JP2013540957A - Construction machine control equipment - Google Patents

Construction machine control equipment Download PDF

Info

Publication number
JP2013540957A
JP2013540957A JP2013525795A JP2013525795A JP2013540957A JP 2013540957 A JP2013540957 A JP 2013540957A JP 2013525795 A JP2013525795 A JP 2013525795A JP 2013525795 A JP2013525795 A JP 2013525795A JP 2013540957 A JP2013540957 A JP 2013540957A
Authority
JP
Japan
Prior art keywords
valve
remote control
control valve
operation amount
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013525795A
Other languages
Japanese (ja)
Inventor
ドンス キム
Original Assignee
ボルボ コンストラクション イクイップメント アーベー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボルボ コンストラクション イクイップメント アーベー filed Critical ボルボ コンストラクション イクイップメント アーベー
Publication of JP2013540957A publication Critical patent/JP2013540957A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/167Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load using pilot pressure to sense the demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20523Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3052Shuttle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/355Pilot pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50554Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure downstream of the pressure control means, e.g. pressure reducing valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/575Pilot pressure control
    • F15B2211/5756Pilot pressure control for opening a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6316Electronic controllers using input signals representing a pressure the pressure being a pilot pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6346Electronic controllers using input signals representing a state of input means, e.g. joystick position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/635Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
    • F15B2211/6355Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/865Prevention of failures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/85986Pumped fluid control
    • Y10T137/86027Electric

Abstract

【課題】油圧アクチュエータに供給される作動油を制御するように方向制御可能なMCVのスプールを制御するための建設機械の制御装置を提供すること。
【解決手段】本発明によれば、ユーザの操作量に比例して2次信号圧力を出力するリモートコントロールバルブと、リモートコントロールバルブの2次信号圧力を検出する操作量検出手段と、2次信号圧力を出力する電磁比例減圧弁と、リモートコントロールバルブから出力される2次信号圧力に一方の入力部がそれぞれ接続され、電磁比例減圧弁の出力側ポートが他方の入力部にそれぞれ接続される第1及び第2シャトル弁と、第1及び第2シャトル弁から出力される信号圧力により切り換えられるときに油圧アクチュエータの駆動を制御する方向制御スプールと、操作量検出手段から入力される操作量に対応して電磁比例減圧弁に制御信号を出力するコントローラとを備える。
【選択図】図3
The present invention provides a control device for a construction machine for controlling a spool of an MCV whose direction can be controlled so as to control hydraulic oil supplied to a hydraulic actuator.
According to the present invention, a remote control valve that outputs a secondary signal pressure in proportion to an operation amount of a user, an operation amount detection means that detects a secondary signal pressure of the remote control valve, and a secondary signal. One input unit is connected to the electromagnetic proportional pressure reducing valve that outputs pressure and the secondary signal pressure output from the remote control valve, and the output side port of the electromagnetic proportional pressure reducing valve is connected to the other input unit. Corresponding to the first and second shuttle valves, the direction control spool that controls the drive of the hydraulic actuator when switched by the signal pressure output from the first and second shuttle valves, and the operation amount input from the operation amount detection means And a controller for outputting a control signal to the electromagnetic proportional pressure reducing valve.
[Selection] Figure 3

Description

本発明は、建設機械の制御装置に係り、さらに詳しくは、油圧アクチュエータに供給される作動油を制御するために、油圧式リモートコントロールバルブおよび方向制御スプールが配備されたメインコントロールバルブ(MCV;main control valve)のスプールを制御することができる建設機械の制御装置に関する。 The present invention relates to a control device for a construction machine, and more particularly, to a main control valve (MCV; main) in which a hydraulic remote control valve and a directional control spool are provided to control hydraulic fluid supplied to a hydraulic actuator. The present invention relates to a control device for a construction machine that can control a spool of control valve.

一般に、掘削機などの建設機械の作業装置(ブームなどを言う)の操作性を向上したり、作業装置および走行装置を同時に操作する複合操作のときに作業装置を優先的に制御したり、または、燃費を改善したりすることができるように、ユーザによる操作信号をコントローラで受信し、油圧アクチュエータの望ましい駆動を達成することができるMCVのスプールを制御する技術が望まれている。 Generally, the operability of a work device (referred to as a boom) of a construction machine such as an excavator is improved, the work device is preferentially controlled during a complex operation in which the work device and the traveling device are operated simultaneously, or In order to improve fuel economy, a technique for controlling a spool of an MCV that can receive an operation signal from a user by a controller and achieve a desired drive of a hydraulic actuator is desired.

図1に示す従来の技術の油圧式MCV制御回路は、エンジン1と、エンジン1に接続されるメイン油圧ポンプ2(以下、「油圧ポンプ」と称する)及びパイロットポンプ3と、油圧ポンプ2に接続される油圧アクチュエータ4(例えば、「油圧モータ」)と、油圧ポンプ2と油圧アクチュエータ4との間の流路に設けられ、切り換えられるときに油圧アクチュエータ4の起動、停止及び方向の切換えを制御するMCVのスプール5と、ユーザの操作量に比例する2次信号圧力をスプール5に出力するリモートコントロールバルブ(RCV;remote control valve)6と、を備える。 A conventional hydraulic MCV control circuit shown in FIG. 1 is connected to an engine 1, a main hydraulic pump 2 (hereinafter referred to as “hydraulic pump”) connected to the engine 1, a pilot pump 3, and the hydraulic pump 2. Is provided in a flow path between the hydraulic actuator 4 (for example, “hydraulic motor”) and the hydraulic pump 2 and the hydraulic actuator 4, and controls the start, stop, and switching of the direction of the hydraulic actuator 4 when switched. An MCV spool 5 and a remote control valve (RCV) 6 that outputs a secondary signal pressure proportional to the operation amount of the user to the spool 5 are provided.

