JP2014002074A - Crack development prediction system and method - Google Patents

Crack development prediction system and method Download PDF

Info

Publication number
JP2014002074A
JP2014002074A JP2012138196A JP2012138196A JP2014002074A JP 2014002074 A JP2014002074 A JP 2014002074A JP 2012138196 A JP2012138196 A JP 2012138196A JP 2012138196 A JP2012138196 A JP 2012138196A JP 2014002074 A JP2014002074 A JP 2014002074A
Authority
JP
Japan
Prior art keywords
crack
residual stress
plant
strain
crack growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012138196A
Other languages
Japanese (ja)
Inventor
Mikiro Ito
幹郎 伊藤
Rie Sumiya
利恵 角谷
Chihiro Narasaki
千尋 楢崎
Toshiyuki Saito
利之 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012138196A priority Critical patent/JP2014002074A/en
Publication of JP2014002074A publication Critical patent/JP2014002074A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow development of a crack generated on a plant structure to be highly accurately predicted.SOLUTION: A crack development prediction system includes: a potentiometry method measurement system 31 for measuring a potential difference in the vicinity of a crack of reactor primary system piping 21 during plant operation; a strain measurement system 32 for measuring a strain value in the vicinity of the crack of the piping during the plant operation; and an operation device 33 comprising a residual stress value calculation section 34, an evaluation residual stress distribution generation section 35, a stress intensity factor calculation section 36 and a crack development amount prediction operation section 37. The residual stress value calculation section 34 calculates a residual stress value of a leading end of the crack on the basis of a crack shape calculated by potential difference data measured, strain value data measured or the like. The evaluation residual stress distribution generation section 35 obtains an evaluation residual stress distribution by using the residual stress value. The stress intensity factor calculation section 36 calculates a stress intensity factor of any position of the crack on the basis of the evaluation residual stress distribution or the like. The crack development amount prediction operation section 37 obtains a crack development speed determined by a correlation with the stress intensity factor, performs an operation of a crack development amount during a plant in-service period and predicts the crack development amount.

Description

本発明は、プラント構造物に生じたき裂の進展を予測するき裂進展予測システム及び方法に関する。   The present invention relates to a crack propagation prediction system and method for predicting the growth of a crack generated in a plant structure.

沸騰水型原子炉や加圧水型原子炉のような原子力プラントにおいては、高温水である原子炉一次系水に接する原子炉一次系配管などのプラント構造物に、高温水という使用環境に晒されて応力腐食割れ(SCC)が発生する場合がある。万一、このようなプラント構造物に応力腐食割れ等によるき裂が発生した場合、その健全性を評価するために、原子力プラントの供用期間中にそのき裂の進展を監視し、き裂進展量の予測を行うことが、原子力プラントの健全性維持の観点から重要である。   In nuclear power plants such as boiling water reactors and pressurized water reactors, plant structures such as the reactor primary system piping that come into contact with the reactor primary system water, which is high temperature water, are exposed to the usage environment of high temperature water. Stress corrosion cracking (SCC) may occur. In the unlikely event that a crack due to stress corrosion cracking occurs in such a plant structure, the progress of the crack is monitored during the operation period of the nuclear power plant in order to evaluate its soundness. It is important to estimate the quantity from the viewpoint of maintaining the soundness of the nuclear power plant.

配管などのプラント構造物のき裂進展量を算定する方法や装置としては、特許文献1〜4に提案されている。特許文献1及び2には、内圧、熱及び機械的荷重を受ける配管において、圧力、温度、軸力をリアルタイムで検出し、配管に発生する応力を算出して、き裂伝播曲線との関係からき裂進展量を算出する装置が開示されている。   Patent Documents 1 to 4 propose methods and apparatuses for calculating the amount of crack propagation in plant structures such as piping. In Patent Documents 1 and 2, pressure, temperature, and axial force are detected in real time in pipes that receive internal pressure, heat, and mechanical load, and stress generated in the pipes is calculated to determine the relationship with the crack propagation curve. An apparatus for calculating the amount of crack propagation is disclosed.

また、特許文献3には、非定常な荷重を受ける場合の簡易的なき裂進展量予測を行う方法とシステムが開示されている。更に、特許文献4には、各種手法により測定した表面や内部の残留応力測定結果を基に残留応力データベースを構築し、それを基にき裂進展評価を行う方法が開示されている。   Patent Document 3 discloses a method and system for performing simple crack growth prediction when receiving an unsteady load. Furthermore, Patent Document 4 discloses a method of constructing a residual stress database based on the measurement results of the residual stress on the surface and inside measured by various methods, and performing crack growth evaluation based on the database.

特開平9−145578号公報JP-A-9-145578 特開平10−38829号公報JP 10-38829 A 特開2003−172673号公報JP 2003-172673 A 特開2005−351644号公報JP-A-2005-351644

W. Cheng, I. Finnie, “The Crack Compliance Method for Residual Stress Management,” Welding in The World, Vol.28,No.5/6, p.103(1990)W. Cheng, I.D. Finnie, “The Crack Compliance Method for Residual Stress Management,” Welding in The World, Vol. 28, no. 5/6, p. 103 (1990)

原子力プラントのプラント構造物にき裂が発生している場合、プラントの供用期間中のき裂進展量を予測する精度を向上させるためには、プラント運転中の評価対象部位の残留応力分布を把握することが有効である。しかしながら、上述の特許文献1〜4に記載の技術は、プラントの定期点検中にプラント構造物の残留応力を検出するものであり、き裂を有する配管溶接部などにおけるプラント運転中の残留応力分布を十分に考慮したものではない。   If a crack has occurred in the plant structure of a nuclear power plant, in order to improve the accuracy of predicting the amount of crack growth during the operation period of the plant, the residual stress distribution of the evaluation target part during plant operation is grasped. It is effective to do. However, the techniques described in Patent Documents 1 to 4 described above are for detecting the residual stress of the plant structure during the regular inspection of the plant, and the residual stress distribution during the plant operation in a pipe welded portion having a crack or the like. Is not fully considered.

本発明の目的は、上述の事情を考慮してなされたものであり、プラント構造物に生じたき裂の進展を高精度に予測して、プラントの信頼性及び安全性を向上させることができるき裂進展予測システム及び方法を提供することにある。   The object of the present invention has been made in consideration of the above-mentioned circumstances, and can predict the progress of a crack generated in a plant structure with high accuracy and improve the reliability and safety of the plant. It is to provide a crack propagation prediction system and method.

