JP2014001642A - Motor-driven compression device and air supply device for fuel cell - Google Patents

Motor-driven compression device and air supply device for fuel cell Download PDF

Info

Publication number
JP2014001642A
JP2014001642A JP2012135730A JP2012135730A JP2014001642A JP 2014001642 A JP2014001642 A JP 2014001642A JP 2012135730 A JP2012135730 A JP 2012135730A JP 2012135730 A JP2012135730 A JP 2012135730A JP 2014001642 A JP2014001642 A JP 2014001642A
Authority
JP
Japan
Prior art keywords
rotation speed
discharge amount
valve
rotating shaft
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012135730A
Other languages
Japanese (ja)
Other versions
JP5906954B2 (en
Inventor
Yuichiro Mizuno
雄一郎 水野
Kaoru Kaneko
薫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2012135730A priority Critical patent/JP5906954B2/en
Publication of JP2014001642A publication Critical patent/JP2014001642A/en
Application granted granted Critical
Publication of JP5906954B2 publication Critical patent/JP5906954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To supply a compressed gas of a small discharge amount stably as needed, the compressed gas being discharged when the speed of a rotating shaft of an electric motor is equal to or lower than a floating point rotation speed where the rotating shaft is floated from a radial foil bearing.SOLUTION: A motor-driven compression device 1 comprises: a circulation flow passage 16 connecting an intake port 13 through which a gas is taken in by rotating an impeller 11 of the motor-driven compression device 1, and a discharge flow passage 14 where a compressed gas is discharged by rotating the impeller 11; a rotation speed detector 18 for detecting the rotation speed of rotating shafts 7a and 7b; and a controller 20 which controls opening/closing of a valve 17 based on the rotation speed detected by the rotation speed detector 18. The controller 20 performs control to open the valve 17 when a discharge amount further smaller than the floating point discharge amount of the compressed gas which is discharged in accordance with the floating point rotation speed at which the rotating shafts 7a and 7b are floated from radial foil bearings 8a and 8b is required in the state where the rotating shafts 7a and 7b are rotated at the rotation speed floating the rotating shafts 7a and 7b from the radial foil bearings 8a and 8b.

Description

本発明は、電動圧縮装置及び燃料電池用空気供給装置に関するものである。   The present invention relates to an electric compressor and an air supply device for a fuel cell.

近年、燃料を燃焼させることなく、燃料電池を備えて、空気中の酸素と水素、アルコール等の燃料とを電気化学的に反応させて電力を発生させ、発生した電力により電動機を回転させて走行する燃料電池自動車の開発が進んでいる。燃料電池に空気を供給するための装置としては、回転子と固定子を有する電動モータと、該電動モータの回転子に固定した回転軸によりインペラを回転させて外部の空気を取り込んで圧縮する遠心圧縮機とを有する電動圧縮装置を備えて、該電動圧縮装置により圧縮した圧縮空気を空気供給系路を介して燃料電池の燃料電池スタックに供給するようにした燃料電池用空気供給装置が用いられる。   In recent years, without burning fuel, a fuel cell is provided, and electric power is generated by electrochemically reacting oxygen, hydrogen, alcohol, and other fuels in the air, and the electric motor is rotated by the generated power. The development of fuel cell vehicles is progressing. As an apparatus for supplying air to a fuel cell, an electric motor having a rotor and a stator, and a centrifuge that takes in external air and compresses it by rotating an impeller by a rotating shaft fixed to the rotor of the electric motor. An air supply device for a fuel cell that includes an electric compression device having a compressor and supplies compressed air compressed by the electric compression device to a fuel cell stack of a fuel cell via an air supply path is used. .

前記電動圧縮装置では、空気を所要の圧力に圧縮して燃料電池に供給するために、遠心圧縮機のインペラはおよそ数万回転/分以上という高速で回転される。そのため、電動モータの回転軸の軸受には、通常の転がり軸受等ではなく、フォイル軸受等を用いて、高速回転時に径方向の荷重を非接触の状態で支持することが行われている。   In the electric compressor, the impeller of the centrifugal compressor is rotated at a high speed of about tens of thousands of revolutions / minute or more in order to compress the air to a required pressure and supply it to the fuel cell. For this reason, the bearing of the rotating shaft of the electric motor is not a normal rolling bearing or the like, but a foil bearing or the like is used to support a radial load in a non-contact state during high-speed rotation.

燃料電池では、水素と空気加湿器で加湿した空気とを燃料電池スタックに供給して電気化学反応により電力を発生させているが、燃料電池スタックに供給される空気及び水素に油などが混入すると、発電効率が大幅に低下することが知られており、このため、前記電動圧縮装置の電動モータには、回転軸の支持に油を用いないラジアルフォイル軸受、及び、アキシャルフォイル軸受又はアキシャル磁気軸受を用いることが行われている。   In a fuel cell, hydrogen and air humidified by an air humidifier are supplied to the fuel cell stack to generate electric power by an electrochemical reaction. However, when oil or the like is mixed into the air and hydrogen supplied to the fuel cell stack. Therefore, it is known that the power generation efficiency is significantly reduced. For this reason, the electric motor of the electric compression device includes a radial foil bearing that does not use oil to support the rotating shaft, and an axial foil bearing or an axial magnetic bearing. Is being used.