上述した油圧アクチュエータ4を駆動するために、ユーザがリモートコントロールバルブ6を操作すると、操作量に比例してパイロットポンプ3から吐き出されてリモートコントロールバルブ6を通過する2次信号圧力がスプール5に供給される。これにより、2次信号圧力に比例してスプール5の変位が生じるため、油圧ポンプ2からの作動油がスプール5を通って油圧アクチュエータ4に供給されることになる。 When the user operates the remote control valve 6 in order to drive the hydraulic actuator 4 described above, the secondary signal pressure discharged from the pilot pump 3 and passing through the remote control valve 6 in proportion to the operation amount is supplied to the spool 5. Is done. As a result, the spool 5 is displaced in proportion to the secondary signal pressure, so that the hydraulic oil from the hydraulic pump 2 is supplied to the hydraulic actuator 4 through the spool 5.

この際、上述したスプール5の制御は、リモートコントロールバルブ6の操作量によることになる。これにより、ユーザがリモートコントロールバルブ6を急激に操作する場合でも、油圧アクチュエータ4がスムーズに加速可能なように、スプール5の急激な開放を制限し得る装置が望まれる。すなわち、リモートコントロールバルブ6の出力側とスプール5との間のパイロット信号ラインにオリフィスを設ける場合、作動油の温度などに起因してオリフィスの機能の発揮が制限されてしまう問題点があった。 At this time, the control of the spool 5 described above depends on the operation amount of the remote control valve 6. Thereby, even when the user operates the remote control valve 6 suddenly, a device capable of limiting the rapid opening of the spool 5 is desired so that the hydraulic actuator 4 can be smoothly accelerated. That is, when an orifice is provided in the pilot signal line between the output side of the remote control valve 6 and the spool 5, there is a problem that the function of the orifice is limited due to the temperature of the hydraulic oil.

図2に示す従来の技術による電磁油圧式MCV制御回路は、エンジン1と、エンジン1に接続される油圧ポンプ2及びパイロットポンプ3と、油圧ポンプ2に接続される油圧アクチュエータ4と、油圧ポンプ2と油圧アクチュエータ4との間の流路に設けられ、切り換えられるときに油圧アクチュエータ4の起動、停止及び方向切換えを制御するMCVのスプール5と、外部からの電気的な制御信号に比例する2次信号圧力をスプール5に出力する電磁比例減圧弁7、8と、ユーザの操作量に比例するように操作信号を出力する操作レバー9と、操作レバー9の操作量に対応するように操作信号を演算して電磁比例減圧弁7、8に電気的制御信号を出力するコントローラ10と、を備える。 A conventional electromagnetic hydraulic MCV control circuit shown in FIG. 2 includes an engine 1, a hydraulic pump 2 and a pilot pump 3 connected to the engine 1, a hydraulic actuator 4 connected to the hydraulic pump 2, and a hydraulic pump 2. MCV spool 5 that is provided in a flow path between the hydraulic actuator 4 and the hydraulic actuator 4 to control the start, stop, and direction switching of the hydraulic actuator 4 when switched, and a secondary proportional to an electrical control signal from the outside. The electromagnetic proportional pressure reducing valves 7 and 8 for outputting the signal pressure to the spool 5, the operation lever 9 for outputting the operation signal in proportion to the operation amount of the user, and the operation signal to correspond to the operation amount of the operation lever 9. And a controller 10 that calculates and outputs an electrical control signal to the electromagnetic proportional pressure reducing valves 7 and 8.

上述した油圧アクチュエータ4を駆動するために、ユーザが操作レバー9を操作すると、これに伴い、操作量に比例する操作信号がコントローラ10に入力される。コントローラ10は、操作量に対応するように出力値を演算して、スプール5の制御が行えるように電磁比例減圧弁7、8に制御信号として出力する。すなわち、油圧アクチュエータ4に供給される作動油の制御が最適な条件下で行えるように、操作レバー9の操作量に応じて、電磁比例減圧弁7、8を介してスプール5を制御することになるため、ユーザによる操作レバー9の操作を補正することができる。 When the user operates the operation lever 9 to drive the hydraulic actuator 4 described above, an operation signal proportional to the operation amount is input to the controller 10 accordingly. The controller 10 calculates an output value corresponding to the operation amount, and outputs it as a control signal to the electromagnetic proportional pressure reducing valves 7 and 8 so that the spool 5 can be controlled. That is, the spool 5 is controlled via the electromagnetic proportional pressure reducing valves 7 and 8 in accordance with the operation amount of the operation lever 9 so that the hydraulic oil supplied to the hydraulic actuator 4 can be controlled under optimum conditions. Therefore, the operation of the operation lever 9 by the user can be corrected.

