JP2014001410A - Plating method and plating apparatus - Google Patents

Plating method and plating apparatus Download PDF

Info

Publication number
JP2014001410A
JP2014001410A JP2012135618A JP2012135618A JP2014001410A JP 2014001410 A JP2014001410 A JP 2014001410A JP 2012135618 A JP2012135618 A JP 2012135618A JP 2012135618 A JP2012135618 A JP 2012135618A JP 2014001410 A JP2014001410 A JP 2014001410A
Authority
JP
Japan
Prior art keywords
plating
chamber
plating solution
anode chamber
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012135618A
Other languages
Japanese (ja)
Other versions
JP5978793B2 (en
Inventor
Takuma Katase
琢磨 片瀬
Akihiro Masuda
昭裕 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012135618A priority Critical patent/JP5978793B2/en
Publication of JP2014001410A publication Critical patent/JP2014001410A/en
Application granted granted Critical
Publication of JP5978793B2 publication Critical patent/JP5978793B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plating method and a plating apparatus which facilitate handling and can resupply Sn components to plating liquid efficiently.SOLUTION: The method comprises: a plating step in which a plating tank 1 for storing plating liquid containing Sn is divided, by an anion-exchange membrane 4, into a cathode chamber 21 where a substrate 2 under treatment is located and an anode chamber 31 where an insoluble anode electrode 3 is located, and plating is applied to the substrate 2 under treatment; a resupply step for generating resupply plating liquid by supplying tin oxide to the anode chamber plating liquid in the anode chamber 31 the acid concentration of which has increased due to the plating step; and an evening step for evening the plating liquid in the plating tank 1 by circulation between the resupply plating liquid and the plating liquid in cathode chamber 21.

Description

本発明は、めっき方法およびめっき装置に関する。   The present invention relates to a plating method and a plating apparatus.

不溶性アノード電極を用いためっき装置においては、めっき液中の金属成分の濃度を一定に維持するために、めっき処理に伴い金属成分を補給することが必要となる。
めっき液に金属成分を補給する方法としては、例えば、特許文献1に開示されているように、めっき槽とは別に、めっき液成分の補給液(要素液)を補給タンク(錫溶解用電解槽)に溜めておき、めっき液の成分濃度の分析結果に基づいて、補給タンクから補給液をめっき槽に補給して、めっき液と補給液とを循環させる方法が一般的である。
In a plating apparatus using an insoluble anode electrode, in order to maintain a constant concentration of the metal component in the plating solution, it is necessary to replenish the metal component with the plating process.
As a method for replenishing the metal component to the plating solution, for example, as disclosed in Patent Document 1, a replenisher tank (electrolytic bath for dissolving tin) is used as a replenisher solution (element solution) for the plating solution component separately from the plating bath. In general, a method of replenishing the plating solution from the replenishing tank to the plating tank and circulating the plating solution and the replenishing solution based on the analysis result of the component concentration of the plating solution.

また、Snを含有するめっき液の場合は、酸化錫の粉末を用いてめっき液に金属イオンを補給する方法も知られている。例えば、特許文献2では、めっき槽との間で循環されるめっき液を貯留する補給タンク内のめっき液の液面に酸化錫の粉末を散布(噴霧)することにより、酸化錫の粉末をめっき液中に溶解することとしている。また、特許文献3では、補給タンクからめっき槽に送られるめっき液の流れに直接、酸化錫の粉末を供給しており、めっき液の攪拌のための特別な装置を設けることなく、酸化錫の粉末をめっき液中に溶解させることが開示されている。   In the case of a plating solution containing Sn, a method of supplying metal ions to the plating solution using a tin oxide powder is also known. For example, in Patent Document 2, tin oxide powder is plated by spraying (spraying) tin oxide powder on the surface of the plating solution in a replenishing tank that stores the plating solution circulated between the plating tanks. It is supposed to dissolve in the liquid. Moreover, in patent document 3, the powder of a tin oxide is directly supplied to the flow of the plating solution sent to a plating tank from a replenishment tank, and without providing a special apparatus for stirring a plating solution, Dissolving the powder in the plating solution is disclosed.

さらに、特許文献4には、めっき槽を陰イオン交換膜により陽極(アノード)と陰極(カソード)とを隔てて配置し、めっき浴室から分離形成された陽極室にめっき液と同一種の陰イオンを有する陽極室液(酸液)を満たしてめっきを行う方法が開示されている。
この場合、陽極室液には、めっきによって系外に取出された金属イオンに相当する量の酸が生成することになるので、この陽極室液で補給すべき金属を溶解させ、補給液として使用できることが開示されている。
Further, in Patent Document 4, a plating tank is disposed with an anode (anode) and a cathode (cathode) separated by an anion exchange membrane, and an anion of the same type as the plating solution is formed in an anode chamber separated from the plating bath. A method of performing plating by filling an anode chamber solution (acid solution) having s.
In this case, an amount of acid corresponding to the metal ions taken out of the system by plating is generated in the anode chamber solution. Therefore, the metal to be replenished with this anode chamber solution is dissolved and used as a replenisher solution. It is disclosed that it can be done.

特開平2‐70087号公報Japanese Patent Laid-Open No. 2-70087 特開2009‐235526号公報JP 2009-235526 A 特開2010‐202941号公報JP 2010-202941 A 特開昭51‐2900号公報Japanese Patent Laid-Open No. 51-2900

上述したように、特許文献1に開示の方法では、Sn成分の補給に際し要素液を別に用意しておく必要がある。また、特許文献2及び3に開示されるような酸化錫の粉末を溶解させて金属成分を補給する方法においては、溶解残渣がめっき品質に悪影響を与える懸念がある。
さらに、特許文献4に開示の方法では、めっき液の他に陽極室液(酸液)が必要となり、めっき槽をめっき浴室と陽極室とに隔てて各室に別々の溶液(めっき液と酸液)を満たす構成は、取り扱いが難しいという問題がある。
As described above, in the method disclosed in Patent Document 1, it is necessary to prepare a component liquid separately when supplying the Sn component. Moreover, in the method of dissolving the tin oxide powder and replenishing the metal component as disclosed in Patent Documents 2 and 3, there is a concern that the dissolved residue adversely affects the plating quality.
Furthermore, the method disclosed in Patent Document 4 requires an anode chamber solution (acid solution) in addition to the plating solution, and separates the plating tank into a plating bath and an anode chamber, and separate solutions (plating solution and acid solution) in each chamber. The structure satisfying (liquid) has a problem that it is difficult to handle.

本発明は、このような事情に鑑みてなされたものであって、取り扱いが容易で効率的にめっき液へのSn成分補給が可能であるめっき方法およびめっき装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a plating method and a plating apparatus that are easy to handle and can efficiently supply Sn components to the plating solution.

