JP2014000820A - Optical three-dimensionally shaped article having low yellowness index - Google Patents

Optical three-dimensionally shaped article having low yellowness index Download PDF

Info

Publication number
JP2014000820A
JP2014000820A JP2013169390A JP2013169390A JP2014000820A JP 2014000820 A JP2014000820 A JP 2014000820A JP 2013169390 A JP2013169390 A JP 2013169390A JP 2013169390 A JP2013169390 A JP 2013169390A JP 2014000820 A JP2014000820 A JP 2014000820A
Authority
JP
Japan
Prior art keywords
light
optical
wavelength
dimensional
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013169390A
Other languages
Japanese (ja)
Other versions
JP5738367B2 (en
Inventor
Yuya Onaga
勇哉 大長
Tsuneo Hagiwara
恒夫 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CMET Inc
Original Assignee
CMET Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CMET Inc filed Critical CMET Inc
Priority to JP2013169390A priority Critical patent/JP5738367B2/en
Publication of JP2014000820A publication Critical patent/JP2014000820A/en
Application granted granted Critical
Publication of JP5738367B2 publication Critical patent/JP5738367B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a three-dimensionally shaped article low in discoloration such as yellowing.SOLUTION: The optical three-dimensionally shaped article manufactured using a photocurable resin composition is irradiated with light having a wavelength within a range of 430-500 nm so that the total irradiation intensity of the light of the wavelength of 430-500 nm at the surface of the optical three-dimensionally shaped article is 15 W/mor more. The radiated light does not include light of a wavelength of 400 nm or less.

Description

本発明は、黄色度の低い光学的立体造形物に関する。光硬化性樹脂組成物を用いて光学的立体造形を行って得られる光学的立体造形物を、本明細書記載の方法および装置を用いて処理することによって、光学的立体造形物の力学的特性やその他の物性を良好に維持しながら、短時間の処理で、黄色度の低い本発明の光学的立体造形物を得ることができる。The present invention relates to an optical three-dimensional structure having a low yellowness. By processing the optical three-dimensional modeled object obtained by performing the optical three-dimensional modeling using the photocurable resin composition using the method and apparatus described in the present specification, the mechanical characteristics of the optical three-dimensional modeled object are obtained. In addition, the optical three-dimensional object of the present invention having a low yellowness can be obtained in a short time while maintaining good physical properties and other properties.

近年、三次元CADに入力されたデータに基づいて光硬化性樹脂組成物を光硬化させて立体造形物を製造する光学的立体造形方法および装置が実用化されている。
この光学的立体造形技術では、光硬化性樹脂組成物よりなる造形面に、コンピューターで制御された光を選択的に照射して所定の厚みに光硬化させて所定の形状パターンを有する硬化樹脂層を形成し、その硬化樹脂層の上に更に1層分の光硬化性樹脂組成物を施して造形面を形成させ、その造形面にコンピューターで制御された光を選択的に照射して所定の厚みに光硬化させて所定の形状パターンを有する硬化樹脂層を形成するという造形操作を、所定の寸法および形状の立体造形物が得られるまで多数回繰り返す方法が一般に広く採用されている。
In recent years, an optical three-dimensional modeling method and apparatus for manufacturing a three-dimensional model by photocuring a photocurable resin composition based on data input to a three-dimensional CAD have been put into practical use.
In this optical three-dimensional modeling technology, a cured resin layer having a predetermined shape pattern by selectively irradiating a modeling surface made of a photocurable resin composition with computer-controlled light and photocuring to a predetermined thickness And forming a modeling surface on the cured resin layer by further applying a photocurable resin composition for one layer, and selectively irradiating the modeling surface with light controlled by a computer. In general, a method of repeating a modeling operation of forming a cured resin layer having a predetermined shape pattern by photocuring to a thickness many times until a three-dimensional modeled object having a predetermined size and shape is obtained is widely adopted.

上記した光学的立体造形技術で得られる立体造形物は、設計の途中で各種工業製品の外観デザインを検証するためのモデル、部品の機能性をチェックするためのモデル、鋳型を製作するための樹脂型、金型を製作するためのベースモデルなどとして広く利用されており、近年では、美術品の復元、模造や現代アート、ガラス張りの建築物のデザインプレゼンテーションモデルのような美術工芸品などにも用いられるようになっている。   The three-dimensional object obtained by the above-mentioned optical three-dimensional modeling technology is a model for verifying the appearance design of various industrial products in the middle of design, a model for checking the functionality of parts, and a resin for producing molds. It is widely used as a base model for making molds and molds. In recent years, it is also used for art and crafts such as restoration of artworks, imitation and contemporary art, and design presentation models for glass-walled buildings. It is supposed to be.

光学的立体造形物の用途の拡大に伴って、黄変などの変色がなくて無色透明性に優れる光学的立体造形物、また染料や顔料などの着色剤を用いて製造した光学的立体造形物では変色などによる色調の悪化がなくて着色剤本来の良好な色調に着色された光学的立体造形物が求められるようになっている。
しかし、従来の光学的立体造形物の多くは、多少なりとも黄変などの変色が生じていて無色透明性に劣っていたり、着色剤を用いたものでは黄変などの変色によって色調の低下が生じていた。
光学的立体造形物における黄変などの変色や色調不良の原因は未だ十分に解明されていないが、光硬化性樹脂組成物中に含まれているラジカル重合性有機化合物、カチオン重合性有機化合物、光感受性ラジカル重合開始剤、光感受性カチオン重合開始剤などの化合物や、光硬化によって生成した樹脂成分などが、光学的立体造形時の光(特に紫外線)の照射によって化学的に不安定になって変質した結果、共役二重結合などの発色団・助色団を有する構造部分や成分が光学的立体造形物中に生成することによるものと推測される。
With the expansion of applications of optical three-dimensional objects, optical three-dimensional objects that are free of discoloration such as yellowing and have excellent colorless transparency, and optical three-dimensional objects that are manufactured using colorants such as dyes and pigments However, there is a demand for an optical three-dimensional modeled object that is not deteriorated in color tone due to discoloration or the like, and is colored in the original good color tone of the colorant.
However, many of the conventional optical three-dimensional objects are somewhat discolored, such as yellowing, and are inferior in colorless transparency, or those using a colorant may deteriorate in color due to discoloration, such as yellowing. It was happening.
Although the cause of discoloration such as yellowing and poor color tone in the optical three-dimensional model has not yet been fully elucidated, the radical polymerizable organic compound, the cationic polymerizable organic compound contained in the photocurable resin composition, Compounds such as light-sensitive radical polymerization initiators and light-sensitive cationic polymerization initiators, and resin components generated by photocuring become chemically unstable when irradiated with light (particularly ultraviolet rays) during optical three-dimensional modeling. As a result of the alteration, it is presumed that structural parts and components having a chromophore / auxiliary chromophore such as a conjugated double bond are generated in the optical three-dimensional structure.

黄変などの変色が少なくて透明性に優れる光学的立体造形物の提供を目的として、グリシジル型のエポキシ化合物の含有量が0〜30重量%未満であるエポキシ化合物、ヒドロキシル基を含まないかまたはヒドロキシル基の含有量の少ない多官能(メタ)アクリレート、ポリエーテルポリオール化合物、カチオン重合開始剤およびラジカル重合開始剤を含有する光硬化性樹脂組成物が提案されている(特許文献1を参照)。しかしながら、この光硬化性樹脂組成物から得られる光学的立体造形物は、必ずしも無色透明性の点で十分に優れているとは言い難い。しかも、この光硬化性樹脂組成物では、特定の成分を組み合わせて用いることが必要であるため、硬化性樹脂組成物の配合設計や、得られる立体造形物の物性(力学的特性、寸法安定性、寸法精度、耐熱性など)に制約があり、目的とする力学的特性、造形精度、寸法精度、耐熱性などの特定を備える立体造形物を必ずしも製造することができない。   For the purpose of providing an optical three-dimensional structure that has little discoloration such as yellowing and is excellent in transparency, an epoxy compound in which the content of an epoxy compound of glycidyl type is less than 0 to 30% by weight, does not contain a hydroxyl group, or A photocurable resin composition containing a polyfunctional (meth) acrylate having a low hydroxyl group content, a polyether polyol compound, a cationic polymerization initiator, and a radical polymerization initiator has been proposed (see Patent Document 1). However, it is difficult to say that the optical three-dimensional model obtained from the photocurable resin composition is sufficiently excellent in terms of colorless transparency. Moreover, in this photocurable resin composition, since it is necessary to use a combination of specific components, the composition design of the curable resin composition and the physical properties (mechanical characteristics, dimensional stability) of the resulting three-dimensional model Dimensional accuracy, heat resistance, and the like), and it is not always possible to manufacture a three-dimensional molded article having specific mechanical characteristics, modeling accuracy, dimensional accuracy, heat resistance, and the like.

また、高温環境下における黄変の少ない立体造形物を得ることを目的として、(A)ジフェニル(フェニルチオフェニル)スルホニウム系カチオン重合開始剤、(B)フェノール系酸化防止剤、(C)カチオン重合性化合物、(D)ラジカル重合開始剤、(E)ラジカル重合性化合物、(F)2−メルカプトベンゾチアゾール、2−(4−モルフォリノジチオ)ベンゾチアゾール、ジイソプロピルキサントゲンジスルフィドおよびジフェニルジスルフィドからなる群から選択される1種以上の化合物および(G)ポリエーテルポリオール化合物を含有する光学的立体造形用樹脂組成物が提案されている(特許文献2を参照)。
しかしながら、この特許文献2には、光造形直後の立体造形物の黄色度(イエローインデックス)と、立体造形物を80℃で2時間加熱した後の黄色度との差が示されているだけであり、光造形して得られた加熱前の立体造形物自体の色調(例えば黄色度など)については記載されておらず、そのため、光造形して得られた立体造形物自体の色調が不良である場合に、その色調を改善する方法については何ら開示されていない。
しかも、この特許文献2の発明では、光学的立体造形用樹脂組成物を上記特定の成分(A)〜(G)を組み合わせて調製することが必要なため、やはり、光学的立体造形用樹脂組成物の配合設計、得られる立体造形物の物性などにおける制約が大きい。
また、造形時の積層厚みを小さくしたり、レーザー出力を下げるかおよび/または走査速度を速くすることによって照射エネルギーを小さくすることで黄変を防ぐことも行われている。しかし、積層厚みを小さくすると、造形物の層が増えるため造形時間が長くなるばかりか、表面張力や泡によって生ずる層厚の不均一に対する許容範囲が小さくなるために造形が失敗する危険が高くなる。また、照射エネルギーを小さくすると、造形物の硬化度が低下して柔らかくなることで造形物の機械的強度が低下する上、層間密着性が低下して層間剥離が起こり易くなり、やはり造形が失敗しやすくなるという欠点があった。
In addition, for the purpose of obtaining a three-dimensional shaped product with little yellowing in a high temperature environment, (A) diphenyl (phenylthiophenyl) sulfonium-based cationic polymerization initiator, (B) phenol-based antioxidant, (C) cationic polymerization Compound (D) radical polymerization initiator, (E) radical polymerizable compound, (F) 2-mercaptobenzothiazole, 2- (4-morpholinodithio) benzothiazole, diisopropylxanthogen disulfide and diphenyl disulfide There has been proposed a resin composition for optical three-dimensional modeling containing one or more selected compounds and (G) a polyether polyol compound (see Patent Document 2).
However, this Patent Document 2 only shows the difference between the yellowness (yellow index) of a three-dimensional structure immediately after stereolithography and the yellowness after heating the three-dimensional structure at 80 ° C. for 2 hours. Yes, there is no description on the color tone (for example, yellowness) of the three-dimensional model itself before heating obtained by optical modeling, and therefore the color tone of the three-dimensional model itself obtained by optical modeling is poor. There is no disclosure about how to improve the color tone in some cases.
Moreover, in the invention of Patent Document 2, since it is necessary to prepare the resin composition for optical three-dimensional modeling in combination with the specific components (A) to (G), the resin composition for optical three-dimensional modeling is also used. There are significant restrictions on the blending design of the objects and the physical properties of the resulting three-dimensional model.
Further, yellowing is prevented by reducing the irradiation energy by reducing the lamination thickness at the time of modeling, lowering the laser output and / or increasing the scanning speed. However, if the lamination thickness is reduced, not only will the modeling time increase because the number of layers of the model increases, but the risk of modeling failure increases because the tolerance for non-uniform layer thickness caused by surface tension and bubbles decreases. . In addition, when the irradiation energy is reduced, the degree of cure of the model decreases and becomes soft, so that the mechanical strength of the model decreases, and the interlaminar adhesion decreases and delamination easily occurs. There was a drawback that it was easy to do.

さらに、光造形して得られる光学的立体造形物の黄変などの変色を隠蔽するために、蛍光増白剤や染料などの使用も行われている。
しかし、蛍光増白剤は、一般に紫外部に吸収を持つため、光硬化性樹脂組成物中に配合すると、光造形時に光硬化性樹脂組成物に照射された紫外線のエネルギーの減少を招いて、光硬化性樹脂組成物の光硬化感度の低下や硬化厚みの変動が生じ、物性に優れる光学的立体造形物を製造することが困難になり易い。
また、染料も、蛍光増白剤と同様に、光硬化性樹脂組成物の光硬化感度を低下させる恐れがあり、さらに経時変化して望ましくない変退色を引き起こすことがあり、しかも淡色に着色したい場合には黄変などの変色を完全には隠蔽することができない。
また、造形物を長時間放置した場合に脱色が進んで無色となったり、または黄変したりする現象は知られていたものの、その原因については明らかではなく、脱色する場合でも数日以上を要していた。光学的立体造形法はラピッドプロトタイピングと呼ばれる技術の一つであり、造形物を数時間から一日以内で作製して即座に利用できることが求められているため、脱色するまでに数日放置することは実用性に大きく欠ける。
Furthermore, in order to conceal discoloration such as yellowing of the optical three-dimensional modeled object obtained by optical modeling, the use of fluorescent whitening agents and dyes is also performed.
However, since the fluorescent brightening agent generally has absorption in the ultraviolet part, when blended in the photocurable resin composition, it causes a decrease in the energy of ultraviolet rays irradiated to the photocurable resin composition during optical modeling, The photocuring resin composition has a decrease in photocuring sensitivity and a variation in cured thickness, and it tends to be difficult to produce an optical three-dimensional model having excellent physical properties.
Also, the dye, like the fluorescent brightening agent, may reduce the photocuring sensitivity of the photocurable resin composition, and may cause an undesirable discoloration due to a change over time, and it is desired to be colored lightly. In some cases, discoloration such as yellowing cannot be completely hidden.
In addition, although it has been known that when a model is left for a long period of time, decolorization proceeds and becomes colorless or yellows, the cause is not clear, and even when it is decolored, it takes several days or more. It was necessary. Optical three-dimensional modeling is one of the techniques called rapid prototyping, and it is required to create a model within a few hours to a day and use it immediately. That lacks practicality.

上記の点から、光造形して得られる光学的立体造形物に黄変などの変色が生じていて、無色透明性に劣っていたり、色調が不良である場合に、光学的立体造形物の力学的特性やその他の物性を良好に維持しながら、光学的立体造形物の黄変などの変色を簡単に且つ速やかに解消または低減して、無色透明性に優れるか、または着色剤を用いたものでは着色剤本来の優れた色調を有する光学的立体造形物にすることができる技術が求められている。   From the above points, if the optical three-dimensional object obtained by stereolithography has a discoloration such as yellowing, it is inferior in colorless transparency, or the color tone is poor, the dynamics of the optical three-dimensional object That can easily and quickly eliminate or reduce discoloration such as yellowing of optical three-dimensional objects while maintaining good physical properties and other physical properties, and is excellent in colorless transparency or using a colorant Therefore, there is a demand for a technique that can produce an optical three-dimensional object having an excellent color tone inherent to the colorant.

特表2007−516318号公報Special table 2007-516318 特許第3930888号公報Japanese Patent No. 3930888

ポール・エフ・ヤコブ(Paul F. Jacobs)著、「Rapid Prototyping & Manufacturing, Fundamentals of Stereo-Lithography」,“Society of Manufacturing Engineers”,1992年,p28−39Paul F. Jacobs, “Rapid Prototyping & Manufacturing, Fundamentals of Stereo-Lithography”, “Society of Manufacturing Engineers”, 1992, p. 28-39.

本発明の目的は、光硬化性樹脂組成物を用いて光造形して得られる光学的立体造形物に黄変などの変色が生じていた場合に、光学的立体造形物の力学的特性やその他の物性を良好に維持しながら、黄変などの変色を、簡単な操作で、短時間に速やかに解消または低減して、無色透明性に優れるか、または着色剤を用いたものでは着色剤本来の優れた色調を有する光学的立体造形物に変えることのできる方法およびそのための装置を提供すると共に、黄色度の低い光学的立体造形物を提供することである。 The purpose of the present invention is to obtain mechanical properties of an optical three-dimensional model and other when discoloration such as yellowing occurs in an optical three-dimensional model obtained by optical modeling using a photocurable resin composition. While maintaining good physical properties, discoloration such as yellowing can be quickly eliminated or reduced in a short time with a simple operation, excellent in colorless transparency, or in the case of using a colorant The present invention provides an optical three-dimensional object that can be converted into an optical three-dimensional object having an excellent color tone and an apparatus therefor, and an optical three-dimensional object that has a low yellowness .

上記の目的を達成すべく本発明者らは鋭意検討を重ねてきた。その結果、光硬化性樹脂組成物を用いて光学的立体造形を行って得られる光学的立体造形物に黄変などの変色が生じていた場合に、当該光学的立体造形物に対して、430〜500nmの範囲内の波長を有する光(青色光)を含み且つ波長が400nm以下の光、特に紫外線を含まない光を、430〜500nmの波長を有する光の合計照射強度が特定の値になるようにして照射すると、光学的立体造形物本来の力学的特性やその他の物性を良好に維持しながら、黄変などの変色を短時間に速やかに解消または低減して、無色透明性に優れるか、または着色剤を用いたものでは着色剤本来の優れた色調を呈する光学的立体造形物が得られることを見出した。
そして、本発明者らは、波長が400nm以下の光、特に紫外線を含まず、波長430〜500nmの光(青色光)を含む光を照射して光学的立体造形物の色調を改善する前記した処理方法は、光学的立体造形後に紫外線の照射および/または加熱を行って後硬化処理を施した光学的立体造形物、並びに光学的立体造形後に紫外線照射および/または加熱による後硬化処理を施さない光学的立体造形物の両方に対して有効であることを見出した。
In order to achieve the above object, the present inventors have conducted intensive studies. As a result, when discoloration such as yellowing occurs in the optical three-dimensional modeled object obtained by performing the optical three-dimensional modeling using the photocurable resin composition, 430 with respect to the optical three-dimensional modeled object The total irradiation intensity of light having a wavelength within a range of ˜500 nm (blue light) and having a wavelength of 400 nm or less, particularly light that does not contain ultraviolet light, has a specific value. When irradiated in this way, while maintaining the original mechanical properties and other physical properties of the optical three-dimensional model, it is possible to quickly eliminate or reduce the discoloration such as yellowing in a short time, and is it excellent in colorless transparency? In addition, it has been found that an optical three-dimensionally shaped article exhibiting the color tone inherent to the colorant can be obtained by using the colorant.
And the present inventors described above that the color tone of the optical three-dimensional object is improved by irradiating light having a wavelength of 400 nm or less, in particular, ultraviolet light, and light having a wavelength of 430 to 500 nm (blue light). The processing method includes an optical three-dimensional object that has been subjected to post-curing treatment by irradiation with ultraviolet light and / or heating after optical three-dimensional modeling, and no post-curing treatment by ultraviolet irradiation and / or heating after optical three-dimensional modeling. It was found to be effective for both optical three-dimensional objects.

また、本発明者らは、光学的立体造形物の色調を改善するための前記方法を、光造形して得られる立体造形物に紫外線を照射して後硬化した立体造形物に対して実施するに当っては、
・紫外線を含む光を放射する光源(A)および430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光を放射する光源(B)を備える後処理装置を使用し、光硬化性樹脂組成物を用いて光学的立体造形を行って得られる光学的立体造形物に、光源(A)からの光を照射して光学的立体造形物を紫外線で後硬化処理した後に、光源(B)からの光を、光学的立体造形物の表面での波長430〜500nmの光の合計照射強度が特定の値になるようにして照射する方法;
・紫外線および430〜500nmの範囲内の波長を有する光を含む光を放射する光源(C)を備える後処理装置を使用し、光硬化性樹脂組成物を用いて光学的立体造形を行って得られる光学的立体造形物に、光源(C)からの光を照射して光源(C)から放射される光に含まれる紫外線で光学的立体造形物を後硬化処理した後に、光源(C)から放射される光から波長が400nm以下の光、特に紫外線を除いた光を光学的立体造形物の表面での波長430〜500nmの光の合計照射強度が特定の値になるようにして照射する方法;
などが好ましく採用できることを見出した。
Moreover, the present inventors implement the said method for improving the color tone of an optical three-dimensional model | mold with respect to the three-dimensional model | molding object which irradiated the ultraviolet-ray to the three-dimensional model | molded object obtained by optical modeling, and was postcured. In the case of
A post-processing device including a light source (A) that emits light including ultraviolet light and a light source (B) that emits light that includes light having a wavelength in the range of 430 to 500 nm and does not include light having a wavelength of 400 nm or less. The optical three-dimensional model is obtained by irradiating light from the light source (A) to the optical three-dimensional model obtained by performing optical three-dimensional modeling using the photocurable resin composition, and post-curing the optical three-dimensional model with ultraviolet rays. And then irradiating the light from the light source (B) so that the total irradiation intensity of the light having a wavelength of 430 to 500 nm on the surface of the optical three-dimensional model becomes a specific value;
-Obtained by using an aftertreatment device equipped with a light source (C) that emits light including ultraviolet light and light having a wavelength in the range of 430 to 500 nm, and performing optical three-dimensional modeling using the photocurable resin composition. The optical three-dimensional object is irradiated with light from the light source (C) and the optical three-dimensional object is post-cured with ultraviolet rays contained in the light emitted from the light source (C), and then from the light source (C). A method of irradiating light having a wavelength of 400 nm or less from emitted light, in particular, light excluding ultraviolet rays so that the total irradiation intensity of light having a wavelength of 430 to 500 nm on the surface of the optical three-dimensional object has a specific value ;
And the like.

さらに、本発明者らは、本発明者らの見出した光学的立体造形物の上記した色調の改善方法は、ラジカル重合性有機化合物および光感受性ラジカル重合開始剤を含有する光硬化性樹脂組成物を用いて得られる光学的立体造形物、並びにラジカル重合性有機化合物、光感受性ラジカル重合開始剤、カチオン重合性有機化合物および光感受性カチオン重合開始剤を含有する光硬化性樹脂組成物を用いて得られる光学的立体造形物のいずれに対しても有効であることを見出し、それらの種々の知見に基づいて本発明を完成した。   Furthermore, the inventors have found that the above-described method for improving the color tone of the optical three-dimensional object found by the inventors is a photocurable resin composition containing a radical polymerizable organic compound and a photosensitive radical polymerization initiator. Obtained using an optical three-dimensional structure obtained by using a photopolymerizable resin composition containing a radical polymerizable organic compound, a photosensitive radical polymerization initiator, a cationic polymerizable organic compound, and a photosensitive cationic polymerization initiator The present invention has been found to be effective for any of the optical three-dimensional objects to be produced, and the present invention has been completed based on these various findings.

すなわち、本発明は、
(1) 光硬化性樹脂組成物を用いて製造した光学的立体造形物であって、分光光度計で測定して得られる分光透過率をJIS−K7373に規定された方法で数値計算して、補助イルミナントC、視野2度の条件で求めた厚さ5mmでの黄色度が2.4以下である光学的立体造形物である。
ここで、前記黄色度の詳細な求め方については、以下の実施例の項に記載しているとおりである。
そして、本発明は、
(2) 光硬化性樹脂組成物を用いて光学的立体造形を行って得られる光学的立体造形物に、430〜500nmの範囲内の波長を有する光を、光学的立体造形物の表面での波長430〜500nmの光の合計照射強度が15W/m 2 以上となるように照射処理して得られたものである前記(1)の光学的立体造形物;および、
(3) 430〜500nmの範囲内の波長を有する光が、波長が400nm以下の光を含まない光である前記(2)の光学的立体造形物である。
That is, the present invention
(1) An optical three-dimensional structure manufactured using a photocurable resin composition, and the spectral transmittance obtained by measuring with a spectrophotometer is numerically calculated by a method defined in JIS-K7373, This is an optical three-dimensional object having a yellowness of 2.4 or less at a thickness of 5 mm obtained under the conditions of auxiliary illuminant C and visual field of 2 °.
Here, the detailed method for obtaining the yellowness is as described in the section of Examples below.
And this invention,
(2) An optical three-dimensional object obtained by performing optical three-dimensional modeling using a photocurable resin composition is irradiated with light having a wavelength in the range of 430 to 500 nm on the surface of the optical three-dimensional object. (3) the optical three-dimensional object obtained by irradiation treatment so that the total irradiation intensity of light having a wavelength of 430 to 500 nm is 15 W / m 2 or more; and
(3) The optical three-dimensional structure according to (2), wherein the light having a wavelength in the range of 430 to 500 nm is light that does not include light having a wavelength of 400 nm or less.

前記(2)および/または(3)において、430〜500nmの範囲内の波長を有する光を照射する光学的立体造形物、光学的立体造形後に紫外線の照射および/または加熱を行って後硬化処理を施した光学的立体造形物であっても、または光学的立体造形後に紫外線の照射および/または加熱による後硬化処理を施さない光学的立体造形物であってもよい
前記(3)において、光学的立体造形物の処理に用いる光、430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光を放射する光源から放射された光であるか、または430〜500nmの範囲内の波長を有する光および波長が400nm以下の光を含む光を放射する光源から放射された光から波長が400nm以下の光を除いた光である。
さらに、本発明の光学的立体造形物は、紫外線を含む光を放射する光源(A)、および430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光を放射する光源(B)を備える後処理装置を使用し、光硬化性樹脂組成物を用いて光学的立体造形を行って得られる光学的立体造形物に、光源(A)からの光を照射して光学的立体造形物を紫外線で後硬化処理した後に、光源(B)からの光を、光学的立体造形物の表面での波長430〜500nmの光の合計照射強度が15W/m2以上となるように照射することによって得ることができる
また、本発明の光学的立体造形物は、紫外線および430〜500nmの範囲内の波長を有する光を含む光を放射する光源(C)、並びに光源(C)から放射される光から紫外線を除去する紫外線カット手段(D)を備える後処理装置を使用し、光硬化性樹脂組成物を用いて光学的立体造形を行って得られる光学的立体造形物に、光源(C)から放射される光をそのまま照射して光源(C)から放射される光に含まれる紫外線で光学的立体造形物を後硬化処理した後に、光源(C)から放射される光から紫外線カット手段(D)によって波長が400nm以下の光除いた光を光学的立体造形物の表面での波長430〜500nmの光の合計照射強度が15W/m2以上となるように照射することによっても得ることができる
In the above (2) and / or (3), the optical three-dimensional object to be irradiated with light having a wavelength in the range of 430 to 500 nm is post-cured by performing ultraviolet irradiation and / or heating after the optical three-dimensional modeling. even stereolithography product was subjected to a treatment, or a stereolithography product not subjected to post-curing treatment by irradiation and / or heating of the ultraviolet ray after stereolithography.
In the above (3), the light used for the processing of the optical three-dimensional structure is emitted from a light source that emits light that includes light having a wavelength in the range of 430 to 500 nm and does not include light having a wavelength of 400 nm or less. It is light obtained by removing light having a wavelength of 400 nm or less from light emitted from a light source that emits light including light having a wavelength in the range of 430 to 500 nm and light having a wavelength of 400 nm or less.
Further, the optical three-dimensional object of the present invention includes a light source (A) that emits light including ultraviolet light, and light that includes light having a wavelength in the range of 430 to 500 nm and does not include light having a wavelength of 400 nm or less. The light from the light source (A) is irradiated to an optical three-dimensional object obtained by performing an optical three-dimensional object using a photocurable resin composition using a post-processing device provided with a radiating light source (B). After the optical three-dimensional model is post-cured with ultraviolet light, the light from the light source (B) has a total irradiation intensity of 15 W / m 2 or more at a wavelength of 430 to 500 nm on the surface of the optical three-dimensional model. It can obtain by irradiating.
The optical three-dimensional object of the present invention removes ultraviolet rays from a light source (C) that emits light including ultraviolet rays and light having a wavelength in the range of 430 to 500 nm, and light emitted from the light source (C). Emitted from a light source (C) to an optical three-dimensional object obtained by performing an optical three-dimensional object model using a photocurable resin composition using a post-processing apparatus equipped with an ultraviolet ray cutting means (D) After the optical three-dimensional object is post-cured with ultraviolet rays contained in the light emitted from the light source (C), the wavelength is changed by the ultraviolet ray cutting means (D) from the light emitted from the light source (C). It can also be obtained by irradiating the light excluding light of 400 nm or less so that the total irradiation intensity of light having a wavelength of 430 to 500 nm on the surface of the optical three-dimensional model becomes 15 W / m 2 or more.