このとき、上述した操作レバー9として高価なジョイスチックを用いるため、部品のコストアップを招く。また、方向制御可能なMCVのスプール5を制御すべく一対の電磁比例減圧弁7、8を用いるため、部品点数の増加やコストアップを招くという問題があった。 At this time, since an expensive joystick is used as the operation lever 9 described above, the cost of parts is increased. Further, since the pair of electromagnetic proportional pressure reducing valves 7 and 8 are used to control the MCV spool 5 capable of controlling the direction, there is a problem in that the number of parts increases and the cost increases.

本発明は、上記問題点に鑑みてなされたものであり、その目的は、運転者がリモートコントロールバルブ(RCV)を急激に操作する場合でも、油圧アクチュエータが円滑に加速可能なように、方向制御可能なMCVのスプールを制御することができると共に、弁駆動電気回路が不意に故障したときにもMCVの誤動作を抑えることができる建設機械の制御装置を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to control the direction so that the hydraulic actuator can be smoothly accelerated even when the driver suddenly operates the remote control valve (RCV). It is an object of the present invention to provide a construction machine control device that can control a possible MCV spool, and that can suppress a malfunction of the MCV even when a valve drive electric circuit unexpectedly fails.

前記目的を達成するために、本発明の好適な第1実施形態によれば、エンジンと、エンジンに接続される油圧ポンプと、油圧ポンプから作動油の供給を受けて作業装置を駆動するように方向制御可能な油圧アクチュエータと、を備える建設機械の制御装置において、ユーザの操作量に比例して2次信号圧力を出力するリモートコントロールバルブと、リモートコントロールバルブから出力される2次信号圧力を検出する操作量検出手段と、外部からの電気的な制御信号に比例して2次信号圧力を出力する電磁比例減圧弁と、リモートコントロールバルブから出力される2次信号圧力に一方の入力部がそれぞれ接続され、電磁比例減圧弁の出力側ポートが他方の入力部にそれぞれ接続され、リモートコントロールバルブを通過する信号圧力と電磁比例減圧弁を通過する信号圧力のうち高い方の圧力を出力する第1及び第2シャトル弁と、油圧ポンプと油圧アクチュエータとの間の流路に設けられ、第1及び第2シャトル弁から出力される信号圧力により切り換えられるときに油圧アクチュエータの起動、停止及び方向切換えを制御する方向制御スプールと、操作量検出手段から入力される操作量に対応する制御信号を演算して、電磁比例減圧弁に制御信号を出力するコントローラと、を備える。 To achieve the above object, according to a first preferred embodiment of the present invention, an engine, a hydraulic pump connected to the engine, and a working oil is supplied from the hydraulic pump to drive the working device. In a construction machine control device comprising a hydraulic actuator capable of direction control, a remote control valve that outputs a secondary signal pressure in proportion to an operation amount of a user, and a secondary signal pressure output from the remote control valve is detected. One input unit for the operation amount detection means, the electromagnetic proportional pressure reducing valve that outputs the secondary signal pressure in proportion to the external electric control signal, and the secondary signal pressure output from the remote control valve, respectively Connected, the output port of the electromagnetic proportional pressure reducing valve is connected to the other input, respectively, and the signal pressure and voltage passing through the remote control valve The first and second shuttle valves that output the higher one of the signal pressures that pass through the proportional pressure reducing valve and the flow path between the hydraulic pump and the hydraulic actuator are output from the first and second shuttle valves. An electromagnetic proportional pressure reducing valve that calculates a control signal corresponding to the operation amount input from the operation amount detecting means, and a direction control spool that controls the start, stop, and direction switching of the hydraulic actuator when switched by the signal pressure And a controller for outputting a control signal.

本発明のより好適な実施形態によれば、上述したリモートコントロールバルブの操作量を検出する操作量検出手段は、リモートコントロールバルブから出力される2次信号圧力に入力部がそれぞれ接続され、リモートコントロールバルブを通過する信号圧力のうち高い圧力を出力する第3シャトル弁と、第3シャトル弁の出力側に接続され、検出信号をコントローラに入力する圧力センサと、を備える。 According to a more preferred embodiment of the present invention, the operation amount detection means for detecting the operation amount of the remote control valve described above is configured such that the input unit is connected to the secondary signal pressure output from the remote control valve, respectively. A third shuttle valve that outputs a high pressure of the signal pressure passing through the valve; and a pressure sensor that is connected to an output side of the third shuttle valve and inputs a detection signal to the controller.

上述したリモートコントロールバルブの操作量を検出する操作量検出手段は、リモートコントロールバルブから出力される2次信号圧力に入力部がそれぞれ接続され、電磁比例減圧弁の入力側ポートに出力部が接続され、リモートコントロールバルブを通過する信号圧力のうち高い圧力を出力する第4シャトル弁と、第4シャトル弁の出力側に接続され、検出信号をコントローラに入力する圧力センサと、を備える。 In the operation amount detection means for detecting the operation amount of the remote control valve described above, the input unit is connected to the secondary signal pressure output from the remote control valve, and the output unit is connected to the input side port of the electromagnetic proportional pressure reducing valve. And a fourth shuttle valve that outputs a high pressure of the signal pressure passing through the remote control valve, and a pressure sensor that is connected to the output side of the fourth shuttle valve and inputs a detection signal to the controller.