本発明のめっき方法は、Snを含有するめっき液を貯留するめっき槽を陰イオン交換膜によって被処理基板が配置されるカソード室と不溶性アノード電極が配置されるアノード室とに区画しておき、該被処理基板へめっきを施すめっき工程と、該めっき工程に伴い酸成分濃度が上昇した前記アノード室のアノード室めっき液に酸化錫を供給することにより補給めっき液を生成する補給工程と、該補給めっき液と前記カソード室のカソード室めっき液とを互いに循環させて、前記めっき槽内のめっき液を均一化する均一化工程とを備えることを特徴とする。   In the plating method of the present invention, a plating tank for storing a plating solution containing Sn is partitioned into a cathode chamber in which a substrate to be processed is disposed and an anode chamber in which an insoluble anode electrode is disposed by an anion exchange membrane, A plating step of plating the substrate to be treated, a replenishment step of generating a replenishing plating solution by supplying tin oxide to the anode chamber plating solution of the anode chamber whose acid component concentration has increased in accordance with the plating step, and The replenishing plating solution and the cathode chamber plating solution in the cathode chamber are circulated to each other to provide a homogenizing step for making the plating solution in the plating tank uniform.

電解により、カソード室内では還元反応により被処理基板にSn又はSn合金が析出し、めっき液中のSn成分濃度が減少する。一方、アノード室内では水の電気分解反応により不溶性アノード電極表面で酸素が生成されるとともに、Hイオン(H)濃度が上昇する。カソード室とアノード室とは、陰イオン交換膜により隔てられていることから、アノード室からカソード室への陽イオンの移動は制限されており、めっきに伴いアノード室内の酸成分濃度が上昇することになる。 As a result of electrolysis, Sn or Sn alloy is deposited on the substrate to be treated by a reduction reaction in the cathode chamber, and the Sn component concentration in the plating solution decreases. On the other hand, in the anode chamber, oxygen is generated on the surface of the insoluble anode electrode by the electrolysis reaction of water, and the H ion (H + ) concentration increases. Since the cathode chamber and the anode chamber are separated by an anion exchange membrane, the movement of cations from the anode chamber to the cathode chamber is restricted, and the acid component concentration in the anode chamber increases with plating. become.

本発明のめっき方法によれば、めっきに伴って酸成分濃度が上昇したアノード室のアノード室めっき液に酸化錫を供給することにしているので、酸化錫を供給するだけで、その高い酸成分濃度のアノード室めっき液に容易に溶解させることができる。また、酸化錫の溶解により酸が消費され、被処理基板にめっきを施す前の初期めっき液の状態に戻すことができる。そして、本発明においては、カソード室及びアノード室には、同じめっき液を用いているため、特許文献4に開示されているように、めっき液とは別に酸液を用意しておく必要がなく、酸化錫を供給するだけで被処理基板のめっきに伴い消失した金属成分を容易に補給することができ、取り扱いが容易である。   According to the plating method of the present invention, since it is decided to supply tin oxide to the anode chamber plating solution of the anode chamber whose acid component concentration has increased with plating, the high acid component can be obtained simply by supplying tin oxide. It can be easily dissolved in the anode chamber plating solution of a concentration. Further, the acid is consumed by the dissolution of tin oxide, and the initial plating solution before plating on the substrate to be processed can be returned to the state. In the present invention, since the same plating solution is used for the cathode chamber and the anode chamber, it is not necessary to prepare an acid solution separately from the plating solution as disclosed in Patent Document 4. By simply supplying tin oxide, it is possible to easily replenish the metal component that has disappeared due to the plating of the substrate to be processed, and it is easy to handle.

本発明のめっき方法において、前記補給工程は、前記アノード室めっき液の酸成分濃度が初期濃度の15%以上増加した時点で行うことが好ましい。
酸化錫(Sn成分)の補給を、アノード室めっき液の酸成分濃度が初期濃度の15%以上増加した時点で行うことで、酸化錫の溶解効率を十分に向上することができる。
なお、カソード室のSn成分濃度の減少が5%未満であると、アノード室のめっき液の酸成分濃度の上昇が十分でない場合があり、10%を超える場合には、被処理基板へのめっき性に影響が生じるおそれがある。そのため、Sn成分の補給は、カソード室内のSn成分濃度の減少が、初期めっき液に対して10%を超えないうちに実施されることが好ましい。
In the plating method of the present invention, the replenishing step is preferably performed when the acid component concentration of the anode chamber plating solution has increased by 15% or more of the initial concentration.
By replenishing tin oxide (Sn component) when the acid component concentration of the anode chamber plating solution is increased by 15% or more of the initial concentration, the dissolution efficiency of tin oxide can be sufficiently improved.
If the decrease in the Sn component concentration in the cathode chamber is less than 5%, the increase in the acid component concentration in the plating solution in the anode chamber may not be sufficient. May affect the sex. Therefore, the replenishment of the Sn component is preferably performed before the decrease of the Sn component concentration in the cathode chamber exceeds 10% with respect to the initial plating solution.

本発明のめっき方法において、前記アノード室が、前記カソード室の容積に対して30%以下になるように、前記めっき槽を前記陰イオン交換膜で区画するとよい。
アノード室をカソード室の容積の30%以下とすることで、カソード室めっき液のSn成分濃度の減少速度と、アノード室めっき液の酸成分濃度の上昇速度とのバランスが調整され、補給時における酸化錫の溶解効率をより向上させることができる。
アノード室がカソード室の容積の30%を超える場合、カソード室めっき液のSn成分濃度が減少し、Sn成分の補給を実施すべきタイミングとなった際に、アノード室めっき液の酸成分濃度が十分に上昇しておらず、酸化錫の溶解効率が低下するおそれがある。なお、アノード室の容積が小さすぎると、めっき液の量が少なすぎて補給に必要な量の酸化錫を溶解できなくなるため、アノード室は、カソード室の容積に対して10%以上に設定することが好ましい。
In the plating method of the present invention, the plating tank may be partitioned with the anion exchange membrane so that the anode chamber is 30% or less with respect to the volume of the cathode chamber.
By setting the anode chamber to 30% or less of the cathode chamber volume, the balance between the decrease rate of the Sn component concentration of the cathode chamber plating solution and the increase rate of the acid component concentration of the anode chamber plating solution is adjusted. The dissolution efficiency of tin oxide can be further improved.
When the anode chamber exceeds 30% of the volume of the cathode chamber, the Sn component concentration of the cathode chamber plating solution decreases, and when it is time to replenish the Sn component, the acid component concentration of the anode chamber plating solution is There is a possibility that the dissolution efficiency of tin oxide may be lowered due to insufficient rise. If the volume of the anode chamber is too small, the amount of the plating solution is too small to dissolve the amount of tin oxide necessary for replenishment. Therefore, the anode chamber is set to 10% or more with respect to the volume of the cathode chamber. It is preferable.