本発明に係るき裂進展予測システムは、プラント構造物に生じたき裂の進展を予測するき裂進展予測システムにおいて、前記プラント構造物の前記き裂付近の電位差をプラント運転中に計測する電位差法計測系と、前記プラント構造物の前記き裂付近のひずみ値をプラント運転中に計測するひずみ計測系と、前記電位差法計測系及び前記ひずみ計測系からのデータに基づき前記き裂の進展量を予測する演算装置とを有し、この演算装置は、残留応力値算出部、評価用残留応力分布作成部、応力拡大係数算出部及びき裂進展量予測演算部を備えてなり、前記残留応力値算出部は、前記電位差法計測系からの電位差データにより算出されたき裂形状、及び前記ひずみ計測系からのひずみ値データ等に基づいて、前記き裂の任意の位置における残留応力値を算出し、前記評価用残留応力分布作成部は、前記残留応力値算出部にて算出された残留応力値を用いて、前記プラント構造物の対象部位において予め想定される残留応力分布プロファイルを補正することで評価用残留応力分布を求め、前記応力拡大係数算出部は、前記評価用残留応力分布及び前記き裂形状等に基づいて、前記き裂の任意の位置における応力拡大係数を算出し、前記き裂進展量予測演算部は、前記応力拡大係数との相関で決定されるき裂進展速度を求めて、プラントの供用期間中におけるき裂進展量を演算して予測するよう構成されたことを特徴とするものである。   A crack growth prediction system according to the present invention is a crack growth prediction system for predicting the growth of a crack generated in a plant structure, and a potential difference method for measuring a potential difference in the vicinity of the crack of the plant structure during plant operation. Based on data from a measurement system, a strain measurement system that measures a strain value near the crack of the plant structure during plant operation, and the potentiometric measurement system and the data from the strain measurement system, the amount of progress of the crack is determined. A computing device for predicting, the computing device comprising a residual stress value calculating unit, an evaluation residual stress distribution creating unit, a stress intensity factor calculating unit, and a crack propagation amount predicting calculating unit, and the residual stress value Based on the crack shape calculated from the potential difference data from the potentiometric measurement system, the strain value data from the strain measurement system, etc., the calculation unit is a residual at an arbitrary position of the crack. A residual stress distribution profile that is assumed in advance in the target part of the plant structure using the residual stress value calculated by the residual stress value calculator. The residual stress distribution for evaluation is obtained by correcting the stress, and the stress intensity factor calculation unit calculates the stress intensity factor at an arbitrary position of the crack based on the residual stress distribution for evaluation and the crack shape, etc. The crack growth amount prediction calculation unit is configured to calculate a crack growth amount during a service period of the plant by obtaining a crack growth rate determined by correlation with the stress intensity factor and to predict the crack growth rate. It is characterized by that.

また、本発明に係るき裂進展予測方法は、プラント構造物に生じたき裂の進展を予測するき裂進展予測方法において、前記プラント構造物の前記き裂付近の電位差及びひずみ値をプラント運転中に計測する第1ステップと、前記第1ステップにて計測された電位差データにより算出されたき裂形状、及び前記第1ステップにて計測されたひずみ値データ等に基づいて、前記き裂の任意の位置における残留応力値を算出する第2ステップと、前記第2ステップにて算出された残留応力値を用いて、前記プラント構造物の対象部位において予め想定される残留応力分布プロファイルを補正することで評価用残留応力分布を求める第3ステップと、前記き裂形状、及び前記第3ステップにて求められた前記評価用残留応力分布等に基づいて、前記き裂の任意の位置における応力拡大係数を算出する第4ステップと、前記第4ステップにて算出された前記応力拡大係数との相関で決定されるき裂進展速度を求めて、プラントの供用期間中におけるき裂進展量を演算して予測する第5ステップと、を有することを特徴とするものである。   The crack growth prediction method according to the present invention is a crack growth prediction method for predicting the growth of a crack generated in a plant structure. In the crack growth prediction method, the potential difference and strain value in the vicinity of the crack of the plant structure are determined during plant operation. Based on the first step to be measured, the crack shape calculated from the potential difference data measured in the first step, the strain value data measured in the first step, etc. By correcting the residual stress distribution profile assumed in advance in the target part of the plant structure using the second step of calculating the residual stress value at the position and the residual stress value calculated in the second step. Based on the third step of obtaining the residual stress distribution for evaluation, the crack shape, the residual stress distribution for evaluation obtained in the third step, etc. The crack growth rate determined by the correlation between the fourth step of calculating the stress intensity factor at any position of the above and the stress intensity factor calculated in the fourth step is determined during the service period of the plant. And a fifth step of calculating and predicting the crack growth amount.

本発明に係るき裂進展予測システム及び方法によれば、プラント構造物のき裂付近のひずみ値等をプラント運転中に計測し、この計測データに基づいて評価用残留応力分布を精度良く求めることができるので、この評価用残留応力分布等により、プラント構造物に生じたき裂の進展を高精度に予測して、プラントの信頼性及び安全性を向上させることができる。   According to the crack propagation prediction system and method according to the present invention, a strain value or the like in the vicinity of a crack in a plant structure is measured during plant operation, and a residual stress distribution for evaluation is accurately obtained based on this measurement data. Therefore, it is possible to predict the progress of a crack generated in the plant structure with high accuracy from the evaluation residual stress distribution and the like, thereby improving the reliability and safety of the plant.

本発明に係るき裂進展予測システムの一実施形態の評価対象となる原子力プラントの系統構成図。The system block diagram of the nuclear power plant used as the evaluation object of one Embodiment of the crack growth prediction system which concerns on this invention. 図1の原子炉一次系配管への計測状況を示し、(A)は側断面図、(B)は図2(A)のIIB拡大図、(C)は図2(B)のIIC−IIC線に沿う断面図。FIG. 1 shows the measurement status of the reactor primary system piping in FIG. 1, (A) is a side sectional view, (B) is an enlarged view of IIB in FIG. 2 (A), and (C) is IIC-IIC in FIG. 2 (B). Sectional drawing which follows a line. 図2(B)のIII矢視からの原子炉一次系配管と、この原子炉一次系配管に適用されたき裂進展予測システムの一実施形態を示す構成図。The block diagram which shows one Embodiment of the reactor primary system piping from the III arrow of FIG. 2 (B), and the crack growth prediction system applied to this nuclear reactor primary system piping. 図3のき裂進展予測システムの一実施形態が実行するき裂進展量の予測手順を示すフローチャート。The flowchart which shows the prediction procedure of the crack growth amount which one Embodiment of the crack growth prediction system of FIG. 3 performs. 計測データから算出した残留応力値から評価用残留応力分布を求める求め方を説明する説明図。Explanatory drawing explaining how to obtain | require the residual stress distribution for evaluation from the residual stress value calculated from measurement data.

