be formed relatively thin, and the physical film thickness is preferably 10 nanometers (nm) or less. In this case, the water-repellent function can be imparted to the ND filter, and the uniform dimming characteristic that is the original function of the ND filter can be maintained without impairing it. In addition, in the case of vapor deposition, the fluororesin agent has a low molecular weight because it is heated and evaporated to form a film. However, if a thick film is formed in a low molecular weight state, the adhesion strength to the substrate side becomes weak and the film becomes cloudy. Cause the possibility of occurrence. Such a decrease in adhesion strength and the occurrence of white turbidity may be due to the fact that the fluororesin does not undergo a crosslinking reaction. That is, since the fluororesin does not undergo a crosslinking reaction, in the case of a thick film, it simply overlaps, so that the adhesion strength is not ensured and it becomes cloudy white. Considering such an event, if the fluororesin film is formed so as not to be thick (with a physical film thickness of 10 nm or less), it is possible to prevent a decrease in adhesion strength and the occurrence of white turbidity.

次いで、本発明の好適な実施例、及び本発明に属さない比較例につき、それぞれ数例説明する。   Next, several examples of preferred examples of the present invention and comparative examples not belonging to the present invention will be described.

≪実施例1≫
実施例1に係るNDフィルタとして、直径74ミリメートル(mm)で厚さ2.0mmの白板ガラス製のフラットな基材の両面に対し、それぞれ同じ構成の多層膜を成膜したものを作製した。
当該多層膜は、次の表1に示す通り、外側から順に、フッ素系樹脂膜、及び誘電体膜と光吸収膜を交互に配した交互膜(反射防止膜)を有するように構成した。交互膜は、3つの誘電体膜と3つの光吸収膜を含む合計6層で構成した。フッ素系樹脂膜は交互膜の外に1層形成し、よって多層膜は7層構成となった。
Example 1
As the ND filter according to Example 1, a multilayer film having the same configuration was formed on both sides of a flat substrate made of white sheet glass having a diameter of 74 millimeters (mm) and a thickness of 2.0 mm.
As shown in the following Table 1, the multilayer film was configured so as to have a fluorine-based resin film and an alternating film (antireflection film) in which a dielectric film and a light absorption film were alternately arranged in order from the outside. The alternating film was composed of a total of six layers including three dielectric films and three light absorption films. One layer of the fluorine-based resin film was formed in addition to the alternating film, and thus the multilayer film had a seven-layer structure.

Figure 2014002270
Figure 2014002270

光吸収膜として、次の2種類を使用した。即ち、第1に、単体ニッケル(Ni)とその酸化物(NiOx)の混合体(Ni+NiOx)であり、第2に、単体ゲルマニウム(Ge)とその酸化物(GeOx)の混合体(Ge+GeOx)である。
Ni+NiOxは、Niを蒸着材料として、酸素(O)を含む混合ガスを導入しながら真空蒸着法により蒸着することで成膜した。この蒸着は、次のような条件で行った。即ち、基材温度を摂氏100度(℃)とし、真空度を8×10−4パスカル(Pa)とし、又Ni蒸着レートを3オングストローム毎秒(Å/s)とし、混合ガスを20sccm(standard cc/min)で導入した。この混合ガスは、含有されるOガスにつきNiを完全には酸化しない量として導入されるものであり、よってNi単体とNiOxが混在して成膜されることとなる。Ni+NiOx膜は、最外層を第1層として第3,7層に配置し、換言すれば基材側から5,1番目に配置した。
又、Ge+GeOxは、Ni+NiOxと同様に成膜した。Ge+GeOx膜は、第5層に配置し、換言すれば基材側から3番目に配置した。
The following two types of light absorbing films were used. That is, the first is a mixture of simple nickel (Ni) and its oxide (NiOx) (Ni + NiOx), and the second is a mixture of simple germanium (Ge) and its oxide (GeOx) (Ge + GeOx). is there.
Ni + NiOx was formed by vapor deposition by a vacuum vapor deposition method using Ni as a vapor deposition material while introducing a mixed gas containing oxygen (O 2 ). This vapor deposition was performed under the following conditions. That is, the substrate temperature is set to 100 degrees Celsius (° C.), the degree of vacuum is set to 8 × 10 −4 Pascal (Pa), the Ni deposition rate is set to 3 angstroms per second (Å / s), and the mixed gas is set to 20 sccm (standard cc). / Min). This mixed gas is introduced as an amount that does not completely oxidize Ni with respect to the contained O 2 gas, and therefore, Ni and NiOx are mixed to form a film. The Ni + NiOx film was disposed in the third and seventh layers with the outermost layer as the first layer, in other words, the fifth and first layers from the substrate side.
Further, Ge + GeOx was formed in the same manner as Ni + NiOx. The Ge + GeOx film was disposed in the fifth layer, in other words, the third layer from the substrate side.