本発明は、めっき槽内に貯留したSnを含有するめっき液に被処理基板及び不溶性アノード電極を接触させた状態とし、前記被処理基板と前記不溶性アノード電極との間に通電して該被処理基板にめっき膜を形成するめっき装置であって、前記めっき槽は、陰イオン交換膜により前記被処理基板が配置されるカソード室と、前記不溶性アノード電極が配置されるアノード室とに区画されており、前記アノード室は、前記カソード室の容積に対して30%以下に設定され、前記アノード室の一部又は該アノード室とは別に、前記アノード室のアノード室めっき液に酸化錫を供給して補給めっき液を生成する溶解室が設けられていることを特徴とする。   In the present invention, a substrate to be processed and an insoluble anode electrode are brought into contact with a plating solution containing Sn stored in a plating tank, and the substrate is processed by energizing the substrate to be processed and the insoluble anode electrode. A plating apparatus for forming a plating film on a substrate, wherein the plating tank is partitioned by an anion exchange membrane into a cathode chamber in which the substrate to be processed is disposed and an anode chamber in which the insoluble anode electrode is disposed. The anode chamber is set to 30% or less with respect to the volume of the cathode chamber, and supplies tin oxide to the anode chamber plating solution of the anode chamber separately from a part of the anode chamber or the anode chamber. And a dissolution chamber for generating a replenishing plating solution.

このようにめっき装置を構成することで、取り扱いが容易で効率的にめっき液へのSn成分補給が可能となる。   By configuring the plating apparatus in this way, the Sn component can be replenished to the plating solution easily and efficiently.

本発明によれば、めっきに伴い酸成分濃度が上昇したアノード室内のめっき液に酸化錫を供給するだけで容易に溶解させることができ、めっき液に効率的にSn成分補給を行うことができる。また、カソード室及びアノード室に、同じ成分のめっき液を用いているため、取り扱いが容易となっている。   According to the present invention, it is possible to easily dissolve tin oxide by simply supplying tin oxide to the plating solution in the anode chamber whose acid component concentration has increased with plating, and to efficiently replenish the plating solution with the Sn component. . Moreover, since the plating solution of the same component is used for the cathode chamber and the anode chamber, handling is easy.

本発明の第1実施形態のめっき方法に適用されるめっき装置を示す全体構成図である。It is a whole lineblock diagram showing the plating apparatus applied to the plating method of a 1st embodiment of the present invention. 本発明の第2実施形態のめっき方法に適用されるめっき装置を示す全体構成図である。It is a whole block diagram which shows the plating apparatus applied to the plating method of 2nd Embodiment of this invention.

以下、本発明に係るめっき方法およびめっき装置の実施形態を、図面を参照しながら説明する。
図1は、本発明のめっき装置の第1実施形態を示している。このめっき装置100は、めっき槽1内に貯留しためっき液に被処理基板2及び不溶性アノード電極3を接触させた状態とし、被処理基板2と不溶性アノード電極3との間に通電して被処理基板2に純Sn又はSn合金のめっき膜を形成するものである。なお、被処理基板2と不溶性アノード電極3との間に電源11が接続されており、被処理基板2をカソードとして電解めっきする構成である。
Hereinafter, embodiments of a plating method and a plating apparatus according to the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of the plating apparatus of the present invention. In this plating apparatus 100, the substrate 2 and the insoluble anode electrode 3 are brought into contact with the plating solution stored in the plating tank 1, and a current is passed between the substrate 2 and the insoluble anode electrode 3 to be processed. A pure Sn or Sn alloy plating film is formed on the substrate 2. In addition, the power supply 11 is connected between the to-be-processed substrate 2 and the insoluble anode electrode 3, and it is the structure which carries out the electroplating by using the to-be-processed substrate 2 as a cathode.

不溶性アノード電極3には、例えば、チタン板等を白金や酸化イリジウム等で被覆した金属電極、あるいはカーボン等からなる電極が適用される。また、被処理基板2には、SUSやCu等のめっきされる対象金属、あるいはスパッタリング等の手法によってCu等の金属層が設けられ、導電性が付与された樹脂製基板やSiウエハ等の対象物が設けられる。   As the insoluble anode electrode 3, for example, a metal electrode obtained by coating a titanium plate or the like with platinum, iridium oxide, or the like, or an electrode made of carbon or the like is applied. Further, the target substrate 2 is a target metal such as SUS or Cu, or a metal substrate such as Cu provided by a technique such as sputtering, and a target such as a resin substrate or a Si wafer provided with conductivity. Things are provided.

めっき槽1は、陰イオン交換膜4により被処理基板2が配置されるカソード室21と、不溶性アノード電極3が配置されるアノード室31とに区画されている。アノード室31の容積は、カソード室21の容積よりも小さく設定されており、アノード室31の容積がカソード室21の容積に対して10%以上30%以下に設定されている。また、陰イオン交換膜4としては、例えば、耐酸性に優れるAGCエンジニアリング社製の「セレミオン」や、株式会社アストム製の「ネオセプタ」を用いることができる。   The plating tank 1 is partitioned by an anion exchange membrane 4 into a cathode chamber 21 in which the substrate 2 is disposed and an anode chamber 31 in which the insoluble anode electrode 3 is disposed. The volume of the anode chamber 31 is set smaller than the volume of the cathode chamber 21, and the volume of the anode chamber 31 is set to 10% or more and 30% or less with respect to the volume of the cathode chamber 21. Further, as the anion exchange membrane 4, for example, “Celemion” manufactured by AGC Engineering, which is excellent in acid resistance, or “Neoceptor” manufactured by Astom Co., Ltd. can be used.