そして、430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光を光学的立体造形物に照射する上記した処理によって、光学的立体造形物の変色を解消または低減させることができる。
本発明の光学的立体造形物として、ラジカル重合性有機化合物、光感受性ラジカル重合開始剤、カチオン重合性有機化合物および光感受性カチオン重合開始剤を含有する光硬化性樹脂組成物を用いて得られる光学的立体造形物を挙げることができる。
Then, the process described above is irradiated with light and the wavelength comprises light having a wavelength in the range of 430~500nm does not include the following light 400nm in stereolithography object, eliminating the discoloration of optical three-dimensional object or Can be reduced.
Optics obtained by using a photocurable resin composition containing a radical polymerizable organic compound, a photosensitive radical polymerization initiator, a cationic polymerizable organic compound and a photosensitive cationic polymerization initiator as the optical three-dimensional structure of the present invention A three-dimensional modeled object can be mentioned.

また、黄色度の低い本発明の光学的立体造形物は、紫外線を含む光を放射する光源(A)、および430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光を放射する光源(B)を備える処理装置を用いて製造することができる
さらに、黄色度の低い本発明の光学的立体造形物は、紫外線および430〜500nmの範囲内の波長を有する光を含む光を放射する光源(C)、並びに光源(C)から放射される光から波長が400nm以下の光を除く紫外線カット手段(D)を備える処理装置を用いて製造することができる
Further, the optical three-dimensional object of the present invention having a low yellowness includes a light source (A) that emits light including ultraviolet light, and light having a wavelength in the range of 430 to 500 nm and light having a wavelength of 400 nm or less. It can manufacture using a processing apparatus provided with the light source (B) which radiates | emits the light which does not contain.
Furthermore, the optical three-dimensional structure of the present invention with low yellowness includes a light source (C) that emits light including ultraviolet light and light having a wavelength in the range of 430 to 500 nm, and light emitted from the light source (C). Can be manufactured using a processing apparatus provided with ultraviolet cut means (D) that removes light having a wavelength of 400 nm or less.

黄変などの変色が生じている光学的立体造形物を上記した方法で処理することによって、光学的立体造形物が本来有する力学的特性やその他の物性を良好に維持しながら、光学的立体造形物に生じていた黄変などの変色を、簡単に且つ短時間に速やかに解消または低減して、無色透明性に優れるか、または着色剤を用いたものでは着色剤本来の優れた色調を呈する光学的立体造形物に変えることができる。
上記した処理方法は、光学的立体造形後に紫外線の照射および/または加熱を行って後硬化処理を施した光学的立体造形物、並びに光学的立体造形後に紫外線照射および/または加熱による後硬化処理を施さない光学的立体造形物の両方に対して有効である。
上記した処理方法は、ラジカル重合性有機化合物および光感受性ラジカル重合開始剤を含有する光硬化性樹脂組成物を用いて得られる光学的立体造形物、並びにラジカル重合性有機化合物、光感受性ラジカル重合開始剤、カチオン重合性有機化合物および光感受性カチオン重合開始剤を含有する光硬化性樹脂組成物を用いて得られ光学的立体造形物のいずれに対しても有効に実施することができる。
By processing an optical three-dimensional object that has undergone discoloration such as yellowing by the above-described method, the optical three-dimensional object is maintained while maintaining the mechanical properties and other physical properties that the optical three-dimensional object originally has. Discoloration such as yellowing that has occurred in products can be easily or quickly eliminated or reduced in a short time, and it is excellent in colorless transparency, or in the case of using a colorant, it exhibits an excellent color tone inherent to the colorant. It can be changed to an optical three-dimensional model.
The above-described processing methods include an optical three-dimensional object that has been subjected to post-curing treatment by irradiation with ultraviolet light and / or heating after optical three-dimensional modeling, and a post-curing treatment by ultraviolet irradiation and / or heating after optical three-dimensional modeling. This is effective for both optical three-dimensional objects that are not applied.
The treatment method described above includes an optical three-dimensional structure obtained using a photocurable resin composition containing a radical polymerizable organic compound and a photosensitive radical polymerization initiator, and a radical polymerizable organic compound, photosensitive radical polymerization initiation. It can be effectively carried out for any of the optical three-dimensional objects obtained by using a photocurable resin composition containing an agent, a cationically polymerizable organic compound and a photosensitive cationic polymerization initiator.

以下に本発明について詳細に説明する。
本発明では、光硬化性樹脂組成物を用いて光学的立体造形を行って得られる光学的立体造形物に、「430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光」[以下、これを「光(α)」ということがある]を照射して処理を行う。
本発明で用いる光(α)は、「430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光(特に紫外線)を含まない光」である限りは、特に制限されない。
The present invention is described in detail below.
In the present invention, the optical three-dimensional structure obtained by performing the optical three-dimensional modeling using the photocurable resin composition includes “light having a wavelength within a range of 430 to 500 nm and having a wavelength of 400 nm or less. The process is performed by irradiating with “light that does not contain” [hereinafter sometimes referred to as “light (α)”].
The light (α) used in the present invention is not particularly limited as long as it is “light including light having a wavelength in the range of 430 to 500 nm and not including light (particularly ultraviolet light) having a wavelength of 400 nm or less”.

430〜500nmの波長を有する光は青色を呈する可視光であり、ここで、本発明において光学的立体造形物の処理に用いる光(α)に係る、「430〜500nmの範囲内の波長を有する光を含む」とは、光学的立体造形物の処理に用いる光(α)が、430〜500nmの範囲内の波長の光(波長が430〜500nmの範囲内にある青色光)を少なくとも含んでいることを意味する。
光(α)は、「430〜500nmの波長範囲内に1つまたは2つ以上のエネルギー強度のピークを有し且つ波長が400nm以下の光を含まない光」であってもよいし、「430〜500nmの波長範囲内に光エネルギー強度のピークを持たないが、430〜500nmの波長範囲内に少なくとも光のエネルギーが分布していて且つ波長が400nm以下の光を含まない光」であってもよいし、または前記2つの光の併用であってもよい。
The light having a wavelength of 430 to 500 nm is a visible light exhibiting a blue color. Here, according to the light (α) used in the processing of the optical three-dimensional object in the present invention, “having a wavelength within the range of 430 to 500 nm. “Including light” means that the light (α) used for the treatment of the optical three-dimensional structure includes at least light having a wavelength in the range of 430 to 500 nm (blue light having a wavelength in the range of 430 to 500 nm). Means that
The light (α) may be “light having one or more energy intensity peaks in the wavelength range of 430 to 500 nm and not including light having a wavelength of 400 nm or less” or “430 Even if it does not have a peak of light energy intensity within the wavelength range of ˜500 nm, but at least the light energy is distributed within the wavelength range of 430 to 500 nm and does not include light having a wavelength of 400 nm or less. It may be a combination of the two lights.

光学的立体造形物の処理に用いる光(α)が、「430〜500nmの波長範囲内に1つまたは2つ以上のエネルギー強度のピークを有し且つ波長が400nm以下の光を含まない光」である場合は、430〜500nmの波長範囲における光エネルギー強度のピーク形状は、なだらかな山形形状および尖った山形形状のいずれであってもよい。光(α)が430〜500nmの波長範囲内に2つ以上の光エネルギー強度のピークを有している場合は、個々のピークの形状および高さは同じであってもよいし、または異なっていてもいずれでもよい。   The light (α) used for processing the optical three-dimensional object is “light having one or more energy intensity peaks in the wavelength range of 430 to 500 nm and not including light having a wavelength of 400 nm or less”. , The peak shape of the light energy intensity in the wavelength range of 430 to 500 nm may be either a gentle chevron shape or a sharp chevron shape. When the light (α) has two or more light energy intensity peaks in the wavelength range of 430 to 500 nm, the shape and height of each peak may be the same or different. Or either.

また、光学的立体造形物の処理に用いる光(α)が、「430〜500nmの波長範囲内に光エネルギー強度のピークを持たないが、430〜500nmの波長範囲内に少なくとも光のエネルギーが分布していて且つ波長が400nm以下の光を含まない光」である場合は、430〜500nmの波長範囲では、当該430〜500nmの波長範囲の全体にわたって光エネルギー強度が均一またはほぼ均一に分布していてもよいし(波長を横軸および光エネルギー強度を縦軸にとった場合に430〜500nmの波長範囲にわたって平坦またはほぼ平坦な光エネルギー強度分布を有し且つ波長が400nm以下の光を含まない光であってもよいし)、430〜500nmの波長範囲の一方から他方に向かって(430nmから500nmに向かってまたは500nmから430nmに向かって)光エネルギー強度がテーパー状をなして増加または低下していて且つ波長が400nm以下の光を含まない光であってもよい。場合によっては、光(α)は、430〜500nmの波長範囲のいずれかの波長箇所において光エネルギー強度が低くなった谷形の光エネルギー強度の分布を有し且つ波長が400nm以下の光を含まない光であってもよい。   In addition, the light (α) used for the processing of the optical three-dimensional object does not have a peak of light energy intensity within the wavelength range of 430 to 500 nm, but at least the light energy is distributed within the wavelength range of 430 to 500 nm. In the wavelength range of 430 to 500 nm, the light energy intensity is uniformly or almost uniformly distributed over the entire wavelength range of 430 to 500 nm. (When the horizontal axis represents the wavelength and the vertical axis represents the light energy intensity, the light energy intensity distribution is flat or nearly flat over the wavelength range of 430 to 500 nm and does not include light having a wavelength of 400 nm or less. Light) or from one to the other in the wavelength range of 430-500 nm (from 430 nm to 500 nm). It or toward the 430nm from 500 nm) and wavelengths of light energy intensity is not increased or decreased without the tapered shape may be a light that does not include the following light 400 nm. In some cases, the light (α) includes light having a valley-shaped light energy intensity distribution in which the light energy intensity is low at any wavelength point in the wavelength range of 430 to 500 nm and having a wavelength of 400 nm or less. There may be no light.

本発明で用い得る光(α)としては、例えば、
・波長が400nm以下の光を含まない波長430〜500nmの光(青色光);
・波長が400nm以下の光を含まない波長450〜500nmの光(青色光);
・430〜500nmの波長範囲内の光(青色光)と共に、500nmを超える波長を有する光[例えば、波長500〜570nmの光(緑色光)、波長530〜590nmの光(黄緑色光)、波長570〜590nmの光(黄色光)、波長590〜620nmの光(橙色光)、波長620〜750nmの光(赤色光)の1種または2種以上]を含み、且つ波長が400nm以下の光を含まない光;
・波長が400nm以下の光を含まない白色光;
などを挙げることができる。
As the light (α) that can be used in the present invention, for example,
-Light having a wavelength of 430 to 500 nm (blue light) not including light having a wavelength of 400 nm or less;
-Light having a wavelength of 450 to 500 nm (blue light) not including light having a wavelength of 400 nm or less;
-Light having a wavelength exceeding 500 nm together with light in the wavelength range of 430 to 500 nm (blue light) [for example, light having a wavelength of 500 to 570 nm (green light), light having a wavelength of 530 to 590 nm (yellowish green light), wavelength Light of 570 to 590 nm (yellow light), light of wavelength 590 to 620 nm (orange light), light of wavelength 620 to 750 nm (red light) or more], and light having a wavelength of 400 nm or less Does not contain light;
White light not including light having a wavelength of 400 nm or less;
And so on.

本発明では、黄変などの変色が生じた光学的立体造形物に、430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光(α)を照射することによって、黄変などの変色が解消または低減されて、無色透明性に優れた光学的立体造形物、また着色剤を含有する光学的立体造形物では着色剤本来の優れた色調の光学的立体造形物を得ることができる。
本発明の処理方法は、黄変した光学的立体造形物の色調の改善に特に有効であるが、黄変した光学的立体造形物に限らず、例えば、褐色、黄橙色、黄褐色などに変色した光学的立体造形物の色調の改善方法としても有効である。
In the present invention, an optical three-dimensional object that has undergone discoloration such as yellowing is irradiated with light (α) that includes light having a wavelength in the range of 430 to 500 nm and does not include light having a wavelength of 400 nm or less. This eliminates or reduces discoloration such as yellowing, and is excellent in colorless and transparent optical three-dimensional objects, and in optical three-dimensional objects that contain colorants, the optical three-dimensional objects that have the original excellent color tone You can get things.
The processing method of the present invention is particularly effective for improving the color tone of a yellowed optical three-dimensional object, but is not limited to a yellowed optical three-dimensional object, for example, brown, yellow orange, yellowish brown, etc. It is also effective as a method for improving the color tone of an optical three-dimensional model.

光学的立体造形物の処理に用いる光が、430〜500nmの範囲内の波長を有する光(青色光)を含む光であっても、波長が400nm以下の光、特に紫外線を含んでいると、光学的立体造形物に照射したときに、光学的立体造形物の黄変などの色調不良が増幅されたり、脱色と競合して脱色速度が遅くなるので、光(α)は波長が400nm以下の光、特に紫外線を含まないことが必要である。
また、波長が400nm以下の光を含まない光であっても、430〜500nmの範囲内の波長を有する光(青色光)を含まない光を光学的立体造形物に照射した場合には、光学的立体造形物の黄変などの変色の改善効果が小さく、場合によっては色調不良が増大することがある。波長が400〜430nmの光を含んでいてもよいが、紫外線領域に近いため、脱色(色調改善)に対する寄与が小さい。
Even if the light used for the processing of the optical three-dimensional structure includes light having a wavelength in the range of 430 to 500 nm (blue light), the light having a wavelength of 400 nm or less, particularly ultraviolet light, When the optical three-dimensional object is irradiated, poor color tone such as yellowing of the optical three-dimensional object is amplified, or the bleaching speed is slowed in competition with decolorization. Therefore, the light (α) has a wavelength of 400 nm or less. It is necessary not to contain light, especially ultraviolet rays.
In addition, even if the light does not include light having a wavelength of 400 nm or less, when the optical three-dimensional object is irradiated with light that does not include light (blue light) having a wavelength in the range of 430 to 500 nm, The improvement effect of discoloration such as yellowing of a three-dimensional modeled object is small, and in some cases, poor color tone may increase. Although light having a wavelength of 400 to 430 nm may be included, since it is close to the ultraviolet region, contribution to decolorization (color tone improvement) is small.

本発明では、光学的立体造形物に光(α)を照射して処理するに当って、光(α)が照射される光学的立体造形物の表面[すなわち光(α)が直接照射される表面]での、波長が430〜500nmの範囲内の光の合計照射強度が15W/m2以上となるようにして、立体造形物に光(α)を照射する。
光学的立体造形物の照射表面での波長が430〜500nmの範囲内の光の合計照射強度が低いと、脱色はある程度進行するものの、速度が遅いため、光学的立体造形物の黄変などによる色調不良を短時間で効率よく改善することができなくなる。
光学的立体造形物の照射表面での波長が430〜500nmの範囲内の光の合計照射強度は25W/m2以上であることが好ましく、30W/m2以上あることがより好ましく、40W/m2以上あることが更に好ましい。光学的立体造形物の照射表面での波長が430〜500nmの範囲内の光の合計照射強度の上限値は特に制限されないが、当該照射強度が大きすぎる場合は、光源からの発熱や光学的立体造形物の温度上昇に対する対策を講じる必要がある(なお、波長が430〜500nmの範囲内の光の合計照射強度が1000W/m2を超えるような光を広範囲にわたって連続的に照射できるような光源は入手が困難である)。
In the present invention, in processing an optical three-dimensional object by irradiating light (α), the surface of the optical three-dimensional object to be irradiated with light (α) [that is, light (α) is directly irradiated. The three-dimensional object is irradiated with light (α) so that the total irradiation intensity of light within the wavelength range of 430 to 500 nm on the surface is 15 W / m 2 or more.
If the total irradiation intensity of light within the wavelength range of 430 to 500 nm on the irradiation surface of the optical three-dimensional object is low, decolorization proceeds to some extent, but because the speed is slow, it may be due to yellowing of the optical three-dimensional object It becomes impossible to efficiently improve poor color tone in a short time.
The total irradiation intensity of light within a wavelength range of 430 to 500 nm on the irradiation surface of the optical three-dimensional object is preferably 25 W / m 2 or more, more preferably 30 W / m 2 or more, and 40 W / m. More preferably, it is 2 or more. The upper limit of the total irradiation intensity of light within the wavelength range of 430 to 500 nm on the irradiation surface of the optical three-dimensional object is not particularly limited, but if the irradiation intensity is too high, heat from the light source or optical three-dimensional It is necessary to take measures against the temperature rise of the molded object (Note that a light source that can continuously irradiate light over a wide range such that the total irradiation intensity of light within a wavelength range of 430 to 500 nm exceeds 1000 W / m 2. Is difficult to obtain).

ここで、本発明における光学的立体造形物における光を照射される表面での波長が430〜500nmの範囲内の光の合計照射強度は、以下の《1》または《2》の方法で求めることができる。
《1》 光学的立体造形物への光照射処理時に、分光照度計を使用して、光を照射されている光学的立体造形物の表面での波長ごとの分光照射強度P(λ)(単位:W/m2・nm)を430〜500nmの波長範囲について測定して、430〜500nmの波長範囲における分光照射強度P(λ)を積分(合計)して、光学的立体造形物の光を照射されている表面での波長が430〜500nmの範囲内の光の合計照射強度(W/m2)を求める方法[430〜500nmの波長領域について波長ごとの分光照射強度P(λ)をそのまま直接測定できる分光照度計を用いる場合]。
《2》 光学的立体造形物への光照射処理時に、放射照度計を使用して、光学的立体造形物における光を照射されている表面での380〜780nmの波長範囲(可視光域)の光の合計光照射強度Q(単位:W/m2)を測定すると共に、光スペクトラムアナライザーを使用して、光学的立体造形物における光を照射されている表面での380〜780nmの波長範囲(可視光域)における相対分光強度曲線Fを求め、当該相対分光強度曲線Fから、380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBをそれぞれ算出し、式:Q×(LB/LA)から、光学的立体造形物の光を照射されている表面での波長が430〜500nmの範囲内の光の合計照射強度を求める方法[430〜500nmの波長領域について波長ごとの分光照射強度P(λ)をそのまま直接測定する分光照度計を使用しない場合]。
Here, the total irradiation intensity of the light within the wavelength range of 430 to 500 nm on the surface irradiated with light in the optical three-dimensional structure in the present invention is determined by the following method <1> or << 2 >>. Can do.
<< 1 >> Spectral irradiation intensity P (λ) for each wavelength on the surface of an optical three-dimensional object being irradiated with light using a spectral illuminometer at the time of light irradiation treatment to the optical three-dimensional object (unit) : W / m 2 · nm) is measured in the wavelength range of 430 to 500 nm, and the spectral irradiation intensity P (λ) in the wavelength range of 430 to 500 nm is integrated (totaled), and the light of the optical three-dimensional object is obtained. Method for obtaining total irradiation intensity (W / m 2 ) of light within a wavelength range of 430 to 500 nm on the irradiated surface [Spectral irradiation intensity P (λ) for each wavelength in the wavelength range of 430 to 500 nm as it is When using a spectral illuminometer that can measure directly].
<< 2 >> At the time of the light irradiation treatment to the optical three-dimensional object, a irradiance meter is used, and the wavelength range of 380 to 780 nm (visible light range) on the surface irradiated with the light in the optical three-dimensional object is visible. While measuring the total light irradiation intensity Q (unit: W / m 2 ) of light and using an optical spectrum analyzer, a wavelength range of 380 to 780 nm on the surface irradiated with light in the optical three-dimensional model ( obtains the relative spectral intensity curve F in the visible light region), from the relative spectral intensity curve F, the integral value L a and the wavelength range of 430~500nm the relative spectral intensity in the wavelength range of 380 to 780 nm (visible light region) The integral value L B of the relative spectral intensity of each is calculated, and the wavelength on the surface irradiated with the light of the optical three-dimensional structure is within a range of 430 to 500 nm from the formula: Q × (L B / L A ) Total light irradiation Method of obtaining intensity [in the case of not using a spectral illuminometer that directly measures the spectral irradiation intensity P (λ) for each wavelength in the wavelength region of 430 to 500 nm as it is].

本発明では、光学的立体造形物に光(α)を照射するための光源の種類は特に制限されず、430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光を、光学的立体造形物の表面での波長が430〜500nmの範囲内の光の合計照射強度が15W/m2以上となるように照射することのできる光源であればいずれも使用できる。
光学的立体造形物に光(α)を照射するのに用い得る光源としては、例えば、
・波長が400nm以下の光を放射せず、波長430〜500nmの光を放射する光源(好ましくは青色発光ダイオードなど);
・波長が400nm以下の光を放射せず、波長430〜500nmの光を含む光を放射する光源[430〜500nmの波長範囲内の光と共に、500nm以上の波長を有する光、例えば、波長500〜570nmの光(緑色光)、波長530〜590nmの光(黄緑色光)、波長570〜590nmの光(黄色光)、波長590〜620nmの光(橙色光)、波長620〜750nmの光(赤色光)の1種または2種以上を含む光を放射する光源];
・波長が400nm以下の光を含まない白色光を放射する光源(好ましくは白色灯など);
・紫外線および波長430〜500nmの光を含む光を放射する光源(例えば、蛍光灯、高圧水銀灯、低圧水銀灯、メタルハライドランプ、キセノンランプなど)と、当該光源から放射される光に含まれる波長が400nm以下の光を除くための紫外線カット手段(例えば、紫外線吸収コーティングを施すかまたは紫外線吸収フィルムを貼付したガラス板、アクリル板、ポリカーボネート板、石英板や、紫外線吸収剤を添加して樹脂組成物を用いて製造した樹脂板などの、波長430〜500nmの光を通し、波長400nm以下の光を吸収する紫外線フィルターなど)を組み合わせたもの;
などを挙げることができる。
In the present invention, the type of the light source for irradiating the optical three-dimensional object with light (α) is not particularly limited, and includes light having a wavelength in the range of 430 to 500 nm and light having a wavelength of 400 nm or less. Any light source can be used as long as the total irradiation intensity of the light within the range of 430 to 500 nm of light on the surface of the optical three-dimensional object is 15 W / m 2 or more. .
As a light source that can be used to irradiate light (α) to an optical three-dimensional object, for example,
A light source that emits light having a wavelength of 430 to 500 nm without emitting light having a wavelength of 400 nm or less (preferably a blue light emitting diode);
A light source that does not emit light having a wavelength of 400 nm or less and that emits light including light having a wavelength of 430 to 500 nm [light having a wavelength of 500 nm or more together with light within a wavelength range of 430 to 500 nm, for example, a wavelength of 500 to 500 570 nm light (green light), 530 to 590 nm light (yellowish green light), 570 to 590 nm light (yellow light), 590 to 620 nm light (orange light), 620 to 750 nm light (red) A light source that emits light containing one or more of light);
A light source that emits white light not containing light having a wavelength of 400 nm or less (preferably a white light);
A light source that emits light including ultraviolet light and light having a wavelength of 430 to 500 nm (for example, a fluorescent lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, a xenon lamp, etc.) and a wavelength included in the light emitted from the light source is 400 nm UV blocking means for removing the following light (for example, a glass plate, an acrylic plate, a polycarbonate plate, a quartz plate with a UV absorbing coating or a UV absorbing film attached, and a resin composition by adding a UV absorber. A combination of a resin plate or the like produced by using a UV filter that transmits light having a wavelength of 430 to 500 nm and absorbs light having a wavelength of 400 nm or less;
And so on.

光学的立体造形では、力学的特性、寸法安定性、耐熱性、耐擦性、表面硬度、平滑性などを向上させ、表面のべとつきをなくすために、光造形して得られた立体造形物に紫外線の照射および/または加熱処理を施して後硬化することが広く行われているが、紫外線の照射および/または加熱処理を行って後硬化させた光学的立体造形物は、紫外線の照射および/または加熱による後硬化処理を行っていない光学的立体造形物に比べて黄変などの変色の度合が大きいことがある。また、紫外線および/または加熱による後硬化処理を施してない光学的立体造形物であっても、使用した光硬化性樹脂組成物の種類や組成、光硬化性樹脂組成物中に含まれる成分の種類、光造形条件などによって光学的立体造形物に黄変などの変色が生じている場合がある。
そのため、光学的立体造形物に光(α)を照射する本発明の処理方法は、光学的立体造形後に紫外線の照射および/または加熱による後硬化処理を施した黄変などの変色の生じた光学的立体造形物、紫外線の照射や加熱による後硬化処理を施してない黄変などの変色の生じた光学的立体造形物のいずれに対しても有効に実施することができる。
In optical three-dimensional modeling, in order to improve mechanical properties, dimensional stability, heat resistance, abrasion resistance, surface hardness, smoothness, etc., and eliminate stickiness of the surface, the three-dimensional modeling obtained by optical modeling The post-curing by applying ultraviolet irradiation and / or heat treatment is widely performed. However, an optical three-dimensional object that has been post-cured by applying ultraviolet irradiation and / or heat treatment is subjected to ultraviolet irradiation and / or heat treatment. Alternatively, the degree of discoloration such as yellowing may be larger than that of an optical three-dimensional model that has not been post-cured by heating. Moreover, even if it is an optical three-dimensional molded object which has not performed the postcure process by an ultraviolet-ray and / or a heating, the kind and composition of the used photocurable resin composition, the component contained in a photocurable resin composition Discoloration such as yellowing may occur in the optical three-dimensional modeled object depending on the type and the optical modeling conditions.
Therefore, the processing method of the present invention for irradiating light (α) to an optical three-dimensional object is an optical in which discoloration such as yellowing has occurred by post-curing treatment by irradiation with ultraviolet rays and / or heating after optical three-dimensional object formation. It can be effectively carried out on any of the three-dimensional modeled object and the optical three-dimensional modeled object that has undergone discoloration such as yellowing that has not been subjected to post-curing treatment by ultraviolet irradiation or heating.

光学的立体造形物への光(α)の照射時間は、光学的立体造形物の変色の度合、光学的立体造形物の表面での光(α)の照射強度、光学的立体造形物のサイズ、形状、光学的立体造形物を形成している樹脂の種類、光学的立体造形物の製造に用いた光硬化性樹脂組成物に含まれる成分の種類や成分組成などによって異なり得るが、430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光(α)を、光学的立体造形物の表面での波長430〜500nmの光の合計照射強度が本発明で規定している15W/m2以上、好ましくは25W/m2以上、より好ましくは30W/m2以上、更に好ましくは40W/m2以上になるようにして照射すると、通常30分〜8時間程度、特に1時間〜5時間程度の照射で、光学的立体造形物の黄変などの変色を大幅に低減させることができ、それによって無色透明性に優れる光学的立体造形物、また着色剤を使用した光学的立体造形物では着色剤本来の優れた色調を有する光学的立体造形物を得ることができる。 The irradiation time of light (α) to the optical three-dimensional object is the degree of discoloration of the optical three-dimensional object, the irradiation intensity of light (α) on the surface of the optical three-dimensional object, and the size of the optical three-dimensional object , The shape, the type of resin forming the optical three-dimensional model, and the type and composition of the components contained in the photocurable resin composition used for the production of the optical three-dimensional model, In the present invention, the total irradiation intensity of light having a wavelength of 430 to 500 nm on the surface of the optical three-dimensional object is included in the light (α) including light having a wavelength in the range of 500 nm and not including light having a wavelength of 400 nm or less. When irradiating at a prescribed 15 W / m 2 or more, preferably 25 W / m 2 or more, more preferably 30 W / m 2 or more, and even more preferably 40 W / m 2 or more, usually about 30 minutes to 8 hours. In particular, irradiation for about 1 to 5 hours It is possible to greatly reduce discoloration such as yellowing of the optical three-dimensional object, and thereby, the optical three-dimensional object that is excellent in colorless transparency, and the optical three-dimensional object that uses the colorant, An optical three-dimensional model having an excellent color tone can be obtained.