誘電体膜としては、酸化シリコン(SiO)を用いた。SiOは、自身を蒸着材料として、真空蒸着法により蒸着することで成膜した。この蒸着は、Ni+NiOxと同じ基材温度及び真空度にて行った。SiO膜は、第2,4,6層に配置し、換言すれば基材側から6,4,2番目に配置した。
又、フッ素系樹脂は、SiOと同様に蒸着した。フッ素系樹脂剤として、フッ素系コーティング剤KY−8(信越化学工業株式会社製)と、オプツールDSX(ダイキン工業株式会社製)と、OF−SR(キヤノンオプトロン株式会社製)を用いた。フッ素系樹脂膜は、最外層である第1層に配置し、換言すれば基材側から最も遠い7番目に配置した。
尚、多層膜の各層は上述のように何れも真空蒸着法により蒸着されているため、基材のコバ面に蒸着材料が付着しないようにすることが可能であり、多層膜は基材のコバ面に及んでいないこととなっている。
Silicon oxide (SiO 2 ) was used as the dielectric film. SiO 2 as its deposition material was formed by depositing by vacuum evaporation. This vapor deposition was performed at the same substrate temperature and vacuum degree as Ni + NiOx. The SiO 2 film was disposed in the second, fourth, and sixth layers, in other words, the sixth, fourth, and second layers from the substrate side.
Further, fluorine-based resin, was deposited in the same manner as SiO 2. As the fluorine-based resin agent, fluorine-based coating agent KY-8 (manufactured by Shin-Etsu Chemical Co., Ltd.), OPTOOL DSX (manufactured by Daikin Industries, Ltd.), and OF-SR (manufactured by Canon Optron Co., Ltd.) were used. The fluorine-based resin film was disposed in the first layer, which is the outermost layer, in other words, the seventh resin film disposed farthest from the substrate side.
Since each layer of the multilayer film is deposited by the vacuum deposition method as described above, it is possible to prevent the deposition material from adhering to the edge surface of the substrate. It is supposed not to reach the surface.

≪実施例2≫
実施例2に係るNDフィルタとして、交互膜の構成を除き実施例1と同様の多層膜を有するものを作製した。
当該多層膜は、次の表2に示す通り、外側から順に、フッ素系樹脂膜及び交互膜を有する8層構成となっており、交互膜は、4つの誘電体膜と3つの光吸収膜を含む合計7層で構成した。
<< Example 2 >>
As the ND filter according to Example 2, a filter having a multilayer film similar to that of Example 1 except for the configuration of alternating films was produced.
As shown in the following Table 2, the multilayer film has an eight-layer structure including a fluorine-based resin film and an alternating film in order from the outside. The alternating film includes four dielectric films and three light absorbing films. A total of 7 layers were included.

Figure 2014002270
Figure 2014002270

実施例2において、Ni+NiOx膜は、第3,7層に配置し、換言すれば基材側から6,2番目に配置した。
又、Ge+GeOx膜は、第5層に配置し、換言すれば基材側から4番目に配置した。
更に、SiO膜は、第2,4,6,8層に配置し、換言すれば基材側から7,5,3,1番目に配置した。
加えて、フッ素系樹脂膜は、第1層に配置し、換言すれば基材側か8番目に配置した。
In Example 2, the Ni + NiOx film was disposed in the third and seventh layers, in other words, the sixth and second layers from the substrate side.
Further, the Ge + GeOx film was arranged in the fifth layer, in other words, arranged fourth from the substrate side.
Furthermore, the SiO 2 film was arranged in the second, fourth, sixth and eighth layers, in other words, the seventh, fifth, third and first layers from the substrate side.
In addition, the fluororesin film was disposed on the first layer, in other words, on the substrate side or on the eighth layer.