また、アノード室31内のアノード室めっき液に酸化錫(SnO)の粉末を供給して補給めっき液を生成する溶解室33が設けられている。アノード室31と溶解室33とは、循環配管51,52で接続されており、これら循環配管51,52を通じてアノード室31内のめっき液と溶解室33内のめっき液とを循環させることができる。
この場合、アノード室31と溶解室33との間でめっき液が循環しており、アノード室31と溶解室33とが全体として本発明のアノード室として機能する構成とされ、溶解室33はアノード室の一部に該当する。
また、溶解室33には、補給めっき液をカソード室21へ供給する供給配管53が設けられている。また、供給配管53には、フィルタ(図示略)が設けられており、補給めっき液をカソード室21へ供給する際に不純物の移動を防止することができる。
なお、図1に示す符号54は、カソード室21内のカソード室めっき液を隣接するアノード室31へ供給する供給配管であり、符号61は、配管内の流れを開閉するバルブである。
In addition, a melting chamber 33 is provided in which tin oxide (SnO) powder is supplied to the anode chamber plating solution in the anode chamber 31 to generate a replenishment plating solution. The anode chamber 31 and the dissolution chamber 33 are connected by circulation pipes 51 and 52, and the plating solution in the anode chamber 31 and the plating solution in the dissolution chamber 33 can be circulated through the circulation pipes 51 and 52. .
In this case, the plating solution is circulated between the anode chamber 31 and the melting chamber 33, and the anode chamber 31 and the melting chamber 33 function as the anode chamber of the present invention as a whole. Applies to a part of the room.
The dissolution chamber 33 is provided with a supply pipe 53 for supplying the replenishing plating solution to the cathode chamber 21. Further, the supply pipe 53 is provided with a filter (not shown), which can prevent impurities from moving when supplying the replenishing plating solution to the cathode chamber 21.
1 is a supply pipe that supplies the cathode chamber plating solution in the cathode chamber 21 to the adjacent anode chamber 31, and 61 is a valve that opens and closes the flow in the pipe.

このように構成されるめっき装置により、被処理基板2にSn−Ag合金めっきを施す方法について説明する。
Sn−Ag合金めっき液(本発明でいうSnを含有するめっき液)としては、メタンスルホン酸、エタンスルホン酸といったアルキルスルホン酸等の酸と、めっき金属イオン(Sn2+,Ag)の他、酸化防止剤や界面活性剤等の添加剤、錯化剤等が配合される。本実施例で使用されるSn−Ag合金めっき液は、例えば以下の配合で構成される。
アルキルスルホン酸;100〜150g/L
Sn2+;40〜90g/L
Ag;0.1〜3.0g/L
なお、カソード室21及びアノード室31には、上記と同じSn−Ag合金めっき液が用いられる。
A method of performing Sn—Ag alloy plating on the substrate 2 to be processed using the plating apparatus configured as described above will be described.
Examples of the Sn—Ag alloy plating solution (plating solution containing Sn as used in the present invention) include acids such as alkylsulfonic acid such as methanesulfonic acid and ethanesulfonic acid, and plating metal ions (Sn 2+ , Ag + ), Additives such as antioxidants and surfactants, complexing agents and the like are blended. The Sn—Ag alloy plating solution used in this example is composed of, for example, the following composition.
Alkyl sulfonic acid; 100 to 150 g / L
Sn 2+ ; 40-90 g / L
Ag + ; 0.1-3.0 g / L
Note that the same Sn—Ag alloy plating solution as described above is used for the cathode chamber 21 and the anode chamber 31.

そして、被処理基板2及び不溶性アノード電極3に通電すると、電解により、カソード室21内では、下記の(1),(2)式で表されるように、還元反応により被処理基板2にSn−Ag合金が析出する(めっき工程)。一方、アノード室31内では、(3)式で表されるように、水の電気分解反応により、不溶性アノード電極3の表面で酸素(O)が生成されるとともに、Hイオン(H)濃度が上昇する。カソード室21とアノード室31とは陰イオン交換膜4により隔てられていることから、アノード室31からカソード室21への陽イオンの移動は制限されており、めっきに伴いアノード室31内の酸成分濃度が上昇する。
なお、アノード室31の容積は小さく設定されていることから、酸成分濃度の上昇率が高くなっている。
Sn2++2e→Sn …(1)
Ag+e→Ag …(2)
O → 2H+1/2O+2e …(3)
Then, when the substrate 2 and the insoluble anode electrode 3 are energized, in the cathode chamber 21 by electrolysis, Sn is applied to the substrate 2 by reduction reaction as represented by the following formulas (1) and (2). -Ag alloy precipitates (plating process). On the other hand, in the anode chamber 31, as represented by the formula (3), oxygen (O 2 ) is generated on the surface of the insoluble anode electrode 3 by water electrolysis reaction and H ions (H + ). Concentration increases. Since the cathode chamber 21 and the anode chamber 31 are separated by the anion exchange membrane 4, the movement of cations from the anode chamber 31 to the cathode chamber 21 is limited, and the acid in the anode chamber 31 is accompanied by plating. Increases the component concentration.
In addition, since the volume of the anode chamber 31 is set small, the rate of increase of the acid component concentration is high.
Sn 2+ + 2e → Sn (1)
Ag + + e → Ag (2)
H 2 O → 2H + + 1 / 2O 2 + 2e (3)

電解が進むと、カソード室21内のSn成分濃度が減少し、アノード室31内のアノード室めっき液の酸成分濃度が上昇する。そして、アノード室めっき液の酸成分濃度が初期濃度の15%以上増加し、カソード室めっき液のSn成分濃度の減少が初期めっき液に対して10%を超えないうちに、補給めっき液を用いてSn成分を補給する。
なお、カソード室めっき液のSn成分濃度の減少が5%未満であると、アノード室めっき液の酸成分濃度の上昇が十分でなく、酸化錫の溶解効率が低下する場合がある。また、Sn成分濃度の減少が10%を超える場合には、被処理基板2へのめっき性に影響が生じるおそれがある。
As electrolysis proceeds, the Sn component concentration in the cathode chamber 21 decreases, and the acid component concentration of the anode chamber plating solution in the anode chamber 31 increases. The replenishing plating solution is used before the acid component concentration of the anode chamber plating solution increases by 15% or more of the initial concentration and the decrease of the Sn component concentration of the cathode chamber plating solution does not exceed 10% of the initial plating solution. To replenish the Sn component.
If the decrease in the Sn component concentration in the cathode chamber plating solution is less than 5%, the acid component concentration in the anode chamber plating solution is not sufficiently increased, and the dissolution efficiency of tin oxide may decrease. In addition, when the decrease in the Sn component concentration exceeds 10%, the plating property on the substrate to be processed 2 may be affected.