前記電動圧縮装置の電動モータの回転子を挟んで回転軸の両側に一対のラジアルフォイル軸受を設けて回転軸の径方向の荷重を非接触で支持し、固定子を挟んで回転軸と電動モータ本体との間に一対のアキシャル磁気軸受を設けて回転軸の軸長手方向の荷重を非接触で支持するようにした燃料電池用空気供給装置がある(例えば特許文献1参照)。   A pair of radial foil bearings are provided on both sides of the rotating shaft across the rotor of the electric motor of the electric compressor to support the load in the radial direction of the rotating shaft in a non-contact manner, and the rotating shaft and the electric motor are sandwiched between the stator. There is a fuel cell air supply device in which a pair of axial magnetic bearings are provided between a main body and a load in the longitudinal direction of a rotary shaft is supported in a non-contact manner (see, for example, Patent Document 1).

前記ラジアルフォイル軸受は、回転軸が貫通する孔の内面に、ごく薄い金属箔等からなる1枚の、または2枚以上のフォイルセグメントが取り付けられている。従って、前記ラジアルフォイル軸受では、支持する回転軸の回転数が所定値に達するまでは、前記フォイルセグメントが回転軸の外周面に直接に接触して前記回転軸を径方向から支持し、回転軸の回転数が所定値以上に達した後は、前記回転軸の外周面とフォイルセグメントとの間に発生する動圧によって、回転軸はその全周に亘ってフォイルセグメントの表面から浮上して非接触の状態で支持されるようになっている。   In the radial foil bearing, one or two or more foil segments made of a very thin metal foil or the like are attached to the inner surface of the hole through which the rotating shaft passes. Therefore, in the radial foil bearing, until the rotational speed of the rotating shaft to be supported reaches a predetermined value, the foil segment directly contacts the outer peripheral surface of the rotating shaft to support the rotating shaft from the radial direction. After the rotational speed of the rotating shaft reaches a predetermined value or more, the rotating shaft floats from the surface of the foil segment over the entire circumference by the dynamic pressure generated between the outer peripheral surface of the rotating shaft and the foil segment. It is designed to be supported in contact.

特開2010−168904号公報JP 2010-168904 A

特許文献1に示すように、ラジアルフォイル軸受を有する電動圧縮装置では、停止状態から電動圧縮装置を起動した際に、回転軸が浮上回転速度(浮上回転数)まで達するまでには大きな駆動トルクが必要であり、回転軸が浮上点回転数に達した瞬間に急速に駆動トルク(動力)が低下することで回転軸が高速で回転するようになるため、過渡的な状況での安定した回転数制御が難しいという問題を有していた。尚、インペラを備えた遠心圧縮機においては、回転軸の回転数(インペラの回転数)に応じた吐出量の圧縮気体が得られるため、圧縮気体の吐出量も過渡的な状況での安定した制御は困難である。   As shown in Patent Document 1, in an electric compression apparatus having a radial foil bearing, when the electric compression apparatus is started from a stopped state, a large driving torque is required until the rotating shaft reaches the levitation rotation speed (the levitation rotation speed). This is necessary, and since the drive torque (power) rapidly decreases at the moment when the rotation shaft reaches the ascent point rotation speed, the rotation shaft rotates at high speed, so the stable rotation speed in a transient situation It had the problem that it was difficult to control. In a centrifugal compressor equipped with an impeller, a discharge amount of compressed gas corresponding to the number of rotations of the rotating shaft (the number of rotations of the impeller) can be obtained, so the discharge amount of the compressed gas is also stable in a transient situation. Control is difficult.

前記燃料電池においては、前記電動圧縮装置の回転軸がラジアルフォイル軸受から浮上する浮上点回転数以下の時に吐出される圧縮空気のように小さい吐出量の圧縮空気が要求される場合があるが、従来の電動圧縮装置では、このような小さい吐出量の圧縮空気を安定して供給することはできなかった。   In the fuel cell, there may be a case where a small discharge amount of compressed air is required, such as compressed air discharged when the rotating shaft of the electric compression device is below the floating point rotation speed rising from the radial foil bearing, Conventional electric compressors cannot stably supply such a small discharge amount of compressed air.

本発明は、上記従来の問題点に鑑みてなしたもので、電動モータの回転軸がラジアルフォイル軸受から浮上する浮上点回転数以下の時に吐出される小さい吐出量の圧縮気体を、必要なときに安定して供給できるようにした電動圧縮装置及び燃料電池用空気供給装置を提供しようとするものである。   The present invention has been made in view of the above-described conventional problems, and when a small discharge amount of compressed gas is required to be discharged when the rotation shaft of the electric motor is below the ascent speed at which it floats from the radial foil bearing. It is an object of the present invention to provide an electric compressor and an air supply device for a fuel cell that can be stably supplied.

本発明は、回転子と、該回転子と相互作用して回転子に回転モーメントを発生させる固定子と、前記回転子の回転を外部に伝える回転軸と、該回転軸を回転可能に支持するラジアルフォイル軸受と、前記回転軸と一体に回転するインペラと、該インペラの回転により気体を取入れる吸込口と、前記インペラの回転により圧縮した圧縮気体を吐出する吐出流路と、を有する電動圧縮装置であって、
前記吸込口と前記吐出流路とを繋ぐ循環流路と、
該循環流路に備えた弁と、前記回転軸の回転数を検出する回転数検出器と、前記回転数検出器で検出される回転数に基づいて前記弁の開閉を制御する制御器を有し、
前記制御器は、前記回転軸が前記ラジアルフォイル軸受から浮上する回転数で回転した状態において、前記回転軸がラジアルフォイル軸受から浮上する浮上点回転数によって吐出される圧縮気体の浮上点吐出量よりも更に小さい吐出量が要求された時に前記弁を開く制御を行うことを特徴とする電動圧縮装置、に係るものである。
The present invention provides a rotor, a stator that interacts with the rotor and generates a rotational moment in the rotor, a rotating shaft that transmits the rotation of the rotor to the outside, and the rotating shaft that is rotatably supported. Electric compression having a radial foil bearing, an impeller that rotates integrally with the rotating shaft, a suction port that takes in gas by the rotation of the impeller, and a discharge passage that discharges compressed gas compressed by the rotation of the impeller A device,
A circulation flow path connecting the suction port and the discharge flow path;
A valve provided in the circulation channel, a rotation speed detector for detecting the rotation speed of the rotary shaft, and a controller for controlling opening and closing of the valve based on the rotation speed detected by the rotation speed detector; And
In the state in which the rotating shaft is rotated at the rotational speed at which the rotary shaft is levitated from the radial foil bearing, the controller is configured to obtain a floating point discharge amount of a compressed gas discharged at a floating point rotational speed at which the rotary shaft is levitated from the radial foil bearing. Further, the present invention relates to an electric compressor that performs control to open the valve when a smaller discharge amount is required.