本発明によれば、部品の原価コストを削減するとともに、コントローラを通じて方向制御可能なMCVのスプールを制御することができ、また、弁駆動電気回路に不意の故障が発生したときにMCVの誤動作が抑えられるので、信頼性が高くなる。 According to the present invention, the cost of parts can be reduced, the spool of the MCV whose direction can be controlled through the controller can be controlled, and a malfunction of the MCV can be caused when an unexpected failure occurs in the valve drive electric circuit. Since it is suppressed, the reliability becomes high.

従来の技術による油圧式MCV制御回路図である。It is a hydraulic MCV control circuit diagram by a prior art. 従来の技術による電磁油圧式MCV制御回路図である。It is an electrohydraulic MCV control circuit diagram according to the prior art. 本発明の第1実施形態による建設機械制御装置の電磁油圧式MCV制御回路図である。It is an electrohydraulic MCV control circuit diagram of the construction machine control device according to the first embodiment of the present invention. 本発明の第1実施形態による建設機械制御装置において、コントローラによる電磁比例減圧弁の制御を説明するためのグラフである。It is a graph for demonstrating control of the electromagnetic proportional pressure reducing valve by a controller in the construction machine control apparatus by 1st Embodiment of this invention. 本発明の第2実施形態による建設機械制御装置の電磁油圧式MCV制御回路図である。It is an electrohydraulic MCV control circuit diagram of the construction machine control device according to the second embodiment of the present invention.

以下、適宜図面を参照しながら本発明の好適な実施形態について詳細に説明するが、これは本発明が属する技術分野において通常の知識を有する者が発明を容易に実施できる程度に詳細に説明するためのものであり、これにより本発明の技術的な思想及び範疇が限定されることはない。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings as appropriate. This will be described in detail to the extent that a person having ordinary knowledge in the technical field to which the invention belongs can easily carry out the invention. Therefore, the technical idea and category of the present invention are not limited thereby.

図3及び図4に示す本発明の第1実施形態による建設機械の制御装置は、
エンジン11と、エンジン11に接続される油圧ポンプ12及びパイロットポンプ13と、油圧ポンプ12から作動油の供給を受けて作業装置(例えば、「ブーム」などを言う)を駆動するように方向制御可能な油圧アクチュエータ14(例えば、「油圧モータ」などを言う)と、を備える建設機械の制御装置において、
ユーザの操作量に比例して2次信号圧力を出力するリモートコントロールバルブ(RCV)16と、
リモートコントロールバルブ16から出力される2次信号圧力を検出する操作量検出手段と、
外部からの電気的な制御信号に比例して2次信号圧力を出力する電磁比例減圧弁17と、
リモートコントロールバルブ16から出力される2次信号圧力に一方の入力部がそれぞれ接続され、電磁比例減圧弁(PPRV)17の出力側ポートが他方の入力部にそれぞれ接続され、リモートコントロールバルブ16を通過する信号圧力と電磁比例減圧弁17を通過する信号圧力のうち高い方の圧力を出力する第1及び第2シャトル弁18、19と、
油圧ポンプ12と油圧アクチュエータ14との間の流路に設けられ、第1及び第2シャトル弁18、19から出力される信号圧力により切り換えられるときに油圧アクチュエータ14の起動、停止及び方向切換えを制御する方向制御スプール15と、
操作量検出手段から入力される操作量に対応する制御信号を演算して、電磁比例減圧弁17に制御信号を出力するコントローラ20と、を備える。
The construction machine control device according to the first embodiment of the present invention shown in FIGS.
Direction control is possible to drive the working device (for example, “boom”, etc.) upon receiving hydraulic oil from the engine 11, the hydraulic pump 12 and the pilot pump 13 connected to the engine 11, and the hydraulic pump 12. A control device for a construction machine including a hydraulic actuator 14 (for example, “hydraulic motor”).
A remote control valve (RCV) 16 that outputs a secondary signal pressure in proportion to the operation amount of the user;
An operation amount detection means for detecting a secondary signal pressure output from the remote control valve 16;
An electromagnetic proportional pressure reducing valve 17 that outputs a secondary signal pressure in proportion to an electrical control signal from the outside;
One input section is connected to the secondary signal pressure output from the remote control valve 16, and the output side port of the electromagnetic proportional pressure reducing valve (PPRV) 17 is connected to the other input section, passing through the remote control valve 16. First and second shuttle valves 18 and 19 for outputting the higher one of the signal pressure to be transmitted and the signal pressure passing through the electromagnetic proportional pressure reducing valve 17,
Provided in the flow path between the hydraulic pump 12 and the hydraulic actuator 14 and controls the start, stop and direction switching of the hydraulic actuator 14 when switched by the signal pressure output from the first and second shuttle valves 18 and 19. A direction control spool 15 to perform,
And a controller 20 that calculates a control signal corresponding to the operation amount input from the operation amount detection means and outputs the control signal to the electromagnetic proportional pressure reducing valve 17.