≪比較例1≫
比較例1に係る光学製品として、実施例1の基材の両面に対しそれぞれ5層構成の積層膜(反射防止膜)を形成したものを作製した。尚、比較例1は光吸収膜を有さず、反射防止も施されているため、NDフィルタの本来の機能を有しない。
各積層膜は、最外層から順に、SiOと酸化ジルコニウム(ZrO)を交互に成膜したものであり、各光学膜厚は、最外層から順に、84nm(SiO),82nm(ZrO),17nm(SiO),28nm(ZrO),20nm(SiO)である。
≪Comparative example 1≫
An optical product according to Comparative Example 1 was prepared by forming a laminated film (antireflection film) having a five-layer structure on both surfaces of the base material of Example 1. In addition, since the comparative example 1 does not have a light absorption film and is also subjected to antireflection, it does not have the original function of the ND filter.
Each laminated film is formed by alternately forming SiO 2 and zirconium oxide (ZrO 2 ) in order from the outermost layer, and the optical film thicknesses are 84 nm (SiO 2 ) and 82 nm (ZrO 2 ) in order from the outermost layer. ), 17 nm (SiO 2 ), 28 nm (ZrO 2 ), and 20 nm (SiO 2 ).

≪比較例2≫
比較例2に係る光学製品として、実施例1の多層膜からフッ素系樹脂膜を除いた構成の積層膜(全6層)を基材の両面に施したものを作製した。
≪Comparative example 2≫
As an optical product according to Comparative Example 2, a laminate film (6 layers in total) obtained by removing the fluororesin film from the multilayer film of Example 1 was prepared on both surfaces of the substrate.

≪光学特性≫
図1は実施例1の透過率に関する光学特性を示したグラフである。実施例1では、波長範囲が400〜700nmである可視領域において、透過率を24.8〜25.5パーセント(%)という僅かな範囲内に収めて、その分布を平坦なものとすることができている。又、実施例1では、上記波長範囲における透過率を平均25.1%と低いものとすることができている。
図2(a),(b)は実施例1の第1,2面の反射率に関する光学特性を示したグラフである。実施例1では、どちらの面でも同様な特性を具備させて反射率を低減することができており、例えば第1面側において、上記波長範囲における最大反射率は1.0%であり、平均反射率は1.5%であった。
≪Optical characteristics≫
FIG. 1 is a graph showing optical characteristics related to the transmittance of Example 1. In the first embodiment, in the visible range where the wavelength range is 400 to 700 nm, the transmittance is set within a small range of 24.8 to 25.5 percent (%), and the distribution is made flat. is made of. In Example 1, the transmittance in the above wavelength range can be as low as 25.1% on average.
2A and 2B are graphs showing optical characteristics related to the reflectivities of the first and second surfaces of Example 1. FIG. In Example 1, the reflectance can be reduced by providing the same characteristics on both surfaces. For example, on the first surface side, the maximum reflectance in the wavelength range is 1.0%, and the average The reflectance was 1.5%.

図3は実施例2の透過率に関する光学特性を示したグラフである。実施例2では、上記波長範囲において、透過率を1.55〜1.65%という僅かな範囲内に収めて、その分布を平坦なものとすることができている。又、実施例1では、上記波長範囲における透過率を平均1.63%と極めて低いものとすることができている。
図4(a),(b)は実施例2の第1,2面の反射率に関する光学特性を示したグラフである。実施例2においても、どちらの面でも同様な特性を具備させて反射率を低減することができており、例えば第1面側において、上記波長範囲における最大反射率は1.8%であり、平均反射率は1.5%であった。
FIG. 3 is a graph showing optical characteristics relating to the transmittance of Example 2. In Example 2, the transmittance can be kept within a small range of 1.55 to 1.65% in the above wavelength range, and the distribution can be made flat. In Example 1, the transmittance in the above wavelength range can be made extremely low as an average of 1.63%.
4A and 4B are graphs showing optical characteristics related to the reflectance of the first and second surfaces of Example 2. FIG. Also in Example 2, it is possible to reduce the reflectance by providing similar characteristics on either surface, for example, on the first surface side, the maximum reflectance in the wavelength range is 1.8%, The average reflectance was 1.5%.