上記電動圧縮装置において、前記弁は流量調節弁であり、前記吐出流路には圧縮気体の吐出流量を検出する流量検出器が設けてあり、前記制御器は、前記回転軸が前記ラジアルフォイル軸受から浮上する回転数で回転した状態において、前記回転軸がラジアルフォイル軸受から浮上する浮上点回転数によって吐出される圧縮気体の浮上点吐出量よりも更に小さい吐出量が要求された時に要求指令の吐出量になるように前記流量調節弁を開く制御を行うことが好ましい。   In the above-described electric compressor, the valve is a flow rate adjusting valve, and a flow rate detector for detecting a discharge flow rate of the compressed gas is provided in the discharge flow path, and the controller has the rotary shaft having the radial foil bearing. When a discharge amount smaller than the floating point discharge amount of the compressed gas discharged by the floating point rotation number at which the rotary shaft floats from the radial foil bearing is It is preferable to perform control to open the flow rate control valve so as to obtain a discharge amount.

本発明は、前記電動圧縮装置における前記吐出流路が、燃料電池の空気加湿器に接続されたことを特徴とする燃料電池用空気供給装置、に係るものである。   The present invention relates to a fuel cell air supply device, wherein the discharge passage in the electric compressor is connected to an air humidifier of a fuel cell.

本発明の電動圧縮装置及び燃料電池用空気供給装置によれば、回転軸がラジアルフォイル軸受から浮上する浮上点回転数以上の高い回転数で回転して大きい吐出量の圧縮気体が吐出されているときに、循環流路に備えた弁を開くことにより、前記回転軸がラジアルフォイル軸受から浮上する浮上点回転数によって吐出される圧縮気体の浮上点吐出量よりも更に小さい吐出量の圧縮気体を、必要なときに安定して供給できるという優れた効果を奏し得る。   According to the electric compressor and the fuel cell air supply device of the present invention, the rotating shaft rotates at a high rotational speed that is higher than the floating point rotational speed rising from the radial foil bearing, and a large amount of compressed gas is discharged. Sometimes, by opening a valve provided in the circulation flow path, a compressed gas having a discharge amount smaller than the floating point discharge amount of the compressed gas discharged by the floating point rotation speed at which the rotating shaft floats from the radial foil bearing. It is possible to achieve an excellent effect that it can be stably supplied when necessary.

(a)は本発明の電動圧縮装置の一実施例を示す概略構成図、(b)は(a)に備えた流量調節弁に代えて開閉弁を備えた場合の概略構成図である。(A) is a schematic block diagram which shows one Example of the electrically-driven compression apparatus of this invention, (b) is a schematic block diagram at the time of providing the opening-and-closing valve instead of the flow regulating valve provided in (a). ラジアルフォイル軸受に支持された回転軸の回転数と圧縮気体の吐出量が変化する状態を示した説明用線図である。It is explanatory drawing which showed the state from which the rotation speed of the rotating shaft supported by the radial foil bearing and the discharge amount of compressed gas changed. 本発明の電動圧縮装置を有する燃料電池用空気供給装置を適用した燃料電池の一例を示すブロック図である。It is a block diagram which shows an example of the fuel cell to which the air supply apparatus for fuel cells which has the electric compressor of this invention is applied.

以下、本発明の実施の形態を図示例と共に説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図3は本発明の電動圧縮装置1を有する燃料電池用空気供給装置3を燃料電池30に適用したブロック図であり、図3に示す燃料電池30は、燃料電池スタック31と、該燃料電池スタック31から供給される電力を制御する電力制御器32と、前記燃料電池スタック31に水素を供給する高圧水素タンク33及び水素ポンプ34と、前記燃料電池スタック31に圧縮空気を加湿して供給する空気加湿器35と、燃料電池スタック31及び電力制御器32を冷却する冷却器36とを備えている。そして、燃料電池スタック31での水素と空気の電気化学反応によって電気を生成し電力制御器32で制御された電力により自動車を走行させる電動機37が駆動される。   FIG. 3 is a block diagram in which the fuel cell air supply device 3 having the electric compressor 1 of the present invention is applied to a fuel cell 30. The fuel cell 30 shown in FIG. 3 includes a fuel cell stack 31 and the fuel cell stack. A power controller 32 for controlling the power supplied from the fuel cell 31; a high-pressure hydrogen tank 33 and a hydrogen pump 34 for supplying hydrogen to the fuel cell stack 31; A humidifier 35 and a cooler 36 for cooling the fuel cell stack 31 and the power controller 32 are provided. Then, the electric motor 37 that drives the vehicle by the electric power generated by the electrochemical reaction between hydrogen and air in the fuel cell stack 31 and controlled by the electric power controller 32 is driven.

