JP2014000586A - Casting mold for casting - Google Patents

Casting mold for casting Download PDF

Info

Publication number
JP2014000586A
JP2014000586A JP2012137771A JP2012137771A JP2014000586A JP 2014000586 A JP2014000586 A JP 2014000586A JP 2012137771 A JP2012137771 A JP 2012137771A JP 2012137771 A JP2012137771 A JP 2012137771A JP 2014000586 A JP2014000586 A JP 2014000586A
Authority
JP
Japan
Prior art keywords
long side
casting
casting mold
ingot
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012137771A
Other languages
Japanese (ja)
Inventor
Hiroyuki Higashimine
浩之 東峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2012137771A priority Critical patent/JP2014000586A/en
Publication of JP2014000586A publication Critical patent/JP2014000586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a casting mold for casting capable of preventing constriction of a long side central part caused by tensile stress in the casting direction.SOLUTION: A casting mold 1 for casting has mutually opposed long side side long side surfaces 2 and short side side short side surfaces 3, and supplies molten metal from above a casting hollow part 4 formed of these long side surfaces 2 and short side surfaces 3 and discharges an ingot of a rectangular cross-sectional shape from below while cooling this so as to continuously cast the ingot of a rectangular cross-section. The long side side long side surfaces 2 are formed so that surfaces 10 of a central part 9 become projecting shapes with respect to surfaces 8 of both side parts 7, and the mutually opposed long side surfaces 2 are formed so as to incline to the inside as going downward, and the surfaces 10 of the central part 9 are formed so that a projection quantity t reduces as going downward to the surfaces 8 of both side parts 7.

Description

本発明は、銅合金等を連続的に鋳造する鋳造用鋳型に関するものである。   The present invention relates to a casting mold for continuously casting a copper alloy or the like.

銅合金に限らず、縦型連続鋳造では鋳型内での冷却条件と引抜き速度及び材質の違いにより凝固収縮や引け細りによる外形寸法が縮小方向に進行する。そのため特殊な鋳造を除いては一般的に鋳型内面には図4に示すように鋳造方向(上から下に向けて)にテーパー25を設けている。   In vertical continuous casting, not limited to copper alloys, the outer dimensions due to solidification shrinkage and shrinkage progress in the shrinking direction due to differences in cooling conditions, drawing speed, and material in the mold. Therefore, except for special casting, a taper 25 is generally provided on the inner surface of the mold in the casting direction (from top to bottom) as shown in FIG.

縦型連続鋳造では長辺側中央部の寸法収縮が顕著に発生する。これは円形断面のビレット鋳造が円周方向で均一な冷却条件を得られ易いのに対し矩形断面のスラブ鋳造ではコーナー部から短辺側にかけての冷却が強くなり易いためである。また、ビレット・スラブいずれの断面形状によらず鋳型下の二次冷却条件により収縮量は変化する。   In the vertical continuous casting, the dimensional shrinkage of the central part on the long side is remarkably generated. This is because billet casting with a circular cross section easily obtains uniform cooling conditions in the circumferential direction, whereas slab casting with a rectangular cross section tends to increase the cooling from the corner portion to the short side. Further, the amount of shrinkage varies depending on the secondary cooling conditions under the mold regardless of the cross-sectional shape of either the billet or slab.

縦型連続鋳造において溶湯を鋳造用鋳型26に注湯し、冷却・凝固の開始から常温に冷却されるまでの過程が一定の冷却速度で進行することが望ましいと考えられるが、一部の銅合金においては様々な温度領域で冷却速度を制御する必要が生じる。これらの制御は鋳造用鋳型26に注湯される溶湯温度や鋳型冷却水の流量、二次冷却帯の水量や位置を制御する事で目標の冷却パターンを得ようとするものである。また、鋳造後の熱間圧延工程での加熱炉や圧延パス時に鋳塊形状による搬送トラブル防止のためには鋳塊の断面形状や長手方向の形状にも精度が求められる。そのため図5に示すように予め鋳塊の収縮量を見越して鋳塊の長辺部の中央を膨らませるべく、鋳造用鋳型26の長辺部27の中央部28を凹状に形成する場合がある。   In vertical continuous casting, it is desirable that the molten metal is poured into the casting mold 26 and the process from the start of cooling and solidification to cooling to room temperature proceeds at a constant cooling rate. In alloys, it is necessary to control the cooling rate in various temperature ranges. These controls are intended to obtain a target cooling pattern by controlling the temperature of the molten metal poured into the casting mold 26, the flow rate of the mold cooling water, and the amount and position of the secondary cooling zone. Moreover, in order to prevent a conveyance trouble due to the ingot shape during a heating furnace or a rolling pass in a hot rolling process after casting, accuracy is also required for the cross-sectional shape and longitudinal shape of the ingot. Therefore, as shown in FIG. 5, the central portion 28 of the long side portion 27 of the casting mold 26 may be formed in a concave shape in order to expand the center of the long side portion of the ingot in anticipation of the shrinkage amount of the ingot in advance. .