以下、本発明を実施するための実施形態を図面に基づき説明する。
図1は、本発明に係るき裂進展予測システムの一実施形態の評価対象となる原子力プラントの系統構成図である。この図1に示す原子力プラントは、沸騰水型原子炉であり、この沸騰水型原子炉は一般的に以下のように構成される。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a system configuration diagram of a nuclear power plant to be evaluated in one embodiment of a crack growth prediction system according to the present invention. The nuclear power plant shown in FIG. 1 is a boiling water reactor, and this boiling water reactor is generally configured as follows.

即ち、原子炉建屋内に原子炉格納容器(共に図示せず)は設置され、この原子炉格納容器内に原子炉圧力容器10が設置されている。原子炉圧力容器10内には炉心11及び冷却水が収容され、この冷却水は炉心11の下方から上方に流通する際に、炉心11の核反応熱を奪い昇温する。昇温した冷却水は蒸気と水の二相流状態になり、炉心11の上方に設けられた気水分離器12内に流入する。   That is, a reactor containment vessel (both not shown) is installed in the reactor building, and a reactor pressure vessel 10 is installed in the reactor containment vessel. A reactor core 11 and cooling water are accommodated in the reactor pressure vessel 10, and when this cooling water flows from the lower side of the core 11 to the upper side, the temperature of the core 11 is increased by taking away the heat of nuclear reaction. The heated cooling water is in a two-phase flow state of steam and water and flows into a steam separator 12 provided above the core 11.

冷却水は、気水分離器12で水と蒸気に分離され、分離された蒸気は、気水分離器12の上方に設けられた蒸気乾燥器13で湿分が除去されて乾燥蒸気となる。この乾燥蒸気は、原子炉圧力容器10に接続された主蒸気配管14を通ってタービン系に供され、このタービン系で仕事に供給される。一方、気水分離器12で分離された水は、ジェットポンプ15の作用で炉心11の下方に流下し、再度炉心11の下方から上方に向かって流通する。以下、同様のサイクルを繰り返す。   The cooling water is separated into water and steam by the steam separator 12, and the separated steam is dried by removing moisture from the steam dryer 13 provided above the steam separator 12. This dry steam is supplied to the turbine system through the main steam pipe 14 connected to the reactor pressure vessel 10, and is supplied to work in this turbine system. On the other hand, the water separated by the steam separator 12 flows downward from the core 11 by the action of the jet pump 15 and again flows upward from the bottom of the core 11. Thereafter, the same cycle is repeated.

原子炉圧力容器10は、容器本体16と、この容器本体16の上部開口を閉塞するように設けられた蓋体17とを有して構成される。容器本体16は円筒状の胴体16Aと、この胴体16Aの下端に接続された下鏡16Bとから構成される。原子炉圧力容器10の胴体16Aの内部には、炉心シュラウド18、ジェットポンプ15等の炉内構造物が収納され、下鏡16Bには制御棒駆動機構19や炉内計装管20を通過させる貫通孔(不図示)が設けられている。   The reactor pressure vessel 10 includes a vessel main body 16 and a lid body 17 provided so as to close an upper opening of the vessel main body 16. The container body 16 includes a cylindrical body 16A and a lower mirror 16B connected to the lower end of the body 16A. Inside the fuselage 16A of the reactor pressure vessel 10 is housed in-reactor structures such as the core shroud 18 and the jet pump 15, and the lower mirror 16B is passed through the control rod drive mechanism 19 and the in-core instrumentation tube 20. A through hole (not shown) is provided.

原子炉圧力容器10の外部には、原子炉再循環系配管21A、冷却材浄化系配管21B、ボトムドレンライン21Cなどの原子炉一次系配管21が、プラント構造物として接続されている。この原子炉一次系配管21は、内部に原子炉一次系水が流れ、従って、図2に示す原子炉一次系配管21の内表面22が原子炉一次系水に接する。   Reactor primary piping 21 such as a reactor recirculation piping 21A, a coolant purification piping 21B, and a bottom drain line 21C is connected to the outside of the reactor pressure vessel 10 as a plant structure. The reactor primary system pipe 21 has a flow of reactor primary system water, and therefore the inner surface 22 of the reactor primary system pipe 21 shown in FIG. 2 is in contact with the reactor primary system water.

この原子炉一次系配管21の溶接部23近傍の内表面22に生じたき裂24の進展を、本実施形態のき裂進展予測システム30(図3)は予測する。このき裂進展予測システム30は、電位差法計測系31と、ひずみ計測系32と、き裂進展量を演算する演算装置33と、を有して構成される。   The crack propagation prediction system 30 (FIG. 3) of the present embodiment predicts the growth of the crack 24 generated on the inner surface 22 near the welded portion 23 of the reactor primary system pipe 21. The crack growth prediction system 30 includes a potentiometric measurement system 31, a strain measurement system 32, and an arithmetic device 33 that calculates the amount of crack growth.

電位差法計測系31は、図2及び図3に示すように、原子炉一次系配管21のき裂24付近の電位差を原子力プラントの運転中に計測するものであり、複数の電位差法計測点38、複数本の電流印加線39、複数本の電圧計測線40及び電位差法計測装置41を有して構成される。   As shown in FIGS. 2 and 3, the potentiometric measurement system 31 measures a potential difference near the crack 24 in the reactor primary piping 21 during operation of the nuclear power plant. And a plurality of current application lines 39, a plurality of voltage measurement lines 40, and a potentiometric measurement device 41.

電位差法計測点38は、原子炉一次系配管21の外表面25であってき裂24付近、即ち原子炉一次系配管21の外表面25であってき裂24に対し原子炉一次系配管21の厚さ方向反対側に設置される。この電位差法計測点38は、原子炉一次系配管21のき裂24付近に電流を印加し、または原子炉一次系配管21のき裂24付近の電位差を計測するための接点である。   The potentiometric measurement point 38 is on the outer surface 25 of the reactor primary pipe 21 and in the vicinity of the crack 24, that is, on the outer surface 25 of the reactor primary pipe 21, the thickness of the reactor primary pipe 21 with respect to the crack 24. Installed on the opposite side. This potential difference measurement point 38 is a contact point for applying a current near the crack 24 of the reactor primary system pipe 21 or measuring a potential difference near the crack 24 of the reactor primary system pipe 21.