前記電動圧縮装置1は、外部から空気を取り込んで圧縮しており、該電動圧縮装置1で圧縮した圧縮空気を、空気供給系路2を介して前記燃料電池30の空気加湿器35に供給することで燃料電池用空気供給装置3を構成している。   The electric compressor 1 takes in air from the outside and compresses it, and supplies the compressed air compressed by the electric compressor 1 to the air humidifier 35 of the fuel cell 30 via the air supply path 2. Thus, the fuel cell air supply device 3 is configured.

前記燃料電池30では、高圧水素タンク33の水素が水素ポンプ34を介して燃料電池スタック31に供給されると共に、燃料電池用空気供給装置3の電動圧縮装置1で空気を圧縮した圧縮空気が空気供給系路2を介して空気加湿器35に供給されることにより加湿された空気となって燃料電池スタック31に供給されており、燃料電池スタック31での水素と加湿された空気の電気化学反応によって電気が生成される。   In the fuel cell 30, hydrogen in the high-pressure hydrogen tank 33 is supplied to the fuel cell stack 31 via the hydrogen pump 34, and compressed air obtained by compressing air by the electric compressor 1 of the fuel cell air supply device 3 is air. The humidified air is supplied to the fuel cell stack 31 by being supplied to the air humidifier 35 via the supply system 2, and the electrochemical reaction between the hydrogen in the fuel cell stack 31 and the humidified air is performed. To generate electricity.

図1(a)は、本発明の電動圧縮装置の一実施例を示す概略構成図であり、図1(a)の電動圧縮装置1は、ケーシング22の内部に、回転子4と、該回転子4と相互作用して回転子4に回転モーメントを発生させる固定子5とからなる電動モータ6を有しており、前記回転子4の軸方向の両側には回転軸7a,7bが備えてあり、一方の回転軸7aには回転を外部に伝える出力軸7が備えられている。   FIG. 1A is a schematic configuration diagram showing an embodiment of an electric compression device of the present invention. The electric compression device 1 of FIG. 1A includes a rotor 4 and the rotation inside a casing 22. An electric motor 6 including a stator 5 that interacts with the rotor 4 and generates a rotational moment in the rotor 4 is provided. On the both sides in the axial direction of the rotor 4, rotary shafts 7a and 7b are provided. There is an output shaft 7 for transmitting the rotation to the outside on one of the rotation shafts 7a.

前記回転軸7a,7bは、前記フォイルセグメントを備えたラジアルフォイル軸受8a,8bによって径方向の荷重が非接触で支持されており、又、前記回転軸7a,7bに固定した磁気ディスク9とケーシング22に固定した電磁石9'とからなるアキシャル磁気軸受10a,10bによって回転軸7a,7bの軸長手方向の荷重が非接触で回転可能に支持されている。   The rotary shafts 7a and 7b are supported by radial foil bearings 8a and 8b having the foil segments in a non-contact manner in the radial direction, and a magnetic disk 9 and a casing fixed to the rotary shafts 7a and 7b. Axial magnetic bearings 10a and 10b each including an electromagnet 9 'fixed to 22 support the shafts in the longitudinal direction of the rotary shafts 7a and 7b so that they can rotate without contact.

前記出力軸7の外側端部にはインペラ11が固定してあり、該インペラ11の回転によりエアクリーナ12を通った気体(空気)を吸込口13から取入れて圧縮し、圧縮した圧縮空気を吐出流路14から吐出する遠心圧縮機15が構成されている。そして、前記遠心圧縮機15の吐出流路14から吐出された圧縮空気は、図3の空気供給系路2を介して燃料電池30の空気加湿器35に供給している。   An impeller 11 is fixed to the outer end portion of the output shaft 7, and the gas (air) that has passed through the air cleaner 12 is taken in from the suction port 13 by the rotation of the impeller 11 and compressed, and the compressed compressed air is discharged. A centrifugal compressor 15 that discharges from the passage 14 is configured. The compressed air discharged from the discharge flow path 14 of the centrifugal compressor 15 is supplied to the air humidifier 35 of the fuel cell 30 via the air supply system path 2 of FIG.

図1(a)に示す遠心圧縮機15は、前記吸込口13と前記吐出流路14とを繋ぐ循環流路16を設け、該循環流路16の途中に弁17を備えている。図1(a)に示す弁17は流量調節弁17aの場合を示している。   A centrifugal compressor 15 shown in FIG. 1A is provided with a circulation channel 16 that connects the suction port 13 and the discharge channel 14, and a valve 17 is provided in the middle of the circulation channel 16. The valve 17 shown to Fig.1 (a) has shown the case of the flow control valve 17a.

上記電動圧縮装置1において、前記回転軸7a,7bの回転数を検出する回転数検出器を設ける。図1(a)では前記遠心圧縮機15のインペラ11をカウントすることにより回転軸7a,7bの回転数を検出する回転数検出器18を設けた場合を示しているが、回転軸7a,7bの回転数を検出するロータリエンコーダ等を備えてもよい。又、前記吐出流路14から吐出される圧縮空気の吐出流量を検出する流量検出器19を設けている。   In the electric compressor 1, a rotational speed detector for detecting the rotational speed of the rotary shafts 7a and 7b is provided. FIG. 1A shows a case where a rotation speed detector 18 for detecting the rotation speed of the rotary shafts 7a and 7b by counting the impeller 11 of the centrifugal compressor 15 is provided. A rotary encoder or the like that detects the number of rotations may be provided. A flow rate detector 19 for detecting the discharge flow rate of the compressed air discharged from the discharge flow path 14 is provided.