特開2003−71547号公報JP 2003-71547 A

特に銅合金鋳造においては二次冷却帯での鋳造組織制御が品質を決定する重要な要素となる。また、鋳造用鋳型26内における鋳塊の断面寸法縮小に伴うエアーギャップを防止するために鋳造方向にテーパー25を設けているが、エアーギャップを皆無にする事は困難である。エアーギャップによる長辺部27と短辺部29での冷却バランスの差を補うためには、短辺部29と長辺部27での冷却水量を調節したり二次冷却帯での冷却パターンを制御する方法をとるのが一般的である。   Especially in copper alloy casting, cast structure control in the secondary cooling zone is an important factor for determining quality. Further, the taper 25 is provided in the casting direction in order to prevent the air gap accompanying the reduction in the cross-sectional dimension of the ingot in the casting mold 26, but it is difficult to eliminate the air gap. In order to compensate for the difference in cooling balance between the long side portion 27 and the short side portion 29 due to the air gap, the amount of cooling water at the short side portion 29 and the long side portion 27 is adjusted or the cooling pattern in the secondary cooling zone is changed. It is common to take a control method.

しかし、凝固シェルのコーナー部、短辺部及び長辺部の冷却速度の差は凝固シェルの成長速度にも影響し、特にコーナー部が厚く長辺中央部が薄くなる傾向となる。これは断面形状の変化のみならず凝固組織内の残留応力も増大させることとなり、凝固完了段階の鋳型下部では長辺中央部の鋳塊中心部に圧縮方向のひずみが蓄積されることで鋳造方向に引っ張り応力が発生し、鋳型上部の薄い凝固シェルを引っ張る事になる。また、鋳型上部の成長初期段階の凝固シェルは凝固収縮によりモルテンプール中心方向への引っ張り応力が作用するが溶湯静水圧とのバランスで鋳型内面への接触を維持する。しかし、凝固シェルの成長に伴い収縮力が溶湯静水圧の抗力を超えたとき、くびれ状の局部的な収縮が凝固シェルの長辺中央部に発生する。   However, the difference in the cooling rate between the corner portion, short side portion and long side portion of the solidified shell also affects the growth rate of the solidified shell, and in particular, the corner portion tends to be thick and the long side central portion tends to be thin. This not only changes the cross-sectional shape but also increases the residual stress in the solidified structure, and at the bottom of the mold at the stage of solidification completion, strain in the compression direction is accumulated at the center of the ingot at the center of the long side. A tensile stress is generated in the mold, which pulls the thin solidified shell at the top of the mold. The solidified shell at the initial growth stage above the mold is subjected to tensile stress toward the center of the molten pool due to solidification shrinkage, but maintains contact with the inner surface of the mold in balance with the molten metal hydrostatic pressure. However, when the shrinkage force exceeds the drag force of the molten metal hydrostatic pressure as the solidified shell grows, a constricted local shrinkage occurs in the central part of the long side of the solidified shell.

凝固シェルのくびれた部分では鋳型中心方向への凝固シェルの倒れこみと鋳型下部方向からの引っ張り応力が作用する。加えてくびれにより発生したエアーギャップにより冷却速度が低下し凝固シェルが復熱により再溶解・破断され湯漏れを生じる場合がある。   In the constricted portion of the solidified shell, the collapse of the solidified shell toward the mold center and the tensile stress from the bottom of the mold act. In addition, the cooling rate may be reduced due to the air gap generated by the constriction, and the solidified shell may be remelted and broken by recuperation, resulting in hot water leakage.

凝固シェルの破断は鋳塊のブレークアウトに繋がるため安全上好ましくない。また、冷却速度の急激な変化は凝固組織内での合金成分の異常析出を誘発し粒界割れなどの品質悪化をもたらす。   The breakage of the solidified shell is not preferable for safety because it leads to breakout of the ingot. In addition, a rapid change in the cooling rate induces abnormal precipitation of alloy components in the solidified structure, resulting in quality deterioration such as intergranular cracking.

銅合金の連続鋳造において結晶粒界への合金成分の析出は圧延工程でのカブリ・ハガレ欠陥の原因となるリスクが高いため粒界偏析の無い健全な鋳塊が要求される。また、鋳造時のブレークアウトや圧延工程での曲がりによるトラブル防止も安全上重要である。   In continuous casting of a copper alloy, precipitation of alloy components at the grain boundaries has a high risk of causing fogging and peeling defects in the rolling process, so a sound ingot free from grain boundary segregation is required. It is also important for safety to prevent troubles caused by breakout during casting and bending during the rolling process.

本発明は前記事情を鑑みなされたもので、鋳造方向の引っ張り応力に起因する長辺中央部のくびれを防止することを目的とするものである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to prevent the necking of the long side portion due to the tensile stress in the casting direction.