補給めっき液は、アノード室31内のアノード室めっき液を用いて生成する。酸成分濃度が上昇したアノード室めっき液の一部を抜き出して溶解室33との間で循環させた状態で、溶解室33内に酸化錫の粉末を供給することにより補給めっき液を生成する(補給工程)。アノード室31及び溶解室33内のめっき液は、Hイオンを高濃度で含有していることから、下記の(4)式で表されるように、酸化錫(SnO)を供給するだけで、その高い酸成分濃度のめっき液に容易に溶解させることができる。
SnO+2H→Sn2++HO …(4)
The replenishing plating solution is generated using the anode chamber plating solution in the anode chamber 31. A replenishing plating solution is generated by supplying a tin oxide powder into the dissolution chamber 33 in a state where a part of the anode chamber plating solution having an increased acid component concentration is extracted and circulated between the dissolution chamber 33 ( Supply process). Since the plating solution in the anode chamber 31 and the dissolution chamber 33 contains H ions at a high concentration, just by supplying tin oxide (SnO) as represented by the following formula (4), It can be easily dissolved in the plating solution having a high acid component concentration.
SnO + 2H + → Sn 2+ + H 2 O (4)

こうして生成された補給めっき液を、供給配管53を通じてカソード室21に供給するとともに、カソード室21から供給配管54を通じて補給めっき液と同量のカソード室めっき液をアノード室31に供給することにより、カソード室21内、アノード室31内、溶解室33内のめっき液を循環させ、Sn成分濃度及び酸成分濃度を均一化して、被処理基板2のめっき前の状態に戻すことができる(均一化工程)。
なお、溶解室33を別途設けたので、溶解室33内でSnOを溶解させることにより、めっきを行いながらSn成分の補給を実施することができる。溶解室33を設けない場合、SnOの補給はアノード室31内で行う必要があるが、この場合、めっきを行いながらSnOの補給を行うと不溶性アノード電極3表面から発生する酸素によって、添加したSnOが酸化しやすくなり、溶解性が損なわれるため好ましくない。したがって、溶解室33を別途設けない場合にはめっきを停止してからSnOを補給する必要がある。
By supplying the replenishing plating solution thus generated to the cathode chamber 21 through the supply pipe 53, and supplying the same amount of cathode chamber plating solution as the replenishing plating solution from the cathode chamber 21 through the supply pipe 54 to the anode chamber 31, The plating solution in the cathode chamber 21, the anode chamber 31, and the dissolution chamber 33 is circulated to uniformize the Sn component concentration and the acid component concentration and return the substrate 2 to be processed to the state before plating (homogenization). Process).
Since the melting chamber 33 is provided separately, the Sn component can be replenished while plating by dissolving SnO in the melting chamber 33. When the melting chamber 33 is not provided, SnO needs to be replenished in the anode chamber 31. In this case, when SnO is replenished while plating, the added SnO is caused by oxygen generated from the surface of the insoluble anode electrode 3. Is not preferred because it tends to oxidize and its solubility is impaired. Therefore, when the melting chamber 33 is not provided separately, it is necessary to supply SnO after stopping the plating.

次に、本発明のめっき装置の第2実施形態について説明する。
図2に示す第2実施形態のめっき装置200においては、アノード室31と溶解室33とが、アノード室31内のめっき液を溶解室33に供給する供給配管55のみで接続されている。すなわち、本発明のアノード室とは別に、溶解室33が設けられている。
このように構成されるめっき装置200により、被処理基板2にSn−Ag合金めっきを施す場合には、供給配管55のバルブ61は閉じた状態に設定され、アノード室31と溶解室33との間にめっき液の移動はない。第2実施形態においても、補給めっき液のカソード室21への供給は、アノード室めっき液の酸成分濃度が初期濃度の15%以上増加し、カソード室めっき液のSn成分濃度の減少が初期めっき液に対して10%を超えないうちに行う。
Next, a second embodiment of the plating apparatus of the present invention will be described.
In the plating apparatus 200 of the second embodiment shown in FIG. 2, the anode chamber 31 and the melting chamber 33 are connected only by a supply pipe 55 that supplies the plating solution in the anode chamber 31 to the melting chamber 33. That is, a melting chamber 33 is provided separately from the anode chamber of the present invention.
When Sn-Ag alloy plating is performed on the substrate 2 to be processed by the plating apparatus 200 configured as described above, the valve 61 of the supply pipe 55 is set in a closed state, and the anode chamber 31 and the melting chamber 33 are separated from each other. There is no movement of the plating solution between them. Also in the second embodiment, the supply of the replenishing plating solution to the cathode chamber 21 is such that the acid component concentration of the anode chamber plating solution increases by 15% or more of the initial concentration, and the Sn component concentration of the cathode chamber plating solution decreases. It is performed before exceeding 10% of the liquid.

まず、供給配管55を通じて、アノード室31内のアノード室めっき液の全量を抜き出して溶解室33に移動させ、溶解室33内のアノード室めっき液に酸化錫の粉末を供給することにより、補給めっき液を生成する(補給工程)。このとき、溶解室33内のアノード室めっき液は、Hイオンを高濃度で含有していることから、酸化錫を供給するだけで、その高い酸成分濃度のアノード室めっき液に容易に溶解させることができる。
次に、こうして生成された補給めっき液を、供給配管53を通じてカソード室21に供給するとともに、カソード室21から供給配管54を通じて補給めっき液と同量のカソード室めっき液をアノード室31に供給することにより、カソード室21内、アノード室31内、溶解室33内のめっき液を循環させ、Sn成分濃度及び酸成分濃度を均一化して、被処理基板2のめっき前の状態に戻すことができる(均一化工程)。
First, the entire amount of the anode chamber plating solution in the anode chamber 31 is extracted through the supply pipe 55 and moved to the dissolution chamber 33. By supplying tin oxide powder to the anode chamber plating solution in the dissolution chamber 33, replenishment plating is performed. A liquid is produced (replenishment process). At this time, since the anode chamber plating solution in the dissolution chamber 33 contains H ions at a high concentration, it is easily dissolved in the anode chamber plating solution having a high acid component concentration simply by supplying tin oxide. be able to.
Next, the replenishing plating solution thus generated is supplied to the cathode chamber 21 through the supply pipe 53, and the same amount of cathode chamber plating solution as the replenishing plating solution is supplied from the cathode chamber 21 to the anode chamber 31 through the supply pipe 54. Thus, the plating solution in the cathode chamber 21, the anode chamber 31, and the melting chamber 33 is circulated, and the Sn component concentration and the acid component concentration are made uniform, so that the substrate 2 to be processed can be returned to the state before plating. (Uniformization process).