そして、前記回転数検出器18で検出した回転軸7a,7bの回転数18aと、前記流量検出器19で検出した圧縮空気の吐出流量19aが入力される制御器20を備えており、制御器20には、前記回転軸7a,7bが前記ラジアルフォイル軸受8a,8bから浮上する浮上点回転数のときの浮上点吐出量よりも小さい吐出量が要求指令21として入力されるようになっている。   A controller 20 is provided to which the rotational speed 18a of the rotary shafts 7a and 7b detected by the rotational speed detector 18 and the discharge flow rate 19a of the compressed air detected by the flow rate detector 19 are input. 20, a discharge amount smaller than the floating point discharge amount when the rotating shafts 7 a, 7 b float at the floating point rotational speed at which they float from the radial foil bearings 8 a, 8 b is input as the request command 21. .

前記制御器20に、前記回転軸7a,7bが前記ラジアルフォイル軸受8a,8bから浮上する浮上点回転数のときの浮上点吐出量よりも小さい吐出量の要求指令21が入力された際には、前記制御器20は、圧縮気体の吐出流量が要求指令21になるように制御信号20'を流量制御弁17aに出力し、流量制御弁17aを開けてその開度を制御するようになっている。   When a request command 21 for a discharge amount smaller than the floating point discharge amount when the rotating shafts 7a, 7b are at the floating point rotational speed at which the rotary shafts 7a, 7b float from the radial foil bearings 8a, 8b is input to the controller 20. The controller 20 outputs a control signal 20 ′ to the flow control valve 17a so that the discharge flow rate of the compressed gas becomes the request command 21, and opens the flow control valve 17a to control its opening degree. Yes.

又、図1(a)に示した流量調節弁17aに代えて、図1(b)に示すように、開閉弁17bを備えてもよい。図1(b)は、電磁弁による開閉弁17bを備えた場合を示している。   Further, in place of the flow rate adjusting valve 17a shown in FIG. 1A, an on-off valve 17b may be provided as shown in FIG. FIG.1 (b) has shown the case where the on-off valve 17b by an electromagnetic valve is provided.

次に、上記実施例の作動を説明する。   Next, the operation of the above embodiment will be described.

図1に示す燃料電池自動車用の電動圧縮装置1は、燃料電池自動車の走行状態等に応じて低速から高速まで広い範囲で回転数が制御されることが多い。電動圧縮装置1において、特にラジアルフォイル軸受8a,8bのフォイルセグメントが回転軸7a,7bの外周面に直接に接触して回転軸7a,7bを径方向から支持した状態での回転(低速回転)が長く続くような制御が行われた場合には、前記フォイルセグメントが短期間で摩耗し、摩耗量が大きくなると、ラジアルフォイル軸受8a,8bによる回転軸7a,7bを浮上させるための特性が低下したり失われたりする可能性がある。   1 is often controlled in a wide range from a low speed to a high speed in accordance with the traveling state of the fuel cell automobile. In the electric compressor 1, in particular, rotation in a state where the foil segments of the radial foil bearings 8a and 8b are in direct contact with the outer peripheral surfaces of the rotary shafts 7a and 7b and support the rotary shafts 7a and 7b from the radial direction (low-speed rotation). When the control is carried out so as to continue for a long time, when the foil segment wears in a short period of time and the wear amount increases, the characteristics for floating the rotary shafts 7a and 7b by the radial foil bearings 8a and 8b deteriorate. Can be lost or lost.

図2は前記電動圧縮装置1の回転軸7a,7bの回転が起動から所定の回転数まで上昇する際の回転軸7a,7bの回転数と圧縮気体の吐出量が変化する状態を示した説明用線図であり、図中、実線は回転数を示し、一点鎖線は吐出量を示している。電動モータ6により、停止状態の回転軸7a,7bの回転が起動されると、浮上点回転数S1に達するまでには大きな駆動トルクが必要であるために回転数は徐々に増加し行き、浮上点回転数S1に達して回転軸7a,7bが浮上した瞬間に駆動トルク(動力)が低下することで急速に高速で回転して所定の回転数S2に達する。遠心圧縮機15では、インペラ11の回転数に応じた圧縮空気の吐出量が得られるため、圧縮空気の吐出量は、図2の一点鎖線のように、回転軸7a,7bが浮上点回転数S1に達した時には浮上点吐出量Q1となり、回転軸7a,7bが浮上点回転数S1以上の所定の回転数S2で回転する時には所定の吐出量Q2となる。   FIG. 2 shows a state in which the rotation speed of the rotation shafts 7a and 7b and the discharge amount of the compressed gas change when the rotation of the rotation shafts 7a and 7b of the electric compressor 1 increases from the start up to a predetermined rotation speed. In the figure, the solid line indicates the rotation speed, and the alternate long and short dash line indicates the discharge amount. When the rotation of the rotating shafts 7a and 7b in the stopped state is started by the electric motor 6, since a large driving torque is required to reach the floating point rotational speed S1, the rotational speed gradually increases and the surface is lifted. The driving torque (power) decreases at the moment when the rotational speed 7a, 7b rises after reaching the point rotational speed S1, so that the rotational speed is rapidly increased and reaches a predetermined rotational speed S2. In the centrifugal compressor 15, since the discharge amount of the compressed air corresponding to the rotation speed of the impeller 11 is obtained, the discharge amount of the compressed air is the rotation speed at which the rotary shafts 7a and 7b are lifted as shown by the one-dot chain line in FIG. When it reaches S1, it becomes the floating point discharge amount Q1, and when the rotating shafts 7a, 7b rotate at a predetermined rotation speed S2 that is equal to or higher than the floating point rotation number S1, it becomes a predetermined discharge amount Q2.