電流印加線39及び電圧計測線40は、電位差法計測点38に例えばスポット溶接などにより取り付けられる。電位差法計測点38のうち、き裂24に略対向する複数対の電位差法計測点38に電圧計測線40が接続して取り付けられ、この電圧計測線40が取り付けられた電位差法計測点38の外側の一対の電位差法計測点38に電流印加線39が接続して取り付けられる。これらの電流印加線39及び電圧計測線40は電位差法計測装置41に接続される。   The current application line 39 and the voltage measurement line 40 are attached to the potential difference measurement point 38 by, for example, spot welding. Among the potential difference measurement points 38, voltage measurement lines 40 are connected to and attached to a plurality of pairs of potential difference measurement points 38 substantially facing the crack 24, and the potential difference measurement points 38 to which the voltage measurement lines 40 are attached are attached. A current application line 39 is connected to and attached to a pair of outer potentiometric measurement points 38. These current application line 39 and voltage measurement line 40 are connected to a potentiometric measurement device 41.

電位差法計測装置41は、電流印加線39を経て原子炉一次系配管21のき裂24付近に電流を印加し、電圧計測線40を経て原子炉一次系配管21のき裂24付近の電位差を取り込み、この電位差データを処理(例えばデジタル処理)して、演算装置33の残留応力値算出部34(後述)へ出力する。この電位差法計測系31による電位差データの計測は、原子力プラントの運転中に連続的または間欠的に実施される。   The potentiometric measuring device 41 applies a current to the vicinity of the crack 24 of the reactor primary system pipe 21 via the current application line 39, and calculates a potential difference near the crack 24 of the reactor primary system pipe 21 via the voltage measurement line 40. The potential difference data is captured, processed (for example, digitally processed), and output to a residual stress value calculation unit 34 (described later) of the arithmetic device 33. The measurement of potential difference data by the potential difference measurement system 31 is performed continuously or intermittently during operation of the nuclear power plant.

ひずみ計測系32は、原子炉一次系配管21のき裂24付近のひずみ値を原子力プラント(BWR)の運転中に計測するものであり、ひずみ計測センサ43及びひずみ計測装置44を有して構成される。ひずみ計測センサ43は、原子炉一次系配管21の外表面25であってき裂24付近、即ち原子炉一次系配管21の外表面25であって、き裂24に対し原子炉一次系配管21の厚さ方向反対側で、電圧計測線40が取り付けられた複数対の電位差法計測点38の内側に、き裂24に対向してスポット溶接などにより取り付けられる。このひずみ計測センサ43は、原子力プラントの供用期間中における原子炉一次系配管21の外表面25の温度(約270〜280℃)に対し耐熱性を有するひずみゲージまたは光ファイバである。   The strain measurement system 32 measures a strain value in the vicinity of the crack 24 of the reactor primary system pipe 21 during operation of the nuclear power plant (BWR), and includes a strain measurement sensor 43 and a strain measurement device 44. Is done. The strain measurement sensor 43 is near the crack 24 on the outer surface 25 of the reactor primary pipe 21, that is, on the outer surface 25 of the reactor primary pipe 21, and is connected to the crack 24. On the opposite side in the thickness direction, the electrodes are attached by spot welding or the like inside the plural pairs of potential difference measurement points 38 to which the voltage measurement lines 40 are attached, facing the crack 24. The strain measurement sensor 43 is a strain gauge or an optical fiber having heat resistance against the temperature (about 270 to 280 ° C.) of the outer surface 25 of the reactor primary system pipe 21 during the operation period of the nuclear power plant.

ひずみ計測装置44は、ひずみ計測センサ43に信号線45を用いて接続される。このひずみ計測装置44は、ひずみ計測センサ43にて計測された原子炉一次系配管21のき裂24近傍のひずみ値を取り込み、このひずみ値データを処理(例えばデジタル処理)して、演算装置33の残留応力値算出部34(後述)へ出力する。このひずみ計測系32によるひずみ値データの計測は、原子力プラントの運転中に連続的または間欠的に実施される。   The strain measuring device 44 is connected to the strain measuring sensor 43 using a signal line 45. The strain measuring device 44 takes in a strain value near the crack 24 of the reactor primary system pipe 21 measured by the strain measuring sensor 43, processes the strain value data (for example, digital processing), and calculates the computing device 33. To the residual stress value calculation unit 34 (described later). Measurement of strain value data by the strain measurement system 32 is performed continuously or intermittently during operation of the nuclear power plant.

演算装置33は、電位差法計測系31からの電位差データと、ひずみ計測系32からのひずみ値データとに基づいて、原子炉一次系配管21の溶接部23近傍の内表面22に生じたき裂24の進展量を予測するものである。この演算装置33は、残留応力値算出部34、評価用残留応力分布作成部35、応力拡大係数算出部36及びき裂進展量予測演算部37を備えて構成される。この演算装置33によるき裂進展量の予測手順を図4に示す。   The arithmetic unit 33 uses the potential difference data from the potentiometric measurement system 31 and the strain value data from the strain measurement system 32 to generate a crack 24 generated on the inner surface 22 near the welded portion 23 of the reactor primary system pipe 21. The amount of progress is predicted. The calculation device 33 includes a residual stress value calculation unit 34, an evaluation residual stress distribution generation unit 35, a stress intensity factor calculation unit 36, and a crack growth amount prediction calculation unit 37. FIG. 4 shows a procedure for predicting the crack growth amount by the arithmetic unit 33.

図4では、電位差法計測系31による電位差計測手順及びひずみ計測系32によるひずみ値計測手順を第1ステップS1として示し、演算装置33の残留応力値算出部34による残留応力値の算出を第2ステップS2−1及びS2−2として示す。また、演算装置33の評価用残留応力分布作成部35による評価用残留応力分布の作成を第3ステップS3として示し、演算装置33の応力拡大係数算出部36による応力拡大係数の算出を第4ステップS4として示し、演算装置33のき裂進展量予測演算部37によるき裂進展量の予測を第5ステップS5として示す。   In FIG. 4, a potential difference measurement procedure by the potential difference measurement system 31 and a strain value measurement procedure by the strain measurement system 32 are shown as a first step S <b> 1, and a residual stress value calculation by the residual stress value calculation unit 34 of the arithmetic device 33 is second. This is shown as steps S2-1 and S2-2. In addition, the creation of the evaluation residual stress distribution by the evaluation residual stress distribution creation unit 35 of the calculation device 33 is shown as a third step S3, and the calculation of the stress intensity factor by the stress intensity factor calculation unit 36 of the calculation device 33 is the fourth step. This is shown as S4, and the crack growth amount prediction by the crack growth amount prediction calculation unit 37 of the calculation device 33 is shown as a fifth step S5.