上記課題を解決するために本発明は、矩形断面の鋳塊を連続鋳造すべく、互いに対向した長辺側の長辺面と短辺側の短辺面とを有し、これら長辺面と短辺面とで形成された鋳造中空部の上方から溶湯を供給すると共にこれを冷却しつつ下方から矩形断面状の鋳塊を排出するための鋳造用鋳型において、前記長辺側の長辺面が、その中央部の面が両側部の面に対して凸状となるように形成され、かつ、互いに対向する長辺面が、下方に行くに従って内側に傾斜するよう形成されると共に、中央部の面がその両側部の面に対して下方に行くに従って凸量が少なくなるよう形成されたものである。   In order to solve the above problems, the present invention has a long side surface and a short side surface on the short side facing each other in order to continuously cast an ingot having a rectangular cross section. In the casting mold for supplying the molten metal from the upper part of the casting hollow portion formed by the short side surface and discharging the ingot having the rectangular cross section from the lower side while cooling the molten metal, the long side surface on the long side side However, the central surface is formed so as to be convex with respect to the surfaces on both sides, and the long side surfaces facing each other are formed so as to incline inward as going downward, and the central portion Is formed such that the amount of protrusion decreases as the surface of the surface of the surface goes downward relative to the surfaces on both sides.

前記長辺面の中央部の面と前記両側部の面との間に、傾斜した繋ぎ面が形成されるとよい。   An inclined connecting surface may be formed between the surface of the central portion of the long side surface and the surfaces of the both side portions.

前記繋ぎ面は、一面或いは多段に折り曲げられた多段の面で形成されるとよい。   The connecting surface may be formed as a single surface or a multi-stage surface bent in multiple stages.

前記中央部の面の凸量は、両側部の面間の間隔の5±1%に形成されてそれぞれ片側で2.5±0.5%となるとよい。   The convex amount of the surface of the central portion is preferably 5 ± 1% of the distance between the surfaces of the both side portions, and is preferably 2.5 ± 0.5% on one side.

前記中央部の面の辺方向の長さが前記長辺面の長さに対して25%に形成されるとよい。   The length in the side direction of the surface of the central portion may be 25% of the length of the long side surface.

本発明によれば、鋳造方向の引っ張り応力に起因する長辺中央部のくびれを防止できる。   According to the present invention, it is possible to prevent the necking of the long side center portion due to the tensile stress in the casting direction.

本実施の形態に係る鋳造用鋳型の平面図である。It is a top view of the casting mold which concerns on this Embodiment. (a)は図1のA−A線断面図であり、(b)は図1のB−B線断面図である。(A) is the sectional view on the AA line of FIG. 1, (b) is the sectional view on the BB line of FIG. 鋳型内部に発生するエアーギャップ領域の位置と引っ張り応力の作用方向を示す説明図である。It is explanatory drawing which shows the action direction of the position of the air gap area | region which generate | occur | produces inside a casting_mold | template, and tensile stress. (a)は従来の鋳造用鋳型の概略平面図であり、(b)は(a)のC−C線断面図であり、(c)は(a)のD−D線断面図である。(A) is a schematic plan view of a conventional casting mold, (b) is a sectional view taken along the line CC of (a), and (c) is a sectional view taken along the line DD of (a). 従来の鋳造用鋳型の平面説明図である。It is plane explanatory drawing of the conventional casting mold. 従来の鋳型内部に発生するエアーギャップ領域の位置と引っ張り応力の作用方向を示す説明図である。It is explanatory drawing which shows the position of the air gap area | region which generate | occur | produces in the conventional inside of a casting_mold | template, and the acting direction of tensile stress.

本発明に係る鋳造用鋳型を添付図面に基づいて説明する。   A casting mold according to the present invention will be described with reference to the accompanying drawings.

図1及び図2に示すように、鋳造用鋳型1は、矩形断面の鋳塊を連続鋳造すべく、互いに対向した長辺側の長辺面2と短辺側の短辺面3とを有する。これら長辺面2と短辺面3とは、溶湯の型となる鋳造中空部4を形成する。鋳造用鋳型1は、鋳造中空部4の上方から溶湯を供給すると共にこれを冷却しつつ下方から矩形断面状の鋳塊を排出するためのものである。鋳造用鋳型1には、図示しない冷却水路が形成されており、この冷却水路には外部からの冷却水が流通するようになっている。鋳造中空部4は、鋳造用鋳型1を形成する金属ブロックに鉛直に貫通して形成されており、溶湯を受け入れるべく上方に開口する上部開口5を有すると共に、溶湯が冷えて凝固した鋳塊を排出すべく下方に開口する下部開口6を有する。   As shown in FIGS. 1 and 2, the casting mold 1 has a long side 2 on the long side and a short side 3 on the short side facing each other so as to continuously cast an ingot having a rectangular cross section. . The long side surface 2 and the short side surface 3 form a cast hollow portion 4 serving as a molten metal mold. The casting mold 1 is for supplying molten metal from above the casting hollow portion 4 and discharging the ingot having a rectangular cross section from below while cooling the casting. A cooling water channel (not shown) is formed in the casting mold 1, and cooling water from the outside flows through the cooling water channel. The casting hollow portion 4 is formed vertically through the metal block forming the casting mold 1 and has an upper opening 5 that opens upward to receive the molten metal, and the ingot in which the molten metal has cooled and solidified. It has a lower opening 6 that opens downward to discharge.