前記回転軸7a,7bが浮上点回転数S1以上の回転数で回転しているときには、前記電動圧縮装置1は回転軸7a,7bの回転数に応じた吐出量の圧縮空気を吐出することができる。   When the rotary shafts 7a and 7b are rotating at a rotational speed equal to or higher than the floating point rotational speed S1, the electric compressor 1 can discharge a compressed amount of compressed air corresponding to the rotational speed of the rotary shafts 7a and 7b. it can.

尚、従来の電動圧縮装置では、図2において、前記回転軸7a,7bが前記ラジアルフォイル軸受8a,8bの浮上点回転数S1よりも高い所定の回転数S2で回転しているときに、前記回転軸7a,7bが浮上点回転数S1のときの浮上点吐出量Q1よりも小さい吐出量の圧縮空気が要求されても、このような小さい吐出量の圧縮空気を供給することはできなかった。   In the conventional electric compressor, when the rotary shafts 7a and 7b are rotated at a predetermined rotational speed S2 higher than the floating point rotational speed S1 of the radial foil bearings 8a and 8b in FIG. Even when compressed air having a discharge amount smaller than the floating point discharge amount Q1 when the rotary shafts 7a and 7b are at the floating point rotation speed S1 is required, such a small discharge amount of compressed air could not be supplied. .

これに対し、本発明では、前記回転軸7a,7bが浮上点回転数S1よりも高い所定の回転数S2で回転して所定の吐出量Q2の圧縮空気を吐出しているときに、回転軸7a,7bが浮上する浮上点回転数S1のときの浮上点吐出量Q1よりも小さい吐出量の要求指令21が図1の制御器20に入力された際には、制御器20は前記流量調節弁17aを開く制御を行う。   On the other hand, in the present invention, when the rotary shafts 7a and 7b rotate at a predetermined rotational speed S2 higher than the floating point rotational speed S1 and discharge compressed air of a predetermined discharge amount Q2, the rotational shaft When a request command 21 for a discharge amount smaller than the floating point discharge amount Q1 at the rising point rotational speed S1 at which the floating points 7a and 7b rise is input to the controller 20 in FIG. 1, the controller 20 adjusts the flow rate. Control to open the valve 17a is performed.

流量調節弁17aが開けられると、吐出流路14に吐出された圧縮空気の一部が循環流路16を介してインペラ11の吸込口13に吸引されて循環するようになるため、空気供給系路2を介して図3の燃料電池30の空気加湿器35に供給される圧縮空気の供給量は減少する。   When the flow rate adjusting valve 17a is opened, a part of the compressed air discharged to the discharge flow path 14 is sucked into the suction port 13 of the impeller 11 through the circulation flow path 16 and circulates. The amount of compressed air supplied to the air humidifier 35 of the fuel cell 30 in FIG. 3 via the path 2 decreases.

ここで、循環流路16を介してインペラ11の吸込口13に循環する圧縮空気の循環量は、吐出流路14に吐出される圧縮空気の圧力、インペラ11による吸込口13の圧力(負圧力)、循環流路16の口径等の条件によって所定の値に安定する。   Here, the circulation amount of the compressed air that circulates to the suction port 13 of the impeller 11 through the circulation channel 16 is the pressure of the compressed air that is discharged to the discharge channel 14 and the pressure of the suction port 13 by the impeller 11 (negative pressure). ), And stabilizes to a predetermined value depending on conditions such as the diameter of the circulation channel 16.

従って、回転軸7a,7bがラジアルフォイル軸受8a,8bから浮上する図2の浮上点回転数S1以上の高い回転数S2で回転して大きい吐出量Q2の圧縮気体が吐出されているときに、弁17を開くと、回転軸7a,7bがラジアルフォイル軸受8a,8bから浮上する浮上点回転数S1によって吐出される圧縮気体の浮上点吐出量Q1よりも更に小さい吐出量Q'の圧縮気体を、必要なときに安定して燃料電池30の空気加湿器35に供給することができる。又、図1の制御器20により前記弁17を閉じる制御を行うと、循環流路16が閉じられることにより、図2に示すように、小さい吐出量Q'の圧縮気体は所定の吐出量Q2に復帰するようになる。   Therefore, when the rotating shafts 7a and 7b are rotated at a high rotational speed S2 which is higher than the floating point rotational speed S1 in FIG. 2 and floats from the radial foil bearings 8a and 8b, compressed gas having a large discharge amount Q2 is discharged. When the valve 17 is opened, a compressed gas having a discharge amount Q ′ that is smaller than the floating point discharge amount Q1 of the compressed gas discharged by the floating point rotation speed S1 at which the rotary shafts 7a and 7b rise from the radial foil bearings 8a and 8b. When necessary, it can be stably supplied to the air humidifier 35 of the fuel cell 30. Further, when the valve 17 is controlled to be closed by the controller 20 shown in FIG. 1, the circulation flow path 16 is closed, and as shown in FIG. 2, the compressed gas having a small discharge amount Q ′ becomes a predetermined discharge amount Q2. To return to.

図1(a)に示すように前記弁17が流量調節弁17aである場合には、流量調節弁17aの開度を調節して循環流路16による圧縮気体の循環量を調節することにより、燃料電池30の空気加湿器35に供給する圧縮空気の供給量をある変化幅で調節することができる。   When the valve 17 is a flow rate adjusting valve 17a as shown in FIG. 1 (a), by adjusting the opening of the flow rate adjusting valve 17a and adjusting the amount of compressed gas circulated by the circulation flow path 16, The supply amount of the compressed air supplied to the air humidifier 35 of the fuel cell 30 can be adjusted with a certain change width.