光学的立体造形物に光(α)を照射する際の温度(光学的立体造形物の温度および/または雰囲気温度)は特に制限されないが、一般的には、15〜50℃の雰囲気温度、特に20〜40℃の雰囲気温度で光(α)による照射処理を行うことが、光(α)の照射操作の簡便性、光学的立体造形物における変色の改善効果、熱による光学的立体造形物の変形防止などの点から好ましい。   The temperature (the temperature and / or the atmospheric temperature of the optical three-dimensional modeled object) when irradiating light (α) to the optical three-dimensional modeled object is not particularly limited, but is generally an ambient temperature of 15 to 50 ° C., particularly Performing the irradiation treatment with light (α) at an ambient temperature of 20 to 40 ° C. facilitates the light (α) irradiation operation, the effect of improving the discoloration of the optical three-dimensional object, and the heat of the optical three-dimensional object. This is preferable from the viewpoint of preventing deformation.

光学的立体造形に光(α)を照射する処理を、光学的立体造形後に紫外線の照射および/または加熱を行って後硬化処理した光学的立体造形物に対して行う場合には、紫外線の照射および/または加熱による光学的立体造形物の後硬化処理と切り離して光(α)の照射処理を別途行ってもよいし、または紫外線の照射および/または加熱による後硬化処理に引き続いて光(α)の照射処理を行ってもよい。
光(α)の照射処理を行う光学的立体造形物が、光学的立体造形後に紫外線の照射および/または加熱を行って後硬化処理したものである場合は、当該後硬化処理の際の処理方法や条件は、光学的立体造形において従来から採用されている後硬化処理におけるのと同様の方法および条件とすることができる。
限定されるものではないが、例えば、紫外線を照射して後硬化処理を行う場合は、波長400nm以下の光、好ましくは波長340〜380nmの紫外線を用いて、0.5〜10mW/cm2、特に1〜5mW/cm2のエネルギー強度で後硬化処理を行うことができる。
また、加熱して後硬化処理をする場合は、例えば、40〜180℃、好ましくは40〜80℃の加熱温度を採用することができる。
In the case where the process of irradiating light (α) to the optical three-dimensional modeling is performed on the optical three-dimensional object that has been subjected to post-curing treatment by irradiation with ultraviolet rays and / or heating after the optical three-dimensional modeling, irradiation with ultraviolet rays In addition, the light (α) irradiation treatment may be performed separately from the post-curing treatment of the optical three-dimensional modeled object by heating, or the light (α) is followed by the ultraviolet ray irradiation and / or heating post-curing treatment. ) Irradiation treatment may be performed.
When the optical three-dimensional structure to be irradiated with light (α) is one that has been post-cured by irradiation with ultraviolet rays and / or heating after optical three-dimensional modeling, a processing method for the post-curing process The conditions and conditions can be the same methods and conditions as in the post-curing treatment conventionally employed in optical three-dimensional modeling.
Although not limited, for example, when the post-curing treatment is performed by irradiating with ultraviolet rays, light having a wavelength of 400 nm or less, preferably using ultraviolet rays having a wavelength of 340 to 380 nm, 0.5 to 10 mW / cm 2 , In particular, the post-curing treatment can be performed with an energy intensity of 1 to 5 mW / cm 2 .
Moreover, when performing a postcure process by heating, 40-180 degreeC, Preferably the heating temperature of 40-80 degreeC is employable, for example.

光学的立体造形により得られる光学的立体造形物に紫外線を照射して後硬化処理を行い、それに続いて光(α)を照射する処理を行う場合には、例えば、
(1) 紫外線を含む光を放射する光源(A)、および430〜500nmの範囲内の波長を有する光(青色光)を含み且つ波長が400nm以下の光を含まない光(α)を放射する光源(B)の両方を備える後処理装置を使用し、光硬化性樹脂組成物を用いて光学的立体造形を行って得られる光学的立体造形物に、光源(A)からの光を照射して光学的立体造形物を紫外線で後硬化処理した後に、光源(B)から光(α)を、光学的立体造形物の表面での波長430〜500nmの光の合計照射強度が15W/m2以上となるように照射する方法;
(2) 紫外線および430〜500nmの範囲内の波長を有する光(青色光)を含む光を放射する光源(C)、並びに光源(C)から放射される光から波長が400nm以下の光を除く紫外線カット手段(D)を備える後処理装置を使用し、光硬化性樹脂組成物を用いて光学的立体造形を行って得られる光学的立体造形物に、光源(C)からの光をそのまま照射して光源(C)から放射される光に含まれる紫外線で光学的立体造形物を後硬化処理した後に、光源(C)から放射される光から波長が400nm以下の光を紫外線カット手段(D)によって除いた光を光学的立体造形物の表面での波長430〜500nmの光の合計照射強度が15W/m2以上となるように照射する方法;
などを採用することができる。
In the case of performing a post-curing process by irradiating an optical three-dimensional model obtained by optical three-dimensional modeling with ultraviolet rays, followed by irradiation with light (α), for example,
(1) A light source (A) that emits light including ultraviolet light and light (α) that includes light (blue light) having a wavelength in the range of 430 to 500 nm and does not include light having a wavelength of 400 nm or less. The light from the light source (A) is irradiated to an optical three-dimensional object obtained by performing an optical three-dimensional object using a photocurable resin composition using a post-processing device including both of the light sources (B). After the optical three-dimensional model is post-cured with ultraviolet light, the light (α) is emitted from the light source (B), and the total irradiation intensity of light having a wavelength of 430 to 500 nm on the surface of the optical three-dimensional model is 15 W / m 2. A method of irradiating so that
(2) A light source (C) that emits light including ultraviolet light and light having a wavelength in the range of 430 to 500 nm (blue light), and light having a wavelength of 400 nm or less are excluded from light emitted from the light source (C) Light from the light source (C) is irradiated as it is onto an optical three-dimensional object obtained by performing an optical three-dimensional object model using a photocurable resin composition using a post-processing device equipped with an ultraviolet cut means (D). After the optical three-dimensional structure is post-cured with ultraviolet rays contained in the light emitted from the light source (C), the light having a wavelength of 400 nm or less is emitted from the light emitted from the light source (C) by an ultraviolet cut means (D A method of irradiating the light removed in the above manner so that the total irradiation intensity of the light having a wavelength of 430 to 500 nm on the surface of the optical three-dimensional object becomes 15 W / m 2 or more;
Etc. can be adopted.

上記(1)の方法における光源(A)としては、蛍光灯、高圧水銀灯、低圧水銀灯、メタルハライドランプ、キセノンランプ、紫外線ランプなどを挙げることができる。また、上記(1)の方法における光源(B)としては、波長が400nm以下の光を含まず波長430〜500nmの光を含む光を放射する光源であればいずれも使用でき、例えば青色発光ダイオード、白色ダイオード、青色灯、白色灯、有機ELなどを挙げることができる。
また、上記(2)の方法における光源(C)としては、紫外線および波長430〜500nmの光の両方を含む光を放射する光源であればいずれも使用でき、具体例としては上記した蛍光灯、高圧水銀灯、低圧水銀灯、メタルハライドランプ、キセノンランプなどを挙げることができる。
さらに、上記(2)の方法における紫外線カット手段(D)としては、波長430〜500nmの光を遮蔽せず、紫外線を含めて、波長が400nm以下の光を確実に除くことのできる手段であればいずれも使用でき、例えば、上記した紫外線吸収コーティングを施すかまたは紫外線吸収フィルムを貼付したガラス板、アクリル板、ポリカーボネート板、石英板、紫外線吸収剤を添加した樹脂組成物を用いて製造した樹脂板などからなる紫外線吸収フィルターなどを挙げることができる。
Examples of the light source (A) in the method (1) include a fluorescent lamp, a high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, a xenon lamp, and an ultraviolet lamp. In addition, as the light source (B) in the method (1), any light source can be used as long as it does not include light having a wavelength of 400 nm or less and emits light having a wavelength of 430 to 500 nm. , White diode, blue lamp, white lamp, organic EL, and the like.
In addition, as the light source (C) in the above method (2), any light source that emits light including both ultraviolet rays and light having a wavelength of 430 to 500 nm can be used. Specific examples include the above-described fluorescent lamp, A high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, a xenon lamp, etc. can be mentioned.
Further, as the ultraviolet ray cutting means (D) in the method (2), it is possible to reliably remove light having a wavelength of 400 nm or less including ultraviolet light without blocking light having a wavelength of 430 to 500 nm. Any of the above can be used, for example, a glass plate, acrylic plate, polycarbonate plate, quartz plate coated with an ultraviolet absorbing film as described above, or a resin produced using a resin composition to which an ultraviolet absorber is added. An ultraviolet absorption filter made of a plate or the like can be used.

本発明の処理方法を施す光学的立体造形物としては、光硬化性樹脂組成物を使用し、当該光硬化性樹脂組成物よりなる造形面に、光を選択的に照射して所定の厚みに光硬化させて所定の形状パターンを有する硬化樹脂層を形成し、その硬化樹脂層の上に更に1層分の光硬化性樹脂組成物を施して造形面を形成させ、その造形面に光を選択的に照射して所定の厚みに光硬化させて所定の形状パターンを有する硬化樹脂層を形成する造形操作を多数回繰り返えして行う光造形方法によって得られる光学的立体造形物、または当該光学的立体造形物を紫外線の照射および/または加熱して後硬化した光学的立体造形物であって、黄変などの変色による色調不良が生じている光学的立体造形物であればいずれでもよい。   As an optical three-dimensional structure to which the processing method of the present invention is applied, a photocurable resin composition is used, and light is selectively irradiated to a modeling surface made of the photocurable resin composition to have a predetermined thickness. A cured resin layer having a predetermined shape pattern is formed by photocuring, and a one-layer photocurable resin composition is formed on the cured resin layer to form a modeling surface, and light is applied to the modeling surface. An optical three-dimensional modeled object obtained by an optical modeling method that is selectively irradiated and photocured to a predetermined thickness to form a cured resin layer having a predetermined shape pattern by repeating many times, or Any optical three-dimensional object that is post-cured by irradiating ultraviolet light and / or heating the optical three-dimensional object, as long as the optical three-dimensional object has a poor color tone due to discoloration such as yellowing Good.

本発明の処理を施す光学的立体造形物は、(a)ラジカル重合性有機化合物および光感受性ラジカル重合開始剤を含有する光硬化性樹脂組成物、(b)カチオン重合性有機化合物および光感受性カチオン重合開始剤を含有する光硬化性樹脂組成物、または(c)ラジカル重合性有機化合物、カチオン重合性有機化合物、光感受性ラジカル重合開始剤および光感受性カチオン重合開始剤を含有する光硬化性樹脂組成物のいずれから製造されていてもよい。そのうちでも、光学的立体造形物は、前記(c)の光硬化性樹脂組成物、すなわちラジカル重合性有機化合物、カチオン重合性有機化合物、光感受性ラジカル重合開始剤および光感受性カチオン重合開始剤を含有する光硬化性樹脂組成物を用いて製造されていることが、光学的立体造形物を製造する際の造形速度が速く、しかも光学的立体造形物の力学的特性および造形精度などに優れることから好ましい。
前記(b)および(c)の光硬化性樹脂組成物、特に前記(c)の光硬化性樹脂組成物において、光硬化性樹脂組成物中に含まれるカチオン重合性有機化合物の一部として、オキセタン基を1個有するモノオキセタン化合物およびオキセタン基を2個以上有するポリオキセタン化合物から選ばれる少なくとも1種のオキセタン化合物を含有させると、光硬化性樹脂組成物の光硬化感度が向上すると共に、硬化時の体積収縮率の低減による寸法精度の向上、耐水性および耐湿性の改良による寸法安定性の向上などを図ることができる。
The optical three-dimensional structure to which the treatment of the present invention is applied comprises (a) a photocurable resin composition containing a radical polymerizable organic compound and a photosensitive radical polymerization initiator, and (b) a cationic polymerizable organic compound and a photosensitive cation. A photocurable resin composition containing a polymerization initiator, or (c) a photocurable resin composition containing a radical polymerizable organic compound, a cationic polymerizable organic compound, a photosensitive radical polymerization initiator, and a photosensitive cationic polymerization initiator It may be manufactured from any of the products. Among them, the optical three-dimensional structure includes the photocurable resin composition of (c), that is, a radical polymerizable organic compound, a cationic polymerizable organic compound, a photosensitive radical polymerization initiator, and a photosensitive cationic polymerization initiator. Because it is manufactured using a photocurable resin composition, the modeling speed when manufacturing an optical three-dimensional model is fast, and the mechanical characteristics and modeling accuracy of the optical three-dimensional model are excellent. preferable.
In the photocurable resin composition of (b) and (c), in particular, in the photocurable resin composition of (c), as a part of the cationically polymerizable organic compound contained in the photocurable resin composition, Inclusion of at least one oxetane compound selected from a monooxetane compound having one oxetane group and a polyoxetane compound having two or more oxetane groups improves the photocuring sensitivity of the photocurable resin composition and cures it. It is possible to improve the dimensional accuracy by reducing the volumetric shrinkage and improve the dimensional stability by improving the water resistance and moisture resistance.

前記(a)および(c)の光硬化性樹脂組成物で用いるラジカル重合性有機化合物としては、光感受性ラジカル重合開始剤の存在下に光を照射したときに重合反応および/または架橋反応を生ずる化合物のいずれもが使用でき、代表例としては、(メタ)アクリレート系化合物、不飽和ポリエステル化合物、アリルウレタン系化合物、ポリチオール化合物などを挙げることができ、前記したラジカル重合性有機化合物の1種または2種以上を用いることができる。そのうちでも、1分子中に少なくとも1個の(メタ)アクリル基を有する化合物が好ましく用いられ、具体例としては、エポキシ化合物と(メタ)アクリル酸との反応生成物、アルコール類の(メタ)アクリル酸エステル、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレートなどを挙げることができる。   The radical polymerizable organic compound used in the photocurable resin compositions (a) and (c) causes a polymerization reaction and / or a cross-linking reaction when irradiated with light in the presence of a photosensitive radical polymerization initiator. Any of the compounds can be used, and typical examples include (meth) acrylate compounds, unsaturated polyester compounds, allylurethane compounds, polythiol compounds, and the like. Two or more kinds can be used. Among them, a compound having at least one (meth) acryl group in one molecule is preferably used. Specific examples include a reaction product of an epoxy compound and (meth) acrylic acid, and a (meth) acrylic alcohol. Examples include acid esters, urethane (meth) acrylates, polyester (meth) acrylates, and polyether (meth) acrylates.

上記したエポキシ化合物と(メタ)アクリル酸との反応生成物としては、芳香族エポキシ化合物、脂環族エポキシ化合物および/または脂肪族エポキシ化合物と、(メタ)アクリル酸との反応により得られる(メタ)アクリレート系反応生成物を挙げることができる。芳香族エポキシ化合物と(メタ)アクリル酸との反応により得られる(メタ)アクリレート系反応生成物の具体例としては、ビスフェノールAやビスフェノールFなどのビスフェノール化合物またはそのアルキレンオキサイド付加物とエピクロルヒドリンなどのエポキシ化剤との反応によって得られるグリシジルエーテルを、(メタ)アクリル酸と反応させて得られる(メタ)アクリレート、エポキシノボラック樹脂と(メタ)アクリル酸を反応させて得られる(メタ)アクリレート系反応生成物などを挙げることができる。   As a reaction product of the above-mentioned epoxy compound and (meth) acrylic acid, it can be obtained by reaction of an aromatic epoxy compound, an alicyclic epoxy compound and / or an aliphatic epoxy compound with (meth) acrylic acid (meta) ) Acrylate reaction products. Specific examples of the (meth) acrylate reaction product obtained by reacting an aromatic epoxy compound with (meth) acrylic acid include bisphenol compounds such as bisphenol A and bisphenol F or their alkylene oxide adducts and epoxy such as epichlorohydrin. (Meth) acrylate obtained by reacting glycidyl ether obtained by reaction with an agent with (meth) acrylic acid, (meth) acrylate-based reaction product obtained by reacting epoxy novolac resin with (meth) acrylic acid Things can be mentioned.

また、上記したアルコール類の(メタ)アクリル酸エステルとしては、分子中に少なくとも1個の水酸基をもつ芳香族アルコール、脂肪族アルコール、脂環族アルコールおよび/またはそれらのアルキレンオキサイド付加体と、(メタ)アクリル酸との反応により得られる(メタ)アクリレートを挙げることができる。
より具体的には、例えば、2−エチルヘキシル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソオクチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート[ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなど]、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、前記したジオール、トリオール、テトラオール、ヘキサオールなどの多価アルコールのアルキレンオキシド付加物の(メタ)アクリレートなどを挙げることができる。
そのうちでも、アルコール類の(メタ)アクリレートとしては、多価アルコールと(メタ)アクリル酸との反応により得られる1分子中に2個以上の(メタ)アクリル基を有する(メタ)アクリレートが好ましく用いられる。
また、前記した(メタ)アクリレート化合物のうちで、メタクリレート化合物よりも、アクリレート化合物が重合速度の点から好ましく用いられる。
Examples of the (meth) acrylic acid esters of the alcohols described above include aromatic alcohols, aliphatic alcohols, alicyclic alcohols and / or their alkylene oxide adducts having at least one hydroxyl group in the molecule; Mention may be made of (meth) acrylates obtained by reaction with (meth) acrylic acid.
More specifically, for example, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isooctyl (meth) Acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, diethylene glycol di (meth) ) Acrylate, triethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) a Relate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol poly (meth) acrylate [dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc.], ethoxylation Examples thereof include pentaerythritol tetra (meth) acrylate and (meth) acrylates of alkylene oxide adducts of polyhydric alcohols such as diol, triol, tetraol and hexaol described above.
Among them, as the (meth) acrylate of alcohols, (meth) acrylate having two or more (meth) acryl groups in one molecule obtained by reaction of polyhydric alcohol and (meth) acrylic acid is preferably used. It is done.
Of the (meth) acrylate compounds described above, an acrylate compound is preferably used in view of the polymerization rate rather than a methacrylate compound.

また、上記したウレタン(メタ)アクリレートとしては、例えば、水酸基含有(メタ)アクリル酸エステルとイソシアネート化合物を反応させて得られる(メタ)アクリレートを挙げることができる。前記水酸基含有(メタ)アクリル酸エステルとしては、脂肪族2価アルコールと(メタ)アクリル酸とのエステル化反応によって得られる水酸基含有(メタ)アクリル酸エステルが好ましく、具体例としては、2−ヒドロキシエチル(メタ)アクリレートなどを挙げることができる。また、前記イソシアネート化合物としては、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートなどのような1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物が好ましい。   Examples of the urethane (meth) acrylate described above include (meth) acrylate obtained by reacting a hydroxyl group-containing (meth) acrylic acid ester with an isocyanate compound. As the hydroxyl group-containing (meth) acrylic acid ester, a hydroxyl group-containing (meth) acrylic acid ester obtained by an esterification reaction of an aliphatic dihydric alcohol and (meth) acrylic acid is preferable. As a specific example, 2-hydroxy Examples thereof include ethyl (meth) acrylate. Moreover, as said isocyanate compound, the polyisocyanate compound which has a 2 or more isocyanate group in 1 molecule like tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate etc. is preferable.

さらに、上記したポリエステル(メタ)アクリレートとしては、水酸基含有ポリエステルと(メタ)アクリル酸との反応により得られるポリエステル(メタ)アクリレートを挙げることができる。
また、上記したポリエーテル(メタ)アクリレートとしては、水酸基含有ポリエーテルとアクリル酸との反応により得られるポリエーテルアクリレートを挙げることができる。
Furthermore, examples of the polyester (meth) acrylate described above include polyester (meth) acrylate obtained by a reaction between a hydroxyl group-containing polyester and (meth) acrylic acid.
Moreover, as above-mentioned polyether (meth) acrylate, the polyether acrylate obtained by reaction of a hydroxyl-containing polyether and acrylic acid can be mentioned.

上記(b)および(c)の光硬化性樹脂組成物で用い得るカチオン重合性有機化合物としては、例えば、《1》脂環族エポキシ樹脂、脂肪族エポキシ樹脂、芳香族エポキシ樹脂などのエポキシ化合物;《2》環状エーテルまたは環状アセタール化合物(オキセタン化合物、テトラヒドロフラン、2,3−ジメチルテトラヒドロフランのようなオキソラン化合物、トリオキサン、1,3−ジオキソラン、1,3,6−トリオキサンシクロオクタンなど);《3》環状ラクトン化合物(β−プロピオラクトン、ε−カプロラクトンなど);《4》チイラン化合物(エチレンスルフィド、チオエピクロロヒドリンなど);《5》チエタン化合物(1,3−プロピンスルフィド、3,3−ジメチルチエタンなど);《6》ビニルエーテル化合物[エチレングリコールジビニルエーテル、アルキルビニルエーテル、3,4−ジヒドロピラン−2−メチル(3,4−ジヒドロピラン−2−カルボキシレート)、トリエチレングリコールジビニルエーテルなど];《7》エポキシ化合物とラクトンとの反応によって得られるスピロオルソエステル化合物;《8》ビニルシクロヘキサン、イソブチレン、ポリブタジエンのようなエチレン性不飽和化合物などを挙げることができる。   Examples of the cationically polymerizable organic compound that can be used in the photocurable resin compositions of the above (b) and (c) include << 1 >> epoxy compounds such as alicyclic epoxy resins, aliphatic epoxy resins, and aromatic epoxy resins. << 2 >> Cyclic ether or cyclic acetal compound (oxetane compound, tetrahydrofuran, oxolane compound such as 2,3-dimethyltetrahydrofuran, trioxane, 1,3-dioxolane, 1,3,6-trioxane cyclooctane, etc.); << 3 >> cyclic lactone compounds (β-propiolactone, ε-caprolactone, etc.); << 4 >> thiirane compounds (ethylene sulfide, thioepichlorohydrin, etc.); << 5 >> thietane compounds (1,3-propyne sulfide, 3, 3-dimethylthietane); << 6 >> vinyl ether compound [ethylene Glycol divinyl ether, alkyl vinyl ether, 3,4-dihydropyran-2-methyl (3,4-dihydropyran-2-carboxylate), triethylene glycol divinyl ether, etc.]; << 7 >> Reaction of epoxy compound with lactone Spiro orthoester compounds obtained by the following: << 8 >> Ethylenically unsaturated compounds such as vinylcyclohexane, isobutylene and polybutadiene.

上記したうちでも、カチオン重合性有機化合物としては、エポキシ化合物[特に1分子中に2個以上のエポキシ基を有するポリエポキシ化合物(エポキシ樹脂)]が好ましく用いられ、当該エポキシ化合物とオキセタン化合物の併用がより好ましい。特に、1分子中に2個以上のエポキシ基を有する脂環式ポリエポキシ化合物(脂環族エポキシ樹脂)とオキセタン化合物を併用すると、光硬化性樹脂組成物の粘度が低くなって造形が円滑に行われ、しかもカチオン重合速度、厚膜硬化性、解像度、紫外線透過性などが良好になり、得られる光学的立体造形物の体積収縮率が小さくなる。   Among these, as the cationically polymerizable organic compound, an epoxy compound [especially a polyepoxy compound (epoxy resin) having two or more epoxy groups in one molecule] is preferably used, and the epoxy compound and the oxetane compound are used in combination. Is more preferable. In particular, when an alicyclic polyepoxy compound (alicyclic epoxy resin) having two or more epoxy groups in one molecule is used in combination with an oxetane compound, the viscosity of the photo-curable resin composition is lowered and the molding is smoothly performed. In addition, the cationic polymerization rate, the thick film curability, the resolution, the ultraviolet transmittance, and the like are improved, and the volumetric shrinkage of the obtained optical three-dimensional model is reduced.

上記した脂環族エポキシ樹脂(脂環式ポリエポキシ化合物)としては、少なくとも1個の脂環族環を有する多価アルコールのポリグリシジルエーテル、或いはシクロヘキセンまたはシクロペンテン環含有化合物を過酸化水素、過酸等の適当な酸化剤でエポキシ化して得られるシクロヘキセンオキサイドまたはシクロペンテンオキサイド含有化合物などを挙げることができる。より具体的には、脂環族エポキシ樹脂(脂環式ポリエポキシ化合物)として、例えば、水素添加ビスフェノールAジグリシジルエーテル、3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート、2−(3,4−エポキシシクロヘキシル−5,5−スピロ−3,4−エポキシ)シクロヘキサン−メタ−ジオキサン、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、ビニルシクロヘキセンジオキサイド、4−ビニルエポキシシクロヘキサン、ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル)アジペート、3,4−エポキシ−6−メチルシクロヘキシル−3,4−エポキシ−6−メチルシクロヘキサンカルボキシレート、メチレンビス(3,4−エポキシシクロヘキサン)、ジシクロペンタジエンジエポキサイド、エチレングリコールのジ(3,4−エポキシシクロヘキシルメチル)エーテル、エチレンビス(3,4−エポキシシクロヘキサンカルボキシレート)などを挙げることができる。   Examples of the alicyclic epoxy resin (alicyclic polyepoxy compound) include polyglycidyl ether of polyhydric alcohol having at least one alicyclic ring, or cyclohexene or cyclopentene ring-containing compound as hydrogen peroxide, peracid. Examples thereof include cyclohexene oxide or cyclopentene oxide-containing compounds obtained by epoxidation with a suitable oxidizing agent. More specifically, as the alicyclic epoxy resin (alicyclic polyepoxy compound), for example, hydrogenated bisphenol A diglycidyl ether, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexane-meta-dioxane, bis (3,4-epoxycyclohexylmethyl) adipate, vinylcyclohexene dioxide, 4-vinylepoxycyclohexane Bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, 3,4-epoxy-6-methylcyclohexyl-3,4-epoxy-6-methylcyclohexanecarboxylate, methylenebis (3,4-epoxycyclohexane) The Black pentaerythritol diepoxide, di (3,4-epoxycyclohexylmethyl) ether of ethylene glycol, ethylenebis (3,4-epoxycyclohexane carboxylate) and the like.

また、上記した脂肪族エポキシ樹脂としては、例えば、脂肪族多価アルコールまたはそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジルアクリレートやグリシジルメタクリレートのホモポリマー、コポリマーなどを挙げることができる。より具体的には、例えば、1,4−ブタンジオールのジグリシジルエーテル、1,6−ヘキサンジオールのジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールプロパンのジグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ソルビトールのテトラグリシジルエーテル、ジペンタエリスリトールのヘキサグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、ポリプロピレングリコールのジグリシジルエーテル、エチレングリコール、プロピレングリコール、グリセリン等の脂肪族多価アルコールに1種または2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル、脂肪族長鎖二塩基酸のジグリシジルエステルなどを挙げることができる。   Examples of the aliphatic epoxy resins include polyglycidyl ethers of aliphatic polyhydric alcohols or alkylene oxide adducts thereof, polyglycidyl esters of aliphatic long-chain polybasic acids, homopolymers and copolymers of glycidyl acrylate and glycidyl methacrylate. And so on. More specifically, for example, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane diglycidyl ether, trimethylolpropane triglycidyl Ether, sorbitol tetraglycidyl ether, dipentaerythritol hexaglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, one or two aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin Polyglycidyl ether of polyether polyol and diglycidyl ester of aliphatic long-chain dibasic acid obtained by adding the above alkylene oxide Etc. can be mentioned.

また、上記した芳香族エポキシ樹脂としては、例えば少なくとも1個の芳香核を有する1価または多価フェノール或いはそのアルキレンオキサイド付加体のモノまたはポリグリシジルエーテルを挙げることができ、具体的には、例えばビスフェノールAやビスフェノールFまたはそのアルキレンオキサイド付加体とエピクロルヒドリンとの反応によって得られるグリシジルエーテル、エポキシノボラック樹脂、フェノール、クレゾール、ブチルフェノールまたはこれらにアルキレンオキサイドを付加することにより得られるポリエーテルアルコールのモノグリシジルエーテルなどを挙げることができる。   Examples of the aromatic epoxy resin include mono- or polyglycidyl ethers of mono- or polyhydric phenols having at least one aromatic nucleus or alkylene oxide adducts thereof. Glycidyl ether, epoxy novolac resin, phenol, cresol, butylphenol obtained by reaction of bisphenol A, bisphenol F or its alkylene oxide adduct with epichlorohydrin, or monoglycidyl ether of polyether alcohol obtained by adding alkylene oxide to these And so on.