演算装置33の残留応力値算出部34は、まず、電位差法計測系31からの電位差データを演算することで、き裂24のき裂形状(き裂長さ及びき裂深さ)を算出して決定する(S2−1)。次に、残留応力値算出部34は、上述のき裂形状、ひずみ計測系32からのひずみ値データ、及び原子炉一次系配管21の構造データ(例えば配管の肉厚、内径、外径など)に基づいて、き裂コンプライアンス法によりき裂24の任意の位置(本実施形態ではき裂先端)における残留応力値を、電位差法計測系31及びひずみ計測系32による計測時点毎に算出する(S2−2)。   The residual stress value calculation unit 34 of the calculation device 33 first calculates the crack shape (crack length and crack depth) of the crack 24 by calculating the potential difference data from the potential difference measurement system 31. Determine (S2-1). Next, the residual stress value calculation unit 34 has the above-described crack shape, strain value data from the strain measurement system 32, and structural data of the reactor primary system piping 21 (for example, the wall thickness, inner diameter, outer diameter, etc. of the piping). Based on the above, the residual stress value at an arbitrary position of the crack 24 (in this embodiment, the crack tip) is calculated for each measurement time by the potentiometric measurement system 31 and the strain measurement system 32 by the crack compliance method (S2). -2).

ここで、き裂コンプライアンス法は、対象物の溶接部における残留応力場にき裂が導入されたときに開放されるひずみから、対象物の内部の残留応力を評価する方法であり、プラント運転中のプラント構造物への適応や、オンラインモニタリングが可能である。このき裂コンプライアンス法の詳細は、例えば非特許文献1に記載されている。   Here, the crack compliance method is a method for evaluating the residual stress inside the object from the strain released when the crack is introduced into the residual stress field in the welded part of the object. It can be applied to plant structures and online monitoring. The details of this crack compliance method are described in Non-Patent Document 1, for example.

演算装置33の評価用残留応力分布作成部35は、図4及び図5に示すように、残留応力値算出部34にて連続的または間欠的に算出された残留応力値の変化データ46を用いて、原子炉一次系配管21の対象部位である溶接部23において予め想定される残留応力分布プロファイル47の該当領域を、残留応力値の変化データ46と一致するように補正することで、き裂24のき裂先端から原子炉一次系配管21の厚さ方向に沿う評価用残留応力分布48を求める(S3)。   As shown in FIGS. 4 and 5, the evaluation residual stress distribution creating unit 35 of the arithmetic unit 33 uses the residual stress value change data 46 continuously or intermittently calculated by the residual stress value calculating unit 34. Thus, by correcting the corresponding region of the residual stress distribution profile 47 assumed in advance in the welded portion 23 that is the target portion of the reactor primary system pipe 21 so as to coincide with the change data 46 of the residual stress value, A residual stress distribution 48 for evaluation along the thickness direction of the reactor primary pipe 21 is obtained from the crack tip 24 (S3).

つまり、原子炉一次系配管21の溶接部23において想定される残留応力分布プロファイル47を例えば6次式などの近似式で表し、この残留応力分布プロファイル47が、残留応力値算出部34にて算出された残留応力値の変化データ46の範囲で数値的に重なるように、演算により上記近似式の係数を決定する。これにより、残留応力値算出部34にて算出された残留応力値の変化データ46に対応した新たな関係式が求まり、この関係式を評価用残留応力分布48とする。この評価用残留応力分布48は、原子炉一次系配管21におけるき裂24のき裂先端から原子炉一次系配管21の厚さ方向に沿う残留応力分布を示す。   That is, the residual stress distribution profile 47 assumed in the welded portion 23 of the reactor primary system pipe 21 is expressed by an approximate expression such as a sixth-order expression, for example, and the residual stress distribution profile 47 is calculated by the residual stress value calculation section 34. The coefficients of the approximate expression are determined by calculation so as to overlap numerically within the range of the change data 46 of the residual stress value. Thereby, a new relational expression corresponding to the change data 46 of the residual stress value calculated by the residual stress value calculation unit 34 is obtained, and this relational expression is set as an evaluation residual stress distribution 48. This evaluation residual stress distribution 48 indicates a residual stress distribution along the thickness direction of the reactor primary system pipe 21 from the crack tip of the crack 24 in the reactor primary system pipe 21.

ここで、原子炉一次系配管21の溶接部23において想定される残留応力分布プロファイル47は、原子炉一次系配管21の構造データ(配管の厚さ、内径、外径など)及び溶接条件等を基にした有限要素法による解析結果から求められたもの、または溶接部23を有する原子炉一次系配管21と同一の材料及び同一の製法で製作したモックアップ試験体で実測された結果から求められたものである。   Here, the residual stress distribution profile 47 assumed in the welded portion 23 of the reactor primary system pipe 21 is the structural data (pipe thickness, inner diameter, outer diameter, etc.) of the reactor primary system pipe 21 and welding conditions. Obtained from the analysis result based on the finite element method based on the above, or obtained from the result actually measured by the mock-up test body manufactured by using the same material and the same manufacturing method as the reactor primary system pipe 21 having the weld 23. It is a thing.

図3及び図4に示すように、演算装置33の応力拡大係数算出部36は、評価用残留応力分布作成部35にて求められた評価用残留応力分布48と、残留応力値算出部34にて算出されたき裂24のき裂形状と、原子炉一次系配管21に作用する内圧による応力や熱応力などの外部応力を用いて、き裂24の任意の位置(本実施形態ではき裂24のき裂先端)における応力拡大係数を算出する(S4)。   As shown in FIGS. 3 and 4, the stress intensity factor calculation unit 36 of the computing device 33 includes an evaluation residual stress distribution 48 obtained by the evaluation residual stress distribution creation unit 35 and a residual stress value calculation unit 34. Using the crack shape of the crack 24 calculated in this way and external stress such as stress or thermal stress due to internal pressure acting on the reactor primary system pipe 21, an arbitrary position of the crack 24 (in this embodiment, the crack 24 The stress intensity factor at the crack tip is calculated (S4).