さて、本発明に係る鋳造用鋳型1は、その内面形状に特徴を有する。   Now, the casting mold 1 according to the present invention is characterized by its inner surface shape.

鋳造用鋳型1の互いに対向する長辺面2は、下方に行くに従って内側に傾斜するよう形成される。また、それぞれの長辺面2は、短辺面3に望む両側部7の面8と、これら両側部7の面8間の中央部9に形成され両側部7の面8に対して凸状となるように形成された中央部9の面10と、中央部9の面10と両側部7の面8のそれぞれとの間に形成された繋ぎ面11とを備える。   The long side surfaces 2 facing each other of the casting mold 1 are formed so as to incline inward as going downward. Further, each long side surface 2 is formed on the surface 8 of both side portions 7 desired on the short side surface 3 and a central portion 9 between the surfaces 8 of both side portions 7 and is convex with respect to the surface 8 of both side portions 7. And a connecting surface 11 formed between the surface 10 of the central portion 9 and each of the surfaces 10 of the central portion 9 and the surfaces 8 of the both side portions 7.

長辺面2の両側部7の面8は、それぞれ長辺面2の辺方向に沿って直線状に形成されている。また、長辺面2の両側部7の面8は、同一面上となるように形成されている。   The surfaces 8 of both side portions 7 of the long side surface 2 are each formed in a straight line along the side direction of the long side surface 2. Further, the surfaces 8 of the both side portions 7 of the long side surface 2 are formed to be on the same surface.

中央部9の面10は、両側部7の面8に対して凸状となるように形成されることで両側部7の面8よりも鋳造中空部4の内側に位置され、長辺方向に沿って直線状に形成されている。また、中央部9の面10は、その両側部7の面8に対して下方に行くに従って凸量tが少なくなるよう形成されている。具体的には、中央部9の面10の凸量tは、上下方向のいずれの位置においても両側部7の面8間の間隔Tに対して一定の割合となるように形成されており、下方に行くに従って連続的に少なくなっている。中央部9の面10の凸量tは、両側部7の面8間の間隔Tの5±1%(片側で2.5±0.5%)に形成されるとよい。また、中央部9の面10の辺方向の長さwcは長辺面2の長さWに対して25%に形成されるとよい。   The surface 10 of the center portion 9 is formed so as to be convex with respect to the surfaces 8 of the both side portions 7, so that it is positioned inside the casting hollow portion 4 more than the surfaces 8 of the both side portions 7, and in the long side direction. It is formed linearly along. Further, the surface 10 of the central portion 9 is formed such that the convex amount t decreases as it goes downward with respect to the surfaces 8 of the both side portions 7. Specifically, the convex amount t of the surface 10 of the central portion 9 is formed to be a constant ratio with respect to the interval T between the surfaces 8 of the both side portions 7 at any position in the vertical direction. It decreases continuously as you go down. The convex amount t of the surface 10 of the central portion 9 is preferably formed to be 5 ± 1% (2.5 ± 0.5% on one side) of the interval T between the surfaces 8 of the both side portions 7. Further, the length wc in the side direction of the surface 10 of the central portion 9 is preferably 25% of the length W of the long side surface 2.

繋ぎ面11は、中央部9の面10に対して屈曲して接続されると共に、側部7の面8に対して屈曲して接続されている。また、繋ぎ面11は、長辺面2の辺方向に対して傾斜されている。繋ぎ面11は、中央部9の面10の凸量tの変化に応じて長辺面2の辺方向に対する傾斜角度が小さくなるように形成されている。繋ぎ面11は、長辺面2の辺方向の長さwtが両側部7の面8と同じになるように形成されている。   The connecting surface 11 is bent and connected to the surface 10 of the central portion 9, and is bent and connected to the surface 8 of the side portion 7. Further, the connecting surface 11 is inclined with respect to the side direction of the long side surface 2. The connecting surface 11 is formed so that the inclination angle of the long side surface 2 with respect to the side direction becomes small according to the change in the convex amount t of the surface 10 of the central portion 9. The connecting surface 11 is formed so that the length wt in the side direction of the long side surface 2 is the same as the surface 8 of the both side portions 7.

なお、繋ぎ面11は、多段に折り曲げられた多段の面で形成されてもよい。繋ぎ面11の構成面は多いほど引っ張り応力の分散効果が大きくなるので機械加工の制限範囲内で多くするのが望ましい。   The connecting surface 11 may be formed of a multi-stage surface that is bent in multiple stages. The greater the number of constituent surfaces of the connecting surface 11, the greater the effect of dispersing the tensile stress.

次に本実施の形態の作用を述べる。   Next, the operation of this embodiment will be described.