図5は比較例1の片面反射率に関する光学特性を示したグラフである。比較例1では、400〜750nmの波長範囲において、反射率が約0%から2.5%までの2.5ポイントの幅の内に収まった。
これに対し、同波長範囲において、実施例1では反射率が約1.2〜2.2%の1ポイントの幅の内に収まり、実施例2では反射率が約0.4〜1.4%の1ポイントの幅の内に収まっている。
よって、実施例1,2は、比較例1と同様に低い反射率を有して反射防止機能を具備しながら、比較例1に比較して、可視領域において一定となる反射率(フラットな反射率分布)を呈するものとなる。
FIG. 5 is a graph showing optical characteristics regarding the single-sided reflectance of Comparative Example 1. In Comparative Example 1, in the wavelength range of 400 to 750 nm, the reflectance was within the width of 2.5 points from about 0% to 2.5%.
On the other hand, in the same wavelength range, in Example 1, the reflectance falls within the width of one point of about 1.2 to 2.2%, and in Example 2, the reflectance is about 0.4 to 1.4. It is within the range of 1 point of%.
Therefore, Examples 1 and 2 have a low reflectance similar to Comparative Example 1 and have an antireflection function, but have a reflectance (flat reflection) that is constant in the visible region as compared to Comparative Example 1. Rate distribution).

≪帯電防止性・撥水性≫
帯電防止性や撥水性を調べるため、以下のテストを実施した。
即ち、実施例1,2及び比較例1,2のそれぞれの表面(第1面)の帯電電位を静電気測定器(シムコジャパン株式会社製FMX−003)で初期電位として測定した後、当該表面を不織布(小津産業株式会社製 pure leaf)で10秒間擦り、その直後、及び擦り終わってから1,2,3分後のそれぞれにおいて、当該表面の帯電電位を測定した。
又、付着試験として、同様に表面を不織布で10秒間擦り、その直後にスチールウール粉に近づけることで、レンズ表面へのスチールウール粉の付着具合を観察し、帯電の程度を確認した(スチールウール粉の付着が帯電を示す)。
更に、表面を不織布で擦った際に、その拭き心地を比較した。
このテストの結果を、次の表3において示す。
≪Antistatic and water repellency≫
The following tests were carried out in order to investigate antistatic properties and water repellency.
That is, after measuring the charged potential of each surface (first surface) of Examples 1 and 2 and Comparative Examples 1 and 2 as an initial potential with a static electricity measuring device (FMX-003 manufactured by Simco Japan Co., Ltd.), The surface was rubbed with a non-woven fabric (pure leaf manufactured by Ozu Sangyo Co., Ltd.) for 10 seconds, and immediately after that and after 1, 2 and 3 minutes after the rubbing, the charged potential of the surface was measured.
Also, as an adhesion test, the surface was similarly rubbed with a nonwoven fabric for 10 seconds, and immediately after that, it was brought close to the steel wool powder to observe the adhesion of the steel wool powder to the lens surface, and the degree of charging was confirmed (steel wool) Adhesion of powder indicates electrification).
Furthermore, when the surface was rubbed with a nonwoven fabric, the wiping comfort was compared.
The results of this test are shown in Table 3 below.