演算装置33のき裂進展量予測演算部37は、まず、き裂24のき裂進展速度を算出する。このき裂進展速度は、原子炉一次系配管21の使用材料と原子炉一次系配管21の使用環境とき裂先端の応力拡大係数との相関で決定される。従って、き裂進展量予測演算部37は、応力拡大係数算出部36にて算出されたき裂先端の応力拡大係数と、原子炉一次系配管21の使用材料及び使用環境等を用い、き裂進展速度データベースを参照することでき裂24のき裂進展速度を求める。次に、き裂進展量予測演算部37は、この求めたき裂進展速度と、原子力プラントにおける任意に設定された供用期間(例えば1年または10年など)とから、この供用期間中に予測されるき裂24のき裂進展量を算出する(S5)。   The crack growth amount prediction calculation unit 37 of the calculation device 33 first calculates the crack growth rate of the crack 24. This crack growth rate is determined by the correlation between the material used for the reactor primary pipe 21, the environment in which the reactor primary pipe 21 is used, and the stress intensity factor at the crack tip. Therefore, the crack growth amount prediction calculation unit 37 uses the stress intensity factor at the crack tip calculated by the stress intensity factor calculation unit 36, the material used in the nuclear reactor primary piping 21, the environment in which the crack is propagated, and the like. By referring to the speed database, the crack growth speed of the crack 24 is obtained. Next, the crack growth prediction unit 37 predicts the crack growth rate during the service period from the obtained crack growth rate and an arbitrarily set service period (for example, 1 year or 10 years) in the nuclear power plant. The crack growth amount of the rucksack 24 is calculated (S5).

尚、上述のき裂進展速度データベースは、対象配管に作用する力学因子に依存して、応力腐食割れ(SCC)と腐食疲労を考慮し、応力腐食割れによるき裂進展速度、腐食疲労によるき裂進展速度、応力腐食割れ及び腐食疲労によるき裂進展速度を準備している。   The above crack growth rate database takes into account stress corrosion cracking (SCC) and corrosion fatigue depending on the mechanical factors acting on the target piping, and crack growth rate due to stress corrosion cracking and cracking due to corrosion fatigue. Propagation rate, stress corrosion cracking and crack growth rate due to corrosion fatigue are prepared.

以上のように構成されたことから、本実施形態によれば、次の効果を奏する。
原子炉一次系配管21の内表面22に生じたき裂24付近の電位差を電位差法計測系31が、ひずみ値をひずみ計測系32がそれぞれプラント運転中に計測するので、演算装置33は、これらの電位差データ及びひずみ値データに基づき、き裂24のき裂先端から配管厚さ方向に沿う評価用残留応力分布48(図5)を精度良く求めることができる。この結果、演算装置33は、この評価用残留応力分布48を用いて、原子炉一次系配管21に生じたき裂24の進展量を高精度に予測して、原子力プラント(BWR)の信頼性及び安全性を向上させることができる。
With the configuration as described above, the present embodiment has the following effects.
Since the potential difference measurement system 31 measures the potential difference in the vicinity of the crack 24 generated on the inner surface 22 of the reactor primary system piping 21 and the strain measurement system 32 measures the strain value during the plant operation, the arithmetic unit 33 Based on the potential difference data and the strain value data, the evaluation residual stress distribution 48 (FIG. 5) along the pipe thickness direction from the crack tip of the crack 24 can be obtained with high accuracy. As a result, the calculation device 33 predicts the progress amount of the crack 24 generated in the primary reactor piping 21 with high accuracy using the residual stress distribution 48 for evaluation, and the reliability of the nuclear power plant (BWR) Safety can be improved.

以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。   As mentioned above, although embodiment of this invention was described, this embodiment is shown as an example and is not intending limiting the range of invention. This embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention.

例えば、本実施形態では、プラント構造物は、原子力プラント(特に沸騰水型原子炉)の原子炉一次系配管21の場合を述べたが、加圧水型原子炉を備えた原子力プラント、火力プラントまたは化学プラントなどにおける配管などの構造物であってもよい。   For example, in the present embodiment, the case where the plant structure is the reactor primary system piping 21 of a nuclear power plant (particularly a boiling water reactor) has been described, but a nuclear power plant, a thermal power plant or a chemical plant equipped with a pressurized water reactor. It may be a structure such as piping in a plant or the like.

21 原子炉一次系配管(プラント構造物)
22 内表面
23 溶接部
24 き裂
25 外表面
30 き裂進展予測システム
31 電位差法計測系
32 ひずみ計測系
33 演算装置
34 残留応力値算出部
35 評価用残留応力分布作成部
36 応力拡大係数算出部
37 き裂進展量予測演算部
38 電位差法計測点
43 ひずみ計測センサ
47 想定される残留応力分布プロファイル
48 評価用残留応力分布
21 Primary reactor piping (plant structure)
22 inner surface 23 welded portion 24 crack 25 outer surface 30 crack growth prediction system 31 potentiometric measurement system 32 strain measurement system 33 arithmetic unit 34 residual stress value calculation unit 35 evaluation residual stress distribution generation unit 36 stress intensity factor calculation unit 37 Crack growth prediction unit 38 Potential difference measurement point 43 Strain measurement sensor 47 Residual stress distribution profile 48 Residual stress distribution for evaluation

Claims (10)