また、上記したオキセタン化合物としては、分子中にオキセタン基を1個有するモノオキセタン化合物(OXm)および分子中にオキセタン基を2個以上有するポリオキセタン化合物(OXp)の1種または2種以上を用いることができる。
モノオキセタン化合物(OXm)としては、1分子中にオキセタン基を1個有する化合物であればいずれも使用でき、例えば、トリメチレンオキシド、3,3−ジメチルオキセタン、3,3−ジクロロメチルオキセタン、3−メチル−3−フェノキシメチルオキセタン、分子中にオキセタン基1個とアルコール性水酸基1個を有するモノオキセタンモノアルコールなどを挙げることができ、そのうちでも、反応性、光硬化性樹脂組成物の粘度などの点からモノオキセンタンモノアルコール化合物が好ましく用いられる。
特に、モノオキセタンモノアルコール化合物のうちでも、下記の一般式(I−a)で表されるモノオキセタン化合物(I−a)および下記の一般式(I−b)で表されるモノオキセタン化合物(I−b)から選ばれる少なくとも1種のモノオキセタン化合物が、入手容易性、反応性などの点から好ましく用いられる。特に、モノオキセタン化合物(OXm)として、下記の一般式(I−b)で表されるモノオキセタン化合物(I−b)を用いると、光造形用樹脂組成物およびそれから得られる立体造形物の耐水性がより良好になる。
As the oxetane compound described above, one or more of a monooxetane compound (OXm) having one oxetane group in the molecule and a polyoxetane compound (OXp) having two or more oxetane groups in the molecule are used. be able to.
As the monooxetane compound (OXm), any compound having one oxetane group in one molecule can be used. For example, trimethylene oxide, 3,3-dimethyloxetane, 3,3-dichloromethyloxetane, 3 -Methyl-3-phenoxymethyloxetane, monooxetane monoalcohol having one oxetane group and one alcoholic hydroxyl group in the molecule can be mentioned, among them, the reactivity, viscosity of the photocurable resin composition, etc. From this point, a monooxentane monoalcohol compound is preferably used.
In particular, among monooxetane monoalcohol compounds, a monooxetane compound (Ia) represented by the following general formula (Ia) and a monooxetane compound represented by the following general formula (Ib) ( At least one monooxetane compound selected from Ib) is preferably used from the viewpoints of availability, reactivity, and the like. In particular, when the monooxetane compound (Ib) represented by the following general formula (Ib) is used as the monooxetane compound (OXm), the water resistance of the resin composition for optical modeling and the three-dimensional modeled product obtained therefrom The property becomes better.

Figure 2014000820
(式中、R1およびR2は炭素数1〜5のアルキル基、R3はエーテル結合を有していてもよい炭素数2〜10のアルキレン基、qは1〜6の整数を示す。)
Figure 2014000820
(Wherein R 1 and R 2 are alkyl groups having 1 to 5 carbon atoms, R 3 is an alkylene group having 2 to 10 carbon atoms which may have an ether bond, and q is an integer of 1 to 6). )

上記の一般式(I−a)において、R1の例としては、メチル、エチル、プロピル、ブチル、ペンチルを挙げることができる。また、上記の一般式(I−a)において、qは1〜6のうちのいずれでもよいが、1であることが、入手性、反応性の点から好ましい。
モノオキセタン化合物(I−a)の具体例としては、3−ヒドロキシメチル−3−メチルオキセタン、3−ヒドロキシメチル−3−エチルオキセタン、3−ヒドロキシメチル−3−プロピルオキセタン、3−ヒドロキシメチル−3−ノルマルブチルオキセタン、3−ヒドロキシメチル−3−プロピルオキセタンなどを挙げることができ、これらの1種または2種以上を用いることができる。そのうちでも、入手の容易性、反応性などの点から、3−ヒドロキシメチル−3−メチルオキセタン、3−ヒドロキシメチル−3−エチルオキセタンがより好ましく用いられる。
In the above general formula (Ia), examples of R 1 include methyl, ethyl, propyl, butyl, and pentyl. In the above general formula (Ia), q may be any one of 1 to 6, but 1 is preferable from the viewpoint of availability and reactivity.
Specific examples of the monooxetane compound (Ia) include 3-hydroxymethyl-3-methyloxetane, 3-hydroxymethyl-3-ethyloxetane, 3-hydroxymethyl-3-propyloxetane, and 3-hydroxymethyl-3. -Normal butyl oxetane, 3-hydroxymethyl-3-propyl oxetane, etc. can be mentioned, These 1 type (s) or 2 or more types can be used. Among these, 3-hydroxymethyl-3-methyloxetane and 3-hydroxymethyl-3-ethyloxetane are more preferably used from the viewpoints of easy availability and reactivity.

上記の一般式(I−b)において、R2の例としては、メチル、エチル、プロピル、ブチル、ペンチルを挙げることができる。
また、上記の一般式(I−b)において、R3は炭素数2〜10のアルキレン基であれば、鎖状のアルキレン基または分岐したアルキレン基のいずれであってもよく、或いはアルキレン基(アルキレン鎖)の途中にエーテル結合(エーテル系酸素原子)を有する炭素数2〜10の鎖状または分岐状のアルキレン基であってもよい。R3の具体例としては、エチレン基、トリメチレン基、テトラメチレン基、エトキシエチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、3−オキシペンチレン基などを挙げることができる。そのうちでも、R3はトリメチレン基、テトラメチレン基、ペンタメチレン基、ヘプタメチレン基またはエトキシエチレン基であることが、合成の容易性、化合物が常温で液体であり、取り扱い易いなどの点から好ましい。
In the above general formula (Ib), examples of R 2 include methyl, ethyl, propyl, butyl, and pentyl.
In the general formula (Ib), R 3 may be either a chain alkylene group or a branched alkylene group as long as it is an alkylene group having 2 to 10 carbon atoms, or an alkylene group ( It may be a C2-C10 chain or branched alkylene group having an ether bond (ether oxygen atom) in the middle of the (alkylene chain). Specific examples of R 3 include ethylene group, trimethylene group, tetramethylene group, ethoxyethylene group, pentamethylene group, hexamethylene group, heptamethylene group, and 3-oxypentylene group. Among them, R 3 is preferably a trimethylene group, a tetramethylene group, a pentamethylene group, a heptamethylene group or an ethoxyethylene group from the viewpoints of ease of synthesis, ease of handling because the compound is liquid at room temperature.

ポリオキセタン化合物(OXp)としては、オキセタン基を2個以上有する化合物、例えばオキセタン基を2個、3個または4個以上有する化合物のうちのいずれもが使用でき、そのうちでもオキセタン基を2個有するジオキセタン化合物が好ましく用いられる。
特に、ジオキセタン化合物としては、下記の一般式(b);
As the polyoxetane compound (OXp), a compound having two or more oxetane groups, for example, a compound having two, three, or four oxetane groups can be used, and of these, two oxetane groups are included. Dioxetane compounds are preferably used.
In particular, as a dioxetane compound, the following general formula (b);

Figure 2014000820
(式中、2個のR4は互いに同じかまたは異なる炭素数1〜5のアルキル基、R5は芳香環を有しているかまたは有していない2価の有機基、rは0または1を示す。)
で表されるジオキセタン化合物(II)が、入手の容易性、反応性、低吸湿性、得られる硬化物の力学的特性などの点から好ましく用いられる。
Figure 2014000820
(In the formula, two R 4 are the same or different from each other, and the alkyl group having 1 to 5 carbon atoms, R 5 is a divalent organic group having or not having an aromatic ring, and r is 0 or 1) Is shown.)
The dioxetane compound (II) represented by the formula is preferably used from the viewpoints of availability, reactivity, low hygroscopicity, and mechanical properties of the resulting cured product.

上記の一般式(b)において、R4の例としては、メチル、エチル、プロピル、ブチル、ペンチルを挙げることができる。また、R5の例としては、炭素数1〜12の直鎖状または分岐状のアルキレン基(例えばエチレン基、プロピレン基、ブチレン基、ネオペンチレン基、n−ペンタメチレン基、n−ヘキサメチレン基など)、式:−CH2−Ph−CH2−または−CH2−Ph−Ph−CH2−で表される2価の基、水素添加ビスフェノールA残基、水素添加ビスフェノールF残基、水素添加ビスフェノールZ残基、シクロヘキサンジメタノール残基、トリシクロデカンジメタノール残基などを挙げることができる。 In the above general formula (b), examples of R 4 include methyl, ethyl, propyl, butyl, and pentyl. Examples of R 5 include linear or branched alkylene groups having 1 to 12 carbon atoms (for example, ethylene group, propylene group, butylene group, neopentylene group, n-pentamethylene group, n-hexamethylene group, etc. ), A divalent group represented by the formula: —CH 2 —Ph—CH 2 — or —CH 2 —Ph—Ph—CH 2 —, hydrogenated bisphenol A residue, hydrogenated bisphenol F residue, hydrogenated A bisphenol Z residue, a cyclohexane dimethanol residue, a tricyclodecane dimethanol residue, etc. can be mentioned.

上記の一般式(II)で表されるジオキセタン化合物(b)の具体例としては、下記の式(II−a)または式(II−b)で表されるジオキセタン化合物を挙げることができる。   Specific examples of the dioxetane compound (b) represented by the general formula (II) include dioxetane compounds represented by the following formula (II-a) or formula (II-b).

Figure 2014000820
(式中、2個のR4は互いに同じか又は異なる炭素数1〜5のアルキル基、R5は芳香環を有しているかまたは有していない2価の有機基を示す。)
Figure 2014000820
(In the formula, two R 4 's are the same as or different from each other, and a C 1-5 alkyl group, and R 5 is a divalent organic group having or not having an aromatic ring.)

上記の式(II−a)で表されるジオキセタン化合物の具体例としては、ビス(3−メチル−3−オキセタニルメチル)エーテル、ビス(3−エチル−3−オキセタニルメチル)エーテル、ビス(3−プロピル−3−オキセタニルメチル)エーテル、ビス(3−ブチル−3−オキセタニルメチル)エーテルなどを挙げることができる。
また、上記の式(II−b)で表されるジオキセタン化合物の具体例としては、上記の式(II−b)において2個のR4が共にメチル、エチル、プロピル、ブチルまたはペンチル基で、R5がエチレン基、プロピレン基、ブチレン基、ネオペンチレン基、n−ペンタメチレン基、n−ヘキサメチレン基など)、式:−CH2−Ph−CH2−または−CH2−Ph−Ph−CH2−で表される2価の基、水素添加ビスフェノールA残基、水素添加ビスフェノールF残基、水素添加ビスフェノールZ残基、シクロヘキサンジメタノール残基、トリシクロデカンジメタノール残基であるジオキセタン化合物を挙げることができる。
光造形用樹脂組成物は、前記したジオキセタン化合物のうちの1種または2種以上を含有することができる。
Specific examples of the dioxetane compound represented by the above formula (II-a) include bis (3-methyl-3-oxetanylmethyl) ether, bis (3-ethyl-3-oxetanylmethyl) ether, bis (3- Propyl-3-oxetanylmethyl) ether, bis (3-butyl-3-oxetanylmethyl) ether, and the like.
Further, specific examples of the dioxetane compound represented by the above formula (II-b) include, in the above formula (II-b), two R 4 s are both methyl, ethyl, propyl, butyl or pentyl groups, R 5 is ethylene group, propylene group, butylene group, neopentylene group, n-pentamethylene group, n-hexamethylene group, etc.), formula: —CH 2 —Ph—CH 2 — or —CH 2 —Ph—Ph—CH 2 - a divalent group represented, hydrogenated bisphenol a residue, a hydrogenated bisphenol F residue, a hydrogenated bisphenol Z residue, a cyclohexane dimethanol residue, a dioxetane compound is tricyclodecane dimethanol residues Can be mentioned.
The resin composition for optical modeling can contain one or more of the dioxetane compounds described above.

そのうちでも、ポリオキセタン化合物(OXp)として、上記の式(II−a)において、2個のR4が共にメチル基またはエチル基であるビス(3−メチル−3−オキセタニルメチル)エーテルおよび/またはビス(3−エチル−3−オキセタニルメチル)エーテルが、入手の容易性、低吸湿性、硬化物の力学的特性などの点から好ましく用いられ、特にビス(3−エチル−3−オキセタニルメチル)エーテルがより好ましく用いられる。 Among them, as the polyoxetane compound (OXp), in the above formula (II-a), bis (3-methyl-3-oxetanylmethyl) ether in which two R 4 s are both methyl groups or ethyl groups and / or Bis (3-ethyl-3-oxetanylmethyl) ether is preferably used from the viewpoints of availability, low hygroscopicity, mechanical properties of the cured product, etc., and in particular, bis (3-ethyl-3-oxetanylmethyl) ether Is more preferably used.

上記(b)および(c)の光硬化性樹脂組成物では、光硬化性樹脂組成物中に含まれるカチオン重合性有機化合物の質量に基づいて、1分子中に2個以上のエポキシ基を有するポリエポキシ化合物(エポキシ樹脂)を30質量%以上、更には40質量%以上、特に50質量%以上の割合で含有することが好ましい。
また、上記(b)および(c)の光硬化性樹脂組成物が、カチオン重合性有機化合物の一部としてオキセタン化合物を含有する場合は、オキセタン化合物の含有量は、カチオン重合性有機化合物の質量に基づいて、1〜70質量%であることが好ましく、1〜60質量%であることがより好ましい。
また、上記(c)の光硬化性樹脂組成物では、ラジカル重合性有機化合物:カチオン重合性有機化合物の含有割合が、質量比で、9:1〜1:9であることが好ましく、8:2〜2:8であることがより好ましい。
In the photocurable resin composition of the above (b) and (c), it has two or more epoxy groups in one molecule based on the mass of the cationically polymerizable organic compound contained in the photocurable resin composition. The polyepoxy compound (epoxy resin) is preferably contained in an amount of 30% by mass or more, more preferably 40% by mass or more, and particularly preferably 50% by mass or more.
Moreover, when the photocurable resin composition of said (b) and (c) contains an oxetane compound as a part of cationically polymerizable organic compound, content of an oxetane compound is the mass of a cationically polymerizable organic compound. Is preferably 1 to 70% by mass, and more preferably 1 to 60% by mass.
In the photocurable resin composition (c), the content ratio of radical polymerizable organic compound: cation polymerizable organic compound is preferably 9: 1 to 1: 9 in terms of mass ratio, and 8: More preferably, it is 2 to 2: 8.

上記(a)および(c)の光硬化性樹脂組成物が含有する光感受性ラジカル重合開始剤(以下「光ラジカル重合開始剤」という)としては、光を照射したときにラジカル重合性有機化合物のラジカル重合を開始させ得る重合開始剤のいずれもが使用でき、例えば、1−ヒドロキシ−シクロヘキシルフェニルケトンなどのフェニルケトン系化合物、ベンジルジメチルケタール、ベンジル−β−メトキシエチルアセタール、1−ヒドロキシシクロヘキシルフェニルケトンなどベンジルまたはそのジアルキルアセタール系化合物、ジエトキシアセトフェノン、2−ヒドロキシメチル−1−フェニルプロパン−1−オン、4′−イソプロピル−2−ヒドロキシ−2−メチル−プロピオフェノン、2−ヒドロキシ−2−メチル−プロピオフェノン、p−ジメチルアミノアセトフェノン、p−tert−ブチルジクロロアセトフェノン、p−tert−ブチルトリクロロアセトフェノン、p−アジドベンザルアセトフェノンなどアセトフェノン系化合物、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインノルマルブチルエーテル、ベンゾインイソブチルエーテルなどのベンゾインまたはそのアルキルエーテル系化合物、ベンゾフェノン、o−ベンゾイル安息香酸メチル、ミヒラースケトン、4,4′−ビスジエチルアミノベンゾフェノン、4,4′−ジクロロベンゾフェノンなどベンゾフェノン系化合物、チオキサントン、2−メチルチオキサントン、2−エチルチオキサントン、2−クロロチオキサントン、2−イソプロピルチオキサントンなどチオキサントン系化合物などを挙げることができる。   The photo-sensitive radical polymerization initiator (hereinafter referred to as “photo radical polymerization initiator”) contained in the photo-curable resin composition of (a) and (c) above is a radical-polymerizable organic compound when irradiated with light. Any polymerization initiator capable of initiating radical polymerization can be used, for example, phenyl ketone compounds such as 1-hydroxy-cyclohexyl phenyl ketone, benzyl dimethyl ketal, benzyl-β-methoxyethyl acetal, 1-hydroxycyclohexyl phenyl ketone Benzyl or its dialkyl acetal compound, diethoxyacetophenone, 2-hydroxymethyl-1-phenylpropan-1-one, 4′-isopropyl-2-hydroxy-2-methyl-propiophenone, 2-hydroxy-2- Methyl-propiophenone, p- Acetophenone compounds such as methylaminoacetophenone, p-tert-butyldichloroacetophenone, p-tert-butyltrichloroacetophenone, p-azidobenzalacetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin normal butyl ether, benzoin Benzoin such as isobutyl ether or its alkyl ether compounds, benzophenone, methyl o-benzoylbenzoate, Michler's ketone, 4,4'-bisdiethylaminobenzophenone, benzophenone compounds such as 4,4'-dichlorobenzophenone, thioxanthone, 2-methylthioxanthone 2-ethylthioxanthone, 2-chlorothioxanthone, 2-isopropyl Examples include thioxanthone compounds such as thioxanthone.

上記(a)および(c)の光硬化性樹脂組成物は、光硬化性樹脂組成物の質量に基づいて、光ラジカル重合開始剤を0.5〜10質量%の割合で含有することが好ましく、1〜5質量%の割合で含有することがより好ましい。   The photocurable resin compositions (a) and (c) preferably contain a radical photopolymerization initiator in a proportion of 0.5 to 10% by mass based on the mass of the photocurable resin composition. 1 to 5% by mass is more preferable.

上記(b)および(c)の光硬化性樹脂組成物が含有する光感受性カチオン重合開始剤(以下「光カチオン重合開始剤」という)としては、光を照射したときにカチオン重合性有機化合物のカチオン重合を開始させ得る重合開始剤のいずれもが使用でき、例えば、テトラフルオロホウ酸トリフェニルフェナシルホスホニウム、ヘキサフルオロアンチモン酸トリフェニルスルホニウム、ビス−[4−(ジフェニルスルフォニオ)フェニル]スルフィドビスジヘキサフルオロアンチモネート、ビス−[4−(ジ4’−ヒドロキシエトキシフェニルスルフォニォ)フェニル]スルフィドビスジヘキサフルオロアンチモネート、ビス−[4−(ジフェニルスルフォニォ)フェニル]スルフィドビスジヘキサフルオロフォスフェート、テトラフルオロホウ酸ジフェニルヨードニウムなどを挙げることができ、これらの1種または2種以上を用いることができる。
また、反応速度を向上させる目的で、必要に応じて、カチオン重合開始剤と共に光増感剤、例えばベンゾフェノン、ベンゾインアルキルエーテル、チオキサントンなどを用いてもよい。
The photo-sensitive cationic polymerization initiator (hereinafter referred to as “photo-cationic polymerization initiator”) contained in the photo-curable resin composition of (b) and (c) is a cationic polymerizable organic compound when irradiated with light. Any of the polymerization initiators that can initiate cationic polymerization can be used, such as triphenylphenacylphosphonium tetrafluoroborate, triphenylsulfonium hexafluoroantimonate, bis- [4- (diphenylsulfonio) phenyl] sulfide Bisdihexafluoroantimonate, bis- [4- (di4'-hydroxyethoxyphenylsulfonio) phenyl] sulfide bisdihexafluoroantimonate, bis- [4- (diphenylsulfonio) phenyl] sulfide bisdi Hexafluorophosphate, tetrafluoroboro Examples thereof include diphenyliodonium acid, and one or more of these can be used.
In addition, for the purpose of improving the reaction rate, a photosensitizer such as benzophenone, benzoin alkyl ether, thioxanthone or the like may be used together with the cationic polymerization initiator as necessary.

上記(b)および(c)の光硬化性樹脂組成物は、光硬化性樹脂組成物の質量に基づいて、光カチオン重合開始剤を1〜10質量%の割合で含有することが好ましく、2〜6質量%の割合で含有することがより好ましい。   The photocurable resin compositions (b) and (c) preferably contain a photocationic polymerization initiator in a proportion of 1 to 10% by mass based on the mass of the photocurable resin composition. It is more preferable to contain in the ratio of -6 mass%.

光学的立体造形物の製造に用いる光造形用樹脂組成物は、必要に応じて、顔料や染料等の着色剤、消泡剤、レベリング剤、増粘剤、難燃剤、酸化防止剤、充填剤(架橋ポリマー粒子、シリカ、ガラス粉、セラミックス粉、金属粉等)、改質用樹脂などの1種または2種以上を適量含有していることができる。   The resin composition for optical modeling used for the production of an optical three-dimensional model is a colorant such as a pigment or a dye, an antifoaming agent, a leveling agent, a thickening agent, a flame retardant, an antioxidant, or a filler, if necessary. An appropriate amount of one or more kinds such as (crosslinked polymer particles, silica, glass powder, ceramic powder, metal powder, etc.) and a modifying resin can be contained.

本発明の処理方法の対象である光学的立体造形物は、光造形用樹脂組成物を用いて従来既知の光学的立体造形方法および装置を使用して製造することができる。その際に好ましく採用される光学的立体造形法の代表例としては、液状をなす光硬化性樹脂組成物に所望のパターンを有する硬化層が得られるように光を選択的に照射して硬化層を形成し、次いでこの硬化層に未硬化の液状の光硬化性樹脂組成物を供給し、同様に活性エネルギー線を照射して前記の硬化層と連続した硬化層を新たに形成する積層操作を繰り返すことによって最終的に目的とする立体的造形物を得る方法を挙げることができる。
その際の光としては、紫外線、電子線、X線、放射線、高周波などを挙げることができる。そのうちでも、300〜400nmの波長を有する紫外線が経済的な観点から好ましく用いられ、その際の光源としては、紫外線レーザー(例えば半導体励起固体レーザー、Arレーザー、He−Cdレーザーなど)、高圧水銀ランプ、超高圧水銀ランプ、低圧水銀ランプ、キセノンランプ、ハロゲンランプ、メタルハライドランプ、紫外線LED(発光ダイオード)、紫外線蛍光灯などを使用することができる。
The optical three-dimensional modeled object that is the object of the processing method of the present invention can be manufactured using a conventionally known optical three-dimensional modeled method and apparatus using a resin composition for optical modeling. As a representative example of the optical three-dimensional modeling method preferably employed in that case, a cured layer is obtained by selectively irradiating light so that a cured layer having a desired pattern is obtained on a liquid photocurable resin composition. Then, an uncured liquid photocurable resin composition is supplied to the cured layer, and a lamination operation in which a cured layer continuous with the cured layer is newly formed by irradiating active energy rays in the same manner. A method of finally obtaining a desired three-dimensional shaped object by repeating can be mentioned.
Examples of the light at that time include ultraviolet rays, electron beams, X-rays, radiation, and high frequencies. Among them, ultraviolet rays having a wavelength of 300 to 400 nm are preferably used from an economical viewpoint. As a light source at that time, an ultraviolet laser (for example, a semiconductor-excited solid laser, an Ar laser, a He—Cd laser), a high-pressure mercury lamp is used. Ultra high pressure mercury lamps, low pressure mercury lamps, xenon lamps, halogen lamps, metal halide lamps, ultraviolet LEDs (light emitting diodes), ultraviolet fluorescent lamps, and the like can be used.

光硬化性樹脂組成物よりなる造形面に光を照射して所定の形状パターンを有する各硬化樹脂層を形成するに当たっては、レーザー光などのような点状に絞られた光を使用して点描または線描方式で硬化樹脂層を形成してもよいし、または液晶シャッターまたはデジタルマイクロミラーシャッター(DMD)などのような微小光シャッターを複数配列して形成した面状描画マスクを通して造形面に光を面状に照射して硬化樹脂層を形成させる造形方式を採用してもよい。   In forming each cured resin layer having a predetermined shape pattern by irradiating light on the modeling surface made of the photocurable resin composition, point-drawing is performed using light focused in a spot shape such as laser light. Alternatively, a cured resin layer may be formed by a line drawing method, or light is applied to a modeling surface through a planar drawing mask formed by arranging a plurality of micro light shutters such as a liquid crystal shutter or a digital micromirror shutter (DMD). You may employ | adopt the modeling system which irradiates planarly and forms a cured resin layer.

430〜500nmの範囲内の波長を有する光を含み且つ波長400nm以下の光を含まない光(α)を光学的立体造形物に照射する本発明の処理方法によって、光学的立体造形物に生じていた黄変などの変色が解消または低減して、無色透明性に優れる光学的立体造形物または着色剤を含むものでは着色剤本来の優れた色調を有する光学的立体造形物が簡単に且つ短時間で円滑に得られる理由は明確ではないが、以下のように推測される。
すなわち、光学的立体造形物の黄変などの変色を起こす原因物質として種々のものが考えられるが、ラジカル重合性有機化合物、カチオン重合性有機化合物、光感受性ラジカル重合開始剤、光感受性カチオン重合開始剤として用いられる化合物に、紫外線などを照射すると黄色などに着色した物質に変化する化合物が存在し、光学的立体造形時の紫外線照射によって当該物質が青色領域に吸収を有するために黄変などの変着色を生ずる物質に変化して、光学的立体造形して得られる光学的立体造形物に黄変などの変色が生じ、そのような黄変などの変色を生じた当該光学的立体造形物に対して、430〜500nmの範囲内の波長を有する光(青色光)を含み且つ波長400nm以下の光を含まない光(α)を照射すると、黄変などの変着色の原因物質が青色光を吸収して光分解・光異性化などの反応を起こして、無色の物質に変化し、光学的立体造形物に生じていた黄変などの変色が解消または低減して、無色透明性に優れた光学的立体造形物または着色剤を含むものでは着色剤本来の優れた色調を有する光学的立体造形物になるものと推測される。
その際に、黄変などの変着色の原因の1つとして、ベンゾイル基を有する化合物、芳香族化合物、アクリロイル基を有する化合物などに紫外線が照射されて生成した共役二重結合構造や、ポリマーネットワークに閉じ込められて孤立したラジカル種などが考えられる。
The optical three-dimensional object is generated by the processing method of the present invention that irradiates the optical three-dimensional object with light (α) including light having a wavelength in the range of 430 to 500 nm and not including light having a wavelength of 400 nm or less. In the case of an optical three-dimensional object with excellent transparency and colorlessness or a colorant that eliminates or reduces discoloration such as yellowing, an optical three-dimensional object that has the original excellent color tone can be easily and quickly The reason why it can be obtained smoothly is not clear, but is estimated as follows.
In other words, various substances that cause discoloration such as yellowing of an optical three-dimensional model can be considered, but radical polymerizable organic compounds, cationic polymerizable organic compounds, photosensitive radical polymerization initiators, photosensitive cationic polymerization initiation In the compound used as an agent, there is a compound that changes to a substance colored yellow or the like when irradiated with ultraviolet rays, etc., and the substance absorbs in the blue region by ultraviolet irradiation during optical three-dimensional modeling. It changes to a substance that causes discoloration, and discoloration such as yellowing occurs in the optical three-dimensional object obtained by optical three-dimensional modeling, and the optical three-dimensional object that causes such discoloration such as yellowing On the other hand, when light (α) containing light (blue light) having a wavelength in the range of 430 to 500 nm and not containing light having a wavelength of 400 nm or less is irradiated, discoloration such as yellowing The causative substance absorbs blue light, undergoes reactions such as photolysis and photoisomerization, changes to a colorless substance, and discoloration such as yellowing that occurred in optical three-dimensional objects is eliminated or reduced, It is presumed that an optical three-dimensional object having excellent colorlessness and an optical three-dimensional object having a color tone inherent to the colorant is presumed.
At that time, one of the causes of discoloration such as yellowing is a conjugated double bond structure produced by irradiating a compound having a benzoyl group, an aromatic compound, a compound having an acryloyl group or the like with ultraviolet rays, or a polymer network. An isolated radical species confined in the region can be considered.