図3に示すように、鋳造用鋳型1の鋳造中空部4内で冷却された溶湯12は外周部に凝固シェルを形成する。凝固シェルの成長初期段階では凝固収縮力よりもモルテンプール内の溶湯の静水圧が勝り、凝固シェルは鋳造用鋳型1の長辺面2及び短辺面3に接触し続けるがやがて凝固シェルの厚みが増して凝固収縮力が静水圧を超えた時点で凝固シェルが鋳造中空部4の長辺面2から離れエアーギャップ13が生成される。   As shown in FIG. 3, the molten metal 12 cooled in the casting hollow portion 4 of the casting mold 1 forms a solidified shell on the outer peripheral portion. In the initial growth stage of the solidified shell, the hydrostatic pressure of the molten metal in the molten pool exceeds the solidification shrinkage force, and the solidified shell continues to contact the long side surface 2 and the short side surface 3 of the casting mold 1, but eventually the thickness of the solidified shell is reached. When the solidification shrinkage force exceeds the hydrostatic pressure, the solidified shell is separated from the long side surface 2 of the cast hollow portion 4 and an air gap 13 is generated.

このとき、長辺面2は下方に行くに従って内側に傾斜されると共に中央部9の面10が両側部7の面8に対して凸状に形成されているため、鋳塊表面が長辺面2から離れエアーギャップ13を生成する範囲を最小限に抑えることができ、鋳造方向の引っ張り応力を低減でき、凝固シェルのくびれと再溶解後の破断を防止できる。すなわち、本実施の形態にかかる鋳造用鋳型1では、長辺面2中央の凸形状で凝固シェルを鼓型に凹ませることにより、エアーギャップ13の生成位置を凝固シェルの長辺中心部の両サイド2箇所の領域に分散させることができ、引っ張り応力14の方向を凝固シェルのコーナー部と長辺中心部に向ける事ができ、長辺方向の中心部の凝固シェルを両サイドから引っ張ることにより凝固シェルの長辺中心部は再度長辺面2に押し付けられることになるためエアーギャップ13の発生時間を短くでき、くびれ量及び粒界偏析を減少できる。   At this time, since the long side surface 2 is inclined inward as going downward, the surface 10 of the central portion 9 is formed in a convex shape with respect to the surfaces 8 of the both side portions 7, so that the ingot surface is a long side surface. The range in which the air gap 13 is separated from 2 can be minimized, the tensile stress in the casting direction can be reduced, and constriction of the solidified shell and breakage after remelting can be prevented. That is, in the casting mold 1 according to the present embodiment, the solidified shell is recessed in the drum shape with the convex shape at the center of the long side surface 2, so that the generation position of the air gap 13 is set at both the long side center portions of the solidified shell. It can be dispersed in two areas on the side, the direction of the tensile stress 14 can be directed to the corner and long side center of the solidified shell, and by pulling the solidified shell at the center of the long side from both sides Since the central part of the long side of the solidified shell is again pressed against the long side surface 2, the generation time of the air gap 13 can be shortened, and the amount of constriction and grain boundary segregation can be reduced.

このように、鋳造用鋳型1は、長辺側の長辺面2が、その中央部9の面10が両側部7の面8に対して凸状となるように形成され、かつ、互いに対向する長辺面2が、下方に行くに従って内側に傾斜するよう形成されると共に、中央部9の面10がその両側部7の面8に対して下方に行くに従って凸量tが少なくなるよう形成されるものとしたため、鋳造方向の引っ張り応力に起因する凝固シェルの長辺中央部のくびれを防止でき、エアーギャップ13による冷却速度の低下で凝固シェルが再溶解・破断されて湯漏れが発生するのを防ぐことができ、凝固組織内での合金成分の異常析出を防止でき、粒界割れなどの品質悪化を防止できる。また、長辺側の鋳塊はコーナー部に比べほぼ平坦な形状にでき、圧延工程でのマテリアルハンドリング時のトラブル発生を未然に防止できる。そして、エアーギャップ発生領域を最小限に抑えることができると共に、引っ張り応力を分散極小化することができ、凝固シェル成長遅れによる粒界偏析の発生防止と粒界破断によるブレークアウトの発生を防止でき、鋳塊品質向上及び鋳造工程での安全性向上ができる。またさらに、中央部9の面10は、下方に行くに従って凸量tが少なくなるように形成されるため、エアーギャップ13が形成されやすい鋳造中空部4内の上部では効果的にエアーギャップ13の発生を抑制できると共に、鋳造用鋳型1から下方に排出される鋳塊を安定して断面矩形状にできる。   As described above, the casting mold 1 is formed such that the long side surface 2 on the long side is formed so that the surface 10 of the central portion 9 is convex with respect to the surfaces 8 of the both side portions 7 and faces each other. The long side surface 2 is formed so as to incline inward as it goes downward, and the convex amount t decreases as the surface 10 of the central portion 9 goes downward with respect to the surfaces 8 of both side portions 7 thereof. Therefore, it is possible to prevent constriction of the central part of the long side of the solidified shell due to the tensile stress in the casting direction, and the solidified shell is remelted and broken due to a decrease in the cooling rate by the air gap 13 to cause hot water leakage. Therefore, abnormal precipitation of alloy components in the solidified structure can be prevented, and quality deterioration such as grain boundary cracking can be prevented. Further, the ingot on the long side can be formed in a substantially flat shape as compared with the corner portion, and troubles during material handling in the rolling process can be prevented beforehand. In addition, the air gap generation region can be minimized, the tensile stress can be minimized, and the occurrence of grain boundary segregation due to delayed solidification shell growth and the occurrence of breakout due to grain boundary fracture can be prevented. Ingot quality can be improved and safety in the casting process can be improved. Furthermore, since the surface 10 of the central portion 9 is formed so that the convex amount t decreases as it goes downward, the air gap 13 is effectively formed in the upper portion in the casting hollow portion 4 where the air gap 13 is easily formed. Generation | occurrence | production can be suppressed and the ingot discharged | emitted below from the casting mold 1 can be made into a rectangular cross-section stably.