プラント構造物に生じたき裂の進展を予測するき裂進展予測システムにおいて、
前記プラント構造物の前記き裂付近の電位差をプラント運転中に計測する電位差法計測系と、
前記プラント構造物の前記き裂付近のひずみ値をプラント運転中に計測するひずみ計測系と、
前記電位差法計測系及び前記ひずみ計測系からのデータに基づき前記き裂の進展量を予測する演算装置とを有し、
この演算装置は、残留応力値算出部、評価用残留応力分布作成部、応力拡大係数算出部及びき裂進展量予測演算部を備えてなり、
前記残留応力値算出部は、前記電位差法計測系からの電位差データにより算出されたき裂形状、及び前記ひずみ計測系からのひずみ値データ等に基づいて、前記き裂の任意の位置における残留応力値を算出し、
前記評価用残留応力分布作成部は、前記残留応力値算出部にて算出された残留応力値を用いて、前記プラント構造物の対象部位において予め想定される残留応力分布プロファイルを補正することで評価用残留応力分布を求め、
前記応力拡大係数算出部は、前記評価用残留応力分布及び前記き裂形状等に基づいて、前記き裂の任意の位置における応力拡大係数を算出し、
前記き裂進展量予測演算部は、前記応力拡大係数との相関で決定されるき裂進展速度を求めて、プラントの供用期間中におけるき裂進展量を演算して予測するよう構成されたことを特徴とするき裂進展予測システム。
In the crack growth prediction system that predicts the growth of cracks generated in plant structures,
A potentiometric measurement system for measuring a potential difference near the crack of the plant structure during plant operation;
A strain measurement system for measuring a strain value near the crack of the plant structure during plant operation;
An arithmetic unit that predicts the amount of crack propagation based on data from the potentiometric measurement system and the strain measurement system;
This computing device comprises a residual stress value calculation unit, an evaluation residual stress distribution creation unit, a stress intensity factor calculation unit, and a crack growth amount prediction calculation unit,
The residual stress value calculation unit is based on the crack shape calculated from the potential difference data from the potentiometric measurement system, the strain value data from the strain measurement system, etc., and the residual stress value at an arbitrary position of the crack. To calculate
The evaluation residual stress distribution creation unit is evaluated by correcting a presumed residual stress distribution profile in a target part of the plant structure using the residual stress value calculated by the residual stress value calculation unit. Find the residual stress distribution for
The stress intensity factor calculation unit calculates a stress intensity factor at an arbitrary position of the crack based on the residual stress distribution for evaluation and the crack shape, etc.
The crack growth amount prediction calculation unit is configured to calculate a crack growth rate during a service period of a plant by calculating a crack growth rate determined by correlation with the stress intensity factor, and to predict the crack growth rate. Crack growth prediction system characterized by
前記プラント構造物は、原子力プラントの原子炉一次系水に接する原子炉一次系配管であり、前記き裂は、前記原子炉一次系配管の溶接部近傍の内表面に生じたき裂であることを特徴とする請求項1に記載のき裂進展予測システム。 The plant structure is a reactor primary system pipe that is in contact with nuclear reactor primary water of a nuclear power plant, and the crack is a crack generated on an inner surface near a welded portion of the reactor primary system pipe. The crack growth prediction system according to claim 1, characterized in that it is characterized in that: 前記ひずみ計測系は、き裂付近のひずみ値を計測するひずみ計測センサとしてひずみゲージまたは光ファイバを備え、前記ひずみ計測センサが、原子炉一次系配管の外表面であって前記き裂付近に設けられたことを特徴とする請求項2に記載のき裂進展予測システム。 The strain measurement system includes a strain gauge or an optical fiber as a strain measurement sensor for measuring a strain value near the crack, and the strain measurement sensor is provided on the outer surface of the reactor primary system pipe and near the crack. The crack growth prediction system according to claim 2, wherein: 前記電位差法計測系は、電流を印加しまたは電位差を計測するための電位差法計測点を備え、前記電位差法計測点が、原子炉一次系配管の外表面であってき裂付近に設けられたことを特徴とする請求項2または3に記載のき裂進展予測システム。 The potentiometric measurement system includes a potentiometric measurement point for applying a current or measuring a potential difference, and the potentiometric measurement point is provided near the crack on the outer surface of the reactor primary system piping. The crack growth prediction system according to claim 2 or 3, wherein 前記演算装置の残留応力値算出部は、電位差法計測系からの電位差データにより算出されたき裂形状、前記ひずみ計測系からのひずみ値データ、及びプラント構造物の構造データに基づいて、き裂コンプライアンス法により前記き裂の任意の位置における残留応力値を算出することを特徴とする請求項1乃至4のいずれか1項に記載のき裂進展予測システム。 The residual stress value calculation unit of the arithmetic unit is based on the crack shape calculated from the potential difference data from the potentiometric measurement system, the strain value data from the strain measurement system, and the structure data of the plant structure. The crack propagation prediction system according to any one of claims 1 to 4, wherein a residual stress value at an arbitrary position of the crack is calculated by a method. 前記演算装置の評価用残留応力分布作成部で使用される想定される残留応力分布プロファイルは、プラント構造物の構造データ及び溶接条件等を基にした有限要素法による解析結果、または前記プラント構造物と同一の材料及び同一の製法で製作したモップアップ試験体で実測された結果により、それぞれ求められたものであることを特徴とする請求項1乃至5のいずれか1項に記載のき裂進展予測システム。 The assumed residual stress distribution profile used in the evaluation residual stress distribution creating unit of the arithmetic unit is an analysis result by a finite element method based on the structural data of the plant structure, welding conditions, or the like, or the plant structure The crack growth according to any one of claims 1 to 5, wherein the crack growth is obtained by a result measured with a mop-up specimen manufactured with the same material and the same manufacturing method. Prediction system. プラント構造物に生じたき裂の進展を予測するき裂進展予測方法において、
前記プラント構造物の前記き裂付近の電位差及びひずみ値をプラント運転中に計測する第1ステップと、
前記第1ステップにて計測された電位差データにより算出されたき裂形状、及び前記第1ステップにて計測されたひずみ値データ等に基づいて、前記き裂の任意の位置における残留応力値を算出する第2ステップと、
前記第2ステップにて算出された残留応力値を用いて、前記プラント構造物の対象部位において予め想定される残留応力分布プロファイルを補正することで評価用残留応力分布を求める第3ステップと、
前記き裂形状、及び前記第3ステップにて求められた前記評価用残留応力分布等に基づいて、前記き裂の任意の位置における応力拡大係数を算出する第4ステップと、
前記第4ステップにて算出された前記応力拡大係数との相関で決定されるき裂進展速度を求めて、プラントの供用期間中におけるき裂進展量を演算して予測する第5ステップと、を有することを特徴とするき裂進展予測方法。
In the crack growth prediction method that predicts the growth of cracks generated in plant structures,
A first step of measuring a potential difference and a strain value in the vicinity of the crack of the plant structure during plant operation;
Based on the crack shape calculated from the potential difference data measured in the first step and the strain value data measured in the first step, the residual stress value at an arbitrary position of the crack is calculated. The second step;
A third step of obtaining a residual stress distribution for evaluation by correcting a residual stress distribution profile assumed in advance in the target part of the plant structure using the residual stress value calculated in the second step;
A fourth step of calculating a stress intensity factor at an arbitrary position of the crack based on the crack shape and the residual stress distribution for evaluation obtained in the third step;
Obtaining a crack growth rate determined by correlation with the stress intensity factor calculated in the fourth step, and calculating and predicting a crack growth amount during the service period of the plant; A crack growth prediction method characterized by comprising:
前記プラント構造物は、原子力プラントの原子炉一次系水に接する原子炉一次系配管であり、前記き裂は、前記原子炉一次系配管の溶接部近傍の内表面に生じたき裂であることを特徴とする請求項7に記載のき裂進展予測方法。 The plant structure is a reactor primary system pipe that is in contact with nuclear reactor primary water of a nuclear power plant, and the crack is a crack generated on an inner surface near a welded portion of the reactor primary system pipe. The crack growth prediction method according to claim 7, characterized in that it is characterized in that: 前記第2ステップは、前記第1ステップにて計測された電位差データにより算出されたき裂形状、前記第1ステップにて計測されたひずみ値データ、及びプラント構造物の構造データに基づいて、き裂コンプライアンス法により前記き裂の任意の位置における残留応力値を算出することを特徴とする請求項7または8に記載のき裂進展予測方法。 The second step is based on the crack shape calculated from the potential difference data measured in the first step, the strain value data measured in the first step, and the structure data of the plant structure. The crack growth prediction method according to claim 7 or 8, wherein a residual stress value at an arbitrary position of the crack is calculated by a compliance method. 前記第3ステップで使用される想定される残留応力分布プロファイルは、プラント構造物の構造データ及び溶接条件等を基にした有限要素法による解析結果、または前記プラント構造物と同一の材料及び同一の製法で製作したモップアップ試験体で実測された結果により、それぞれ求められたものであることを特徴とする請求項7乃至9のいずれか1項に記載のき裂進展予測方法。 The assumed residual stress distribution profile used in the third step is the analysis result by the finite element method based on the structural data and welding conditions of the plant structure, or the same material and the same as the plant structure. The crack growth prediction method according to any one of claims 7 to 9, wherein the crack growth prediction method is obtained by a result obtained by actual measurement with a mop-up specimen manufactured by a manufacturing method.
JP2012138196A 2012-06-19 2012-06-19 Crack development prediction system and method Pending JP2014002074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012138196A JP2014002074A (en) 2012-06-19 2012-06-19 Crack development prediction system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012138196A JP2014002074A (en) 2012-06-19 2012-06-19 Crack development prediction system and method