本発明の方法で処理して得られる光学的立体造形物は、種々の分野で幅広く用いることができ、何ら限定されるものではないが、代表的な応用分野としては、設計の途中で外観デザインを検証するための形状確認モデル、部品の機能性をチェックするための機能試験モデル、鋳型を制作するためのマスターモデル、金型を制作するためのマスターモデル、試作金型用の直接型、美術工芸品などとして用いることができる。より具体的には、例えば、精密部品、電気・電子部品、家具、建築構造物、自動車用部品、各種容器類、鋳物などのモデル、母型、加工用のモデル、複雑な熱媒回路の設計用の部品、複雑な構造の熱媒挙動の解析企画用の部品、美術品の復元、模造や現代アート、ガラス張りの建築物のデザインプレゼンテーションモデルのような美術工芸品などの用途に有効に用いることができる。   The optical three-dimensional object obtained by processing with the method of the present invention can be widely used in various fields, and is not limited at all. Shape verification model for verifying the function, functional test model for checking the functionality of parts, master model for producing molds, master model for producing molds, direct mold for prototype molds, art It can be used as a craft. More specifically, for example, precision parts, electrical / electronic parts, furniture, building structures, automotive parts, various containers, castings, etc. models, master molds, models for processing, complex heat transfer circuit designs Effectively used for applications such as parts for construction, parts for analysis and planning of heat transfer behavior of complex structures, restoration of artworks, imitation and contemporary art, art and crafts such as design presentation models for glass-walled buildings Can do.

以下に本発明を実施例によって具体的に説明するが、本発明は実施例に何ら限定されるものではない。
以下の例において、光硬化性樹脂組成物の粘度、硬化深度(Dp)、臨界硬化エネルギー(Ec)および作業硬化エネルギー(E10)の測定、光造形して得られた光学的立体造形物の力学的特性[引張り特性(引張破断強度、引張破断伸度、引張弾性率)、降伏強度、曲げ特性(曲げ強度、曲げ弾性率)、衝撃強度]、収縮率、硬度、熱変形温度、光学的立体造形物における光を照射されている表面での380〜780nmの波長範囲(可視光域)の光の合計光照射強度Q(以下「可視光の合計照射強度Q」ということがある)、露光装置から放射される光の波長範囲、光学的立体造形物における光を照射されている表面での波長430〜500nmの光の合計照射強度(以下「光(430〜500nm)の合計照射強度」ということがある)並びに光学的立体造形物の黄色度の測定または算出は以下にようにして行った。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.
In the following examples, measurement of viscosity, depth of cure (Dp), critical curing energy (Ec) and work curing energy (E 10 ) of photocurable resin composition, and optical three-dimensional modeled object obtained by optical modeling Mechanical properties [tensile properties (tensile rupture strength, tensile rupture elongation, tensile modulus), yield strength, bending properties (bending strength, flexural modulus), impact strength], shrinkage rate, hardness, thermal deformation temperature, optical Total light irradiation intensity Q of light in the wavelength range (visible light range) of 380 to 780 nm on the surface irradiated with light in the three-dimensional modeled object (hereinafter sometimes referred to as “total irradiation intensity Q of visible light”), exposure The wavelength range of light emitted from the apparatus, the total irradiation intensity of light having a wavelength of 430 to 500 nm on the surface irradiated with light in the optical three-dimensional object (hereinafter referred to as “total irradiation intensity of light (430 to 500 nm)”) Sometimes ) And the yellowness of the optical three-dimensional object were measured or calculated as follows.

(1)光硬化性樹脂組成物の粘度:
光硬化性樹脂組成物を25℃の恒温槽に入れて、光硬化性樹脂組成物の温度を25℃に調節した後、B型粘度計(株式会社東機産業製)を使用して回転速度20rpmで測定した。
(1) Viscosity of photocurable resin composition:
After putting a photocurable resin composition in a 25 degreeC thermostat and adjusting the temperature of a photocurable resin composition to 25 degreeC, it uses a B-type viscometer (made by Toki Sangyo Co., Ltd.) and rotational speed. Measured at 20 rpm.

(2)光硬化性樹脂組成物の硬化深度(Dp)、臨界硬化エネルギー(Ec)及び作業硬化エネルギー(E10):
非特許文献1に記載されている理論にしたがって測定した。具体的には、光硬化性樹脂組成物よりなる造形面(液面)に、半導体励起固体レーザのレーザ光(波長355nmの紫外光、液面レーザ強度100mW)を、照射スピードを6段階変化(照射エネルギー量を6段階変化)させて照射して光硬化膜を形成させた。生成した光硬化膜を光硬化性樹脂組成物液から取り出して、未硬化樹脂を取り除き、6段階のエネルギーに対応する部分の硬化膜の厚さを定圧のノギスで測定した。光硬化膜の厚さをY軸、照射エネルギー量をX軸(対数軸)としてプロットし、プロットして得られた直線の傾きから硬化深度[Dp(mm)]を求めると共に、X軸の切片を臨界硬化エネルギー[Ec(mJ/cm2)]とし、0.25mmの厚さに硬化させるのに必要な露光エネルギー量を作業硬化エネルギー[(E10/(mJ/cm2)]とした。
(2) Curing depth (Dp), critical curing energy (Ec) and work curing energy (E 10 ) of the photocurable resin composition:
Measurement was performed according to the theory described in Non-Patent Document 1. Specifically, a laser beam (ultraviolet light with a wavelength of 355 nm, a liquid surface laser intensity of 100 mW) of a semiconductor-excited solid laser is applied to a modeling surface (liquid surface) made of a photocurable resin composition, and the irradiation speed is changed in six steps ( The photocured film was formed by irradiating with the irradiation energy amount changed by 6 levels. The produced photocured film was taken out from the photocurable resin composition liquid, the uncured resin was removed, and the thickness of the cured film corresponding to 6 levels of energy was measured with a vernier caliper. Plotting the photocured film thickness as the Y-axis and the irradiation energy amount as the X-axis (logarithmic axis), obtaining the cure depth [Dp (mm)] from the slope of the straight line obtained by plotting, and intercepting the X-axis Was the critical curing energy [Ec (mJ / cm 2 )], and the exposure energy required to cure to a thickness of 0.25 mm was the work curing energy [(E 10 / (mJ / cm 2 )].

(3)光学的立体造形物の引張り特性(引張破断強度、引張破断伸度、引張弾性率):
以下の実施例または比較例で作製した光学的立体造形物(JIS K−7113に準拠したダンベル形状の試験片)[紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化したもの]を用いて、JIS K−7113にしたがって、試験片の引張破断強度(引張強度)、引張破断伸度(引張伸度)および引張弾性率を測定した。
(3) Tensile properties (tensile rupture strength, tensile rupture elongation, tensile elastic modulus) of the optical three-dimensional structure:
An optical three-dimensional object (dumbbell-shaped test piece based on JIS K-7113) [ultraviolet ray (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) irradiated in 20 minutes for 20 minutes. The test piece was measured for tensile strength at break (tensile strength), tensile elongation at break (tensile elongation), and tensile modulus according to JIS K-7113.

(4)光学的立体造形物の降伏強度:
上記(3)の引張り特性の試験において、光学的立体造形物が弾性から塑性に移る点における強度を降伏強度とした。
(4) Yield strength of optical 3D objects:
In the tensile property test of (3) above, the yield strength is defined as the strength at which the optical three-dimensional structure moves from elasticity to plasticity.

(5)光学的立体造形物の曲げ特性(曲げ強度、曲げ弾性率):
以下の実施例または比較例で作製した光学的立体造形物(JIS K−7171に準拠したバー形状の試験片)[紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化したもの]を用いて、JIS K−7171にしたがって、試験片の曲げ強度および曲げ弾性率を測定した。
(5) Bending characteristics (bending strength, bending elastic modulus) of the optical three-dimensional structure:
An optical three-dimensional model (bar-shaped test piece conforming to JIS K-7171) [ultraviolet ray (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) irradiated in 20 minutes for 20 minutes. Was used to measure the bending strength and the flexural modulus of the test piece according to JIS K-7171.

(6)光学的立体造形物の衝撃強度:
以下の実施例または比較例で作製した光学的立体造形物(JIS K−7110に準拠した直方体形状の試験片)[紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化したもの]を用いて、JIS K−7110にしたがって、試験片のノッチ付きアイゾット衝撃強度を測定した。
(6) Impact strength of the optical three-dimensional object:
Optical three-dimensional modeled object (rectangular test piece conforming to JIS K-7110) [UV light (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) irradiated for 20 minutes Was used to measure the notched Izod impact strength of the test piece according to JIS K-7110.

(7)収縮率:
光硬化させる前の光硬化性樹脂組成物(液体)の比重(d0)と、光硬化して得られた光硬化物を紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化したものの比重(d1)から、下記の数式により収縮率を求めた。

収縮率(%)={(d1−d0)/d1}×100
(7) Shrinkage rate:
The specific gravity (d 0 ) of the photo-curable resin composition (liquid) before photo-curing, and the photo-cured product obtained by photo-curing the ultraviolet ray (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) 20 From the specific gravity (d 1 ) of what was post-cured by irradiation for minutes, the shrinkage rate was determined by the following formula.

Shrinkage rate (%) = {(d 1 −d 0 ) / d 1 } × 100

(8)光学的立体造形物の硬度(ショアD硬度):
以下の実施例および比較例で作製した光学的立体造形物(JIS K−7113に準拠したダンベル形状の試験片)[紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化したもの]の硬さ(ショアD硬度)を、25℃で、高分子計器社製の「アスカーD型硬度計」を使用して、JIS K−6253に準拠してデュロメーター法により測定した。
(8) Hardness of optical three-dimensional structure (Shore D hardness):
Optically three-dimensional modeled objects (dumbbell-shaped test pieces conforming to JIS K-7113) [ultraviolet rays (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) irradiated for 20 minutes were prepared in the following examples and comparative examples. The post-cured] hardness (Shore D hardness) is measured by a durometer method at 25 ° C. using an “Asker D-type hardness meter” manufactured by Kobunshi Keiki Co., Ltd. according to JIS K-6253. did.

(9)光学的立体造形物の熱変形温度:
以下の実施例または比較例で作製した光学的立体造形物(JIS K−7171に準拠したバー形状の試験片)[紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化したもの]を用い、東洋精機社製「HDTテスタ6M−2」を使用して、試験片に1.81MPaの荷重を加えるJIS K−7207(A法)に準拠して、試験片の熱変形温度を測定した。
(9) Thermal deformation temperature of the optical three-dimensional structure:
An optical three-dimensional model (bar-shaped test piece conforming to JIS K-7171) [ultraviolet ray (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) irradiated in 20 minutes for 20 minutes. In accordance with JIS K-7207 (Method A), a load of 1.81 MPa is applied to the test piece using “HDT Tester 6M-2” manufactured by Toyo Seiki Co., Ltd. The heat distortion temperature of was measured.

(10)可視光の合計照射強度Q:
光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)[紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化したもの]を、平らな台上に、縦×横=50mm×30mmの2つの方形表面が上面と下面になるようにして載置し、光学的立体造形物の縦×横=50mm×30mmの方形の上面における対角線のほぼ交点に相当する位置に、放射照度計(鶴賀電気社製「HD2302」)のプローブを取り付け、光学的立体造形物の上方から光学的立体造形物に対して光を照射して光学的立体造形物の光を照射された表面での380〜780nmの波長範囲(可視光域)における合計照射強度Q(W/m2)を測定した。
(10) Total irradiation intensity Q of visible light:
Optical three-dimensional modeled object (vertical x horizontal x thickness = 50 mm x 30 mm x 5 mm rectangular parallelepiped) [what was post-cured by irradiation with ultraviolet rays (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) for 20 minutes] On a flat table, two rectangular surfaces of length x width = 50 mm x 30 mm are placed so that the upper surface and the lower surface are the upper and lower surfaces. A probe of an irradiance meter (“HD2302” manufactured by Tsuruga Electric Co., Ltd.) is attached to a position substantially corresponding to the intersection of the optical three-dimensional object, and light is irradiated onto the optical three-dimensional object from above the optical three-dimensional object. The total irradiation intensity Q (W / m 2 ) in the wavelength range (visible light region) of 380 to 780 nm on the surface irradiated with the light of the shaped article was measured.

(11)光(430〜500nm)の合計照射強度:
(11−i) 上記(10)における光学的立体造形物への光照射時に、光スペクトラムアナライザ(安藤電機社製「AQ−6311」)のプローブを、光学的立体造形物の縦×横=50mm×30mmの方形の上面における対角線のほぼ交点に相当する位置に前記した放射照度計(鶴賀電気社製「HD2302」)のプローブと並べて取り付け、光学的立体造形物の光を照射された表面での340〜850nmの波長範囲(可視光域)にわたって、5nm刻みで相対分光強度を測定して、相対分光強度曲線Fを求めた。
(11−ii) 上記(11−i)で求めた相対分光強度曲線Fから、380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBをそれぞれ算出し、式:Q×(LB/LA)から、光学的立体造形物の光を照射されている表面での波長430〜500nmの光の合計照射強度(W/m2)を求めた。
(11) Total irradiation intensity of light (430 to 500 nm):
(11-i) At the time of light irradiation to the optical three-dimensional modeled object in (10) above, the probe of the optical spectrum analyzer ("AQ-6611" manufactured by Ando Electric Co., Ltd.) is used. X30 mm square upper surface is mounted side by side with the probe of the irradiance meter ("HD2302" manufactured by Tsuruga Electric Co., Ltd.) at a position substantially corresponding to the intersection of the diagonal lines on the surface irradiated with the light of the optical three-dimensional object. The relative spectral intensity curve F was determined by measuring the relative spectral intensity in 5 nm increments over a wavelength range of 340 to 850 nm (visible light range).
(11-ii) from the relative spectral intensity curve F obtained in the above (11-i), the integral value L A and the wavelength range of 430~500nm the relative spectral intensity in the wavelength range of 380 to 780 nm (visible light region) calculating the relative spectral intensity integrated value L B, respectively, wherein: a Q × (L B / L a ), the sum of the light having a wavelength 430~500nm at the surface being irradiated with light of an optical three-dimensional object Irradiation intensity (W / m 2 ) was determined.

(12)光源から放射される光の波長範囲およびピーク強度:
上記(11−i)で求めた相対分光強度曲線Fから、光源から放射される光の波長範囲およびピーク強度を求めた。
(12) Wavelength range and peak intensity of light emitted from the light source:
From the relative spectral intensity curve F obtained in (11-i) above, the wavelength range and peak intensity of light emitted from the light source were obtained.

(13)黄色度の測定:
下記の実施例および比較例において光学的立体造形を行って得られた光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)[紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化したもの]について、光照射による後処理を施す前の黄色度および所定の時間にわたって光照射による後処理を施した後の黄色度を、直径60mmの積分球を備えた分光光度計(日立ハイテクノロジーズ社製「U−3900H」)に取り付け、板厚5mmの分光透過率を測定し、これにより得られた分光透過率を、当該分光光度計に付属したソフトウェア(UV Solutions)を用いてJIS−K7373に規定された方法で数値計算することによって、補助イルミナントC、視野2度の条件における黄色度を求めた。
(13) Measurement of yellowness:
Optical three-dimensional modeled object (vertical x horizontal x thickness = 50 mm x 30 mm x 5 mm rectangular parallelepiped) obtained by performing optical three-dimensional modeling in the following examples and comparative examples [UV (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) for 20 minutes after irradiation, the yellowness before the post-treatment by light irradiation and the yellowness after the post-treatment by light irradiation over a predetermined time are 60 mm in diameter. It is attached to a spectrophotometer ("H-3900H" manufactured by Hitachi High-Technologies Corporation) equipped with an integrating sphere, and the spectral transmittance with a plate thickness of 5 mm is measured, and the spectral transmittance thus obtained is applied to the spectrophotometer. By using the attached software (UV Solutions) to perform numerical calculations according to the method defined in JIS-K7373, in the condition of auxiliary illuminant C, field of view of 2 degrees. To determine the chromaticity.

《実施例1》
(1)光硬化性樹脂組成物の調製:
(i) 水素化ビスフェノールAジグリシジルエーテル(新日本理化株式会社製「HBE−100」)60質量部、3−ヒドロキシメチル−3−エチルオキセタン(東亞合成株式会社製「OXT−101」)5質量部、ビス(3−エチル−3−オキセタニルメチル)エーテル(東亞合成株式会社製「OXT−221」)15質量部、4−フェニルチオフェニルジフェニルスルホニウムヘキサフルオロアンチモネート(サンアプロ株式会社製「CPI−101A」)(カチオン重合開始剤)4質量部、ジペンタエリスリトールポリアクリレート(新中村化学工業株式会社製「A−9550」)10質量部、ラウリルアクリレート(新中村化学工業株式会社製)6質量部および1−ヒドロキシ−シクロヘキシルフェニルケトン(チバスペシャリティケミカル社製「Irgacure 184」)(ラジカル重合開始剤)3質量部をよく混合して光硬化性樹脂組成物を調製し、これを遮光したタンクに収容した。
(ii) 上記(i)で得られた光硬化性樹脂組成物の粘度を上記した方法で測定したところ、200mPa・sであった。
(iii) 上記(i)で得られた光硬化性樹脂組成物について、その硬化深度(Dp)、臨界硬化エネルギー(Ec)および作業硬化エネルギー(E10)を上記した方法で求めたところ、硬化深度(Dp)=0.2mm、臨界硬化エネルギー(Ec)=22mJ/cm2、および作業硬化エネルギー(E10)=79mJ/cm2であった。
Example 1
(1) Preparation of photocurable resin composition:
(I) 60 parts by mass of hydrogenated bisphenol A diglycidyl ether (“HBE-100” manufactured by Shin Nippon Chemical Co., Ltd.), 5 mass of 3-hydroxymethyl-3-ethyloxetane (“OXT-101” manufactured by Toagosei Co., Ltd.) Parts, bis (3-ethyl-3-oxetanylmethyl) ether (“OXT-221” manufactured by Toagosei Co., Ltd.), 4-phenylthiophenyldiphenylsulfonium hexafluoroantimonate (“CPI-101A manufactured by San Apro Co., Ltd.) ]) (Cationic polymerization initiator) 4 parts by mass, dipentaerythritol polyacrylate (Shin Nakamura Chemical Co., Ltd. "A-9550") 10 parts by mass, lauryl acrylate (Shin Nakamura Chemical Co., Ltd.) 6 parts by mass, 1-Hydroxy-cyclohexyl phenyl ketone (Ciba Specialty) A photo-curable resin composition was prepared by thoroughly mixing 3 parts by mass of “Irgacure 184” (radical polymerization initiator) manufactured by Chemical Co., and accommodated in a light-shielded tank.
(Ii) The viscosity of the photocurable resin composition obtained in the above (i) was measured by the method described above, and was 200 mPa · s.
(Iii) About the photocurable resin composition obtained in the above (i), the curing depth (Dp), critical curing energy (Ec), and work curing energy (E 10 ) were determined by the above-described method. Depth (Dp) = 0.2 mm, critical curing energy (Ec) = 22 mJ / cm 2 , and work curing energy (E 10 ) = 79 mJ / cm 2 .

(2)物性測定用の光学的立体造形物の製造:
(i) 上記(1)の(i)で調製した光硬化性樹脂組成物を用いて、超高速光造形システム(ナブテスコ株式会社製「SOLIFORM500B」)を使用して、スペクトラフィジックス社製「半導体励起固体レーザーBL6型」(出力1000mW;波長355nm)を表面に対して垂直に照射して、照射エネルギー100mJ/cm2の条件下に、スライスピッチ(積層厚み)0.10mm、1層当たりの平均造形時間2分で光学的立体造形を行って力学的特性[引張り特性(引張破断強度、引張破断伸度、引張弾性率)、降伏強度、曲げ特性(曲げ強度、曲げ弾性率)、衝撃強度]、収縮率、硬度(ショアD硬度)および熱変形温度を測定するための光学的立体造形物をそれぞれ製造し、得られた光学的立体造形物(試験片)に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
(ii) 上記(i)で得られた光学的立体造形物(紫外線で後硬化したもの)を用いて、上記した方法で各種物性を測定したところ、引張破断強度=49MPa、引張破断伸度=6.8%、引張弾性率=1690MPa、降伏強度=43MPa、曲げ強度=65MPa、曲げ弾性率=2010MPa、衝撃強度=1.6kJ/m2、収縮率=5.4%、硬度(ショアD硬度)=84および熱変形温度=50℃であった。
(2) Manufacture of an optical three-dimensional model for measuring physical properties:
(I) Using the photocurable resin composition prepared in (i) of (1) above, “Semiconductor excitation” manufactured by SpectraPhysics Co., Ltd. using an ultra-high-speed stereolithography system (“SOLIFORM 500B” manufactured by Nabtesco Corporation) solid laser BL6 type "; irradiated perpendicularly (output 1000mW wavelength 355 nm) of the surface, under the conditions of irradiation energy 100 mJ / cm 2, slice pitch (lamination thickness) 0.10 mm, the average modeling per layer Performs optical three-dimensional modeling in 2 minutes and mechanical properties [tensile properties (tensile rupture strength, tensile rupture elongation, tensile elastic modulus), yield strength, bending properties (bending strength, bending elastic modulus), impact strength], An optical three-dimensional object for measuring shrinkage rate, hardness (Shore D hardness) and thermal deformation temperature is manufactured, and ultraviolet light is applied to the obtained optical three-dimensional object (test piece). And post cured by irradiation with intensity 30 W / m 2) 20 minutes; high pressure mercury lamp) (wavelength 365 nm.
(Ii) Various physical properties were measured by the above-described method using the optical three-dimensional structure obtained in (i) above (post-cured with ultraviolet rays). Tensile breaking strength = 49 MPa, tensile breaking elongation = 6.8%, tensile elastic modulus = 1690 MPa, yield strength = 43 MPa, bending strength = 65 MPa, bending elastic modulus = 2010 MPa, impact strength = 1.6 kJ / m 2 , shrinkage rate = 5.4%, hardness (Shore D hardness) ) = 84 and heat distortion temperature = 50 ° C.

(3)光学的立体造形物の光照射処理:
(i) 上記(1)の(i)で調製した光硬化性樹脂組成物を用いて、上記(2)の(i)と同じ光造形条件を採用して光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)を製造し、次いでこの光学的立体造形物に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
これにより得られた紫外線による後硬化後の光学的立体造形物は、全体として透明であったが、黄変しており、上記した方法で測定した黄色度は2.9であった。
(ii) 上記(i)で得られた黄変した光学的立体造形物(紫外線照射して後硬化したもの)を、平らな台上に、縦×横=50mm×30mmの2つの方形表面が上面と下面になるようにして載置し、青色光を放射する光源(発光ダイオード)(LEDパラダイス社製「LP−R5B40」、放射光の波長範囲=420〜505nm、ピーク波長=455nm、波長400nm以下の光を放射せず)の100個を方形に集積して各々に15mAを通電したものを用いて、光学的立体造形物の上方から青色光を延べ5時間にわたって照射した。
(iii) 上記(ii)の青色光の照射の際に、光学的立体造形物の表面での380〜780nmの波長範囲(可視光域)における合計照射強度Q(W/m2)を上記した方法で測定すると共に、光学的立体造形物の光を照射されている表面での380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBを上記した方法で求めて、式:Q×(LB/LA)から、光学的立体造形物の光を照射されている表面での波長430〜500nmの光の合計照射強度(W/m2)を求めたところ、下記の表1に示すとおりであった。
(iv) また、上記(ii)の青色光の照射の際に、青色光を30分間照射した後、2時間照射した後および5時間照射した後の時点で、光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表1に示すとおりであった。
(3) Light irradiation treatment of optical three-dimensional structure:
(I) Using the photocurable resin composition prepared in (i) of (1) above, adopting the same optical modeling conditions as in (i) of (2) above, an optical three-dimensional model (vertical x horizontal) × Thickness = 50 mm × 30 mm × 5 mm rectangular parallelepiped) was manufactured, and then this optical three-dimensional model was post-cured by irradiating with ultraviolet rays (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) for 20 minutes.
The resulting optically three-dimensional molded article after post-curing with ultraviolet rays was transparent as a whole, but yellowed, and the yellowness measured by the above-described method was 2.9.
(Ii) The two-dimensional surface of length × width = 50 mm × 30 mm is placed on a flat table on the yellow-colored optical three-dimensional object obtained in (i) above (post-cured by ultraviolet irradiation). Light source (light-emitting diode) that emits blue light, placed on the top and bottom surfaces (LED Paradise “LP-R5B40”, wavelength range of emitted light = 420 to 505 nm, peak wavelength = 455 nm, wavelength 400 nm 100 pieces of the following (without emitting the following light) were collected in a square shape and each was supplied with 15 mA, and blue light was irradiated from above the optical three-dimensional object for 5 hours.
(Iii) Upon irradiation with the blue light of (ii) above, the total irradiation intensity Q (W / m 2 ) in the wavelength range of 380 to 780 nm (visible light region) on the surface of the optical three-dimensional object is described above. while measured by a method, the integral value L a and the wavelength range of 430~500nm the relative spectral intensity in the wavelength range of 380~780nm at the surface being irradiated with light of an optical three-dimensional object (visible light region) seeking relative spectral intensity of the integrated value L B in the manner described above, wherein: the Q × (L B / L a ), a wavelength 430~500nm at the surface being irradiated with light of an optical three-dimensional object When the total irradiation intensity (W / m 2 ) of light was determined, it was as shown in Table 1 below.
(Iv) In addition, when the blue light is irradiated in (ii) above, the yellowness of the optical three-dimensional object is obtained after irradiation with blue light for 30 minutes, irradiation for 2 hours, and irradiation for 5 hours. Was measured by the method described above, and was as shown in Table 1 below.

《実施例2》
(1) 実施例1の(1)の(i)で調製したのと同じ光硬化性樹脂組成物を用いて、実施例1の上記(2)の(i)と同じ光造形条件を採用して光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)を製造し、次いでこの光学的立体造形物に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
これにより得られた紫外線による後硬化後の光学的立体造形物は、全体として透明であったが、黄変しており、上記した方法で測定した黄色度は2.7であった。
(2) 上記(1)で得られた黄変した光学的立体造形物(紫外線照射して後硬化したもの)を、平らな台上に、縦×横=50mm×30mmの2つの方形表面が上面と下面になるようにして載置し、青緑光を放射する光源(発光ダイオード)(LEDパラダイス社製「AQ−L5030BGC」、放射光の波長範囲=455〜565nm、ピーク波長=505nm、波長400nm以下の光を放射せず)の100個を方形に集積して各々に15mAを通電したものを用いて、光学的立体造形物の上方から青緑光を延べ5時間にわたって照射した。
(3) 上記(2)の青緑光の照射の際に、光学的立体造形物の表面での380〜780nmの波長範囲(可視光域)における合計照射強度Q(W/m2)を上記した方法で測定すると共に、光学的立体造形物の光を照射されている表面での380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBを上記した方法で求めて、式:Q×(LB/LA)から、光学的立体造形物の光を照射されている表面での波長430〜500nmの光の合計照射強度(W/m2)を求めたところ下記の表1に示すとおりであった。
(4) また、上記(2)の青緑光の照射の際に、青緑光を30分間照射した後、2時間照射した後および5時間照射した後の時点で、光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表1に示すとおりであった。
Example 2
(1) By using the same photocurable resin composition as prepared in (i) of (1) of Example 1, the same optical modeling conditions as in (i) of (2) of Example 1 were adopted. To produce an optical three-dimensional model (vertical x horizontal x thickness = 50 mm x 30 mm x 5 mm cuboid), and then apply ultraviolet light (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) to this optical three-dimensional model. Post-cured by irradiation for 20 minutes.
The optically three-dimensional molded article after post-curing with ultraviolet rays obtained in this way was transparent as a whole, but yellowed, and the yellowness measured by the method described above was 2.7.
(2) The two-dimensional surface of length × width = 50 mm × 30 mm is placed on a flat table on the yellow-colored optical three-dimensional structure obtained in (1) (postcured by ultraviolet irradiation). Light source (light emitting diode) that emits blue-green light placed on the upper and lower surfaces (LED Paradise “AQ-L5030BGC”, wavelength range of emitted light = 455-565 nm, peak wavelength = 505 nm, wavelength 400 nm 100 pieces (without emitting the following light) were collected in a square shape and each was energized with 15 mA, and blue-green light was irradiated for 5 hours from above the optical three-dimensional object.
(3) Upon irradiation with blue-green light in (2) above, the total irradiation intensity Q (W / m 2 ) in the wavelength range (visible light range) of 380 to 780 nm on the surface of the optical three-dimensional object is described above. while measured by a method, the integral value L a and the wavelength range of 430~500nm the relative spectral intensity in the wavelength range of 380~780nm at the surface being irradiated with light of an optical three-dimensional object (visible light region) seeking relative spectral intensity of the integrated value L B in the method described above, wherein: the Q × (L B / L a ), a wavelength 430~500nm at the surface being irradiated with light of a stereolithography product The total irradiation intensity (W / m 2 ) of light was determined and as shown in Table 1 below.
(4) In addition, when the blue-green light is irradiated in (2) above, the yellowness of the optical three-dimensional object is obtained after irradiating with blue-green light for 30 minutes, after irradiation for 2 hours, and after irradiation for 5 hours. Was measured by the method described above, and was as shown in Table 1 below.