また、長辺面2の中央部9の面10と両側部7の面8との間に、傾斜した繋ぎ面11が形成されるものとしたため、安定して断面矩形状の鋳塊を鋳造できる。   Further, since the inclined connecting surface 11 is formed between the surface 10 of the central portion 9 of the long side surface 2 and the surfaces 8 of the both side portions 7, an ingot having a rectangular cross section can be stably cast. .

繋ぎ面11は、一面或いは多段に折り曲げられた多段の面で形成されるものとしたため、鋳造用鋳型1を容易に加工できる。   Since the connecting surface 11 is formed by a single surface or a multi-stage surface bent in multiple stages, the casting mold 1 can be easily processed.

中央部9の面10の凸量tは、対向する2つの長辺面2の、両側部7における面8間の間隔Tの5±1%に形成されてそれぞれ片側で2.5±0.5%となるようにされたため、矩形断面の鋳塊を安定して鋳造できる。   The convex amount t of the surface 10 of the central portion 9 is formed to be 5 ± 1% of the interval T between the surfaces 8 of the two opposite long side surfaces 2 on the both side portions 7, and is 2.5 ± 0. Since it is set to 5%, an ingot having a rectangular cross section can be stably cast.

また、中央部9の面10の辺方向の長さwcが長辺面2の長さWに対して25%に形成されるため、エアーギャップ13の生成位置を凝固シェルの長辺中心部の両サイド2箇所の領域に良好に分散できる。   Moreover, since the length wc in the side direction of the surface 10 of the central portion 9 is formed to be 25% with respect to the length W of the long side surface 2, the generation position of the air gap 13 is set at the central portion of the long side of the solidified shell. It is possible to disperse well in two regions on both sides.

次に矩形断面寸法245×640のスラブを鋳造する場合の具体例について述べる。   Next, a specific example in the case of casting a slab having a rectangular cross-sectional dimension of 245 × 640 will be described.

かかる場合の鋳造用鋳型1の概略寸法は、下部開口6において、長辺面2の長辺の寸法Wが640mm、長辺面2の中央部9の辺方向の長さwcが160mm(長辺の寸法Wの25%)、中央部9の面10について厚み(凸量)tが片側で3mm(向かい合う短辺面3間の間隔(厚み方向の間隔)の約2.5%)に設定する。   In such a case, the approximate dimensions of the casting mold 1 are as follows. In the lower opening 6, the long side dimension W of the long side surface 2 is 640 mm, and the length wc in the side direction of the central portion 9 of the long side surface 2 is 160 mm (long side The thickness (convex amount) t of the surface 10 of the central portion 9 is set to 3 mm on one side (approximately 2.5% of the interval between the opposing short side surfaces 3 (interval in the thickness direction)). .

鋳造方向のテーパーは鋳造条件が同じなので長辺側・短辺側共に従来の鋳造用鋳型と同じに設定する。具体的には、長辺面2の両側部7の面8の傾きを14分、短辺面3の傾きを36分に設定する。   The taper in the casting direction is the same as the conventional casting mold on both the long side and the short side because the casting conditions are the same. Specifically, the inclination of the surface 8 on both sides 7 of the long side surface 2 is set to 14 minutes, and the inclination of the short side surface 3 is set to 36 minutes.

長辺面2の中央部9と、両側部7と繋ぎ面11の形状の詳細は、長辺面2の辺方向の長さであって側部7の面8と繋ぎ面11を合わせた長さwzが片側で240mm、側部7の面8の長さwsが120mmである5面構造とする。従って、鋳造用鋳型1の内面形状は12角形状となる。   The details of the shape of the central portion 9 of the long side surface 2, both side portions 7, and the connecting surface 11 are the lengths in the side direction of the long side surface 2, and the length obtained by combining the surface 8 of the side portion 7 and the connecting surface 11. It is assumed that the length wz is 240 mm on one side and the length ws of the surface 8 of the side portion 7 is 120 mm. Therefore, the inner surface shape of the casting mold 1 is a 12-sided shape.

なお、これは面構成の最低数である。繋ぎ面11の構成面は多いほど引っ張り応力の分散効果が大きくなるので機械加工の制限範囲内で多くするのが望ましい。また、鋳造方向の鋳型内面テーパーは鋳造速度に依存するところが大きいので鋳造する合金の材質や鋳造条件で適宜設定する事が望ましい。   This is the minimum number of surface configurations. The greater the number of constituent surfaces of the connecting surface 11, the greater the effect of dispersing the tensile stress. Further, since the mold inner surface taper in the casting direction largely depends on the casting speed, it is desirable to set it appropriately according to the material and casting conditions of the alloy to be cast.