このように、めっきに伴って酸成分濃度が上昇したアノード室31内のアノード室めっき液に酸化錫の粉末を供給することにしているので、酸化錫を供給するだけで、その高い酸成分濃度のアノード室めっき液に容易に溶解させることができる。また、酸化錫の溶解により酸が消費され、被処理基板2にめっきを施す前の初期めっき液の状態に戻すことができる。そして、カソード室21及びアノード室31には、同じめっき液を用いているため、めっき液とは別に酸液を用意しておく必要がなく、取り扱いが容易で、被処理基板のめっきに伴い消失した金属成分を容易に補給することができる。   As described above, since the tin oxide powder is supplied to the anode chamber plating solution in the anode chamber 31 where the acid component concentration has increased with plating, the high acid component concentration can be obtained simply by supplying tin oxide. It can be easily dissolved in the anode chamber plating solution. Further, the acid is consumed by the dissolution of tin oxide, so that the state of the initial plating solution before plating the substrate 2 to be processed can be restored. Since the same plating solution is used for the cathode chamber 21 and the anode chamber 31, it is not necessary to prepare an acid solution separately from the plating solution, it is easy to handle, and disappears with the plating of the substrate to be processed. It is possible to easily replenish the metal component.

また、上記効果を得るために、本実施形態においてはアノード室31の容積を、カソード室21の容積に対して10%以上30%以下に設定している。これは、アノード室31がカソード室21の容積に対して10%未満であると、酸化錫の溶解が起こりにくくなり、30%を超える場合は、アノード室内の酸成分濃度を増加させる効果が減少して酸化錫の溶解効率が低下するためである。
なお、Sn−Ag系合金めっきを構成するAg成分については、Sn成分と比べて少量であることから説明を省略したが、補給する場合は、SnOの溶解時等に適量添加すればよい。
In order to obtain the above effect, in this embodiment, the volume of the anode chamber 31 is set to 10% or more and 30% or less with respect to the volume of the cathode chamber 21. This is because when the anode chamber 31 is less than 10% with respect to the volume of the cathode chamber 21, the dissolution of tin oxide is difficult to occur, and when it exceeds 30%, the effect of increasing the acid component concentration in the anode chamber is reduced. This is because the dissolution efficiency of tin oxide is reduced.
In addition, although description was abbreviate | omitted about the Ag component which comprises Sn-Ag type alloy plating compared with Sn component, when replenishing, what is necessary is just to add an appropriate quantity at the time of melt | dissolution of SnO.

図1に示すめっき装置100を用いて、表1に示す条件でSn−Ag合金めっきを行った。カソード室及びアノード室内に供給するめっき液の容積は、表1の「カソード室」及び「アノード室」に示す通りに設定した。なお、比較例1は、カソード室とアノード室とを区画しない従来のめっき槽を用いた構成としており、表1には、カソード室とアノード室とを合計しためっき槽の容積を記載した。また、カソード室とアノード室とを区画する陰イオン交換膜には、株式会社アストム製の「ネオセプタAMX」を用いた。
そして、めっき槽内のSn‐Ag合金めっき液としては、三菱マテリアル株式会社製のSn−Ag合金めっき液「SULA TS−140」を用い、組成(初期めっき液)としては、以下の通りとした。
Sn2+;50g/L
Ag;0.6g/L
FA(酸);120g/L
TS−SLG(Agの錯化剤);172g/L
TS−140AD(添加剤);40ml/L
Sn-Ag alloy plating was performed under the conditions shown in Table 1 using the plating apparatus 100 shown in FIG. The volume of the plating solution supplied into the cathode chamber and the anode chamber was set as shown in “Cathode chamber” and “Anode chamber” in Table 1. In Comparative Example 1, a conventional plating tank in which the cathode chamber and the anode chamber are not divided is used. Table 1 shows the total volume of the plating tank including the cathode chamber and the anode chamber. As an anion exchange membrane for partitioning the cathode chamber and the anode chamber, “Neoceptor AMX” manufactured by Astom Co., Ltd. was used.
And as a Sn-Ag alloy plating solution in a plating tank, Sn-Ag alloy plating solution "SULA TS-140" made by Mitsubishi Materials Corporation was used, and the composition (initial plating solution) was as follows. .
Sn 2+ ; 50 g / L
Ag + ; 0.6 g / L
FA (acid); 120 g / L
TS-SLG (Ag complexing agent); 172 g / L
TS-140AD (additive); 40 ml / L

めっき槽の浴温は25℃、電解電流2Aに設定し、表1に示す「電解時間」で通電することにより、めっきを施した後、Sn成分の補給を行った。
表1の「電解後FA」、「電解後Sn」、「電解後Ag」は、めっきを施したことにより変化した電解後のカソード室及びアノード室内のめっき液中の組成を分析した結果である。また、「Sn減少量」は、初期めっき液に対する電解後のめっき液のSn成分濃度の割合を計算したものである。
The bath temperature of the plating tank was set to 25 ° C. and an electrolysis current of 2 A, and the Sn component was replenished after plating was performed by energizing with the “electrolysis time” shown in Table 1.
“Post-electrolysis FA”, “post-electrolysis Sn”, and “post-electrolysis Ag” in Table 1 are the results of analysis of the composition in the plating solution in the cathode chamber and the anode chamber after electrolysis, which has changed due to plating. . Further, “Sn decrease amount” is calculated from the ratio of the Sn component concentration of the plating solution after electrolysis to the initial plating solution.

めっき液へのSn成分の補給は、アノード室内のアノード室めっき液の一部を抜き出して溶解室との間で循環させた状態で行った。溶解室内に酸化錫の粉末を供給して(表1に示す「SnO補給量」を供給する)、補給めっき液を生成した。なお、「SnO補給量」は、「Sn減少量」に応じて変化させ、カソード室から消失したSn成分量と同等のSn成分量を含有する酸化錫粉末を供給できるように設定した。このときの酸化錫の粉末の溶解にかかった時間は「溶解時間」に示す通りであった。また、「溶解時間比」は、比較例1の溶解時間を基準とした各実施例及び比較例における溶解時間との比率(%)を計算したものである。   The replenishment of the Sn component to the plating solution was performed in a state where a part of the anode chamber plating solution in the anode chamber was extracted and circulated between the dissolution chamber. The tin oxide powder was supplied into the melting chamber ("SnO replenishment amount" shown in Table 1 was supplied) to produce a replenishment plating solution. The “SnO replenishment amount” was changed according to the “Sn decrease amount” and set so that tin oxide powder containing an Sn component amount equivalent to the Sn component amount disappeared from the cathode chamber could be supplied. The time taken for dissolution of the tin oxide powder at this time was as shown in “Dissolution time”. The “dissolution time ratio” is a ratio (%) to the dissolution time in each of the examples and comparative examples based on the dissolution time of comparative example 1.

次に、生成された補給めっき液を、供給配管を通じてカソード室に供給し、さらにカソード室めっき液を、供給配管を通じてアノード室に供給することにより、カソード室内、アノード室内、溶解室内のめっき液を循環させた。   Next, the generated replenishing plating solution is supplied to the cathode chamber through the supply pipe, and further, the cathode chamber plating solution is supplied to the anode chamber through the supply pipe, so that the plating solution in the cathode chamber, the anode chamber, and the dissolution chamber is supplied. It was circulated.