この際、上述したリモートコントロールバルブ16の操作量を検出する操作量検出手段は、
リモートコントロールバルブ16から出力される2次信号圧力に入力部がそれぞれ接続され、リモートコントロールバルブ16を通過する信号圧力のうち高い圧力を出力する第3シャトル弁と、
第3シャトル弁の出力側に接続され、検出信号をコントローラ20に入力する圧力センサ22と、を備える。
At this time, the operation amount detection means for detecting the operation amount of the remote control valve 16 described above,
A third shuttle valve that is connected to the secondary signal pressure output from the remote control valve 16 and outputs a high pressure of the signal pressure passing through the remote control valve 16;
A pressure sensor 22 connected to the output side of the third shuttle valve and for inputting a detection signal to the controller 20.

以下、本発明の第1実施形態による建設機械の制御装置の作動について説明する。 The operation of the construction machine control apparatus according to the first embodiment of the present invention will be described below.

図3及び図4に示すように、ユーザが油圧アクチュエータ14を駆動するために左側リモートコントロールバルブ16を操作した場合、パイロットポンプ13の作動油の一部は当該リモートコントロールバルブを経て第1シャトル弁18に供給され、パイロットポンプ13の作動油の一部は電磁比例減圧弁17の入口側ポートに供給される。 As shown in FIGS. 3 and 4, when the user operates the left remote control valve 16 to drive the hydraulic actuator 14, a part of the hydraulic fluid of the pilot pump 13 passes through the remote control valve and passes through the first shuttle valve. 18 and a part of the hydraulic fluid of the pilot pump 13 is supplied to the inlet side port of the electromagnetic proportional pressure reducing valve 17.

一方、当該リモートコントロールバルブを通過した2次信号圧力が第3シャトル弁21の出力側に設けられた圧力センサ22を介して検出され、検出された信号圧力Pがコントローラ20に入力される。 On the other hand, the secondary signal pressure that has passed through the remote control valve is detected via a pressure sensor 22 provided on the output side of the third shuttle valve 21, and the detected signal pressure P is input to the controller 20.

ユーザがリモートコントロールバルブ16を図4に示す線図「A」のように操作する場合(リモートコントロールバルブ16が急激に操作されて油圧アクチュエータ14が急速に加速されることを言う)でも、実際に建設機械において線図「B」のような作業装置の加速制御特性が求められる状況であれば(油圧アクチュエータ14の加速比が所定値以下であれば)、線図「B」の制御特性が方向制御スプール15に駆動力として働くように、電磁比例減圧弁17に線図「C」の2次圧力を出力する。 Even when the user operates the remote control valve 16 as shown in the diagram “A” in FIG. 4 (which means that the remote control valve 16 is suddenly operated and the hydraulic actuator 14 is rapidly accelerated), If the construction machine is in a situation where the acceleration control characteristics of the working device such as the diagram “B” are required (if the acceleration ratio of the hydraulic actuator 14 is equal to or less than a predetermined value), the control characteristics of the diagram “B” are directions. The secondary pressure of the diagram “C” is output to the electromagnetic proportional pressure reducing valve 17 so as to act as a driving force on the control spool 15.

この際、スプール15の左右側のポートは、第1及び第2シャトル弁18、19の出力側とそれぞれ接続され、第1及び第2シャトル弁18、19の入力部は、電磁比例減圧弁17の出力側およびリモートコントロールバルブ16の出力側とそれぞれ接続される。これにより、リモートコントロールバルブ16の操作による2次信号圧力(線図「A」のような勾配値を有する場合を言う)が第1シャトル弁18を経てスプール15の左側ポートに供給されると、コントローラ20から電磁比例減圧弁17に出力される制御信号により電磁比例減圧弁の2次信号圧力(線図「C」のような勾配値を有する場合を言う)が第2シャトル弁19を経てスプール15の右側ポートに供給される。 At this time, the left and right ports of the spool 15 are connected to the output sides of the first and second shuttle valves 18 and 19 respectively, and the input portions of the first and second shuttle valves 18 and 19 are connected to the electromagnetic proportional pressure reducing valve 17. And the output side of the remote control valve 16 are respectively connected. As a result, when the secondary signal pressure (referred to as having a gradient value as shown in the diagram “A”) by the operation of the remote control valve 16 is supplied to the left port of the spool 15 via the first shuttle valve 18, A secondary signal pressure of the electromagnetic proportional pressure reducing valve (referred to as having a gradient value as shown in the diagram “C”) is spooled via the second shuttle valve 19 by a control signal output from the controller 20 to the electromagnetic proportional pressure reducing valve 17. 15 right ports.

この際、リモートコントロールバルブ16の操作により第1シャトル弁18を介してスプール15の一方のポートに供給される信号圧力値は、コントローラ20からの制御信号の入力に応じて電磁比例減圧弁17により生成されて第2シャトル弁19を経てスプール15の他方のポートに供給される信号圧力値よりも相対的に大きい。 At this time, the signal pressure value supplied to one port of the spool 15 via the first shuttle valve 18 by the operation of the remote control valve 16 is caused by the electromagnetic proportional pressure reducing valve 17 according to the input of the control signal from the controller 20. It is relatively larger than the signal pressure value that is generated and supplied to the other port of the spool 15 via the second shuttle valve 19.