かかる鋳造用鋳型1によれば、エアーギャップ発生領域を最小限に抑えることができると共に、引っ張り応力を分散極小化することができ、粒界偏析の発生を防止でき、粒界破断によるブレークアウトの発生を防止できる。   According to the casting mold 1, the air gap generation region can be minimized, the tensile stress can be minimized, the occurrence of segregation at the grain boundary can be prevented, and the breakout due to the grain boundary fracture can be prevented. Occurrence can be prevented.

比較例について述べる。上記寸法のスラブを従来の鋳造用鋳型を用いて鋳造する場合、鋳造用鋳型の長辺部の面の傾きは14分、短辺部の面の傾きは36分、長辺部の窪み形状は6角形状でコーナー側(短辺側)から長辺中央に向かって53分の傾きで窪ませて形成される。この従来の鋳造用鋳型での鋳造結果は定常の鋳型速度において、鋳塊の長辺部の中央がコーナー部(両側部7)の厚みより1mm程度膨らみ傾向となるがマテリアルハンドリング上の問題は発生しないレベルである。しかしながら、エアーギャップにより冷却速度が低下した長辺中央部とコーナー部の凝固シェルに厚みの差が発生し内部応力が蓄積されていく。最終的にこのひずみは引っ張り応力となってくびれ部分の凝固シェル最薄部、すなわち、図6に示すエアーギャップ20が発生していると推測される領域の上面近傍のライン21に沿って粒界割れが断続的に発生する場合がある。この粒界割れは、圧延工程でカブリ・ハガレの原因になる。またこの場合、鋳型内部の鋳造初期段階ではエアーギャップ領域の発生により同一時間軸においてはコーナー部22に比べ長辺中央部23の冷却速度が低下する事から、コーナー部22の凝固シェルの成長に比べ長辺中央部23の成長が相対的に遅れる。そのため凝固収縮の開始時期も長辺中央部23が遅れることとなりコーナー部22と長辺中央部23で斜め下向きの引っ張り応力24が発生する。そのためエアーギャップ領域の特に上部で凝固シェルは復熱による再溶解が起こり湯漏れを起こす場合があり、酷い時はブレークアウトに進展し品質のみならず安全上も良くない。   A comparative example will be described. When casting a slab of the above dimensions using a conventional casting mold, the inclination of the surface of the long side of the casting mold is 14 minutes, the inclination of the surface of the short side is 36 minutes, and the depression shape of the long side is It is a hexagonal shape that is recessed from the corner side (short side) toward the center of the long side with an inclination of 53 minutes. The result of casting with this conventional casting mold is that the center of the long side of the ingot tends to bulge about 1 mm from the thickness of the corner (both sides 7) at a steady mold speed, but there is a problem in material handling. It is a level that does not. However, a difference in thickness occurs in the solidified shell at the central part of the long side and the corner part where the cooling rate is lowered due to the air gap, and internal stress is accumulated. Ultimately, this strain becomes tensile stress, and the grain boundary along the line 21 near the upper surface of the solidified shell thinnest portion of the constricted portion, that is, the region where the air gap 20 shown in FIG. Cracks may occur intermittently. This intergranular cracking causes fogging and peeling in the rolling process. Further, in this case, at the initial casting stage inside the mold, due to the generation of the air gap region, the cooling rate of the long side central portion 23 is lower than the corner portion 22 on the same time axis. In comparison, the growth of the long side central portion 23 is relatively delayed. For this reason, the long side central portion 23 is also delayed at the start of solidification shrinkage, and a diagonally downward tensile stress 24 is generated at the corner portion 22 and the long side central portion 23. For this reason, the solidified shell may remelt due to recuperation and cause hot water leakage especially in the upper part of the air gap region.

1 鋳造用鋳型
2 長辺面
3 短辺面
4 鋳造中空部
7 両側部
8 両側部の面
9 中央部
10 中央部の面
11 繋ぎ面
T 両側部の面間の間隔
W 長辺面の長さ
t 凸量
wc 中央部の面の辺方向の長さ
DESCRIPTION OF SYMBOLS 1 Casting mold 2 Long side surface 3 Short side surface 4 Cast hollow part 7 Both side part 8 Both side surface 9 Central part 10 Central part surface 11 Connecting surface T Space | interval between both side surfaces W Length of long side surface t Convex amount wc Length in the side direction of the central surface

Claims (5)