《実施例3》
(1) 実施例1の(1)の(i)で調製したのと同じ光硬化性樹脂組成物を用いて、実施例1の上記(2)の(i)と同じ光造形条件を採用して光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)を製造し、次いでこの光学的立体造形物に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
これにより得られた紫外線による後硬化後の光学的立体造形物は、全体として透明であったが、黄変しており、上記した方法で測定した黄色度は2.7であった。
(2) 上記(1)で得られた黄変した光学的立体造形物(紫外線照射して後硬化したもの)を、平らな台上に、縦×横=50mm×30mmの2つの方形表面が上面と下面になるようにして載置し、白色光を放射する光源(発光ダイオード)(LEDパラダイス社製「LP−508H196WC−1」、放射光の波長範囲=415〜740nm、ピーク波長=450nmおよび540nm、波長400nm以下の光を放射せず)の100個を方形に集積して各々に15mAを通電したものを用いて、光学的立体造形物の上方から白色光を延べ5時間にわたって照射した。
(3) 上記(2)の白色光の照射の際に、光学的立体造形物の表面での380〜780nmの波長範囲(可視光域)における合計照射強度Q(W/m2)を上記した方法で測定すると共に、光学的立体造形物の光を照射されている表面での380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBを上記した方法で求めて、式:Q×(LB/LA)から、光学的立体造形物の光を照射されている表面での波長430〜500nmの光の合計照射強度(W/m2)を求めたところ、下記の表1に示すとおりであった。
(4) また、上記(2)の青緑光の照射の際に、白色光を30分間照射した後、2時間照射した後および5時間照射した後の時点で、光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表1に示すとおりであった。
Example 3
(1) By using the same photocurable resin composition as prepared in (i) of (1) of Example 1, the same optical modeling conditions as in (i) of (2) of Example 1 were adopted. To produce an optical three-dimensional model (vertical x horizontal x thickness = 50 mm x 30 mm x 5 mm cuboid), and then apply ultraviolet light (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) to this optical three-dimensional model. Post-cured by irradiation for 20 minutes.
The optically three-dimensional molded article after post-curing with ultraviolet rays obtained in this way was transparent as a whole, but yellowed, and the yellowness measured by the method described above was 2.7.
(2) The two-dimensional surface of length × width = 50 mm × 30 mm is placed on a flat table on the yellow-colored optical three-dimensional structure obtained in (1) (postcured by ultraviolet irradiation). A light source (light emitting diode) that is placed so as to be on the upper and lower surfaces and emits white light (“LP-508H196WC-1” manufactured by LED Paradise, wavelength range of radiated light = 415 to 740 nm, peak wavelength = 450 nm and 100 pieces of 540 nm (without emitting light having a wavelength of 400 nm or less) were collected in a rectangular shape and each was supplied with 15 mA, and white light was irradiated from above the optical three-dimensional object for 5 hours.
(3) Upon irradiation with white light in (2) above, the total irradiation intensity Q (W / m 2 ) in the wavelength range (visible light range) of 380 to 780 nm on the surface of the optical three-dimensional object is described above. while measured by a method, the integral value L a and the wavelength range of 430~500nm the relative spectral intensity in the wavelength range of 380~780nm at the surface being irradiated with light of an optical three-dimensional object (visible light region) seeking relative spectral intensity of the integrated value L B in the manner described above, wherein: the Q × (L B / L a ), a wavelength 430~500nm at the surface being irradiated with light of an optical three-dimensional object When the total irradiation intensity (W / m 2 ) of light was determined, it was as shown in Table 1 below.
(4) In addition, when irradiating the blue-green light of (2) above, the yellowness of the optical three-dimensional object is obtained after irradiation with white light for 30 minutes, irradiation for 2 hours, and irradiation for 5 hours. Was measured by the method described above, and was as shown in Table 1 below.

《実施例4》
(1) 実施例1の(1)の(i)で調製したのと同じ光硬化性樹脂組成物を用いて、実施例1の上記(2)の(i)と同じ光造形条件を採用して光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)を製造し、次いでこの光学的立体造形物に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
これにより得られた紫外線による後硬化後の光学的立体造形物は、全体として透明であったが、黄変しており、上記した方法で測定した黄色度は3.0であった。
(2) 上記(1)で得られた黄変した光学的立体造形物(紫外線照射して後硬化したもの)を、平らな台上に、縦×横=50mm×30mmの2つの方形表面が上面と下面になるようにして載置し、光源としてメタルハライドランプ(ウシオライティング社製「GL−30201BF」、放射光の波長範囲:下限360nmおよび上限780nmを超え、ピーク波長=365nm、405nm、420nm、435nm、545nm、580nm、640nm)を使用し、光源の下方にアクリル製紫外線カット板(三菱レイヨン株式会社製「アクリライトN549」、光源から放射される光に含まれる波長400nm以下の光の除去率=99.92%)を配置して、光学的立体造形物の上方から紫外線をカットした後の光を延べ5時間にわたって照射した。
(3) 上記(2)の光の照射の際に、光学的立体造形物の表面での380〜780nmの波長範囲(可視光域)における合計照射強度Q(W/m2)を上記した方法で測定すると共に、光学的立体造形物の光を照射されている表面での380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBを上記した方法で求めて、式:Q×(LB/LA)から、光学的立体造形物の光を照射されている表面での波長430〜500nmの光の合計照射強度(W/m2)を求めたところ、下記の表1に示すとおりであった。
(4) また、上記(2)の光の照射の際に、光を30分間照射した後、2時間照射した後および5時間照射した後の時点で、光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表1に示すとおりであった。
Example 4
(1) By using the same photocurable resin composition as prepared in (i) of (1) of Example 1, the same optical modeling conditions as in (i) of (2) of Example 1 were adopted. To produce an optical three-dimensional model (vertical x horizontal x thickness = 50 mm x 30 mm x 5 mm cuboid), and then apply ultraviolet light (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) to this optical three-dimensional model. Post-cured by irradiation for 20 minutes.
The optically three-dimensional molded article after post-curing with ultraviolet rays obtained in this manner was transparent as a whole, but yellowed, and the yellowness measured by the method described above was 3.0.
(2) The two-dimensional surface of length × width = 50 mm × 30 mm is placed on a flat table on the yellow-colored optical three-dimensional structure obtained in (1) (postcured by ultraviolet irradiation). The metal halide lamp ("USHIOLIGHTING" GL-30201BF "as a light source, wavelength range of emitted light: lower limit 360nm and upper limit 780nm exceeded, peak wavelength = 365nm, 405nm, 420nm, 435 nm, 545 nm, 580 nm, 640 nm), and an ultraviolet cut plate made of acrylic (“Acrylite N549” manufactured by Mitsubishi Rayon Co., Ltd.) below the light source, the removal rate of light having a wavelength of 400 nm or less contained in the light emitted from the light source = 99.92%), and the light after the ultraviolet rays were cut from above the optical three-dimensional object was spread over 5 hours. It was irradiated Te.
(3) The above-described method of the total irradiation intensity Q (W / m 2 ) in the wavelength range (visible light range) of 380 to 780 nm on the surface of the optical three-dimensional structure at the time of the light irradiation of ( 2 ) above. And the integral value L A of the relative spectral intensity in the wavelength range (visible light range) of 380 to 780 nm on the surface irradiated with the light of the optical three-dimensional object and the wavelength range of 430 to 500 nm. The integral value L B of the relative spectral intensity is obtained by the method described above, and the light having a wavelength of 430 to 500 nm on the surface irradiated with the light of the optical three-dimensional structure is obtained from the formula: Q × (L B / L A ) The total irradiation intensity (W / m 2 ) was determined as shown in Table 1 below.
(4) In addition, when irradiating with the light of (2) above, after irradiating with light for 30 minutes, after irradiating for 2 hours and after irradiating for 5 hours, the yellowness of the optical three-dimensional object is determined as described above. It was as shown in following Table 1 when it measured by the method which carried out.

《比較例1》
(1) 実施例1の(1)の(i)で調製したのと同じ光硬化性樹脂組成物を用いて、実施例1の上記(2)の(i)と同じ光造形条件を採用して光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)を製造し、次いでこの光学的立体造形物に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
これにより得られた紫外線による後硬化後の光学的立体造形物は、全体として透明であったが、黄変しており、上記した方法で測定した黄色度は2.9であった。
(2) 上記(1)で得られた黄変した光学的立体造形物(紫外線照射して後硬化したもの)を、平らな台上に、縦×横=50mm×30mmの2つの方形表面が上面と下面になるようにして載置し、赤色光を放射する光源(発光ダイオード)(株式会社東芝製「TLRE180AP」、放射光の波長範囲=600〜675nm、ピーク波長=645nm、波長400nm以下の光を放射せず)の100個を方形に集積して各々に15mAを通電したものを用いて、光学的立体造形物の上方から赤色光を延べ5時間にわたって照射した。
(3) 上記(2)の赤色光の照射の際に、光学的立体造形物の表面での380〜780nmの波長範囲(可視光域)における合計照射強度Q(W/m2)を上記した方法で測定すると共に、光学的立体造形物の光を照射されている表面での380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBを上記した方法で求めて、式:Q×(LB/LA)から、光学的立体造形物の光を照射されている表面での波長430〜500nmの光の合計照射強度(W/m2)を求めたところ、下記の表2に示すとおりであった。
(4) また、上記(2)の赤色光の照射の際に、赤色光を30分間照射した後、2時間照射した後および5時間照射した後の時点で、光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表2に示すとおりであった。
<< Comparative Example 1 >>
(1) By using the same photocurable resin composition as prepared in (i) of (1) of Example 1, the same optical modeling conditions as in (i) of (2) of Example 1 were adopted. To produce an optical three-dimensional model (vertical x horizontal x thickness = 50 mm x 30 mm x 5 mm cuboid), and then apply ultraviolet light (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) to this optical three-dimensional model. Post-cured by irradiation for 20 minutes.
The resulting optically three-dimensional molded article after post-curing with ultraviolet rays was transparent as a whole, but yellowed, and the yellowness measured by the above-described method was 2.9.
(2) The two-dimensional surface of length × width = 50 mm × 30 mm is placed on a flat table on the yellow-colored optical three-dimensional structure obtained in (1) (postcured by ultraviolet irradiation). Light source that emits red light (light emitting diode) placed on the top and bottom surfaces (“TLRE180AP” manufactured by Toshiba Corporation, wavelength range of radiation light = 600 to 675 nm, peak wavelength = 645 nm, wavelength 400 nm or less 100 pieces of light (without emitting light) were collected in a square and each was energized with 15 mA, and red light was irradiated for 5 hours from above the optical three-dimensional object.
(3) Upon irradiation with red light in (2) above, the total irradiation intensity Q (W / m 2 ) in the wavelength range (visible light region) of 380 to 780 nm on the surface of the optical three-dimensional object is described above. while measured by a method, the integral value L a and the wavelength range of 430~500nm the relative spectral intensity in the wavelength range of 380~780nm at the surface being irradiated with light of an optical three-dimensional object (visible light region) seeking relative spectral intensity of the integrated value L B in the manner described above, wherein: the Q × (L B / L a ), a wavelength 430~500nm at the surface being irradiated with light of an optical three-dimensional object When the total irradiation intensity (W / m 2 ) of light was determined, it was as shown in Table 2 below.
(4) In addition, when the red light is irradiated in (2) above, the yellowness of the optical three-dimensional object is obtained after irradiation with red light for 30 minutes, irradiation for 2 hours, and irradiation for 5 hours. Was measured by the method described above and was as shown in Table 2 below.

《比較例2》
(1) 実施例1の(1)の(i)で調製したのと同じ光硬化性樹脂組成物を用いて、実施例1の上記(2)の(i)と同じ光造形条件を採用して光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)を製造し、次いでこの光学的立体造形物に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
これにより得られた紫外線による後硬化後の光学的立体造形物は、全体として透明であったが、黄変しており、上記した方法で測定した黄色度は2.9であった。
(2) 上記(1)で得られた黄変した光学的立体造形物(紫外線照射して後硬化したもの)を、平らな台上に、縦×横=50mm×30mmの2つの方形表面が上面と下面になるようにして載置し、黄緑光を放射する光源(発光ダイオード)(株式会社東芝製「TLGE183P」、放射光の波長範囲=530〜595nm、ピーク波長=570nm、波長400nm以下の光を放射せず)の100個を方形に集積して各々に15mAを通電したものを用いて、光学的立体造形物の上方から黄緑光を延べ5時間にわたって照射した。
(3) 上記(2)の黄緑光の照射の際に、光学的立体造形物の表面での380〜780nmの波長範囲(可視光域)における合計照射強度Q(W/m2)を上記した方法で測定すると共に、光学的立体造形物の光を照射されている表面での380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBを上記した方法で求めて、式:Q×(LB/LA)から、光学的立体造形物の光を照射されている表面での波長430〜500nmの光の合計照射強度(W/m2)を求めたところ、下記の表2に示すとおりであった。
(4) また、上記(2)の黄緑光の照射の際に、黄緑光を30分間照射した後、2時間照射した後および5時間照射した後の時点で、光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表2に示すとおりであった。
<< Comparative Example 2 >>
(1) By using the same photocurable resin composition as prepared in (i) of (1) of Example 1, the same optical modeling conditions as in (i) of (2) of Example 1 were adopted. To produce an optical three-dimensional model (vertical x horizontal x thickness = 50 mm x 30 mm x 5 mm cuboid), and then apply ultraviolet light (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) to this optical three-dimensional model. Post-cured by irradiation for 20 minutes.
The resulting optically three-dimensional molded article after post-curing with ultraviolet rays was transparent as a whole, but yellowed, and the yellowness measured by the above-described method was 2.9.
(2) The two-dimensional surface of length × width = 50 mm × 30 mm is placed on a flat table on the yellow-colored optical three-dimensional structure obtained in (1) (postcured by ultraviolet irradiation). Light source (light-emitting diode) that emits yellow-green light, placed on the top and bottom surfaces (Toshiba Corporation “TLGE183P”, wavelength range of emitted light = 530-595 nm, peak wavelength = 570 nm, wavelength 400 nm or less 100 pieces of light (without emitting light) were collected in a rectangular shape and each of them was energized with 15 mA, and yellow-green light was irradiated over 5 hours from above the optical three-dimensional object.
(3) The above-mentioned total irradiation intensity Q (W / m 2 ) in the wavelength range (visible light range) of 380 to 780 nm on the surface of the optical three-dimensional structure is described above when the yellow-green light is irradiated in ( 2 ) above. while measured by a method, the integral value L a and the wavelength range of 430~500nm the relative spectral intensity in the wavelength range of 380~780nm at the surface being irradiated with light of an optical three-dimensional object (visible light region) seeking relative spectral intensity of the integrated value L B in the manner described above, wherein: the Q × (L B / L a ), a wavelength 430~500nm at the surface being irradiated with light of an optical three-dimensional object When the total irradiation intensity (W / m 2 ) of light was determined, it was as shown in Table 2 below.
(4) In addition, when yellow-green light is irradiated in (2) above, yellowness of the optical three-dimensional object is obtained at the time after irradiation with yellow-green light for 30 minutes, after irradiation for 2 hours, and after irradiation for 5 hours. Was measured by the method described above and was as shown in Table 2 below.

《比較例3》
(1) 実施例1の(1)の(i)で調製したのと同じ光硬化性樹脂組成物を用いて、実施例1の上記(2)の(i)と同じ光造形条件を採用して光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)を製造し、次いでこの光学的立体造形物に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
これにより得られた紫外線による後硬化後の光学的立体造形物は、全体として透明であったが、黄変しており、上記した方法で測定した黄色度は2.7であった。
(2) 上記(1)で得られた黄変した光学的立体造形物(紫外線照射して後硬化したもの)を、平らな台上に、縦×横=50mm×30mmの2つの方形表面が上面と下面になるようにして載置し、緑色光を放射する光源(発光ダイオード)(豊田合成株式会社製「E1L53−AG0A2−04」、放射光の波長範囲=465〜610nm、ピーク波長=525nm、波長400nm以下の光を放射せず)の100個を方形に集積して各々に15mAを通電したものを用いて、光学的立体造形物の上方から緑色光を延べ5時間にわたって照射した。
(3) 上記(2)の緑色光の照射の際に、光学的立体造形物の表面での380〜780nmの波長範囲(可視光域)における合計照射強度Q(W/m2)を上記した方法で測定すると共に、光学的立体造形物の光を照射されている表面での380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBを上記した方法で求めて、式:Q×(LB/LA)から、光学的立体造形物の光を照射されている表面での波長430〜500nmの光の合計照射強度(W/m2)を求めたところ、下記の表2に示すとおりであった。
(4) また、上記(2)の緑色光の照射の際に、赤色光を30分間照射した後、2時間照射した後および5時間照射した後の時点で、光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表2に示すとおりであった。
<< Comparative Example 3 >>
(1) By using the same photocurable resin composition as prepared in (i) of (1) of Example 1, the same optical modeling conditions as in (i) of (2) of Example 1 were adopted. To produce an optical three-dimensional model (vertical x horizontal x thickness = 50 mm x 30 mm x 5 mm cuboid), and then apply ultraviolet light (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) to this optical three-dimensional model. Post-cured by irradiation for 20 minutes.
The optically three-dimensional molded article after post-curing with ultraviolet rays obtained in this way was transparent as a whole, but yellowed, and the yellowness measured by the method described above was 2.7.
(2) The two-dimensional surface of length × width = 50 mm × 30 mm is placed on a flat table on the yellow-colored optical three-dimensional structure obtained in (1) (postcured by ultraviolet irradiation). Light source (light emitting diode) that emits green light, placed on the upper and lower surfaces (Toyoda Gosei Co., Ltd. “E1L53-AG0A2-04”, wavelength range of emitted light = 465 to 610 nm, peak wavelength = 525 nm 100 pieces of light having a wavelength of 400 nm or less were collected in a rectangular shape and each of which was energized with 15 mA was irradiated with green light from above the optical three-dimensional object for 5 hours.
(3) Upon irradiation with green light in (2) above, the total irradiation intensity Q (W / m 2 ) in the wavelength range (visible light region) of 380 to 780 nm on the surface of the optical three-dimensional object is described above. while measured by a method, the integral value L a and the wavelength range of 430~500nm the relative spectral intensity in the wavelength range of 380~780nm at the surface being irradiated with light of an optical three-dimensional object (visible light region) seeking relative spectral intensity of the integrated value L B in the manner described above, wherein: the Q × (L B / L a ), a wavelength 430~500nm at the surface being irradiated with light of an optical three-dimensional object When the total irradiation intensity (W / m 2 ) of light was determined, it was as shown in Table 2 below.
(4) In addition, when the green light is irradiated in (2) above, the yellowness of the optical three-dimensional object is obtained after irradiation with red light for 30 minutes, irradiation for 2 hours, and irradiation for 5 hours. Was measured by the method described above and was as shown in Table 2 below.

《比較例4》
(1) 実施例1の(1)の(i)で調製したのと同じ光硬化性樹脂組成物を用いて、実施例1の上記(2)の(i)と同じ光造形条件を採用して光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)を製造し、次いでこの光学的立体造形物に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
これにより得られた紫外線による後硬化後の光学的立体造形物は、全体として透明であったが、黄変しており、上記した方法で測定した黄色度は2.9であった。
(2) 上記(1)で得られた黄変した光学的立体造形物(紫外線照射して後硬化したもの)を、平らな台上に、縦×横=50mm×30mmの2つの方形表面が上面と下面になるようにして載置し、近紫外光を放射する光源(発光ダイオード)(LEDパラダイス社製「LP−R5UV400」、放射光の波長範囲=380〜435nm、ピーク波長=400nm)の100個を方形に集積して各々に15mAを通電したものを用いて、光学的立体造形物の上方から近紫外光を延べ5時間にわたって照射した。
(3) 上記(2)の近紫外光の照射の際に、光学的立体造形物の表面での380〜780nmの波長範囲(可視光域)における合計照射強度Q(W/m2)を上記した方法で測定すると共に、光学的立体造形物の光を照射されている表面での380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBを上記した方法で求めて、式:Q×(LB/LA)から、光学的立体造形物の光を照射されている表面での波長430〜500nmの光の合計照射強度(W/m2)を求めたところ、下記の表2に示すとおりであった。
(4) また、上記(2)の近紫外光の照射の際に、近紫外光を30分間照射した後、2時間照射した後および5時間照射した後の時点で、光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表2に示すとおりであった。
<< Comparative Example 4 >>
(1) By using the same photocurable resin composition as prepared in (i) of (1) of Example 1, the same optical modeling conditions as in (i) of (2) of Example 1 were adopted. To produce an optical three-dimensional model (vertical x horizontal x thickness = 50 mm x 30 mm x 5 mm cuboid), and then apply ultraviolet light (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) to this optical three-dimensional model. Post-cured by irradiation for 20 minutes.
The resulting optically three-dimensional molded article after post-curing with ultraviolet rays was transparent as a whole, but yellowed, and the yellowness measured by the above-described method was 2.9.
(2) The two-dimensional surface of length × width = 50 mm × 30 mm is placed on a flat table on the yellow-colored optical three-dimensional structure obtained in (1) (postcured by ultraviolet irradiation). A light source (light emitting diode) that emits near-ultraviolet light, placed on the upper and lower surfaces (LED Paradise “LP-R5UV400”, wavelength range of emitted light = 380 to 435 nm, peak wavelength = 400 nm) 100 pieces were collected in a rectangular shape and each was energized with 15 mA, and irradiated with near ultraviolet light from above the optical three-dimensional object for 5 hours.
(3) Upon irradiation with near-ultraviolet light in (2) above, the total irradiation intensity Q (W / m 2 ) in the wavelength range (visible light range) of 380 to 780 nm on the surface of the optical three-dimensional structure is described above. while measured by the method, the integrated value L a and the wavelength range of 430~500nm the relative spectral intensity in the wavelength range of 380~780nm at the surface being irradiated with light of a stereolithography object (visible light region) seeking a way that the integral value L B of the relative spectral intensity above in the formula: wavelength from Q × (L B / L a ), the surface being irradiated with light of an optical three-dimensional object 430~500nm The total irradiation intensity (W / m 2 ) of light was determined as shown in Table 2 below.
(4) Further, at the time of irradiation of near ultraviolet light in the above (2), after irradiation with near ultraviolet light for 30 minutes, irradiation for 2 hours, and after irradiation for 5 hours, When the yellowness was measured by the method described above, it was as shown in Table 2 below.

《比較例5》
(1) 実施例1の(1)の(i)で調製したのと同じ光硬化性樹脂組成物を用いて、実施例1の上記(2)の(i)と同じ光造形条件を採用して光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)を製造し、次いでこの光学的立体造形物に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
これにより得られた紫外線による後硬化後の光学的立体造形物は、全体として透明であったが、黄変しており、上記した方法で測定した黄色度は2.9であった。
(2) 上記(1)で得られた黄変した光学的立体造形物(紫外線照射して後硬化したもの)を、平らな台上に、縦×横=50mm×30mmの2つの方形表面が上面と下面になるようにして載置し、光源としてメタルハライドランプ(ウシオライテジング社製「GL−30201BF」、放射光の波長範囲=360〜780nm、ピーク波長=365nm、405nm、420nm、435nm、545nm、580nm、640nm、)を使用し、光学的立体造形物の上方から、光源からの光(紫外線を含む光)をそのまま延べ2時間にわたって照射した。
(3) 上記(2)の光の照射の際に、光学的立体造形物の表面での380〜780nmの波長範囲(可視光域)における合計照射強度Q(W/m2)を上記した方法で測定すると共に、光学的立体造形物の光を照射されている表面での380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBを上記した方法で求めて、式:Q×(LB/LA)から、光学的立体造形物の光を照射されている表面での波長430〜500nmの光の合計照射強度(W/m2)を求めたところ、下記の表2に示すとおりであった。
(4) また、上記(2)の光の照射の際に、光を30分間照射した後および2時間照射した後の時点で、光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表2に示すとおりであった。
<< Comparative Example 5 >>
(1) By using the same photocurable resin composition as prepared in (i) of (1) of Example 1, the same optical modeling conditions as in (i) of (2) of Example 1 were adopted. To produce an optical three-dimensional model (vertical x horizontal x thickness = 50 mm x 30 mm x 5 mm cuboid), and then apply ultraviolet light (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) to this optical three-dimensional model. Post-cured by irradiation for 20 minutes.
The resulting optically three-dimensional molded article after post-curing with ultraviolet rays was transparent as a whole, but yellowed, and the yellowness measured by the above-described method was 2.9.
(2) The two-dimensional surface of length × width = 50 mm × 30 mm is placed on a flat table on the yellow-colored optical three-dimensional structure obtained in (1) (postcured by ultraviolet irradiation). The metal halide lamp ("GL-30201BF" manufactured by Ushi Lighting Co., Ltd., wavelength range of emitted light = 360 to 780 nm, peak wavelengths = 365 nm, 405 nm, 420 nm, 435 nm, 545 nm) 580 nm and 640 nm), and light from a light source (light including ultraviolet rays) was irradiated as it was for 2 hours from above the optical three-dimensional object.
(3) The above-described method of the total irradiation intensity Q (W / m 2 ) in the wavelength range (visible light range) of 380 to 780 nm on the surface of the optical three-dimensional structure at the time of the light irradiation of ( 2 ) above. And the integral value L A of the relative spectral intensity in the wavelength range (visible light range) of 380 to 780 nm on the surface irradiated with the light of the optical three-dimensional object and the wavelength range of 430 to 500 nm. The integral value L B of the relative spectral intensity is obtained by the method described above, and the light having a wavelength of 430 to 500 nm on the surface irradiated with the light of the optical three-dimensional structure is obtained from the formula: Q × (L B / L A ) The total irradiation intensity (W / m 2 ) was determined as shown in Table 2 below.
(4) In addition, when the light of the above (2) was irradiated with light for 30 minutes and after the irradiation for 2 hours, the yellowness of the optical three-dimensional model was measured by the method described above. As shown in Table 2 below.

Figure 2014000820
Figure 2014000820

Figure 2014000820
Figure 2014000820

上記の表1にみるように、実施例1〜4では、光硬化性樹脂組成物を用いて製造してなる黄変の生じた光学的立体造形物に対して、430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光を、光学的立体造形物の表面での波長430〜500nmの光の合計照射強度が15W/m2以上となるように照射したことによって、5時間照射後に光学的立体造形物の黄色度がいずれも2.4以下になっていて、黄色度は当初の黄色度の18.5%以上減少した。5時間照射後の実施例1〜4の光学的立体造形物を目視で観察したところ、黄変の割合が極めて低くなっていて無色透明に近いものであった。 As seen in Table 1 above, in Examples 1 to 4, with respect to the optically three-dimensional object with yellowing produced by using the photocurable resin composition, it is within the range of 430 to 500 nm. Light that includes light having a wavelength and that does not include light having a wavelength of 400 nm or less was irradiated so that the total irradiation intensity of light having a wavelength of 430 to 500 nm on the surface of the optical three-dimensional object was 15 W / m 2 or more. As a result, after the irradiation for 5 hours, the yellowness of the optical three-dimensional model was all 2.4 or less, and the yellowness decreased by 18.5% or more of the initial yellowness. When the optical three-dimensional modeled objects of Examples 1 to 4 after irradiation for 5 hours were observed with the naked eye, the yellowing rate was extremely low and it was almost colorless and transparent.

それに対して、表2にみるように、比較例1〜3では波長が400nm以下の光(特に紫外線)を含まない光を光学的立体造形物に照射したが、波長430〜500nmの光の合計照射強度が15W/m2未満であったために、5時間照射後の黄色度は当初の約3〜10%しか減少しておらず、黄変の改善効果が極めて小さい。
また、比較例4および5では、波長が400nm以下の光(特に紫外線)を含む照射したことにより、波長430〜500nmの光の合計照射強度の大小に拘わらず、光学的立体造形物の黄色度が照射前よりも大幅に高くなっており、黄変の度合がむしろ大きく増している。
On the other hand, as shown in Table 2, in Comparative Examples 1 to 3, the optical three-dimensional object was irradiated with light having a wavelength of 400 nm or less (particularly ultraviolet rays), but the total of light having a wavelength of 430 to 500 nm. Since the irradiation intensity was less than 15 W / m 2 , the yellowness after irradiation for 5 hours has decreased by about 3 to 10% of the original, and the effect of improving yellowing is extremely small.
Further, in Comparative Examples 4 and 5, the yellowness of the optical three-dimensional modeled object is obtained regardless of the total irradiation intensity of light having a wavelength of 430 to 500 nm due to irradiation including light having a wavelength of 400 nm or less (particularly ultraviolet rays). Is significantly higher than before irradiation, and the degree of yellowing is rather greatly increased.