Publications (1)

Publication Number Publication Date
JP2014002074A true JP2014002074A (en) 2014-01-09

Family

ID=50035372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012138196A Pending JP2014002074A (en) 2012-06-19 2012-06-19 Crack development prediction system and method

Country Status (1)

Country Link
JP (1) JP2014002074A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110362926A (en) * 2019-07-17 2019-10-22 佛山科学技术学院 A kind of copper alloy butt plates welding fire check prediction technique based on ansys
JP2021009450A (en) * 2019-06-28 2021-01-28 日本製鉄株式会社 Method, program, and device for predicting breakage in welded joint by spot welding
CN117057167A (en) * 2023-10-11 2023-11-14 合肥通用机械研究院有限公司 Calculation method of stress intensity factor at deepest point of crack of stress concentration part

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009450A (en) * 2019-06-28 2021-01-28 日本製鉄株式会社 Method, program, and device for predicting breakage in welded joint by spot welding
JP7328516B2 (en) 2019-06-28 2023-08-17 日本製鉄株式会社 Welded Joint Fracture Prediction Method by Spot Welding, Welded Joint Fracture Prediction Program by Spot Welding, and Welded Joint Fracture Prediction Device by Spot Welding
CN110362926A (en) * 2019-07-17 2019-10-22 佛山科学技术学院 A kind of copper alloy butt plates welding fire check prediction technique based on ansys
CN110362926B (en) * 2019-07-17 2023-02-07 佛山科学技术学院 Copper alloy flat plate butt welding thermal crack prediction method based on ansys
CN117057167A (en) * 2023-10-11 2023-11-14 合肥通用机械研究院有限公司 Calculation method of stress intensity factor at deepest point of crack of stress concentration part
CN117057167B (en) * 2023-10-11 2024-01-09 合肥通用机械研究院有限公司 Calculation method of stress intensity factor at deepest point of crack of stress concentration part

Similar Documents

Publication Publication Date Title
Poulson Predicting and preventing flow accelerated corrosion in nuclear power plant
Zhang et al. Time-dependent corrosion growth modeling using multiple in-line inspection data
Hosseinzadeh et al. Slitting and contour method residual stress measurements in an edge welded beam
JP2015188928A (en) Lifetime evaluation method and lifetime evaluation device
JP2014002074A (en) Crack development prediction system and method
Kim et al. Investigation on the effects of geometric variables on the residual stresses and PWSCC growth in the RPV BMI penetration nozzles
KR101174280B1 (en) Tube defects monitoring method during post weld heat treatment for nuclear steam generator
JP2015081901A (en) Nuclear facilities soundness evaluation method and nuclear facilities soundness evaluation system
Moghanlou et al. Assessment of the pitting corrosion degradation lifetime: a case study of boiler tubes
Lee et al. Techniques for intergranular crack formation and assessment in alloy 600 base and alloy 182 weld metals
Okrajni et al. Influence of a variable in time heat transfer coefficient on stresses in model of power plant components
JP2008250592A (en) Plant operation method
JP6254033B2 (en) Life evaluation method and life evaluation apparatus
JP2005315581A (en) Thermal fatigue evaluation system for piping
Kamaya et al. Monitoring of inside surface crack growth by strain measurement of the outside surface: a feasibility study
Recuero et al. Continuum damage mechanics modeling of high-temperature flaw propagation: Application to creep crack growth in 316H standardized specimens and nuclear reactor components
WO2019104510A1 (en) Method and device for evaluating degree of neutron irradiation embrittlement of nuclear power plant reactor pressure vessel
JP2014085322A (en) Shape analysis system for pipeline weld
Tung et al. Determination of the critical length of the crack-like flaws and its effect on safety
Asayama et al. Probabilistic prediction of crack depth distributions observed in structures subjected to thermal fatigue
JP2009162647A (en) Method for designing lifetime of weld zone of high-temperature apparatus
Chen et al. On-line monitoring and warning of important in-service pressure equipment based on characteristic safety parameters
Xuan et al. Rules for the assessment of interacting cracks under creep conditions
Gribok et al. Flow-Assisted Corrosion in Nuclear Power Plants
Hyun Lee et al. A probabilistic environmentally assisted cracking model for steam generator tubes