矩形断面の鋳塊を連続鋳造すべく、互いに対向した長辺側の長辺面と短辺側の短辺面とを有し、これら長辺面と短辺面とで形成された鋳造中空部の上方から溶湯を供給すると共にこれを冷却しつつ下方から矩形断面状の鋳塊を排出するための鋳造用鋳型において、前記長辺側の長辺面が、その中央部の面が両側部の面に対して凸状となるように形成され、かつ、互いに対向する長辺面が、下方に行くに従って内側に傾斜するよう形成されると共に、中央部の面がその両側部の面に対して下方に行くに従って凸量が少なくなるよう形成されたことを特徴とする鋳造用鋳型。   In order to continuously cast an ingot having a rectangular cross section, a casting hollow portion having a long side surface and a short side surface facing each other and formed by the long side surface and the short side surface. In the casting mold for supplying the molten metal from above and discharging the ingot having a rectangular cross section from below while cooling the molten metal, the long side surface on the long side is the surface of the central part on both sides. The long side surfaces facing each other are formed so as to be convex with respect to the surface, and are inclined so as to incline toward the lower side. A casting mold characterized in that the convex amount decreases as it goes downward. 前記長辺面の中央部の面と前記両側部の面との間に、傾斜した繋ぎ面が形成された請求項1記載の鋳造用鋳型。   The casting mold according to claim 1, wherein an inclined connecting surface is formed between a surface of a central portion of the long side surface and a surface of the both side portions. 前記繋ぎ面は、一面或いは多段に折り曲げられた多段の面で形成された請求項2記載の鋳造用鋳型。   The casting mold according to claim 2, wherein the connecting surface is formed of a single surface or a multi-stage surface bent in multiple stages. 前記中央部の面の凸量は、両側部の面間の間隔の5±1%に形成されてそれぞれ片側で2.5±0.5%となる請求項1〜3のいずれかに記載の鋳造用鋳型。   The convex amount of the surface of the central portion is formed to be 5 ± 1% of the distance between the surfaces of both side portions, and becomes 2.5 ± 0.5% on one side, respectively. Casting mold. 前記中央部の面の辺方向の長さが前記長辺面の長さに対して25%に形成された請求項1〜4のいずれかに記載の鋳造用鋳型。   The casting mold according to any one of claims 1 to 4, wherein a length in a side direction of the surface of the central portion is formed to be 25% with respect to a length of the long side surface.
JP2012137771A 2012-06-19 2012-06-19 Casting mold for casting Pending JP2014000586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012137771A JP2014000586A (en) 2012-06-19 2012-06-19 Casting mold for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012137771A JP2014000586A (en) 2012-06-19 2012-06-19 Casting mold for casting

Publications (1)

Publication Number Publication Date
JP2014000586A true JP2014000586A (en) 2014-01-09

Family

ID=50034272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137771A Pending JP2014000586A (en) 2012-06-19 2012-06-19 Casting mold for casting

Country Status (1)

Country Link
JP (1) JP2014000586A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021521016A (en) * 2018-05-14 2021-08-26 ポスコPosco template
WO2024128794A1 (en) * 2022-12-15 2024-06-20 주식회사 포스코 Mold, mold manufacturing method, and slab

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021521016A (en) * 2018-05-14 2021-08-26 ポスコPosco template
JP7037670B2 (en) 2018-05-14 2022-03-16 ポスコ template
WO2024128794A1 (en) * 2022-12-15 2024-06-20 주식회사 포스코 Mold, mold manufacturing method, and slab

Similar Documents

Publication Publication Date Title
EP2292351B1 (en) Gas pressure controlling casting mold
JP5168591B2 (en) Water-cooled mold for continuous casting and ingot manufacturing method
US9962760B2 (en) Titanium slab for hot rolling produced by electron-beam melting furnace, process for production thereof, and process for rolling titanium slab for hot rolling
JP5788691B2 (en) Melting furnace for melting metal and method for melting metal using the same
JP2014000586A (en) Casting mold for casting
JP4337565B2 (en) Steel slab continuous casting method
US9156081B2 (en) Mold for continuous casting of titanium or titanium alloy ingot, and continuous casting device provided with same
JP2003311377A (en) Tube-type mold for continuous casting
JP6435810B2 (en) Casting method and casting mold
KR101060114B1 (en) Continuous casting molds for casting molten metal, especially steel materials, into polygonal billet castings, bloom castings, preliminary section castings, etc. at high casting speeds.
JP3179069B2 (en) Mold for continuous casting of steel
JP3320040B2 (en) Continuous casting mold
JPS63157739A (en) Apparatus for producing hollow metal ingot having high melting point
JPH0711352A (en) Method for continuously melting and casting high melting point active metal
RU2741876C1 (en) Method for continuous casting of slab bills
JP2022076856A (en) Ingot of pure titanium or titanium alloy
JP7406074B2 (en) Titanium ingot manufacturing method and titanium ingot manufacturing mold
JP3930756B2 (en) Tube mold for continuous casting of steel
JPH0550186A (en) Lower mold for semi-continuous casting apparatus for aluminum
JP6146346B2 (en) Mold for continuous casting of steel and continuous casting method
JP2014018829A (en) Method and apparatus for melting slab
JP2024040078A (en) Casting method for ingot
JP2003290880A (en) Mold for casting non-ferrous metal
JPH0938751A (en) Mold device for continuous casting
JPH05115961A (en) Semi-continuous casting method for casting block having plural extending parts