このため、線図「C」の2次圧力は、リモートコントロールバルブ16の操作がない方向にのみ連通して、スプール15の当該ポートに接続される。 For this reason, the secondary pressure in the diagram “C” communicates only in the direction in which the remote control valve 16 is not operated, and is connected to the port of the spool 15.

このように、ユーザがリモートコントロールバルブ16を操作したときに、スプール15に働く信号圧力がリモートコントロールバルブ16の操作により出力される2次信号圧力とは逆方向に働くため、スプール15の開口度を所定値以下に制限することができる。 Thus, when the user operates the remote control valve 16, the signal pressure acting on the spool 15 works in the direction opposite to the secondary signal pressure output by the operation of the remote control valve 16. Can be limited to a predetermined value or less.

上述したように、本発明の第1実施形態による建設機械の制御装置によれば、一つの操作量検出手段及び電磁比例減圧弁を用いて方向制御可能なスプールを制御するため、コストを削減することができる。 As described above, according to the construction machine control device of the first embodiment of the present invention, the spool capable of direction control is controlled by using one operation amount detection means and the electromagnetic proportional pressure reducing valve, thereby reducing the cost. be able to.

図5に示す本発明の第2実施形態による建設機械の制御装置において、リモートコントロールバルブ16の操作量を検出する操作量検出手段は、リモートコントロールバルブ16から出力される2次信号圧力に入力部がそれぞれ接続され、電磁比例減圧弁17の入力側ポートに出力部が接続され、リモートコントロールバルブ16を通過する信号圧力のうち高い圧力を出力する第4シャトル弁23と、第4シャトル弁23の出力側に接続され、検出信号をコントローラ20に入力する圧力センサ22と、を備える。 In the construction machine control apparatus according to the second embodiment of the present invention shown in FIG. 5, the operation amount detecting means for detecting the operation amount of the remote control valve 16 is configured to input the secondary signal pressure output from the remote control valve 16 to the input unit. Are connected to each other, an output part is connected to the input side port of the electromagnetic proportional pressure reducing valve 17, and the fourth shuttle valve 23 that outputs a high pressure of the signal pressure passing through the remote control valve 16, and the fourth shuttle valve 23 And a pressure sensor 22 that is connected to the output side and inputs a detection signal to the controller 20.

この際、上述した油圧ポンプ12と、油圧アクチュエータ14と、スプール15と、リモートコントロールバルブ16と、電磁比例減圧弁17及びコントローラ20を備える構成は、本発明の第1実施形態による建設機械の制御装置の構成と実質的に同様であるため、これらの構成及び作動についての詳細な説明は省略し、同じ構成部品には同じ図面符号を付する。 At this time, the configuration including the hydraulic pump 12, the hydraulic actuator 14, the spool 15, the remote control valve 16, the electromagnetic proportional pressure reducing valve 17 and the controller 20 described above is the control of the construction machine according to the first embodiment of the present invention. Since the configuration is substantially the same as the configuration of the apparatus, a detailed description of these configurations and operations is omitted, and the same components are denoted by the same reference numerals.

ユーザがリモートコントロールバルブ16を操作する場合に、パイロットポンプ13から吐き出される作動油がリモートコントロールバルブ16を通過して2次信号圧力に変換するため、第4シャトル弁23の出力部を通過した信号圧力P1が電磁比例減圧弁17の入力側ポートに供給される。これにより、弁駆動電気回路の故障に対する信頼性が相対的に高くなる。 When the user operates the remote control valve 16, the hydraulic oil discharged from the pilot pump 13 passes through the remote control valve 16 and is converted into a secondary signal pressure, so that the signal that has passed through the output portion of the fourth shuttle valve 23 The pressure P1 is supplied to the input side port of the electromagnetic proportional pressure reducing valve 17. Thereby, the reliability with respect to the failure of a valve drive electric circuit becomes relatively high.

上述したように、本発明の第1実施形態または第2実施形態による建設機械の制御装置によれば、弁及び電気回路を備える弁制御回路に不意の故障が発生し、弁に好ましくない出力が発生した場合であっても、MCVのスプールの両端に同じ信号圧が伝わってスプールは中立位置を維持することになる。これにより、作業装置の誤動作を抑えることができ、安全性を確保することができる。 As described above, according to the control device for a construction machine according to the first embodiment or the second embodiment of the present invention, an unexpected failure occurs in the valve control circuit including the valve and the electric circuit, and an undesirable output is generated in the valve. Even if it occurs, the same signal pressure is transmitted to both ends of the MCV spool, and the spool maintains the neutral position. Thereby, malfunction of a working device can be suppressed and safety can be secured.

上述した構成を有する本発明によれば、運転者がリモートコントロールバルブを急激に操作しても、油圧アクチュエータがスムーズに加速されるように方向制御可能なMCVのスプールを制御することができる。また、弁駆動電気回路に不意の故障が発生した場合にも、MCVの誤動作を抑えることができる。 According to the present invention having the above-described configuration, it is possible to control the MCV spool whose direction can be controlled so that the hydraulic actuator is smoothly accelerated even when the driver suddenly operates the remote control valve. Further, even when an unexpected failure occurs in the valve drive electric circuit, malfunction of the MCV can be suppressed.