Figure 2014002270
Figure 2014002270

帯電電位(キロボルト・kV)は、比較例1で、初期になかったのに、擦った直後で6.5kV、3分後でも2.5kVを記録したのに対し、比較例2や実施例1,2では擦った直後でも0Vとなった。即ち、比較例2や実施例1,2では、不織布の摩擦による帯電は発生しなかった。
又、付着試験において、比較例1のみスチールウール粉が付着し、比較例2や実施例1,2では付着しなかった。
以上によれば、表3の中部に示すように、比較例1の帯電防止性能は低く(表中「×」)、比較例2や実施例1,2の帯電防止性能は良好であった(表中「○」)。
更に、拭き心地につき、実施例1,2では極めて良好であったのに対し(表中「○」)、比較例1,2では何れも実施例1,2に対し劣るものであった(表中「×」)。拭き心地が良好であれば、表面の滑らかさが高く抵抗が少ないこととなり、フッ素系樹脂が材質の特性上撥水性を呈することを加味すれば、比較例1,2に対して実施例1,2の撥水性が良好であり、実施例1,2において高い撥水性能を有することが判明する。
Although the charging potential (kilovolt · kV) was not in the initial stage in Comparative Example 1, it was 6.5 kV immediately after rubbing and 2.5 kV was recorded after 3 minutes, whereas Comparative Example 2 and Example 1 were recorded. , 2 was 0V even after rubbing. That is, in Comparative Example 2 and Examples 1 and 2, charging due to friction of the nonwoven fabric did not occur.
Further, in the adhesion test, steel wool powder adhered only in Comparative Example 1, and did not adhere in Comparative Example 2 and Examples 1 and 2.
According to the above, as shown in the middle part of Table 3, the antistatic performance of Comparative Example 1 was low (“X” in the table), and the antistatic performance of Comparative Example 2 and Examples 1 and 2 was good ( "○" in the table).
Furthermore, the wiping comfort was extremely good in Examples 1 and 2 (“◯” in the table), whereas Comparative Examples 1 and 2 were inferior to Examples 1 and 2 (Tables). Medium “×”). If the wiping comfort is good, the surface smoothness is high and the resistance is low, and considering that the fluororesin exhibits water repellency due to the characteristics of the material, the comparative examples 1 and 2 are compared with Example 1. It is found that the water repellency of No. 2 is good, and Examples 1 and 2 have high water repellency.

≪まとめ≫
実施例1,2の両者とも、均一な減光をしながら反射防止機能を発揮しており、更に、比較例1と異なり帯電防止性能を有し、又比較例1,2と異なり撥水機能を有している。
≪Summary≫
Both Examples 1 and 2 exhibit an antireflection function while uniformly dimming, and further have antistatic performance unlike Comparative Example 1, and water repellent function unlike Comparative Examples 1 and 2. have.

Claims (6)

透明な基材の一方の面あるいは両面に対し、
光吸収膜と誘電体膜が積層されると共に、
フッ素系樹脂膜が最外層に配置されている
ことを特徴とするカメラ用NDフィルタ。
For one or both sides of the transparent substrate,
A light absorption film and a dielectric film are laminated,
An ND filter for a camera, wherein a fluorine-based resin film is disposed on the outermost layer.
前記基材のコバ面には、前記フッ素系樹脂膜が及ばない
ことを特徴とする請求項1に記載のカメラ用NDフィルタ。
2. The camera ND filter according to claim 1, wherein the fluororesin film does not reach the edge surface of the substrate.
前記光吸収膜が導電性を有する
ことを特徴とする請求項1又は請求項2に記載のカメラ用NDフィルタ。
The ND filter for a camera according to claim 1, wherein the light absorption film has conductivity.
前記フッ素系樹脂膜の物理膜厚が10ナノメートル以下である
ことを特徴とする請求項1ないし請求項3の何れかに記載のカメラ用NDフィルタ。
The ND filter for a camera according to any one of claims 1 to 3, wherein a physical film thickness of the fluororesin film is 10 nanometers or less.
請求項2ないし請求項4の何れかに記載のカメラ用NDフィルタを製造する方法であって、
前記光吸収膜及び前記誘電体膜を積層した後、
前記フッ素系樹脂膜を蒸着する
ことを特徴とするカメラ用NDフィルタの製造方法。
A method for manufacturing a camera ND filter according to any one of claims 2 to 4,
After laminating the light absorption film and the dielectric film,
A method of manufacturing an ND filter for a camera, comprising depositing the fluorine resin film.
前記光吸収膜及び前記誘電体膜を蒸着する
ことを特徴とする請求項5に記載のカメラ用NDフィルタの製造方法。
6. The method of manufacturing an ND filter for a camera according to claim 5, wherein the light absorption film and the dielectric film are deposited.
JP2012137530A 2012-06-19 2012-06-19 Camera nd filter and method of manufacturing the same Pending JP2014002270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012137530A JP2014002270A (en) 2012-06-19 2012-06-19 Camera nd filter and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012137530A JP2014002270A (en) 2012-06-19 2012-06-19 Camera nd filter and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2014002270A true JP2014002270A (en) 2014-01-09