《実施例5》
(1) 実施例1の(1)の(i)で調製したのと同じ光硬化性樹脂組成物を用いて、実施例1の上記(2)の(i)と同じ光造形条件を採用して光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)を複数製造し、次いでそれらの光学的立体造形物に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
これにより得られた紫外線による後硬化後の光学的立体造形物は、全体として透明であったが、黄変しており、上記した方法で測定した黄色度はいずれも2.9であった。
(2) 上記(1)で得られたそれぞれの光学的立体造形物(紫外線照射して後硬化したもの)に対して、実施例1の(3)で用いたのと同じ青色光を放射する光源(LEDパラダイス社製「LP−R5B40」)の100個を方形に集積して各々に15mAを通電したものを使用して青色光を照射し、その際に、パルス幅変調装置(PWM装置)(Audio−Q社製「AQP−224W−K」、24V用2Aパルス式LED減光キット)と定電圧電源を使用して、光学的立体造形物に照射する青色光の調光(照射強度の変更)を行って、光学的立体造形物の表面での波長430〜500nmの光の合計照射強度を40.8W/m2、15.1W/m2および2.8w/m2に変更して照射実験を実施し、光を30分間照射した後、2時間照射した後および5時間照射した後の時点で、光学的立体造形物の黄色度を上記した方法で測定した。
その結果を、上記した実施例1の結果と併せて下記の表3に示す。
Example 5
(1) By using the same photocurable resin composition as prepared in (i) of (1) of Example 1, the same optical modeling conditions as in (i) of (2) of Example 1 were adopted. A plurality of optical three-dimensional objects (vertical × horizontal × thickness = 50 mm × 30 mm × 5 mm rectangular parallelepiped) are manufactured, and ultraviolet light (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) is then applied to these optical three-dimensional objects. ) For 20 minutes to post cure.
The resulting optically three-dimensional molded article after post-curing with ultraviolet rays was transparent as a whole, but yellowed, and the yellowness measured by the above method was 2.9.
(2) The same blue light as used in (3) of Example 1 is radiated to each optical three-dimensional object obtained by (1) above (post-cured by ultraviolet irradiation). Blue light is emitted using 100 light sources (LED Paradise “LP-R5B40”) integrated in a rectangular shape and energized with 15 mA each, and at that time, a pulse width modulation device (PWM device) (AQ-224W-K, manufactured by Audio-Q, 2A pulse LED dimming kit for 24V) and constant voltage power supply, dimming of blue light (irradiation intensity The total irradiation intensity of light having a wavelength of 430 to 500 nm on the surface of the optical three-dimensional object is changed to 40.8 W / m 2 , 15.1 W / m 2 and 2.8 w / m 2. Irradiation experiment was carried out and light was irradiated for 30 minutes. Once after irradiation after and 5 hours were, the yellowness of the stereolithography was measured in the manner described above.
The results are shown in Table 3 below together with the results of Example 1 described above.

Figure 2014000820
Figure 2014000820

《実施例6》
(1)光硬化性樹脂組成物の調製:
(i) 3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキシルカルボキシレート(ダウケミカル社製「UVR−6105」)40質量部、エトキシ化ビスフェノールAジグリシジルエーテル(新日本理化株式会社製「BPO−20E」)20質量部、3−ヒドロキシメチル−3−エチルオキセタン(東亞合成株式会社製「OXT−101」)10質量部、4−フェニルチオフェニルジフェニルスルホニウムヘキサフルオロアンチモネート(サンアプロ株式会社製「CPI−101A」)(カチオン重合開始剤)4質量部、トリシクロデカンジメタノールジアクリレート(新中村化学工業株式会社製「A−DCP」)10質量部、エトキシ化ビスフェノールAジアクリレート(新中村化学工業株式会社製「A−BPE−4)10質量部、プロポキシ化ペンタエリスリトールテトラアクリレート(新中村化学工業株式会社製「ATM−4P」)10質量部および1−ヒドロキシ−シクロヘキシルフェニルケトン(チバスペシャリティケミカル社製「Irgacure 184」)(ラジカル重合開始剤)1.5質量部をよく混合して光硬化性樹脂組成物を調製し、これを遮光したタンクに収容した。
これにより得られた光硬化性樹脂組成物の粘度を上記した方法で測定したところ、340mPa・sであった。
(ii) 上記(i)で得られた光硬化性樹脂組成物について、その硬化深度(Dp)、臨界硬化エネルギー(Ec)および作業硬化エネルギー(E10)を上記した方法で求めたところ、硬化深度(Dp)=0.23mm、臨界硬化エネルギー(Ec)=21mJ/cm2、および作業硬化エネルギー(E10)=65mJ/cm2であった。
Example 6
(1) Preparation of photocurable resin composition:
(I) 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate (“UVR-6105” manufactured by Dow Chemical Co.), ethoxylated bisphenol A diglycidyl ether (“BPO manufactured by Shin Nippon Rika Co., Ltd.) -20E ") 20 parts by mass, 10 parts by mass of 3-hydroxymethyl-3-ethyloxetane (" OXT-101 "manufactured by Toagosei Co., Ltd.), 4-phenylthiophenyldiphenylsulfonium hexafluoroantimonate (San Apro Corporation" CPI-101A ") (cationic polymerization initiator) 4 parts by mass, tricyclodecane dimethanol diacrylate (Shin Nakamura Chemical Co., Ltd." A-DCP ") 10 parts by mass, ethoxylated bisphenol A diacrylate (Shin Nakamura Chemical) "A-BPE-4" manufactured by Kogyo Co., Ltd. 10 parts by mass, 10 parts by mass of propoxylated pentaerythritol tetraacrylate (“ATM-4P” manufactured by Shin-Nakamura Chemical Co., Ltd.) and 1-hydroxy-cyclohexyl phenyl ketone (“Irgacure 184” manufactured by Ciba Specialty Chemicals) (start of radical polymerization) Agent) A photocurable resin composition was prepared by thoroughly mixing 1.5 parts by mass, and this was stored in a light-shielded tank.
It was 340 mPa * s when the viscosity of the photocurable resin composition obtained by this was measured by the above-mentioned method.
(Ii) About the photocurable resin composition obtained in the above (i), the curing depth (Dp), critical curing energy (Ec), and work curing energy (E 10 ) were determined by the above-described method. Depth (Dp) = 0.23 mm, critical curing energy (Ec) = 21 mJ / cm 2 , and work curing energy (E 10 ) = 65 mJ / cm 2 .

(2)物性測定用の光学的立体造形物の製造:
(i) 上記(1)の(i)で調製した光硬化性樹脂組成物を用いて、実施例1の(2)の(i)と同様にして光学的立体造形を行って力学的特性[引張り特性(引張破断強度、引張破断伸度、引張弾性率)、降伏強度、曲げ特性(曲げ強度、曲げ弾性率)、衝撃強度]、収縮率、硬度(ショアD硬度)および熱変形温度を測定するための光学的立体造形物をそれぞれ製造し、得られた光学的立体造形物(試験片)に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
(ii) 上記(i)で得られた光学的立体造形物(紫外線で後硬化したもの)を用いて、上記した方法で各種物性を測定したところ、引張破断強度=61MPa、引張破断伸度=5.1%、引張弾性率=2050MPa、降伏強度=54MPa、曲げ強度=84MPa、曲げ弾性率=2820MPa、衝撃強度=1.5kJ/m2、収縮率=5.4%、硬度(ショアD硬度)=87および熱変形温度=47℃であった。
(2) Manufacture of an optical three-dimensional model for measuring physical properties:
(I) Using the photocurable resin composition prepared in (i) of (1) above, optical three-dimensional modeling is performed in the same manner as (i) of (2) of Example 1 to obtain mechanical properties [ Tensile properties (tensile breaking strength, tensile elongation at break, tensile modulus), yield strength, bending properties (bending strength, bending modulus), impact strength], shrinkage, hardness (Shore D hardness) and heat distortion temperature Each of the optical three-dimensional objects to be manufactured was manufactured, and the obtained optical three-dimensional object (test piece) was irradiated with ultraviolet rays (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) for 20 minutes to be post-cured. .
(Ii) Various physical properties were measured by the above-described method using the optical three-dimensional structure obtained in (i) above (post-cured with ultraviolet rays). Tensile breaking strength = 61 MPa, tensile breaking elongation = 5.1%, tensile elastic modulus = 2050 MPa, yield strength = 54 MPa, bending strength = 84 MPa, bending elastic modulus = 2820 MPa, impact strength = 1.5 kJ / m 2 , shrinkage rate = 5.4%, hardness (Shore D hardness) ) = 87 and heat distortion temperature = 47 ° C.

(3)光学的立体造形物の光照射処理:
(i) 上記(1)の(i)で調製した光硬化性樹脂組成物を用いて、実施例1の(2)の(i)と同じ光造形条件を採用して光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)を製造し、次いでこの光学的立体造形物に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
これにより得られた紫外線による後硬化後の光学的立体造形物は、ほぼ透明であったが、黄変しており、上記した方法で測定した黄色度は6.0であった。
(ii) 上記(i)で得られた黄変した光学的立体造形物(紫外線照射して後硬化したもの)を、平らな台上に、縦×横=50mm×30mmの2つの方形表面が上面と下面になるようにして載置し、青色光を放射する実施例1で使用したのと同じ光源(LEDパラダイス社製「LP−R5B40」、放射光の波長範囲=420〜505nm、ピーク波長=455nm、波長400nm以下の光を放射せず)の100個を方形に集積して各々に15mAを通電したものを用いて、光学的立体造形物の上方から青緑光を延べ2時間にわたって照射し、2時間照射した後の時点で、光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表4に示すとおりであった。
その際に、光学的立体造形物の光を照射されている表面における、380〜780nmの波長範囲(可視光域)における合計照射強度Q(W/m2)、380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBは、実施例1と同じであった。
(3) Light irradiation treatment of optical three-dimensional structure:
(I) Using the photocurable resin composition prepared in (i) of (1) above, adopting the same optical modeling conditions as (i) of (2) of Example 1 to create an optical three-dimensional model ( (Vertical x Horizontal x Thickness = 50mm x 30mm x 5mm rectangular parallelepiped) and then UV curing (High pressure mercury lamp) (wavelength 365nm; intensity 30W / m 2 ) for 20 minutes did.
The optically three-dimensional molded article after post-curing with ultraviolet rays obtained by this was almost transparent, but yellowed, and the yellowness measured by the method described above was 6.0.
(Ii) The two-dimensional surface of length × width = 50 mm × 30 mm is placed on a flat table on the yellow-colored optical three-dimensional object obtained in (i) above (post-cured by ultraviolet irradiation). The same light source as used in Example 1, which is placed on the upper and lower surfaces and emits blue light (“LP-R5B40” manufactured by LED Paradise, wavelength range of emitted light = 420 to 505 nm, peak wavelength = 455 nm, which does not emit light with a wavelength of 400 nm or less), and each of which is energized with 15 mA, is irradiated with blue-green light from above the optical three-dimensional object for 2 hours. When the yellowness of the optical three-dimensional model was measured by the method described above at the time after irradiation for 2 hours, it was as shown in Table 4 below.
At that time, the total irradiation intensity Q (W / m 2 ) in the wavelength range of 380 to 780 nm (visible light region), the wavelength range of 380 to 780 nm (visible) on the surface irradiated with the light of the optical three-dimensional object. The integrated value L A of the relative spectral intensity in the light region) and the integrated value L B of the relative spectral intensity in the wavelength range of 430 to 500 nm were the same as in Example 1.

《実施例7》
(1)光硬化性樹脂組成物の調製:
(i) 水素化ビスフェノールAジグリシジルエーテル(新日本理化株式会社製「HBE−100」30.75質量部、エトキシ化ビスフェノールAジグリシジルエーテル(新日本理化株式会社製「BPO−20E」)22質量部、4−フェニルチオフェニルジフェニルスルホニウムヘキサフルオロアンチモネート(サンアプロ株式会社製「CPI−101A」)(カチオン重合開始剤)4質量部、ジペンタエリスリトールポリアクリレート(新中村化学工業株式会社製「A−9550」)8質量部、ジペンタエリスリトールヘキサアクリレート(日本化薬株式会社製「カヤラドDPHA」)4質量部、1−ヒドロキシ−シクロヘキシルフェニルケトン(チバスペシャリティケミカル社製「Irgacure 184」)(ラジカル重合開始剤)3質量部、2−メルカプトベンゾチアゾール(東京化成株式会社製)1質量部、プロポキシ化グリセリン(三洋化成株式会社製「GP−400」)9質量部、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート](チバスペシャリティケミカル社製「Irganox 1010」)1.25質量部および蒸留水1質量部をよく混合して光硬化性樹脂組成物を調製し、これを遮光したタンクに収容した。
これにより得られた光硬化性樹脂組成物の粘度を上記した方法で測定したところ、540mPa・sであった。
(ii) 上記(i)で得られた光硬化性樹脂組成物について、その硬化深度(Dp)、臨界硬化エネルギー(Ec)および作業硬化エネルギー(E10)を上記した方法で求めたところ、硬化深度(Dp)=0.07mm、臨界硬化エネルギー(Ec)=14mJ/cm2、および作業硬化エネルギー(E10)=650mJ/cm2であった。
Example 7
(1) Preparation of photocurable resin composition:
(I) Hydrogenated bisphenol A diglycidyl ether (30.75 parts by mass of “HBE-100” manufactured by Shin Nippon Chemical Co., Ltd.), 22 masses of ethoxylated bisphenol A diglycidyl ether (“BPO-20E” manufactured by Nippon Steel Chemical Co., Ltd.) Parts, 4-phenylthiophenyl diphenylsulfonium hexafluoroantimonate (“CPI-101A” manufactured by San Apro Co., Ltd.) (cation polymerization initiator), dipentaerythritol polyacrylate (“N-Nakamura Chemical Co., Ltd.“ A- 9550 ") 8 parts by mass, dipentaerythritol hexaacrylate (" Kayarad DPHA "manufactured by Nippon Kayaku Co., Ltd.) 4 parts by mass, 1-hydroxy-cyclohexyl phenyl ketone (" Irgacure 184 "manufactured by Ciba Specialty Chemicals) (start of radical polymerization) Agent 3 parts by mass, 1 part by mass of 2-mercaptobenzothiazole (manufactured by Tokyo Chemical Industry Co., Ltd.), 9 parts by mass of propoxylated glycerin (“GP-400” produced by Sanyo Chemical Co., Ltd.), pentaerythritol tetrakis [3- (3,5- Di-tert-butyl-4-hydroxyphenyl) propionate] (“Irganox 1010” manufactured by Ciba Specialty Chemicals) and 1 part by mass of distilled water were mixed well to prepare a photocurable resin composition, This was stored in a light-shielded tank.
It was 540 mPa * s when the viscosity of the photocurable resin composition obtained by this was measured by the above-mentioned method.
(Ii) About the photocurable resin composition obtained in the above (i), the curing depth (Dp), critical curing energy (Ec), and work curing energy (E 10 ) were determined by the above-described method. Depth (Dp) = 0.07 mm, critical curing energy (Ec) = 14 mJ / cm 2 , and working curing energy (E 10 ) = 650 mJ / cm 2 .

(2)物性測定用の光学的立体造形物の製造:
(i) 上記(1)の(i)で調製した光硬化性樹脂組成物を用いて、実施例1の(2)の(i)と同様にして光学的立体造形を行って力学的特性[引張り特性(引張破断強度、引張破断伸度、引張弾性率)、降伏強度、曲げ特性(曲げ強度、曲げ弾性率)、衝撃強度]、収縮率、硬度(ショアD硬度)および熱変形温度を測定するための光学的立体造形物をそれぞれ製造し、得られた光学的立体造形物(試験片)に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
(ii) 上記(i)で得られた光学的立体造形物(紫外線で後硬化したもの)を用いて、上記した方法で各種物性を測定したところ、引張破断強度=26MPa、引張破断伸度=15.2%、引張弾性率=1130MPa、降伏強度=23MPa、曲げ強度=37MPa、曲げ弾性率=1320MPa、衝撃強度=1.6kJ/m2、収縮率=4.8%、硬度(ショアD硬度)=82および熱変形温度=35℃であった。
(2) Manufacture of an optical three-dimensional model for measuring physical properties:
(I) Using the photocurable resin composition prepared in (i) of (1) above, optical three-dimensional modeling is performed in the same manner as (i) of (2) of Example 1 to obtain mechanical properties [ Tensile properties (tensile breaking strength, tensile elongation at break, tensile modulus), yield strength, bending properties (bending strength, bending modulus), impact strength], shrinkage, hardness (Shore D hardness) and heat distortion temperature Each of the optical three-dimensional objects to be manufactured was manufactured, and the obtained optical three-dimensional object (test piece) was irradiated with ultraviolet rays (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m 2 ) for 20 minutes to be post-cured. .
(Ii) When various physical properties were measured by the above-described method using the optical three-dimensional structure obtained in (i) (post-cured with ultraviolet rays), tensile breaking strength = 26 MPa, tensile breaking elongation = 15.2%, tensile modulus = 1130 MPa, yield strength = 23 MPa, flexural strength = 37 MPa, flexural modulus = 1320 MPa, impact strength = 1.6 kJ / m 2 , shrinkage rate = 4.8%, hardness (Shore D hardness) ) = 82 and heat distortion temperature = 35 ° C.

(3)光学的立体造形物の光照射処理:
(i) 上記(1)の(i)で調製した光硬化性樹脂組成物を用いて、実施例1の(2)の(i)と同じ光造形条件を採用して光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)を製造し、次いでこの光学的立体造形物に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
これにより得られた紫外線による後硬化後の光学的立体造形物は、ほぼ透明であったが、黄変しており、上記した方法で測定した黄色度は7.0であった。
(ii) 上記(i)で得られた黄変した光学的立体造形物(紫外線照射して後硬化したもの)を、平らな台上に、縦×横=50mm×30mmの2つの方形表面が上面と下面になるようにして載置し、青色光を放射する実施例1で使用したのと同じ光源(LEDパラダイス社製「LP−R5B40」、放射光の波長範囲=420〜505nm、ピーク波長=455nm、波長400nm以下の光を放射せず)の100個を方形に集積して各々に15mAを通電したものを用いて、光学的立体造形物の上方から青緑光を延べ2時間にわたって照射し、2時間照射した後の時点で、光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表4に示すとおりであった。
その際に、光学的立体造形物の光を照射されている表面における、380〜780nmの波長範囲(可視光域)における合計照射強度Q(W/m2)、380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBは、実施例1と同じであった。
(3) Light irradiation treatment of optical three-dimensional structure:
(I) Using the photocurable resin composition prepared in (i) of (1) above, adopting the same optical modeling conditions as (i) of (2) of Example 1 to create an optical three-dimensional model ( (Vertical x Horizontal x Thickness = 50mm x 30mm x 5mm rectangular parallelepiped) and then UV curing (High pressure mercury lamp) (wavelength 365nm; intensity 30W / m 2 ) for 20 minutes did.
The optically three-dimensional modeled article after post-curing with ultraviolet rays thus obtained was almost transparent but yellowed, and the yellowness measured by the above method was 7.0.
(Ii) The two-dimensional surface of length × width = 50 mm × 30 mm is placed on a flat table on the yellow-colored optical three-dimensional object obtained in (i) above (post-cured by ultraviolet irradiation). The same light source as used in Example 1, which is placed on the upper and lower surfaces and emits blue light (“LP-R5B40” manufactured by LED Paradise, wavelength range of emitted light = 420 to 505 nm, peak wavelength = 455 nm, which does not emit light with a wavelength of 400 nm or less), and each of which is energized with 15 mA, is irradiated with blue-green light from above the optical three-dimensional object for 2 hours. When the yellowness of the optical three-dimensional model was measured by the method described above at the time after irradiation for 2 hours, it was as shown in Table 4 below.
At that time, the total irradiation intensity Q (W / m 2 ) in the wavelength range of 380 to 780 nm (visible light region), the wavelength range of 380 to 780 nm (visible) on the surface irradiated with the light of the optical three-dimensional object. The integrated value L A of the relative spectral intensity in the light region) and the integrated value L B of the relative spectral intensity in the wavelength range of 430 to 500 nm were the same as in Example 1.

《実施例8》
(1)光硬化性樹脂組成物の調製:
(i) 水素化ビスフェノールAジグリシジルエーテル(新日本理化株式会社製「HBE−100」50質量部、4−フェニルチオフェニルジフェニルスルホニウムトリス(ペンタフルオロエチル)トリフルオロホスフェート(サンアプロ株式会社製「CPI−200K)(カチオン重合開始剤)4質量部、ジペンタエリスリトールポリアクリレート(新中村化学工業株式会社製「A−9550」)15質量部、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン(チバスペシャリティケミカル社製「Darocure 1173」)(ラジカル重合開始剤)2質量部およびシクロヘキサンジメタノール(新日本理化株式会社製「CHDM」)10質量部をよく混合して光硬化性樹脂組成物を調製し、これを遮光したタンクに収容した。
これにより得られた光硬化性樹脂組成物の粘度を上記した方法で測定したところ、352mPa・sであった。
(ii) 上記(i)で得られた光硬化性樹脂組成物について、その硬化深度(Dp)、臨界硬化エネルギー(Ec)および作業硬化エネルギー(E10)を上記した方法で求めたところ、硬化深度(Dp)=0.39mm、臨界硬化エネルギー(Ec)=26mJ/cm2、および作業硬化エネルギー(E10)=50mJ/cm2であった。
Example 8
(1) Preparation of photocurable resin composition:
(I) Hydrogenated bisphenol A diglycidyl ether (50 parts by mass of “HBE-100” manufactured by Shin Nippon Chemical Co., Ltd., 4-phenylthiophenyldiphenylsulfonium tris (pentafluoroethyl) trifluorophosphate (“CPI- 200K) (cationic polymerization initiator) 4 parts by mass, dipentaerythritol polyacrylate (“A-9550” manufactured by Shin-Nakamura Chemical Co., Ltd.) 15 parts by mass, 2-hydroxy-2-methyl-1-phenylpropane-1- A photo-curable resin composition obtained by thoroughly mixing 2 parts by mass of ON (“Darocur 1173” manufactured by Ciba Specialty Chemicals) (radical polymerization initiator) and 10 parts by mass of cyclohexanedimethanol (“CHDM” manufactured by Shin Nippon Rika Co., Ltd.) Prepared and housed in a light-tight tank It was.
It was 352 mPa * s when the viscosity of the photocurable resin composition obtained by this was measured by the above-mentioned method.
(Ii) About the photocurable resin composition obtained in the above (i), the curing depth (Dp), critical curing energy (Ec), and work curing energy (E 10 ) were determined by the above-described method. Depth (Dp) = 0.39 mm, critical curing energy (Ec) = 26 mJ / cm 2 , and working curing energy (E 10 ) = 50 mJ / cm 2 .

(2)光学的立体造形物の光照射処理:
(i) 上記(1)の(i)で調製した光硬化性樹脂組成物を用いて、実施例1の(2)の(i)と同じ光造形条件を採用して光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)を製造し、次いでこの光学的立体造形物に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
これにより得られた紫外線による後硬化後の光学的立体造形物は、ほぼ透明であったが、黄変しており、上記した方法で測定した黄色度は4.2であった。
(ii) 上記(i)で得られた黄変した光学的立体造形物(紫外線照射して後硬化したもの)を、平らな台上に、縦×横=50mm×30mmの2つの方形表面が上面と下面になるようにして載置し、青色光を放射する実施例1で使用したのと同じ光源(LEDパラダイス社製「LP−R5B40」、放射光の波長範囲=420〜505nm、ピーク波長=455nm、波長400nm以下の光を放射せず)の100個を方形に集積して各々に15mAを通電したものを用いて、光学的立体造形物の上方から青緑光を延べ2時間にわたって照射し、2時間照射した後の時点で、光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表4に示すとおりであった。
その際に、光学的立体造形物の光を照射されている表面における、380〜780nmの波長範囲(可視光域)における合計照射強度Q(W/m2)、380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBは、実施例1と同じであった。
(2) Light irradiation treatment of optical three-dimensional structure:
(I) Using the photocurable resin composition prepared in (i) of (1) above, adopting the same optical modeling conditions as (i) of (2) of Example 1 to create an optical three-dimensional model ( (Vertical x Horizontal x Thickness = 50mm x 30mm x 5mm rectangular parallelepiped) and then UV curing (High pressure mercury lamp) (wavelength 365nm; intensity 30W / m 2 ) for 20 minutes did.
The optically three-dimensional molded article after post-curing with ultraviolet rays obtained in this manner was almost transparent, but yellowed, and the yellowness measured by the method described above was 4.2.
(Ii) The two-dimensional surface of length × width = 50 mm × 30 mm is placed on a flat table on the yellow-colored optical three-dimensional object obtained in (i) above (post-cured by ultraviolet irradiation). The same light source as used in Example 1, which is placed on the upper and lower surfaces and emits blue light (“LP-R5B40” manufactured by LED Paradise, wavelength range of emitted light = 420 to 505 nm, peak wavelength = 455 nm, which does not emit light with a wavelength of 400 nm or less), and each of which is energized with 15 mA, is irradiated with blue-green light from above the optical three-dimensional object for 2 hours. When the yellowness of the optical three-dimensional model was measured by the method described above at the time after irradiation for 2 hours, it was as shown in Table 4 below.
At that time, the total irradiation intensity Q (W / m 2 ) in the wavelength range of 380 to 780 nm (visible light region), the wavelength range of 380 to 780 nm (visible) on the surface irradiated with the light of the optical three-dimensional object. The integrated value L A of the relative spectral intensity in the light region) and the integrated value L B of the relative spectral intensity in the wavelength range of 430 to 500 nm were the same as in Example 1.

《実施例9》
(1)光硬化性樹脂組成物の調製:
(i) 3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキシルカルボキシレート(ダウケミカル社製「UVR−6105」)50質量部、3−ヒドロキシメチル−3−エチルオキセタン(東亞合成株式会社製「OXT−101」)50質量部および4−(2−クロロ−4−ベンソイルフェニルチオ)フェニルビス(4−フルオロフェニル)スルホニウムヘキサフルオロアンチモネート(ADEKA社製「SP−172)(カチオン重合開始剤)3質量部をよく混合して光硬化性樹脂組成物を調製し、これを遮光したタンクに収容した。
これにより得られた光硬化性樹脂組成物の粘度を上記した方法で測定したところ、48mPa・sであった。
(ii) 上記(i)で得られた光硬化性樹脂組成物について、その硬化深度(Dp)、臨界硬化エネルギー(Ec)および作業硬化エネルギー(E10)を上記した方法で求めたところ、硬化深度(Dp)=0.10mm、臨界硬化エネルギー(Ec)=12mJ/cm2、および作業硬化エネルギー(E10)=156mJ/cm2であった。
Example 9
(1) Preparation of photocurable resin composition:
(I) 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate ("UVR-6105" manufactured by Dow Chemical Company) 50 parts by mass, 3-hydroxymethyl-3-ethyloxetane (manufactured by Toagosei Co., Ltd.) OXT-101 ") 50 parts by mass and 4- (2-chloro-4-benzoylphenylthio) phenylbis (4-fluorophenyl) sulfonium hexafluoroantimonate (" SP-172 "manufactured by ADEKA) (cationic polymerization initiator) ) 3 parts by mass was mixed well to prepare a photocurable resin composition, which was stored in a light-shielded tank.
It was 48 mPa * s when the viscosity of the photocurable resin composition obtained by this was measured by the above-mentioned method.
(Ii) About the photocurable resin composition obtained in the above (i), the curing depth (Dp), critical curing energy (Ec), and work curing energy (E 10 ) were determined by the above-described method. Depth (Dp) = 0.10 mm, critical curing energy (Ec) = 12 mJ / cm 2 , and work curing energy (E 10 ) = 156 mJ / cm 2 .