11 エンジン
12 油圧ポンプ
13 パイロットポンプ
14 油圧アクチュエータ
15 スプール
16 リモートコントロールバルブ(RCV)
17 電磁比例減圧弁(PPRV)
18 第1シャトル弁
19 第2シャトル弁
20 コントローラ
21 第3シャトル弁
22 圧力センサ
23 第4シャトル弁
11 Engine 12 Hydraulic pump 13 Pilot pump 14 Hydraulic actuator 15 Spool 16 Remote control valve (RCV)
17 Electromagnetic proportional pressure reducing valve (PPRV)
18 First shuttle valve 19 Second shuttle valve 20 Controller 21 Third shuttle valve 22 Pressure sensor 23 Fourth shuttle valve

Claims (3)

エンジンと、エンジンに接続される油圧ポンプと、油圧ポンプから作動油の供給を受けて作業装置を駆動するように方向制御可能な油圧アクチュエータと、を備える建設機械の制御装置において、
ユーザの操作量に比例して2次信号圧力を出力するリモートコントロールバルブと、
前記リモートコントロールバルブから出力される2次信号圧力を検出する操作量検出手段と、
外部からの電気的な制御信号に比例して2次信号圧力を出力する電磁比例減圧弁と、
前記リモートコントロールバルブから出力される2次信号圧力に一方の入力部がそれぞれ接続され、前記電磁比例減圧弁の出力側ポートが他方の入力部にそれぞれ接続され、前記リモートコントロールバルブを通過する信号圧力と前記電磁比例減圧弁を通過する信号圧力のうち高い方の圧力を出力する第1及び第2シャトル弁と、
前記油圧ポンプと油圧アクチュエータとの間の流路に設けられ、第1及び第2シャトル弁から出力される信号圧力により切り換えられるときに油圧アクチュエータの起動、停止及び方向切換えを制御する方向制御スプールと、
前記操作量検出手段から入力される操作量に対応する制御信号を演算して、前記電磁比例減圧弁に制御信号を出力するコントローラと、を備えることを特徴とする建設機械の制御装置。
In a control device for a construction machine, comprising: an engine; a hydraulic pump connected to the engine; and a hydraulic actuator capable of controlling a direction so as to drive the working device by receiving hydraulic oil supplied from the hydraulic pump.
A remote control valve that outputs a secondary signal pressure in proportion to the amount of user operation;
An operation amount detecting means for detecting a secondary signal pressure output from the remote control valve;
An electromagnetic proportional pressure reducing valve that outputs a secondary signal pressure in proportion to an electrical control signal from the outside;
One input is connected to the secondary signal pressure output from the remote control valve, and the output side port of the electromagnetic proportional pressure reducing valve is connected to the other input, respectively, and the signal pressure passing through the remote control valve And first and second shuttle valves for outputting the higher pressure of the signal pressure passing through the electromagnetic proportional pressure reducing valve,
A direction control spool which is provided in a flow path between the hydraulic pump and the hydraulic actuator, and controls start, stop, and direction switching of the hydraulic actuator when switched by a signal pressure output from the first and second shuttle valves; ,
A construction machine control device comprising: a controller that calculates a control signal corresponding to an operation amount input from the operation amount detection means and outputs a control signal to the electromagnetic proportional pressure reducing valve.
前記リモートコントロールバルブの操作量を検出する操作量検出手段は、
前記リモートコントロールバルブから出力される2次信号圧力に入力部がそれぞれ接続され、 前記リモートコントロールバルブを通過する信号圧力のうち高い圧力を出力する第3シャトル弁と、
前記第3シャトル弁の出力側に接続され、検出信号を前記コントローラに入力する圧力センサと、を備えることを特徴とする請求項1に記載の建設機械の制御装置。
The operation amount detection means for detecting the operation amount of the remote control valve is:
A third shuttle valve that is connected to the secondary signal pressure output from the remote control valve, and that outputs a high pressure of the signal pressure passing through the remote control valve;
The construction machine control device according to claim 1, further comprising: a pressure sensor connected to an output side of the third shuttle valve and inputting a detection signal to the controller.
前記リモートコントロールバルブの操作量を検出する操作量検出手段は、
前記リモートコントロールバルブから出力される2次信号圧力に入力部がそれぞれ接続され、 前記電磁比例減圧弁の入力側ポートに出力部が接続され、前記リモートコントロールバルブを通過する信号圧力のうち高い圧力を出力する第4シャトル弁と、
前記第4シャトル弁の出力側に接続され、検出信号を前記コントローラに入力する圧力センサと、を備えることを特徴とする請求項1に記載の建設機械の制御装置。
The operation amount detection means for detecting the operation amount of the remote control valve is:
The input part is connected to the secondary signal pressure output from the remote control valve, the output part is connected to the input side port of the electromagnetic proportional pressure reducing valve, and the higher one of the signal pressures passing through the remote control valve. A fourth shuttle valve for output;
The construction machine control device according to claim 1, further comprising: a pressure sensor that is connected to an output side of the fourth shuttle valve and inputs a detection signal to the controller.
JP2013525795A 2010-08-24 2010-08-24 Construction machine control equipment Pending JP2013540957A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/005606 WO2012026633A1 (en) 2010-08-24 2010-08-24 Device for controlling construction equipment