Family

ID=50035487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137530A Pending JP2014002270A (en) 2012-06-19 2012-06-19 Camera nd filter and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2014002270A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035452A1 (en) * 2014-09-03 2016-03-10 日本電波工業株式会社 Neutral density filter
WO2017145910A1 (en) * 2016-02-23 2017-08-31 東海光学株式会社 Nd filter with plastic base material, and nd filter with plastic base material for eyeglasses
JP2017151219A (en) * 2016-02-23 2017-08-31 東海光学株式会社 Nd filter, and nd filter for camera

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270601A (en) * 1994-03-29 1995-10-20 Olympus Optical Co Ltd Optical thin film
JP2002082205A (en) * 2000-09-06 2002-03-22 Toppan Printing Co Ltd Antireflection film, optical functional film using the same and display unit
JP2006201661A (en) * 2005-01-24 2006-08-03 Nisca Corp Nd filter, method for producing nd filter and light quantity controller using nd filter
JP2008008975A (en) * 2006-06-27 2008-01-17 Sony Corp Nd filter, light quantity regulator, lens barrel and image pickup apparatus
JP2011197602A (en) * 2010-03-24 2011-10-06 Sumitomo Metal Mining Co Ltd Absorption type multi-layer film nd filter, and manufacturing method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270601A (en) * 1994-03-29 1995-10-20 Olympus Optical Co Ltd Optical thin film
JP2002082205A (en) * 2000-09-06 2002-03-22 Toppan Printing Co Ltd Antireflection film, optical functional film using the same and display unit
JP2006201661A (en) * 2005-01-24 2006-08-03 Nisca Corp Nd filter, method for producing nd filter and light quantity controller using nd filter
JP2008008975A (en) * 2006-06-27 2008-01-17 Sony Corp Nd filter, light quantity regulator, lens barrel and image pickup apparatus
JP2011197602A (en) * 2010-03-24 2011-10-06 Sumitomo Metal Mining Co Ltd Absorption type multi-layer film nd filter, and manufacturing method of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035452A1 (en) * 2014-09-03 2016-03-10 日本電波工業株式会社 Neutral density filter
WO2017145910A1 (en) * 2016-02-23 2017-08-31 東海光学株式会社 Nd filter with plastic base material, and nd filter with plastic base material for eyeglasses
JP2017151430A (en) * 2016-02-23 2017-08-31 東海光学株式会社 Plastic-based nd filter and plastic-based ophthalmic nd filter
JP2017151219A (en) * 2016-02-23 2017-08-31 東海光学株式会社 Nd filter, and nd filter for camera
US10663634B2 (en) 2016-02-23 2020-05-26 Tokai Optical Co., Ltd. ND filter with plastic base material, and ND filter with plastic base material for eyeglasses

Similar Documents

Publication Publication Date Title
JP6112490B2 (en) Optical product and manufacturing method thereof
JP5266466B2 (en) Optical member, plastic lens for spectacles, and manufacturing method thereof
KR101670005B1 (en) Optical product and eyeglass plastic lens
JP2009128820A (en) Plastic lens having multilayer antireflection layer and method of manufacturing the same
TWI659936B (en) Scratch-resistant chemically tempered glass substrate and use thereof
JP2012128135A (en) Optical article and method for manufacturing the same
WO2017056598A1 (en) Hydrophilic multilayer film and method for manufacturing same, and imaging system
JP5565766B2 (en) Eyeglass plastic lens
WO2018174049A1 (en) Lens with water repellent anti-reflection film and method for producing same
JP2010231174A (en) Optical article and method for producing the same
JP2014002270A (en) Camera nd filter and method of manufacturing the same
WO2018110017A1 (en) Optical product
WO2014017332A1 (en) Optical component
TW201400850A (en) Optical element
JP6864170B2 (en) ND filter and ND filter for camera
JP7349687B2 (en) optical element
WO2023195500A1 (en) Antireflection film-attached transparent substrate and image display device
KR102615696B1 (en) Transparent gas with multilayer film
WO2022181371A1 (en) Transparent substrate with multilayer film and image display device
JP2018101132A (en) Antireflective film and optical element having the same
JP7385894B2 (en) Plastic-based ND filter and plastic-based ND filter for eyeglasses
JP2017223914A (en) Silicon substrate with infrared functional film
WO2013024531A1 (en) Thin film light-absorbing film
TW202319780A (en) Transparent substrate with reflection preventing film and image displaying device have light absorbing ability and insulation
JP2020148806A (en) Antireflection film with coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160405