Figure 2014001410
Figure 2014001410

表1に示されるように、各実施例及び比較例では、めっきによりカソード室内のSn成分量(電解後Sn)が減少するとともに、酸成分量(電解後FA)が増加した。
実施例1〜9は、いずれも比較例1に比べて酸化錫の溶解時間を短くでき、溶解効率が向上していることがわかる。特に、実施例1〜5では、いずれもアノード室の容積がカソード室の容積に対して30%以下に設定され、アノード室めっき液の「FA増加量」(酸成分濃度増加量)が初期濃度の15%以上増加し、「Sn減少量」が初期めっき液に対して10%を超えないうちに酸化錫の溶解が行われており、比較例1のものと比べて溶解時間比が90%以下となり、溶解効率が大きく向上していることがわかる。
なお、実施例6〜9においては、アノード室めっき液の「FA増加量」が初期濃度の15%未満の状態で酸化錫の溶解が行われていることから、酸化錫の溶解時間が長くなり、実施例1〜5に比べて溶解効率が低下する結果となった。また、実施例6,7では、アノード室の容積がカソード室の容積に対して30%を超えているため、「FA増加量」が小さくなった。
As shown in Table 1, in each Example and Comparative Example, the amount of Sn component (post-electrolysis Sn) in the cathode chamber decreased and the amount of acid component (post-electrolysis FA) increased due to plating.
It can be seen that Examples 1 to 9 all have a shorter dissolution time of tin oxide than Comparative Example 1 and have improved dissolution efficiency. In particular, in each of Examples 1 to 5, the volume of the anode chamber was set to 30% or less with respect to the volume of the cathode chamber, and the “FA increase amount” (acid component concentration increase amount) of the anode chamber plating solution was the initial concentration. The tin oxide was dissolved before the “Sn reduction amount” exceeded 10% with respect to the initial plating solution, and the dissolution time ratio was 90% compared to that of Comparative Example 1. It can be seen that the dissolution efficiency is greatly improved.
In Examples 6 to 9, since the dissolution of tin oxide is performed in a state where the “FA increase amount” of the anode chamber plating solution is less than 15% of the initial concentration, the dissolution time of tin oxide becomes longer. In comparison with Examples 1 to 5, the dissolution efficiency was lowered. In Examples 6 and 7, since the volume of the anode chamber exceeded 30% with respect to the volume of the cathode chamber, the “FA increase amount” was small.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、前述したSn−Ag系合金めっき以外にも、不溶性アノード電極を使用するSn系めっきプロセスに適用可能であり、純SnめっきやSn−Cu系合金めっきにも本発明を適用することができる。
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, in addition to the Sn—Ag alloy plating described above, the present invention can be applied to a Sn plating process using an insoluble anode electrode, and the present invention can also be applied to pure Sn plating or Sn—Cu alloy plating. .

1 めっき槽
2 被処理基板
3 不溶性アノード電極
4 陰イオン交換膜
11 電源
21 カソード室
31 アノード室
33 溶解室
51 循環配管
53,54,55 供給配管
61 バルブ
100,200 めっき装置
DESCRIPTION OF SYMBOLS 1 Plating tank 2 Substrate 3 Insoluble anode electrode 4 Anion exchange membrane 11 Power supply 21 Cathode chamber 31 Anode chamber 33 Dissolution chamber 51 Circulation piping 53, 54, 55 Supply piping 61 Valve 100, 200 Plating apparatus

Claims (4)

Snを含有するめっき液を貯留するめっき槽を陰イオン交換膜によって被処理基板が配置されるカソード室と不溶性アノード電極が配置されるアノード室とに区画しておき、該被処理基板へめっきを施すめっき工程と、該めっき工程に伴い酸成分濃度が上昇した前記アノード室のアノード室めっき液に酸化錫を供給することにより補給めっき液を生成する補給工程と、該補給めっき液と前記カソード室のカソード室めっき液とを互いに循環させて、前記めっき槽内のめっき液を均一化する均一化工程とを備えることを特徴とするめっき方法。   A plating tank for storing a plating solution containing Sn is partitioned into a cathode chamber in which a substrate to be processed is disposed and an anode chamber in which an insoluble anode electrode is disposed by an anion exchange membrane, and plating is performed on the substrate to be processed. A plating step to be applied, a replenishment step of generating a replenishment plating solution by supplying tin oxide to the anode chamber plating solution of the anode chamber in which the acid component concentration has increased along with the plating step, and the replenishment plating solution and the cathode chamber And a uniformizing step of making the plating solution in the plating tank uniform by circulating the cathode chamber plating solution of each other. 前記補給工程は、前記アノード室めっき液の酸成分濃度が初期濃度の15%以上増加した時点で行うことを特徴とする請求項1記載のめっき方法。   The plating method according to claim 1, wherein the replenishing step is performed when the acid component concentration of the anode chamber plating solution increases by 15% or more of the initial concentration. 前記アノード室が、前記カソード室の容積に対して30%以下になるように、前記めっき槽を前記陰イオン交換膜で区画することを特徴とする請求項1又は2に記載のめっき方法。   The plating method according to claim 1 or 2, wherein the plating tank is partitioned by the anion exchange membrane so that the anode chamber is 30% or less with respect to the volume of the cathode chamber. めっき槽内に貯留したSnを含有するめっき液に被処理基板及び不溶性アノード電極を接触させた状態とし、前記被処理基板と前記不溶性アノード電極との間に通電して該被処理基板にめっき膜を形成するめっき装置であって、前記めっき槽は、陰イオン交換膜により前記被処理基板が配置されるカソード室と、前記不溶性アノード電極が配置されるアノード室とに区画されており、前記アノード室は、前記カソード室の容積に対して30%以下に設定され、前記アノード室の一部又は該アノード室とは別に、前記アノード室のアノード室めっき液に酸化錫を供給して補給めっき液を生成する溶解室が設けられていることを特徴とするめっき装置。   A substrate to be processed and an insoluble anode electrode are brought into contact with a plating solution containing Sn stored in a plating tank, and a current is passed between the substrate to be processed and the insoluble anode electrode to form a plating film on the substrate to be processed. The plating tank is divided into a cathode chamber in which the substrate to be processed is disposed by an anion exchange membrane and an anode chamber in which the insoluble anode electrode is disposed, and the anode The chamber is set to 30% or less with respect to the volume of the cathode chamber, and a replenishing plating solution by supplying tin oxide to the anode chamber plating solution of the anode chamber separately from a part of the anode chamber or the anode chamber A plating apparatus characterized in that a melting chamber is provided for generating a gas.
JP2012135618A 2012-06-15 2012-06-15 Plating method and plating apparatus Expired - Fee Related JP5978793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012135618A JP5978793B2 (en) 2012-06-15 2012-06-15 Plating method and plating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012135618A JP5978793B2 (en) 2012-06-15 2012-06-15 Plating method and plating apparatus