Publications (1)

Publication Number Publication Date
JP2013540957A true JP2013540957A (en) 2013-11-07

Family

ID=45723618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013525795A Pending JP2013540957A (en) 2010-08-24 2010-08-24 Construction machine control equipment

Country Status (6)

Country Link
US (1) US20130146163A1 (en)
EP (1) EP2610409A4 (en)
JP (1) JP2013540957A (en)
KR (1) KR20130111532A (en)
CN (1) CN103052755B (en)
WO (1) WO2012026633A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110721A (en) * 2015-12-16 2017-06-22 日立建機株式会社 Hydraulic transmission of construction machine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010007504U1 (en) * 2010-06-02 2010-09-02 WEW Westerwälder Eisenwerk GmbH Pump arrangement and supply unit with pumping arrangement
KR102388136B1 (en) * 2016-05-18 2022-04-19 현대두산인프라코어(주) Safety system for construction machinery
JP6853740B2 (en) * 2017-06-16 2021-03-31 川崎重工業株式会社 Hydraulic system
WO2019050064A1 (en) * 2017-09-07 2019-03-14 Volvo Construction Equipment Ab Hydraulic machine
CN108488118A (en) * 2018-05-19 2018-09-04 山东科瑞机械制造有限公司 A kind of novel oil pipe working drum is local to control hydraulic system with remote collaborative
CN113915176B (en) * 2021-03-23 2023-07-14 上海圣克赛斯液压股份有限公司 Automatic control hydraulic system for driving power device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419903U (en) * 1990-06-13 1992-02-19
JPH0972307A (en) * 1995-09-01 1997-03-18 Kobe Steel Ltd Hydraulic pilot operating device
JP2004124377A (en) * 2002-09-30 2004-04-22 Hitachi Constr Mach Co Ltd Controller for construction machinery, and radio control system for construction machine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222745A (en) * 1992-02-13 1993-08-31 Yutani Heavy Ind Ltd Automatic controller of construction machinery
KR100226281B1 (en) * 1994-09-30 1999-10-15 토니헬샴 Variable priority device
KR100240084B1 (en) * 1995-10-31 2000-01-15 토니헬 A travelling control apparatus and method of hydraulic mechanics device
GB2319328B (en) * 1996-11-13 2001-05-02 Samsung Heavy Ind Control device for travelling system in construction vehicles
KR100240090B1 (en) * 1997-12-30 2000-01-15 토니헬 Engine generating power control apparatus and method of hydraulic construction machine
JP4026969B2 (en) * 1999-01-22 2007-12-26 株式会社小松製作所 Hydraulic circuit for construction machinery
JP2004278746A (en) * 2003-03-18 2004-10-07 Hitachi Sumitomo Heavy Industries Construction Crane Co Ltd Hydraulic operating device of construction machinery
KR100752115B1 (en) * 2004-12-30 2007-08-24 두산인프라코어 주식회사 Hydraulic pump control system for an excavator
KR100780897B1 (en) * 2006-09-28 2007-11-30 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 Pressure control device of heavy equipment
DE102008018936A1 (en) * 2008-04-15 2009-10-22 Robert Bosch Gmbh Control arrangement for controlling a directional control valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419903U (en) * 1990-06-13 1992-02-19
JPH0972307A (en) * 1995-09-01 1997-03-18 Kobe Steel Ltd Hydraulic pilot operating device
JP2004124377A (en) * 2002-09-30 2004-04-22 Hitachi Constr Mach Co Ltd Controller for construction machinery, and radio control system for construction machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110721A (en) * 2015-12-16 2017-06-22 日立建機株式会社 Hydraulic transmission of construction machine

Also Published As

Publication number Publication date
KR20130111532A (en) 2013-10-10
EP2610409A1 (en) 2013-07-03
EP2610409A4 (en) 2017-12-20
US20130146163A1 (en) 2013-06-13
CN103052755A (en) 2013-04-17
WO2012026633A1 (en) 2012-03-01
CN103052755B (en) 2015-12-16

Similar Documents

Publication Publication Date Title
US8146355B2 (en) Traveling device for crawler type heavy equipment
JP5779256B2 (en) Construction machine hydraulic system
JP2013540957A (en) Construction machine control equipment
JP5927302B2 (en) Priority control system for construction machinery
KR101953049B1 (en) Pressure oil energy regenerating device of working machine
US20140090368A1 (en) Hydraulic system for construction machinery
US10337170B2 (en) Driving straight ahead device for construction machine and control method therefor
US10577777B2 (en) Control system for construction machinery
JP2005265062A (en) Hydraulic control device for working machine
KR101729584B1 (en) Hydraulic system for construction machinery
JP5945366B2 (en) Hydraulic system for construction machinery
CA2917987C (en) Hydraulic circuit for construction machine
JP6196567B2 (en) Hydraulic drive system for construction machinery
WO2015111120A1 (en) Fluidic system
US20170037600A1 (en) Drive control device for construction equipment and control method therefor
JP5015880B2 (en) Pump control circuit for construction machinery
US9725885B2 (en) Hydraulic construction machinery
JP2012149554A (en) Traveling drive circuit device for wheel type traveling working vehicle
JP2002168204A (en) Hydraulic circuit for working machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202