(2)光学的立体造形物の光照射処理:
(i) 上記(1)の(i)で調製した光硬化性樹脂組成物を用いて、実施例1の(2)の(i)と同じ光造形条件を採用して光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)を製造し、次いでこの光学的立体造形物に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
これにより得られた紫外線による後硬化後の光学的立体造形物は黄変の度合が大きく、上記した方法で測定した黄色度は35.4であった。
(ii) 上記(i)で得られた黄変した光学的立体造形物(紫外線照射して後硬化したもの)を、平らな台上に、縦×横=50mm×30mmの2つの方形表面が上面と下面になるようにして載置し、青色光を放射する実施例1で使用したのと同じ光源(LEDパラダイス社製「LP−R5B40」、放射光の波長範囲=420〜505nm、ピーク波長=455nm、波長400nm以下の光を放射せず)の100個を方形に集積して各々に15mAを通電したものを用いて、光学的立体造形物の上方から青緑光を延べ2時間にわたって照射し、2時間照射した後の時点で、光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表4に示すとおりであった。
その際に、光学的立体造形物の光を照射されている表面における、380〜780nmの波長範囲(可視光域)における合計照射強度Q(W/m2)、380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBは、実施例1と同じであった。
(2) Light irradiation treatment of optical three-dimensional structure:
(I) Using the photocurable resin composition prepared in (i) of (1) above, adopting the same optical modeling conditions as (i) of (2) of Example 1 to create an optical three-dimensional model ( (Vertical x Horizontal x Thickness = 50mm x 30mm x 5mm rectangular parallelepiped) and then UV curing (High pressure mercury lamp) (wavelength 365nm; intensity 30W / m 2 ) for 20 minutes did.
The thus obtained optically three-dimensional model after post-curing with ultraviolet rays had a large degree of yellowing, and the yellowness measured by the above method was 35.4.
(Ii) The two-dimensional surface of length × width = 50 mm × 30 mm is placed on a flat table on the yellow-colored optical three-dimensional object obtained in (i) above (post-cured by ultraviolet irradiation). The same light source as used in Example 1, which is placed on the upper and lower surfaces and emits blue light (“LP-R5B40” manufactured by LED Paradise, wavelength range of emitted light = 420 to 505 nm, peak wavelength = 455 nm, which does not emit light with a wavelength of 400 nm or less), and each of which is energized with 15 mA, is irradiated with blue-green light from above the optical three-dimensional object for 2 hours. When the yellowness of the optical three-dimensional model was measured by the method described above at the time after irradiation for 2 hours, it was as shown in Table 4 below.
At that time, the total irradiation intensity Q (W / m 2 ) in the wavelength range of 380 to 780 nm (visible light region), the wavelength range of 380 to 780 nm (visible) on the surface irradiated with the light of the optical three-dimensional object. The integrated value L A of the relative spectral intensity in the light region) and the integrated value L B of the relative spectral intensity in the wavelength range of 430 to 500 nm were the same as in Example 1.

《実施例10》
(1)光硬化性樹脂組成物の調製:
(i) 8官能ウレタンアクリレートメタクリレート(新中村化学工業株式会社製「U8−231」;プロポキシ化ペンタエリスリトール1分子、イソホロンジイソシアネート4分子およびグリセリンアクリレートメタクリレート4分子を反応させたもの)50質量部、アクリロイルモルホリン(新中村化学工業株式会社製「A−MO」)25質量部、トリシクロデカンジメタノールジアクリレート(新中村化学工業株式会社製「A−DCP」)25質量部およびベンジルジメチルケタール(チバスペシャリティケミカル社製「Irgacure 651」)(ラジカル重合開始剤)4質量部をよく混合して光硬化性樹脂組成物を調製し、これを遮光したタンクに収容した。
これにより得られた光硬化性樹脂組成物の粘度を上記した方法で測定したところ、540mPa・sであった。
(ii) 上記(i)で得られた光硬化性樹脂組成物について、その硬化深度(Dp)、臨界硬化エネルギー(Ec)および作業硬化エネルギー(E10)を上記した方法で求めたところ、硬化深度(Dp)=0.13mm、臨界硬化エネルギー(Ec)=2.8mJ/cm2、および作業硬化エネルギー(E10)=19.3mJ/cm2であった。
Example 10
(1) Preparation of photocurable resin composition:
(I) 8-functional urethane acrylate methacrylate ("N8-231" manufactured by Shin-Nakamura Chemical Co., Ltd .; one obtained by reacting 1 molecule of propoxylated pentaerythritol, 4 molecules of isophorone diisocyanate and 4 molecules of glycerol acrylate methacrylate), acryloyl 25 parts by mass of morpholine (“A-MO” manufactured by Shin-Nakamura Chemical Co., Ltd.), 25 parts by mass of tricyclodecane dimethanol diacrylate (“A-DCP” manufactured by Shin-Nakamura Chemical Co., Ltd.) and benzyldimethyl ketal (Ciba Specialty) A photo-curable resin composition was prepared by thoroughly mixing 4 parts by mass of “Irgacure 651” (radical polymerization initiator) manufactured by Chemical Co., and this was stored in a light-shielded tank.
It was 540 mPa * s when the viscosity of the photocurable resin composition obtained by this was measured by the above-mentioned method.
(Ii) About the photocurable resin composition obtained in the above (i), the curing depth (Dp), critical curing energy (Ec), and work curing energy (E 10 ) were determined by the above-described method. Depth (Dp) = 0.13 mm, critical curing energy (Ec) = 2.8 mJ / cm 2 , and working curing energy (E 10 ) = 19.3 mJ / cm 2 .

(2)光学的立体造形物の光照射処理:
(i) 上記(1)の(i)で調製した光硬化性樹脂組成物を用いて、実施例1の(2)の(i)と同じ光造形条件を採用して光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)を製造し、次いでこの光学的立体造形物に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
これにより得られた紫外線による後硬化後の光学的立体造形物は黄変の度合が大きく、上記した方法で測定した黄色度は9.3であった。
(ii) 上記(i)で得られた黄変した光学的立体造形物(紫外線照射して後硬化したもの)を、平らな台上に、縦×横=50mm×30mmの2つの方形表面が上面と下面になるようにして載置し、青色光を放射する実施例1で使用したのと同じ光源(LEDパラダイス社製「LP−R5B40」、放射光の波長範囲=420〜505nm、ピーク波長=455nm、波長400nm以下の光を放射せず)の100個を方形に集積して各々に15mAを通電したものを用いて、光学的立体造形物の上方から青緑光を延べ2時間にわたって照射し、2時間照射した後の時点で、光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表4に示すとおりであった。
その際に、光学的立体造形物の光を照射されている表面における、380〜780nmの波長範囲(可視光域)における合計照射強度Q(W/m2)、380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBは、実施例1と同じであった。
(2) Light irradiation treatment of optical three-dimensional structure:
(I) Using the photocurable resin composition prepared in (i) of (1) above, adopting the same optical modeling conditions as (i) of (2) of Example 1 to create an optical three-dimensional model ( (Vertical x Horizontal x Thickness = 50mm x 30mm x 5mm rectangular parallelepiped) and then UV curing (High pressure mercury lamp) (wavelength 365nm; intensity 30W / m 2 ) for 20 minutes did.
The resulting optically three-dimensional modeled article after post-curing with ultraviolet rays had a large degree of yellowing, and the yellowness measured by the method described above was 9.3.
(Ii) The two-dimensional surface of length × width = 50 mm × 30 mm is placed on a flat table on the yellow-colored optical three-dimensional object obtained in (i) above (post-cured by ultraviolet irradiation). The same light source as used in Example 1, which is placed on the upper and lower surfaces and emits blue light (“LP-R5B40” manufactured by LED Paradise, wavelength range of emitted light = 420 to 505 nm, peak wavelength = 455 nm, which does not emit light with a wavelength of 400 nm or less), and each of which is energized with 15 mA, is irradiated with blue-green light from above the optical three-dimensional object for 2 hours. When the yellowness of the optical three-dimensional model was measured by the method described above at the time after irradiation for 2 hours, it was as shown in Table 4 below.
At that time, the total irradiation intensity Q (W / m 2 ) in the wavelength range of 380 to 780 nm (visible light region), the wavelength range of 380 to 780 nm (visible) on the surface irradiated with the light of the optical three-dimensional object. The integrated value L A of the relative spectral intensity in the light region) and the integrated value L B of the relative spectral intensity in the wavelength range of 430 to 500 nm were the same as in Example 1.

《実施例11》
(1)光硬化性樹脂組成物の調製:
(i) トリシクロデカンジメタノールジメタクリレート(新中村化学工業株式会社製「DCP」)50質量部、エトキシ化ビスフェノールAジメタクリレート(新中村化学工業株式会社製「BPE−200」)50質量部および1−ヒドロキシシクロヘキシルフェニルケトン(チバスペシャリティケミカル社製「Irgacure 184」)(ラジカル重合開始剤)4質量部をよく混合して光硬化性樹脂組成物を調製し、これを遮光したタンクに収容した。
これにより得られた光硬化性樹脂組成物の粘度を上記した方法で測定したところ、320mPa・sであった。
(ii) 上記(i)で得られた光硬化性樹脂組成物について、その硬化深度(Dp)、臨界硬化エネルギー(Ec)および作業硬化エネルギー(E10)を上記した方法で求めたところ、硬化深度(Dp)=0.37mm、臨界硬化エネルギー(Ec)=25mJ/cm2、および作業硬化エネルギー(E10)=49.5mJ/cm2であった。
Example 11
(1) Preparation of photocurable resin composition:
(I) 50 parts by mass of tricyclodecane dimethanol dimethacrylate (“DCP” manufactured by Shin-Nakamura Chemical Co., Ltd.), 50 parts by mass of ethoxylated bisphenol A dimethacrylate (“BPE-200” manufactured by Shin-Nakamura Chemical Co., Ltd.) and 4 parts by mass of 1-hydroxycyclohexyl phenyl ketone (“Irgacure 184” manufactured by Ciba Specialty Chemicals) (radical polymerization initiator) was mixed well to prepare a photocurable resin composition, which was stored in a light-shielded tank.
It was 320 mPa * s when the viscosity of the photocurable resin composition obtained by this was measured by the above-mentioned method.
(Ii) About the photocurable resin composition obtained in the above (i), the curing depth (Dp), critical curing energy (Ec), and work curing energy (E 10 ) were determined by the above-described method. Depth (Dp) = 0.37 mm, critical curing energy (Ec) = 25 mJ / cm 2 , and working curing energy (E 10 ) = 49.5 mJ / cm 2 .

(2)光学的立体造形物の光照射処理:
(i) 上記(1)の(i)で調製した光硬化性樹脂組成物を用いて、実施例1の(2)の(i)と同じ光造形条件を採用して光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)を製造し、次いでこの光学的立体造形物に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
これにより得られた紫外線による後硬化後の光学的立体造形物は黄変の度合が大きく、上記した方法で測定した黄色度は61.3であった。
(ii) 上記(i)で得られた黄変した光学的立体造形物(紫外線照射して後硬化したもの)を、平らな台上に、縦×横=50mm×30mmの2つの方形表面が上面と下面になるようにして載置し、青色光を放射する実施例1で使用したのと同じ光源(LEDパラダイス社製「LP−R5B40」、放射光の波長範囲=420〜505nm、ピーク波長=455nm、波長400nm以下の光を放射せず)の100個を方形に集積して各々に15mAを通電したものを用いて、光学的立体造形物の上方から青緑光を延べ2時間にわたって照射し、2時間照射した後の時点で、光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表4に示すとおりであった。
その際に、光学的立体造形物の光を照射されている表面における、380〜780nmの波長範囲(可視光域)における合計照射強度Q(W/m2)、380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBは、実施例1と同じであった。
(2) Light irradiation treatment of optical three-dimensional structure:
(I) Using the photocurable resin composition prepared in (i) of (1) above, adopting the same optical modeling conditions as (i) of (2) of Example 1 to create an optical three-dimensional model ( (Vertical x Horizontal x Thickness = 50mm x 30mm x 5mm rectangular parallelepiped) and then UV curing (High pressure mercury lamp) (wavelength 365nm; intensity 30W / m 2 ) for 20 minutes did.
The resulting optically three-dimensional modeled article after post-curing with ultraviolet rays had a high degree of yellowing, and the yellowness measured by the method described above was 61.3.
(Ii) The two-dimensional surface of length × width = 50 mm × 30 mm is placed on a flat table on the yellow-colored optical three-dimensional object obtained in (i) above (post-cured by ultraviolet irradiation). The same light source as used in Example 1, which is placed on the upper and lower surfaces and emits blue light (“LP-R5B40” manufactured by LED Paradise, wavelength range of emitted light = 420 to 505 nm, peak wavelength = 455 nm, which does not emit light with a wavelength of 400 nm or less), and each of which is energized with 15 mA, is irradiated with blue-green light from above the optical three-dimensional object for 2 hours. When the yellowness of the optical three-dimensional model was measured by the method described above at the time after irradiation for 2 hours, it was as shown in Table 4 below.
At that time, the total irradiation intensity Q (W / m 2 ) in the wavelength range of 380 to 780 nm (visible light region), the wavelength range of 380 to 780 nm (visible) on the surface irradiated with the light of the optical three-dimensional object. The integrated value L A of the relative spectral intensity in the light region) and the integrated value L B of the relative spectral intensity in the wavelength range of 430 to 500 nm were the same as in Example 1.

Figure 2014000820
Figure 2014000820

上記の表4の実施例6〜11の結果および上記した表1の実施例1〜4の結果から明らかなように、430〜500nmの範囲内の波長を有する光(青色光)を含み且つ波長が400nm以下の光を含まない光を、光学的立体造形物の表面での波長430〜500nmの光の合計照射強度が15W/m2以上となるように照射して光学的立体造形物の黄変などの変色を低減させる本発明の処理方法は、光学的立体造形物の樹脂の種類や成分など(光学的立体造形物の製造に用いた光硬化性樹脂組成物を構成する成分の種類や成分組成など)が異なっていても有効に実施することができる。 As is clear from the results of Examples 6 to 11 in Table 4 and the results of Examples 1 to 4 in Table 1 above, the wavelength includes light (blue light) having a wavelength in the range of 430 to 500 nm and the wavelength. Irradiates light that does not contain light of 400 nm or less so that the total irradiation intensity of light having a wavelength of 430 to 500 nm on the surface of the optical three-dimensional object becomes 15 W / m 2 or more. The processing method of the present invention that reduces discoloration such as discoloration is the type and component of the resin of the optical three-dimensional model (such as the type of components constituting the photocurable resin composition used for the production of the optical three-dimensional model and Even if the component composition is different, it can be effectively carried out.

《参考例1》
(1) 実施例1の(1)の(i)で調製したのと同じ光硬化性樹脂組成物を用いて、実施例1の上記(2)の(i)と同じ光造形条件を採用して複数の光学的立体造形物(縦×横×厚さ=50mm×30mm×5mmの直方体)を製造し、次いでこれらの光学的立体造形物に紫外線(高圧水銀灯)(波長365nm;強度30W/m2)を20分間照射して後硬化した。
これにより得られた紫外線による後硬化後の光学的立体造形物は、いずれも、全体として透明であったが、黄変しており、上記した方法で測定した黄色度は2.9であった。
(2)(i) 上記(1)で得られた光学的立体造形物(紫外線照射して後硬化したもの)のうちの1つは、遮光した状態(アルミニウムをラミネートした遮光フイルムで包んだ後に、金属缶に収容)で室温下に2日間保存し、2日後に缶から取り出してその黄色度を上記した方法で測定したところ、下記の表5に示すとおりであった。
(ii) また、上記(1)で得られた光学的立体造形物(紫外線照射して後硬化したもの)のうちの別の1つは、室内(紫外線カット蛍光灯で照明した室内)の中央に、露出状態でそのまま2日間放置し、2日後にその黄色度を上記した方法で測定したところ、下記の表5に示すとおりであった。なお、この上記(ii)の実験では、室内に放置した光学的立体造形物の表面での380〜780nmの波長範囲(可視光域)における合計照射強度Q(W/m2)を上記した方法で測定すると共に、光学的立体造形物の光を照射されている表面での380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBを上記した方法で求めて、式:Q×(LB/LA)から、光学的立体造形物の光を照射されている表面での波長430〜500nmの光の合計照射強度(W/m2)を求めたところ、下記の表5に示すとおりであった。
(iii) 更に、上記(1)で得られた光学的立体造形物(紫外線照射して後硬化したもの)のうちの更に別の1つは、透明なガラス越しに太陽光が当たる南向の窓辺に露出した状態で2日間放置し、2日後にその黄色度を上記した方法で測定したところ、下記の表5に示すとおりであった。なお、この(iii)の実験では、窓辺に放置した光学的立体造形物の表面での380〜780nmの波長範囲(可視光域)における合計照射強度Q(W/m2)を上記した方法で測定すると共に、光学的立体造形物の光を照射されている表面での380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBを上記した方法で求めて、式:Q×(LB/LA)から、光学的立体造形物の光を照射されている表面での波長430〜500nmの光の合計照射強度(W/m2)を求めたところ、下記の表5に示すとおりであった。
<< Reference Example 1 >>
(1) By using the same photocurable resin composition as prepared in (i) of (1) of Example 1, the same optical modeling conditions as in (i) of (2) of Example 1 were adopted. A plurality of optical three-dimensional objects (vertical × horizontal × thickness = 50 mm × 30 mm × 5 mm rectangular parallelepiped) are manufactured, and then these optical three-dimensional objects are irradiated with ultraviolet rays (high pressure mercury lamp) (wavelength 365 nm; intensity 30 W / m). 2 ) was post-cured by irradiation for 20 minutes.
All of the optically three-dimensional molded articles after post-curing with ultraviolet rays thus obtained were transparent as a whole, but yellowed, and the yellowness measured by the above-described method was 2.9. .
(2) (i) One of the optical three-dimensional objects obtained by the above (1) (post-cured by ultraviolet irradiation) is in a light-shielded state (after being wrapped in a light-shielding film laminated with aluminum) Stored in a metal can) for 2 days at room temperature, taken out of the can after 2 days, and measured for yellowness by the method described above, and the results were as shown in Table 5 below.
(Ii) In addition, another one of the optical three-dimensional objects obtained by the above (1) (post-cured by irradiation with ultraviolet rays) is the center of the room (the room illuminated with the ultraviolet light cut-off lamp). In addition, it was left as it was for 2 days in an exposed state, and after 2 days, the yellowness was measured by the method described above, and it was as shown in Table 5 below. In the above experiment (ii), the total irradiation intensity Q (W / m 2 ) in the wavelength range of 380 to 780 nm (visible light range) on the surface of the optical three-dimensional structure left in the room is the method described above. And the integral value L A of the relative spectral intensity in the wavelength range (visible light range) of 380 to 780 nm on the surface irradiated with the light of the optical three-dimensional object and the wavelength range of 430 to 500 nm. The integral value L B of the relative spectral intensity is obtained by the method described above, and the light having a wavelength of 430 to 500 nm on the surface irradiated with the light of the optical three-dimensional structure is obtained from the formula: Q × (L B / L A ) The total irradiation intensity (W / m 2 ) was determined as shown in Table 5 below.
(Iii) Further, another one of the optical three-dimensional objects obtained in the above (1) (post-cured by UV irradiation) is south-facing with sunlight through transparent glass. It was left to stand for 2 days in the state exposed to the window, and after 2 days, the yellowness was measured by the method described above, and it was as shown in Table 5 below. In the experiment of (iii), the total irradiation intensity Q (W / m 2 ) in the wavelength range of 380 to 780 nm (visible light region) on the surface of the optical three-dimensional structure left on the window side is as described above. While measuring, the integrated value L A of the relative spectral intensity in the wavelength range (visible light range) of 380 to 780 nm on the surface irradiated with the light of the optical three-dimensional object and the relative value in the wavelength range of 430 to 500 nm The integral value L B of the spectral intensity is obtained by the above-described method, and the light having a wavelength of 430 to 500 nm on the surface irradiated with the light of the optical three-dimensional structure is calculated from the formula: Q × (L B / L A ). When the total irradiation intensity (W / m 2 ) was determined, it was as shown in Table 5 below.

Figure 2014000820
Figure 2014000820

上記した処理方法による場合は、光学的立体造形物が本来有する力学的特性やその他の物性を良好に維持しながら、光学的立体造形物に生じていた黄変などの変色を、簡単に且つ短時間に速やかに解消または低減して、無色透明性に優れるか、または着色剤を用いたものでは着色剤本来の優れた色調を呈する光学的立体造形物に変えることができ、それにより得られる光学的立体造形物は、精密部品、電気・電子部品、家具、建築構造物、自動車用部品、各種容器類、鋳物などのモデル、母型などのためのモデル、加工用モデル、複雑な熱媒回路の設計用の部品、複雑な構造の熱媒挙動の解析企画用の部品、美術品の復元、模造や現代アート、ガラス張りの建築物のデザインプレゼンテーションモデルのような美術工芸品などの用途に有効に用いることができる。 In the case of the above processing method, discoloration such as yellowing that has occurred in the optical three-dimensional object can be easily and easily reduced while maintaining the mechanical properties and other physical properties inherent to the optical three-dimensional object. time quickly eliminated or reduced, or excellent colorless transparency, or one using a coloring agent can be varied in stereolithography product exhibits excellent color tone of the original coloring agents, optical obtained thereby 3D objects include precision parts, electrical / electronic parts, furniture, building structures, automotive parts, various containers, casting models, master models, processing models, complex heat transfer circuits Effective for parts such as parts for design, parts for analysis and planning of heat transfer behavior of complex structures, restoration of artworks, imitation and modern art, art and crafts such as design presentation models for glass-walled buildings It is possible to have.

Claims (3)

光硬化性樹脂組成物を用いて製造した光学的立体造形物であって、分光光度計で測定して得られる分光透過率をJIS−K7373に規定された方法で数値計算して、補助イルミナントC、視野2度の条件で求めた厚さ5mmでの黄色度が2.4以下である光学的立体造形物。An optical three-dimensional object manufactured using a photocurable resin composition, and the spectral transmittance obtained by measuring with a spectrophotometer is numerically calculated by a method prescribed in JIS-K7373, and an auxiliary illuminant C An optical three-dimensional object having a yellowness of 2.4 or less at a thickness of 5 mm obtained under the condition of a visual field of 2 degrees. 光硬化性樹脂組成物を用いて光学的立体造形を行って得られる光学的立体造形物に、430〜500nmの範囲内の波長を有する光を、光学的立体造形物の表面での波長430〜500nmの光の合計照射強度が15W/mLight having a wavelength within a range of 430 to 500 nm is applied to an optical three-dimensional object obtained by optical three-dimensional modeling using the photocurable resin composition, and a wavelength of 430 to 400 on the surface of the optical three-dimensional object. The total irradiation intensity of 500 nm light is 15 W / m 22 以上となるように照射処理して得られたものである請求項1に記載の光学的立体造形物。The optical three-dimensional structure according to claim 1, wherein the optical three-dimensional object is obtained by irradiation treatment so as to achieve the above. 430〜500nmの範囲内の波長を有する光が、波長が400nm以下の光を含まない光である請求項2に記載の光学的立体造形物。The optical three-dimensional molded item according to claim 2, wherein the light having a wavelength within a range of 430 to 500 nm is light that does not include light having a wavelength of 400 nm or less.
JP2013169390A 2013-08-19 2013-08-19 Optical three-dimensional model with low yellowness Active JP5738367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013169390A JP5738367B2 (en) 2013-08-19 2013-08-19 Optical three-dimensional model with low yellowness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013169390A JP5738367B2 (en) 2013-08-19 2013-08-19 Optical three-dimensional model with low yellowness

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009111956A Division JP5393239B2 (en) 2009-05-01 2009-05-01 Processing method for optical three-dimensional object

Publications (2)

Publication Number Publication Date
JP2014000820A true JP2014000820A (en) 2014-01-09
JP5738367B2 JP5738367B2 (en) 2015-06-24

Family

ID=50034433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013169390A Active JP5738367B2 (en) 2013-08-19 2013-08-19 Optical three-dimensional model with low yellowness

Country Status (1)

Country Link
JP (1) JP5738367B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020172082A (en) * 2019-04-12 2020-10-22 シーメット株式会社 Post-curing unit of optical solid shaped article and post-curing method
JP2020172083A (en) * 2019-04-12 2020-10-22 シーメット株式会社 Post-curing method of optical solid shaped article and post-curing/post-processing method
EP3882028A4 (en) * 2019-03-28 2022-03-02 Denka Company Limited Photocurable composition for three-dimensional molding, three-dimensional molded product, and method for producing three-dimensional molded product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333463A (en) * 1995-06-07 1996-12-17 Biomedical Sensors Ltd Reduction of discoloration in plastic material
JP2007516318A (en) * 2003-11-06 2007-06-21 ハンツマン・アドヴァンスト・マテリアルズ・(スイッツランド)・ゲーエムベーハー Photocurable composition for producing cured articles having high transparency and improved mechanical properties
WO2009051203A1 (en) * 2007-10-19 2009-04-23 Mitsubishi Rayon Co., Ltd., Light guide member, method for producing the same and surface light source device using the same
JP2010260230A (en) * 2009-05-01 2010-11-18 Cmet Inc Method of treating optical solid shaped article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333463A (en) * 1995-06-07 1996-12-17 Biomedical Sensors Ltd Reduction of discoloration in plastic material
JP2007516318A (en) * 2003-11-06 2007-06-21 ハンツマン・アドヴァンスト・マテリアルズ・(スイッツランド)・ゲーエムベーハー Photocurable composition for producing cured articles having high transparency and improved mechanical properties
WO2009051203A1 (en) * 2007-10-19 2009-04-23 Mitsubishi Rayon Co., Ltd., Light guide member, method for producing the same and surface light source device using the same
JP2010260230A (en) * 2009-05-01 2010-11-18 Cmet Inc Method of treating optical solid shaped article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3882028A4 (en) * 2019-03-28 2022-03-02 Denka Company Limited Photocurable composition for three-dimensional molding, three-dimensional molded product, and method for producing three-dimensional molded product
US11787951B2 (en) 2019-03-28 2023-10-17 Denka Company Limited Photocurable composition for three-dimensional molding, three-dimensional molded product, and method for producing three-dimensional molded product
JP2020172082A (en) * 2019-04-12 2020-10-22 シーメット株式会社 Post-curing unit of optical solid shaped article and post-curing method
JP2020172083A (en) * 2019-04-12 2020-10-22 シーメット株式会社 Post-curing method of optical solid shaped article and post-curing/post-processing method

Also Published As

Publication number Publication date
JP5738367B2 (en) 2015-06-24

Similar Documents

Publication Publication Date Title
JP5699365B2 (en) Liquid radiation curable resin for additive manufacturing containing cationic photopolymerization initiator triarylsulfonium borate
JP5970265B2 (en) Processing device for optical three-dimensional objects
EP1939234B1 (en) Resin composition for optical three-dimensional molded object
JP5266131B2 (en) Optical three-dimensional resin composition
JP2015036420A (en) Resin composition for molding low viscosity fluid radiation curable dentistry aligner for laminate molding
JP5393239B2 (en) Processing method for optical three-dimensional object
WO2006137329A1 (en) Three-dimensional shaped item with smoothed molding end face
WO2013172407A1 (en) Resin composition for optical stereolithography
JP6091342B2 (en) Optical three-dimensional resin composition
JP6457860B2 (en) Optical three-dimensional resin composition
JP6348702B2 (en) Optical three-dimensional resin composition
JP5738367B2 (en) Optical three-dimensional model with low yellowness
JP2013151703A (en) Resin composition for three-dimensional shaping
JP6865460B2 (en) Resin composition for optical three-dimensional modeling
JP2022546933A (en) Liquid hybrid UV/VIS radiation curable resin composition for additive manufacturing
JP2009203306A (en) Resin composition for optical three-dimensional shaping
JP6161961B2 (en) Curable resin composition and three-dimensional model
JP5302022B2 (en) Optical three-dimensional resin composition
JP2020172083A (en) Post-curing method of optical solid shaped article and post-curing/post-processing method
JP6877017B2 (en) Optical three-dimensional modeling method
JP4993535B2 (en) Manufacturing method of 3D objects
JP2008063514A (en) Resin composition for optical stereolithography
JP2020172082A (en) Post-curing unit of optical solid shaped article and post-curing method
JP2005325252A (en) Curing method and manufacturing method of cured product

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150421

R150 Certificate of patent or registration of utility model

Ref document number: 5738367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250