又、図1(b)に示すように前記弁17が開閉弁17bである場合には、開閉弁17bを開けることにより、循環流路16を介して吐出流路14の圧縮空気の一部がインペラ11の吸込口13に吸引されて循環するようになるので、燃料電池30の空気加湿器35に供給される圧縮空気の供給量は所定の値に減少する。   Further, as shown in FIG. 1B, when the valve 17 is an on-off valve 17b, a part of the compressed air in the discharge passage 14 is made to pass through the circulation passage 16 by opening the on-off valve 17b. Since the air is sucked into the inlet 13 of the impeller 11 and circulates, the supply amount of compressed air supplied to the air humidifier 35 of the fuel cell 30 decreases to a predetermined value.

上記したように、弁17を開けて、小さい吐出量Q'の圧縮気体を燃料電池30に供給する際は、循環流路16を介してインペラ11に循環する圧縮空気の温度は上昇することになるが、空気加湿器35を介して燃料電池30に供給される圧縮空気は温度が高いと発電効率が上昇するので、前記循環によって圧縮空気の温度が上昇することは有効である。   As described above, when the valve 17 is opened and the compressed gas having a small discharge amount Q ′ is supplied to the fuel cell 30, the temperature of the compressed air circulating to the impeller 11 through the circulation channel 16 rises. However, since the power generation efficiency increases when the temperature of the compressed air supplied to the fuel cell 30 through the air humidifier 35 is high, it is effective that the temperature of the compressed air rises due to the circulation.

又、前記電動圧縮装置1を起動する際に、前記弁17を開ける操作を行うと、遠心圧縮機15のインペラ11で圧縮されて吐出流路14に吐出された圧縮気体が循環流路16を通してインペラ11の吸込口13に循環されることにより、インペラ11の吸込負荷が低減されることになるので、図2中破線Aで示すように、回転軸7a,7bの回転数は従来に比して短い時間で浮上点回転数S1に到達するようになる。このように、回転軸7a,7bが浮上点回転数S1に到達するまでの時間が短縮されることにより、低速回転することでラジアルフォイル軸受8a,8bのフォイルセグメントが短期間に摩耗するという問題を低減することができる。   Further, when the operation of opening the valve 17 is performed when starting the electric compressor 1, the compressed gas compressed by the impeller 11 of the centrifugal compressor 15 and discharged to the discharge passage 14 passes through the circulation passage 16. Since the suction load of the impeller 11 is reduced by being circulated through the suction port 13 of the impeller 11, the rotational speed of the rotating shafts 7a and 7b is smaller than that of the conventional one as shown by the broken line A in FIG. Thus, the flying point rotation speed S1 is reached in a short time. As described above, the time until the rotating shafts 7a and 7b reach the levitation point rotational speed S1 is shortened, so that the foil segments of the radial foil bearings 8a and 8b are worn in a short time by rotating at a low speed. Can be reduced.

尚、本発明の電動圧縮装置及び燃料電池用空気供給装置は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The electric compressor and the fuel cell air supply device of the present invention are not limited to the above-described embodiments, and various modifications may be made without departing from the scope of the present invention. .

1 電動圧縮装置
3 燃料電池用空気供給装置
4 回転子
5 固定子
7a,7b 回転軸
8a,8b ラジアルフォイル軸受
11 インペラ
13 吸込口
14 吐出流路
16 循環流路
17 弁
17a 流量調節弁
18 回転数検出器
18a 回転数
20 制御器
21 要求指令
30 燃料電池
35 空気加湿器
Q1 浮上点吐出量
Q2 所定の吐出量
Q' 小さい吐出量
S1 浮上点回転数
S2 所定の回転数
DESCRIPTION OF SYMBOLS 1 Electric compressor 3 Air supply apparatus for fuel cells 4 Rotor 5 Stator 7a, 7b Rotating shaft 8a, 8b Radial foil bearing 11 Impeller 13 Suction port 14 Discharge flow path 16 Circulation flow path 17 Valve 17a Flow control valve 18 Number of rotations Detector 18a Rotational speed 20 Controller 21 Request command 30 Fuel cell 35 Air humidifier Q1 Floating point discharge amount Q2 Predetermined discharge amount Q ′ Small discharge amount S1 Floating point rotational speed S2 Predetermined rotational speed

Claims (3)

回転子と、該回転子と相互作用して回転子に回転モーメントを発生させる固定子と、前記回転子の回転を外部に伝える回転軸と、該回転軸を回転可能に支持するラジアルフォイル軸受と、前記回転軸と一体に回転するインペラと、該インペラの回転により気体を取入れる吸込口と、前記インペラの回転により圧縮した圧縮気体を吐出する吐出流路と、を有する電動圧縮装置であって、
前記吸込口と前記吐出流路とを繋ぐ循環流路と、
該循環流路に備えた弁と、前記回転軸の回転数を検出する回転数検出器と、前記回転数検出器で検出される回転数に基づいて前記弁の開閉を制御する制御器を有し、
前記制御器は、前記回転軸が前記ラジアルフォイル軸受から浮上する回転数で回転した状態において、前記回転軸がラジアルフォイル軸受から浮上する浮上点回転数によって吐出される圧縮気体の浮上点吐出量よりも更に小さい吐出量が要求された時に前記弁を開く制御を行うことを特徴とする電動圧縮装置。
A rotor, a stator that interacts with the rotor and generates a rotational moment in the rotor, a rotating shaft that transmits the rotation of the rotor to the outside, and a radial foil bearing that rotatably supports the rotating shaft; An electric compressor having an impeller that rotates integrally with the rotating shaft, a suction port that takes in gas by the rotation of the impeller, and a discharge passage that discharges compressed gas compressed by the rotation of the impeller. ,
A circulation flow path connecting the suction port and the discharge flow path;
A valve provided in the circulation channel, a rotation speed detector for detecting the rotation speed of the rotary shaft, and a controller for controlling opening and closing of the valve based on the rotation speed detected by the rotation speed detector; And
In the state in which the rotating shaft is rotated at the rotational speed at which the rotary shaft is levitated from the radial foil bearing, the controller is configured to obtain a floating point discharge amount of a compressed gas discharged at a floating point rotational speed at which the rotary shaft is levitated from the radial foil bearing. An electric compressor characterized by performing control to open the valve when a smaller discharge amount is required.
前記弁は流量調節弁であり、前記吐出流路には圧縮気体の吐出流量を検出する流量検出器が設けてあり、前記制御器は、前記回転軸が前記ラジアルフォイル軸受から浮上する回転数で回転した状態において、前記回転軸がラジアルフォイル軸受から浮上する浮上点回転数によって吐出される圧縮気体の浮上点吐出量よりも更に小さい吐出量が要求された時に要求指令の吐出量になるように前記流量調節弁を開く制御を行うことを特徴とする請求項1に記載の電動圧縮装置。   The valve is a flow rate adjusting valve, and a flow rate detector for detecting a discharge flow rate of the compressed gas is provided in the discharge flow path, and the controller has a rotational speed at which the rotating shaft floats from the radial foil bearing. In the rotated state, when the discharge amount smaller than the floating point discharge amount of the compressed gas discharged by the floating point rotational speed at which the rotating shaft ascends from the radial foil bearing is requested, the discharge amount of the request command is obtained. The electric compressor according to claim 1, wherein control for opening the flow rate control valve is performed. 請求項1又は2に記載の電動圧縮装置における前記吐出流路が、燃料電池の空気加湿器に接続されたことを特徴とする燃料電池用空気供給装置。   3. An air supply device for a fuel cell, wherein the discharge flow path in the electric compressor according to claim 1 or 2 is connected to an air humidifier of the fuel cell.
JP2012135730A 2012-06-15 2012-06-15 Electric compressor and air supply device for fuel cell Active JP5906954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012135730A JP5906954B2 (en) 2012-06-15 2012-06-15 Electric compressor and air supply device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012135730A JP5906954B2 (en) 2012-06-15 2012-06-15 Electric compressor and air supply device for fuel cell

Publications (2)

Publication Number Publication Date
JP2014001642A true JP2014001642A (en) 2014-01-09
JP5906954B2 JP5906954B2 (en) 2016-04-20

Family

ID=50035050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012135730A Active JP5906954B2 (en) 2012-06-15 2012-06-15 Electric compressor and air supply device for fuel cell

Country Status (1)

Country Link
JP (1) JP5906954B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128808A (en) * 1978-03-30 1979-10-05 Sumitomo Metal Ind Ltd Control method for gas booster or the like
JPS63186994U (en) * 1987-05-23 1988-11-30
JP2003256002A (en) * 2002-02-28 2003-09-10 Tomoe Shokai:Kk Temperature control device and temperature control method
JP2005069013A (en) * 2003-08-22 2005-03-17 Tokyo Electric Power Co Inc:The Gas supply device and its control method
JP2010168904A (en) * 2009-01-20 2010-08-05 Jtekt Corp Air supply device for fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128808A (en) * 1978-03-30 1979-10-05 Sumitomo Metal Ind Ltd Control method for gas booster or the like
JPS63186994U (en) * 1987-05-23 1988-11-30
JP2003256002A (en) * 2002-02-28 2003-09-10 Tomoe Shokai:Kk Temperature control device and temperature control method
JP2005069013A (en) * 2003-08-22 2005-03-17 Tokyo Electric Power Co Inc:The Gas supply device and its control method
JP2010168904A (en) * 2009-01-20 2010-08-05 Jtekt Corp Air supply device for fuel cell

Also Published As

Publication number Publication date
JP5906954B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
US10428826B2 (en) Method and system to reduce to wear on a bearing
CN108884757B (en) Pressure booster
CN107893772B (en) Centrifugal fuel cell air compressor with energy recovery function
JP4028826B2 (en) Wind power generator
US7700207B2 (en) Turbocompressor shutdown mechanism
KR101526662B1 (en) Air blower for fuel cell car
US20070072021A1 (en) Fuel-cell apparatus
JP5056432B2 (en) Rotating shaft device and fuel cell system
CN101004174A (en) Electric pump for hydrogen circulation
CN110709608A (en) Air compressor
JP6656828B2 (en) Fuel cell system structure and control method
JP2019046761A (en) Fuel cell system
CN103502650B (en) The method for controlling of operation of vacuum pump, vacuum pumping hardware and vacuum pump
JP2010144537A (en) Compressor for fuel cell
JP2007299691A (en) Air supply system in fuel cell for driving vehicle and air supplying method
JP6233519B2 (en) Fuel cell system
KR101811571B1 (en) An air blower for fuel cell vehicle
JP2010048222A (en) Compressor device and fuel cell system
JP5906954B2 (en) Electric compressor and air supply device for fuel cell
KR102428830B1 (en) Air-supplier and controlling method for the air-supplier
JP2010168904A (en) Air supply device for fuel cell
JP2019160726A (en) Fuel cell system
CN107946613A (en) A kind of fuel cell compressed air induction system of hydraulic drive
CN207500002U (en) A kind of gas turbine Pneumatic drive system
JP6866878B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150423

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R151 Written notification of patent or utility model registration

Ref document number: 5906954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250