Publications (2)

Publication Number Publication Date
JP2014001410A true JP2014001410A (en) 2014-01-09
JP5978793B2 JP5978793B2 (en) 2016-08-24

Family

ID=50034851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012135618A Expired - Fee Related JP5978793B2 (en) 2012-06-15 2012-06-15 Plating method and plating apparatus

Country Status (1)

Country Link
JP (1) JP5978793B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019147971A (en) * 2018-02-26 2019-09-05 三菱マテリアル株式会社 METHOD OF REPLENISHING Sn ALLOY PLATING SOLUTION WITH Sn COMPONENT, METHOD OF PRODUCING REPLENISHMENT SOLUTION FOR Sn ALLOY PLATING, AND Sn COMPONENT REPLENISHMENT DEVICE
WO2021019862A1 (en) * 2019-08-01 2021-02-04 Jx金属株式会社 Method for dissolving tin (ii) oxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200099A (en) * 1998-01-08 1999-07-27 Toyo Kohan Co Ltd Plating method and plating apparatus using insoluble anode
JPH11343598A (en) * 1998-05-29 1999-12-14 Toyo Kohan Co Ltd Anode chamber installed at insoluble anode, plating method using the same and plating device
JP2009132571A (en) * 2007-11-30 2009-06-18 Mitsubishi Materials Corp STANNOUS OXIDE POWDER FOR SUPPLYING Sn COMPONENT INTO Sn ALLOY PLATING LIQUID
JP2009149979A (en) * 2007-11-30 2009-07-09 Mitsubishi Materials Corp METHOD FOR REPLENISHING Sn-ALLOY PLATING SOLUTION WITH Sn-COMPONENT AND Sn-ALLOY PLATING TREATMENT APPARATUS
JP2009235526A (en) * 2008-03-27 2009-10-15 Mitsubishi Materials Corp Plating equipment and sn component replenishing method
JP2010202941A (en) * 2009-03-04 2010-09-16 Mitsubishi Materials Corp Sn ALLOY PLATING APPARATUS AND METHOD OF REPLENISHING Sn COMPONENT FOR THE SAME

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200099A (en) * 1998-01-08 1999-07-27 Toyo Kohan Co Ltd Plating method and plating apparatus using insoluble anode
JPH11343598A (en) * 1998-05-29 1999-12-14 Toyo Kohan Co Ltd Anode chamber installed at insoluble anode, plating method using the same and plating device
JP2009132571A (en) * 2007-11-30 2009-06-18 Mitsubishi Materials Corp STANNOUS OXIDE POWDER FOR SUPPLYING Sn COMPONENT INTO Sn ALLOY PLATING LIQUID
JP2009149979A (en) * 2007-11-30 2009-07-09 Mitsubishi Materials Corp METHOD FOR REPLENISHING Sn-ALLOY PLATING SOLUTION WITH Sn-COMPONENT AND Sn-ALLOY PLATING TREATMENT APPARATUS
JP2009235526A (en) * 2008-03-27 2009-10-15 Mitsubishi Materials Corp Plating equipment and sn component replenishing method
JP2010202941A (en) * 2009-03-04 2010-09-16 Mitsubishi Materials Corp Sn ALLOY PLATING APPARATUS AND METHOD OF REPLENISHING Sn COMPONENT FOR THE SAME

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019147971A (en) * 2018-02-26 2019-09-05 三菱マテリアル株式会社 METHOD OF REPLENISHING Sn ALLOY PLATING SOLUTION WITH Sn COMPONENT, METHOD OF PRODUCING REPLENISHMENT SOLUTION FOR Sn ALLOY PLATING, AND Sn COMPONENT REPLENISHMENT DEVICE
WO2021019862A1 (en) * 2019-08-01 2021-02-04 Jx金属株式会社 Method for dissolving tin (ii) oxide
JPWO2021019862A1 (en) * 2019-08-01 2021-02-04
JP7291223B2 (en) 2019-08-01 2023-06-14 Jx金属株式会社 Method for dissolving stannous oxide

Also Published As

Publication number Publication date
JP5978793B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
US9637836B2 (en) Electrochemical deposition apparatus and methods for controlling the chemistry therein
US20160024683A1 (en) Apparatus and method for electrolytic deposition of metal layers on workpieces
TWI553168B (en) Method and regeneration apparatus for regenerating a plating composition
JP2014510842A (en) Electrochemical deposition apparatus and replenishment apparatus
JP2014510842A5 (en)
US20140166492A1 (en) Sn ALLOY PLATING APPARATUS AND METHOD
TWM540871U (en) Inert anode electroplating processor and replenisher
TWM547559U (en) Inert anode electroplating processor and replenisher with anionic membranes
US9816197B2 (en) Sn alloy plating apparatus and Sn alloy plating method
ES2661519T3 (en) Method for dissolving nickel electrolytically in non-electrolytic nickel plating solutions
JP5978793B2 (en) Plating method and plating apparatus
JP6423320B2 (en) Plating apparatus and plating method
JPH10121297A (en) Electrolytic copper plating device using insoluble anode and copper plating method employing the device
JP2559935B2 (en) Method and apparatus for tin or tin-lead alloy electroplating using insoluble anode
JP6653799B2 (en) Anode for electrolytic copper plating and electrolytic copper plating apparatus using the same
JP2014031533A (en) Plating method
JP2009185383A (en) Feed mechanism for copper plating solution, copper plating apparatus using the same, and copper film-forming method
JP3903120B2 (en) Copper sulfate plating method
JP4242248B2 (en) Tin plating method using insoluble anode
JP2010084195A (en) Copper plating system and copper plating method, and method of manufacturing electroplating liquid
JP2006213956A (en) Fe-W ALLOY ELECTROPLATING DEVICE USING CATION EXCHANGE MEMBRANE, CONTINUOUS PLATING METHOD USING THE DEVICE AND COATING FILM
JP2003328199A (en) Copper plating method and apparatus therefor, method of producing copper and apparatus therefor, metal plating method and apparatus therefor, and method of producing metal and apparatus therefor
JPS5854200B2 (en) Method of supplying metal ions in electroplating bath
JP2010065255A (en) Alloy plating method and alloy plating apparatus
JP2003105581A (en) Method and apparatus for electrolytic deposition of tin alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5978793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees