JP2013532570A - 胎児モニタリング中に超音波信号の不明確性を削減する方法 - Google Patents

胎児モニタリング中に超音波信号の不明確性を削減する方法 Download PDF

Info

Publication number
JP2013532570A
JP2013532570A JP2013522331A JP2013522331A JP2013532570A JP 2013532570 A JP2013532570 A JP 2013532570A JP 2013522331 A JP2013522331 A JP 2013522331A JP 2013522331 A JP2013522331 A JP 2013522331A JP 2013532570 A JP2013532570 A JP 2013532570A
Authority
JP
Japan
Prior art keywords
signal
time window
fetal heart
periodic
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013522331A
Other languages
English (en)
Other versions
JP5815705B2 (ja
Inventor
マルクス ヴォルシュラゲル
クリストフ フランク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2013532570A publication Critical patent/JP2013532570A/ja
Application granted granted Critical
Publication of JP5815705B2 publication Critical patent/JP5815705B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/02Measuring pulse or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0866Detecting organic movements or changes, e.g. tumours, cysts, swellings involving foetal diagnosis; pre-natal or peri-natal diagnosis of the baby
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pregnancy & Childbirth (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

本発明は胎児心臓モニタリングのための方法と装置に関する。超音波モニタリングを改良するために、胎児と母親によって生じる信号など、周期的信号の数が評価され、1つよりも多くの周期的信号が評価される場合、信号復調の時間窓が適合される。

Description

本発明は胎児心臓モニタリング方法及び装置の分野に関する。
電子胎児モニタ若しくはCardio‐Toco‐Graphs(CTG:胎児心拍陣痛計)は、通常サーマルプリンタ、ディスプレイ、及び子宮活動と胎児心拍などのバイタルパラメータを測定するためのマルチセンサ素子を持つベースユニットから構成される。
今日の胎児モニタは妊娠及び陣痛中の胎児心拍数の非侵襲的収集と記録のために超音波ドップラ技術を使用する。胎児心筋の機械的収縮が超音波反射における周期的信号パターンをもたらすので、胎児心拍数を決定するために胎児モニタによってパターンの周期が使用される。米国特許4,984,576がこうした装置を記載している。
本発明の目的は胎児心臓モニタリングのための改良された方法と装置を提供することである。
この目的は以下のステップを有する胎児心臓モニタリングの方法によって達成される:
a)胎児によって反射される超音波信号を受信するステップ;
b)特定期間を持つ少なくとも1つの時間窓(復調時間窓とも呼ばれる)において受信される信号を復調するステップ;
c)少なくとも1つの時間窓が1つよりも多くの周期的信号を含むかどうか評価するステップ;
d)1つよりも多くの周期的信号が評価される場合、少なくとも1つの時間窓の期間を適合させるステップ。ステップa)乃至d)は適合された若しくは適合されていない時間窓で繰り返される。
本発明は、その間に反射信号が受信される、つまり復調される時間窓によって超音波検出ボリュームの位置と長さが決定されるという基本概念に基づく。受信/復調時間窓の期間と、そこから反射信号が受信される検出ボリュームの長さは正比例する。時間窓の期間を適合させることによって、到達範囲が制御されることができる。短期間の時間窓は短い検出距離をもたらし、長期間の時間窓は長い検出距離をもたらす。通常、時間窓の期間は約5cm乃至約20cmの深度範囲をカバーするように設計される。胎児心臓は振動子の表面から典型的には約10cm乃至約15cmの距離に位置する。幅広い身体測定をカバーするために適切な安全マージンが追加される。
しかしながら、超音波検出ボリューム内部の構造の全周期的運動が胎児モニタ内の心拍数を生成し得る。特に母親の腹部動脈の脈動は問題を生じるので、胎児心拍についての情報を含む信号は受信した超音波信号全体の一部分しかあらわさないことがわかった。胎児心臓からの反射以外のいかなる信号寄与も、次の心拍計算の精度を削減し、又は最悪の場合、母親の心拍数の記録につながり得るので、母親若しくは胎児の動脈又は臍帯のような、特に胎児心臓の後方にある、個別に動いている構造からの信号寄与は、重ね合わされるが実際には望ましくない。
本発明の原点は、異なる周期的信号源が空間的に分離されるという仮定である。本発明は、測定経路において、又は随意に個別の参照経路において、胎児、母親若しくは双胎の心拍若しくは(動脈/大動脈)拍動など、特に異なる源によって生じる周期的信号の数を検出し、その後時間窓の期間を適合させ、その結果超音波検出ボリュームを適合させることによって、重ね合わされたドップラ信号によって生じる不正確な若しくは誤った心拍数を記録する可能性を削減することを意図する。
母親の動脈など、母親の心拍源は、胎児心臓など、胎児心拍源の後ろに主に位置し、胎児心拍源の信号との母親の心拍源の信号の重ね合わせは、時間窓の期間の削減によって、及びその結果超音波検出ボリュームの削減によって、削減されるか若しくは回避されることができる。時間窓は例えば、規定時間にわたって、又は例えば母親の心拍を示すさらなる不明確な周期的信号が消えるまで、適合される、特に削減されることができる。
本発明にかかる方法と装置は以下の利点の少なくとも1つを持つ:
‐改良された超音波測定、
‐改良された超音波信号品質、
‐心拍数計算の信頼性及び/又は精度の向上、
‐扱いやすく無理のない信号処理労力での信号分離、
‐監視の軽減及びその結果個人的経費の削減、及び/又は
‐超音波深度範囲は不明確な周期的信号の場合しか削減されないので、極度の身体測定が実行されることができる。
本発明の文脈において、受信信号は受信された増幅信号若しくは受信され増幅され分割された信号部分など、処理された受信信号でもあり得る。
ステップa)乃至d)の一実行は特に複数のステップb)(及びステップa))を有し得る。ステップc)はこれらのステップb)に基づいて実行され得る。
本発明の文脈において、時間窓期間は特に1つの周期的信号の評価の場合には適合されない。周期的信号が評価されない場合、窓制御器は時間窓を、例えば元の時間窓を維持し得るか、又は適合された時間窓を元の時間窓にリセットし得る。好適には元の時間窓は妊娠の大部分にわたって最適な深度範囲をカバーするように設定される。例えば、元の時間窓は約3cm以上約25cm以下、例えば約5cm以上約18cm以下の深度範囲をカバーするように設定され得る。
一実施形態において方法は以下のステップを有する:
a)胎児によって反射される超音波信号を受信するステップ;
b)特定期間を持つ時間窓において受信される信号を復調するステップ;
c)時間窓が1つよりも多くの周期的信号を含むかどうか評価するステップ;及び
d)1つよりも多くの周期的信号が評価される場合に時間窓の期間を適合させるステップ;
ステップa)乃至d)は適合された若しくは適合されていない時間窓で繰り返される。本発明にかかる方法のこの実施形態は参照経路を持たない、つまり1つ以上の測定経路しか持たない胎児心臓モニタリング装置で実行され得る。これは単純な装置が使用されるという利点を持つ。
別の実施形態において方法は以下のステップを有する:
a)胎児によって反射される超音波信号を受信するステップと、信号を少なくとも1つの測定経路と少なくとも1つの参照経路に分割するステップ;
b)測定経路において特定期間を持つ第1の時間窓において受信される信号の一部分と、参照経路において特定期間を持つ第2の時間窓において受信される信号の別の部分を復調するステップ;
c)参照経路の第2の時間窓が1つよりも多くの周期的信号を含むかどうか評価するステップ;及び
d)参照経路の第2の時間窓において1つよりも多くの周期的信号が評価される場合に測定経路の第1の時間窓の期間を適合させるステップ;
ステップa)乃至d)は適合された若しくは適合されていない第1の時間窓で繰り返される。本発明にかかる方法のこの実施形態は1つ以上の測定経路と1つ以上の参照経路を持つ胎児心臓モニタリング装置で実行され得る。これは測定を妨げることなくバックグラウンドにおいて追加の周期的信号が検索され除去されるという利点を持つ。
好適には、測定経路及び/又は参照経路において信号はさらに2つ以上の経路に分割される。好適には、これはステップb)の前若しくはステップb)内で実行され得る。このようにして、その開示全体が引用により本明細書に組み込まれる米国特許No.4,984,576及び5,170,791に記載の方法など、さらなる方法もまたモニタリング結果を改良するために実行され得る。
第1及び第2の時間窓は必ずしも同じ期間、始点及び/又は終点を持たなければならないわけではない。しかしながら、本発明にかかる方法の開始時において第1及び第2の時間窓は同じ期間、始点及び/又は終点を持ち得る。
さらなる実施形態において第2の時間窓は第1の時間窓よりも長い期間を持つ。
このようにしてより広い深度範囲が参照経路の第2の時間窓によって検査され、それに基づいて第1の時間窓が適合され、それによって測定経路の第1の時間窓において信号の不明確性が回避される。
第2の時間窓は例えば最大で第1の時間窓期間よりも約3倍長い期間を持つ。例えば、第2の時間窓は約150μsの期間を持ち、一方第1の時間窓期間はより短く、例えば第1の時間窓期間は50μsであるか若しくは50μsに削減される。特に、第2の時間窓は固定期間を持ち得る。これに関連して、第1の時間窓はステップの第1ループの開始時において第2の時間窓と同じ期間を持ち、ステップの繰り返しループ中に短くなるか、又は第1の時間窓はステップの最初の実行の開始時において既に第2の時間窓よりも短い期間を持つかのいずれかである。特に、第1及び第2の時間窓は同じ始点を持ち得る。例えば、第1及び第2の時間窓は両方とも(受信される時間窓全体の、図1a及び1b参照)約140μsにおいて始点を持つ。
さらなる実施形態において時間窓の期間はステップd)において削減される。このようにして、さらなる周期的信号が心臓信号計算から除外され、それによって心臓信号の品質が改良される。
さらなる実施形態において時間窓の期間はステップd)において時間窓の終点を早く設定することによって適合される、特に削減される。例えば、開始時において第1及び第2の時間窓は両方とも約290μsにおいて終点を持ち、一方第1の時間窓は終点を早く、例えば(受信される時間窓全体の、図1a及び1b参照)190μsに設定することによって適合される、特に削減される。このようにして、母親の動脈など、遠くの源によって生じる周期的信号は心臓信号計算から除外され、それによって心臓信号の品質が改良される。
一実施形態において、時間窓の期間はステップd)において段階的に適合される、特に削減される。つまり、ステップa)乃至d)の第1のループにおいて時間窓の期間は第1のステップによって削減され、ステップa)乃至d)の第2のループにおいて、第1のステップによって既に削減されている時間窓の期間は、第2のステップによってさらに削減される、などとなる。これは連続的に減少するサイズのステップによって、若しくは固定サイズのステップによって達成され得る。
一実施形態において、適合された時間窓は測定セッションの終了まで維持される。しかしながら、胎児は測定セッション中にその位置を変えるかもしれないので、超音波信号はもはや胎児、つまり胎児心臓によって反射されず、周期的信号は消失する。
さらなる実施形態において、従って適合された時間窓は、先行するステップc)において適合された時間窓において周期的信号が評価されない場合、ステップd)において元の時間窓にリセットされる。このようにして、消失した周期的信号を取り戻すために検出範囲の深度が拡大される。
さらなる実施形態において胎児心臓信号は少なくとも1つの復調信号に基づいて計算される。胎児心臓信号は例えば心拍数であり、特に瞬時心拍数(beat‐to‐beat heart rate)である。本発明の文脈において復調信号は、復調されフィルタされた信号、復調されフィルタされA/D変換された信号、若しくは復調されフィルタされA/D変換され調整された信号など、処理された復調信号でもあり得る。一実施形態において、胎児心臓信号は測定経路、つまり第1の時間窓の復調結果に基づいて計算される。
一実施形態において、胎児心臓信号の計算はステップa)乃至d)の最初の実行中に初めて実行される。しかしながら、ステップa)乃至d)の繰り返しループ中に初めて胎児心臓信号の計算を実行することもまた可能である。ステップa)乃至d)は短期間に繰り返されるので、胎児心臓信号がステップa)乃至d)の第1ループ中に初めて計算される場合であっても許容できる期間に適切な胎児心臓信号を出力することが可能である。
本発明にかかる方法は特に後で記載される本発明にかかる超音波胎児心臓モニタリング装置によって実行され得る。
一実施形態によれば、ステップa)は超音波振動子によって、特に後で記載される本発明にかかる超音波胎児心臓モニタリング装置の超音波振動子によって実行される。特に、ステップa)は超音波ドップラ振動子によって実行され、それによって超音波ドップラ信号がステップa)において受信されることができる。
一実施形態によれば、ステップb)は復調器によって、特に後で記載される本発明にかかる超音波胎児心臓モニタリング装置の復調器によって実行される。ステップb)においてドップラシフト信号が特に搬送波信号から抽出され得る。例えば、従って搬送波信号と同じ周波数を持つパルス信号が復調器の1入力に印加される。このようにして、同期復調がステップb)において実行される。
一実施形態によれば、ステップc)は不明確性検出器、特に後で記載される本発明にかかる超音波胎児心臓モニタリング装置の不明確性検出器によって実行される。周期的信号評価は、例えば高速フーリエ変換、自己相関、ピーク検索、ウェーブレット変換及びそれらの組み合わせなど、フーリエ変換から成るグループから選択される、特に周期的信号を検出するための信号処理法を用いることによってステップc)において実行され得る。ここで信号処理法は分類法及び/又は計数法及び/又は決定方式と組み合わされる。例えば、高速フーリエ変換などの信号処理法から得られるピークは分類され(倍音基底周波数割り当て)、分類されたピークは経時的に計数され、時間窓は時間窓における分類されたピークの数が所定閾値を超える場合に1つよりも多くの周期的信号を含むと評価される。そしてステップc)の分析窓は胎児心臓信号を計算するための分析窓よりも長くなり得る。例えば、ステップc)の分析窓は約4s以上約8s以下である。好適には、ステップc)において周期的信号評価はフーリエ変換及び/又は自己相関、特に高速フーリエ変換などのフーリエ変換を用いることによって実行される。
一実施形態によれば、ステップd)は窓制御器、特に後で記載される本発明にかかる超音波胎児心臓モニタリング装置の窓制御器によって実行される。
好適には、胎児心臓信号は胎児心臓信号計算器、特に後で記載される本発明にかかる超音波胎児心臓モニタリング装置の胎児心臓信号計算器によって計算される。胎児心臓信号はまた、特に例えば高速フーリエ変換、自己相関、ピーク検索、ウェーブレット変換及びそれらの組み合わせなど、フーリエ変換から成るグループから選択される、周期的信号を検出するための信号処理法を用いることによっても計算され得る。ここで信号処理法は計数法及び/又は決定方式とも組み合わされる。
一実施形態によれば、付加的に、本発明にかかる方法は超音波振動子によって受信される超音波信号を増幅するステップa0)を有する。例えば、超音波振動子によって受信される超音波信号はステップa0)において増幅され、随意に測定経路と参照経路に分割され、その後ステップb)において復調される。
さらに、一実施形態によれば、方法は例えば側波帯を除去するため及び/又は復調信号のアンチエイリアシングフィルタリングを実行するために少なくとも1つの復調信号をフィルタするステップb1)を有する。
さらに、一実施形態によれば、方法は復調信号のアナログデジタル変換のステップb2)を有する。例えば、ステップb)の復調信号はステップb1)においてフィルタされ、その後A/D変換される。
加えて、一実施形態によれば、方法は復調信号を調整するステップb3)を有する。調整するステップは例えば高域フィルタリングによって復調信号からDCオフセットを除去すること、及び/又は復調信号を整流すること、及び/又は例えば低域フィルタリングによって復調信号を平滑化することを有し得る。
本発明にかかる方法のさらなる技術的特徴及び利点については、後で記載される本発明にかかる超音波胎児心臓モニタリング装置の文脈における説明、図面及び図面の説明が明示的に参照される。
本発明の別の目的は以下を有する超音波胎児心臓モニタリング装置である:
‐超音波信号を生成するため、及び胎児によって反射される超音波信号を受信/送信するための超音波振動子、
‐特定期間を持つ少なくとも1つの時間窓において受信される信号を復調するための復調器、
‐少なくとも1つの時間窓が1つよりも多くの周期的信号を含むかどうか評価するための不明確性検出器、
‐不明確性検出器からの信号が1つよりも多くの周期的信号を示す場合復調器の少なくとも1つの時間窓の期間を適合させるための窓制御器、
‐少なくとも1つの復調信号に基づいて胎児心臓信号を計算するための胎児心臓信号計算器。
特に、本発明にかかる装置は本発明にかかる方法を実行するために適合され得る。
一実施形態によれば、超音波振動子は超音波ドップラ振動子である。超音波振動子は非集束の、おおよそ円筒形の超音波ビームフィールドを持ち得る。好適には、超音波振動子は圧電素子のアレイを有する。特に、超音波振動子は超音波の発生/送信及び受信の両方のために設計され得る。
一実施形態において、復調器は搬送波信号からドップラシフト信号を抽出するための復調器である。
一実施形態によれば、胎児心臓信号計算器は例えば高速フーリエ変換、自己相関、ピーク検索、ウェーブレット変換及びそれらの組み合わせなど、フーリエ変換から成るグループから選択される、特に周期的信号を検出するための信号処理法を用いることによって胎児心臓信号を計算するために設計される。ここで、信号処理法は計数法及び/又は決定方式と組み合わされる。
一実施形態によれば、不明確性検出器はさらに少なくとも1つの時間窓が1つの周期的信号を含むか若しくは周期的信号を含まないかどうかを評価するために設計される。不明確性検出器は特に、例えば高速フーリエ変換、自己相関、ピーク検索、ウェーブレット変換及びそれらの組み合わせなど、フーリエ変換から成るグループから選択される、特に周期的信号を検出するための信号処理法を用いることによって周期的信号を評価するために設計され得る。ここで、信号処理法は分類法及び/又は計数法及び/又は決定方式と組み合わされる。例えば、不明確性検出器は、高速フーリエ変換などの信号処理法から得られるピークを分類し(倍音基底周波数割り当て)、分類されたピークを経時的に計数することによって周期的信号を評価するために設計され、時間窓における分類されたピークの数が所定閾値を超える場合、時間窓は1つよりも多くの周期的信号を含むと評価される。これに関連して、不明確性検出器の分析窓は胎児心臓信号計算器の分析窓よりも長い。例えば、不明確性検出器の分析窓は約4s以上約8s以下である。好適には、不明確性検出器はフーリエ変換及び/又は自己相関、特に高速フーリエ変換などのフーリエ変換を用いることによって周期的信号を評価するために設計される。さらに、一実施形態によれば、不明確性検出器は1つよりも多くの周期的信号を示す信号を窓制御器に送信するために設計される。さらに不明確性検出器は1つの周期的信号を示す若しくは周期的信号を示さない信号を窓制御器に送信するために設計され得る。
一実施形態によれば、窓制御器は不明確性検出器からの信号が1つよりも多くの周期的信号を示す場合に少なくとも1つの時間窓の期間を適合させる、特に削減するために設計される。上記窓制御器は特に時間窓の終点を早く設定することによって少なくとも1つの時間窓の期間を適合させるために設計される。さらに、窓制御器は不明確性検出器からの信号が1つの周期的信号を示す場合少なくとも1つの時間窓の期間を適合しないために設計され得る。さらに、一実施形態によれば、窓制御器は不明確性検出器からの信号が周期的信号を示さない場合、時間窓、例えば元の時間窓を維持するか、又は適合された時間窓を元の時間窓にリセットするために設計される。
一実施形態において装置は超音波振動子によって受信される超音波信号を増幅するための増幅器を有する。
別の実施形態において装置は特に側波帯を除去する及び/又は復調信号のアンチエイリアシングフィルタリングを実行するための少なくとも1つのフィルタを有する。例えば、装置は特に100Hz及び500Hzにおいて遮断周波数を持つ少なくとも1つの帯域フィルタを有する。
さらなる実施形態において装置は復調信号を変換するためのアナログデジタル変換器を有する。
さらに別の実施形態において装置は復調信号を調整するための信号調整器を有する。特に、信号調整器は例えば高域フィルタリングによって復調信号からDCオフセットを除去することによって、及び/又は復調信号を整流することによって、及び/又は例えば低域フィルタリングによって復調信号を平滑化することによって、復調信号を調整するために設計され得る。
さらなる実施形態において不明確性検出器と胎児心臓信号計算器は両方とも信号調整器に接続され、不明確性検出器は窓制御器によって復調器に接続される。
別の実施形態において装置は少なくとも1つの復調器‐フィルタ‐変換器‐調整器配置を有し、特定期間を持つ少なくとも1つの時間窓において受信信号を復調するための復調器は、特に側波帯を除去するため及び/又は復調信号のアンチエイリアシングフィルタリングを実行するための少なくとも1つのフィルタに接続され、フィルタは復調信号を変換するためのアナログデジタル変換器に接続され、アナログデジタル変換器は復調信号を調整するための信号調整器に接続される。ここで、不明確性検出器と胎児心臓信号計算器は両方とも復調器‐フィルタ‐変換器‐調整器配置の信号調整器に接続され、不明確性検出器は窓制御器によって復調器に接続される。
さらなる実施形態において装置は受信信号を測定経路と参照経路に分割するための信号分割器を有する。ここで、測定経路と参照経路は両方とも復調器と、復調器に(直接若しくは間接的に)接続される信号調整器とを有する。特に、測定経路と参照経路は両方とも復調器‐フィルタ‐変換器‐調整器配置を有し得る。胎児心臓信号計算器は測定経路の信号調整器に接続され得る。不明確性検出器は参照経路の信号調整器に接続され得る。不明確性検出器は付加的に窓制御器によって測定経路の復調器へ接続され得る。この実施形態において、測定経路を妨げることなくバックグラウンドにおいてさらなる周期的信号が検索され除去される。さらに、この実施形態において、不明確性検出器と胎児心臓信号計算器は異なる経路に属するので、不明確性検出器によって評価される時間窓は胎児心臓信号を計算するために胎児心臓信号計算器によって処理される復調信号の時間窓よりも長い期間を持ち得る。不明確性検出器によって評価される時間窓は例えば胎児心臓信号計算器によって処理される復調信号の時間窓の期間よりも例えば最大で約3倍長い期間を持つ。例えば、不明確性検出器によって評価される時間窓は約150μsの期間を持ち、一方胎児心臓信号計算器によって処理される復調信号の時間窓の期間はより短く、例えば第1の時間窓の期間は50μsであるか50μsに削減される。不明確性検出器は固定期間の時間窓を評価するために設計され得る。特に、不明確性検出器によって評価される時間窓と胎児心臓信号計算器によって処理される復調信号の時間窓は同じ始点を持ち、例えば第1及び第2の時間窓は両方とも(受信される時間窓全体の、図1a及び1b参照)約140μsにおいて始点を持つ。
付加的に、一実施形態によれば、装置は測定経路若しくは参照経路の信号を2つ以上の経路に分割するための少なくとも1つの測定及び/又は参照経路分割器を有する。
本発明にかかる装置のさらなる技術的特徴と利点については、本発明にかかる胎児心臓モニタリングの方法の文脈における説明、図面及び図面の説明が明示的に参照される。
本発明の別の目的はプロセッサが本発明にかかる方法を実行することを可能にするコンピュータプログラムである。
本発明のさらなる目的は本発明にかかる超音波胎児心臓モニタリング装置を有する又は本発明にかかる胎児心臓モニタリングの方法を実行する胎児心拍陣痛図(CTG)である。
本発明のこれらの及び他の態様は以降に記載の実施形態から明らかとなりそれらを参照して解明される。
測定経路を持つが参照経路を持たない本発明にかかる方法と装置の一実施形態を図示する略図である。 測定経路と参照経路を持つ本発明にかかる方法と装置の別の実施形態を図示する略図である。 胎児心臓モニタリング中の妊婦の略断面図である。 胎児心臓モニタリング中の妊婦の略断面図である。 測定経路を持つが参照経路を持たない本発明にかかる方法と装置の別の実施形態を図示するブロック図である。 測定経路と参照経路を持つ本発明にかかる方法と装置の別の実施形態を図示するブロック図である。
図1aは測定経路を持つが参照経路を持たない本発明にかかる方法と装置の一実施形態を図示する略図である。胎児心臓の深度位置(心臓アイコンによって示される)、母親の腹部動脈(動脈アイコンによって示される)、受信超音波信号及び復調時間窓1,1',1"の間の関係が図1に示される。特に図1aは胎児心臓に加えて母親の腹部動脈の脈動もまた超音波反射を生じ時間窓において周期的信号を生じることを図示する。
不要な周期的信号(母親の腹部動脈)の強度が所定レベル未満である限り、不要な周期的信号の影響はその後の信号処理によって削減され得る。しかしながら、反射超音波エコーの強度を特徴づける様々な時間変化因子に依存して、超音波信号の成分は予測不能に変化し得る。胎児信号と干渉する母親信号の間で振幅が等しい状況が起こり得る。信号重ね合わせのために、胎児心拍の本当のピーク位置がぼやける可能性があり、これはその後不正確な心拍数につながり得る。強い胎児/母親の信号重ね合わせを伴う出来事はしばしば計算された心拍数の減少若しくは増加を示し、これはときにそれぞれ減速若しくは加速と解釈される。不要な母親の心拍の強度に依存して、この信号は胎児信号部分をかき消してしまう。母親と胎児の信号相互作用によって生じる心拍数変化は遡及的に識別するのが困難であり、最悪の場合誤った解釈につながり得る。誤った心拍数トレースを誤解することは不要なインターベンション若しくは外科手術、又は胎児ジストレスの検出の失敗につながり得る。誤って記録された胎児心拍数値を避けるために、今まで、記録された心拍数の永久監視、及び必要であれば振動子再配置のための手動相互作用が必要とされている。従って、誤った心拍数を記録する可能性は比較的高い。あいにく、今まで、扱いやすく無理のない信号処理労力を用いて信号分離を可能にする実用的な方法は開示されていない。
胎児心臓からの反射以外の周期的信号寄与は次の心拍計算の精度を削減し、或いは最悪の場合母親の心拍数の記録につながり得るので、本発明の基本概念は、そこから胎児心臓信号が計算される復調時間窓1,1',1"(測定経路)において胎児のもの以外の周期的信号を削減する若しくは回避することである。図1は胎児信号(心臓アイコンによって示される)が母親信号(動脈アイコンによって示される)よりも復調時間窓1,1',1"において早く起こることを示す。本発明によれば、胎児及び母親信号の重ね合わせは、そこから胎児心臓信号が計算される復調時間窓1,1',1"の期間を適合させる、特に削減することによって、削減されるか若しくは回避される。図1bに図示の通り、復調時間窓期間1,1',1"の削減は母親の干渉源の影響を除去するために十分であり得る。
胎児の周期的信号以外の周期的信号が存在しない場合は復調時間窓1,1',1"の期間を削減する必要がなく、復調時間窓1,1',1"の期間の不要な削減は胎児信号の信号損失を生じ得るので、本発明にかかる方法は、復調時間窓1,1',1"において1つよりも多くの周期的信号があるかどうかをチェックするステップc)を有する。本発明にかかる方法のその後のステップd)において、そこから胎児心臓信号が計算される復調時間窓1,1',1"の期間は、ステップc)において1つよりも多くの周期的信号が評価された場合適合される。ステップc)において復調時間窓において1つの周期的信号しか評価されなかった場足、そこから胎児心臓信号が計算される復調時間窓1,1',1"の期間は特に適合されない、つまり維持され得る。
図1aは復調時間窓1,1',1"の期間が復調時間窓1,1',1"の終点を進めることによって、つまり復調時間窓1,1',1"の終点を以前よりも早い時点に設定することによって、適合され得ることを図示する。これは復調時間窓1,1',1"の期間が削減されるという効果も持つ。さらに図1aは復調時間窓1,1',1"の始点が変化しないことを示す。
ステップa)乃至d)の最初の実行のステップd)の後、方法のステップは適合された復調時間窓1'(1つよりも多くの周期的信号がある場合)又は適合されていない復調時間窓1(前のステップc)の時間窓において1つの周期的信号がある場合など)で繰り返される。
ステップa)乃至d)の後続ループのステップc)において、まだ1つよりも多くの周期的信号が適合された復調時間窓1'において検出される場合、適合された復調時間窓1'の期間はステップd)においてさらに適合され、一方方法ステップa)乃至d)はそれから図1aに図示の通り2度適合された復調時間窓1"で繰り返される。
図1aの実施例では、ステップa)乃至d)の次のループのステップc)において、2度適合された復調時間窓1"において胎児信号を示すただ1つの周期的信号のみが評価される。従って、このステップループのステップd)において、復調時間窓1"の期間はそれ以上適合されず、次のステップループは2度適合された復調時間窓1"で実行される。胎児の周期的信号が後で消失する場合、2度適合された時間窓1"は元の時間窓1にリセットされることができる。
図1の実施例において、復調窓1,1',1"の適合は固定ステップ(同じサイズのステップ)によって実行される。しかしながら、本発明の文脈において、そのサイズが連続的に小さくなるように設定されるステップにおいて適合を実行することもまた可能である。
図1bは測定経路と参照経路を持つ本発明にかかる方法と装置の別の実施形態を図示する略図である。図1bに示す実施形態は次の点で図1aに示す実施形態とは本質的に異なる:受信信号は測定経路と参照経路に分割される(ステップa)。ステップb)において、測定経路において第1の時間窓1,1',1"において受信される信号の一部分と参照経路において第2の時間窓2において受信される信号の別の部分が復調される。その結果参照経路の第2の時間窓2が1つよりも多くの周期的信号を含むかどうかが評価される。参照経路の第2の時間窓2において1つよりも多くの周期的信号が評価される場合、測定経路の第1の時間窓1,1',1"の期間が適合される。言い換えれば、この実施形態においてステップc)の周期的信号評価(参照経路)とステップd)の復調時間窓適合(測定経路)は異なる信号経路で実行され、それによってステップa)乃至d)が適合された第1の時間窓1',1"若しくは適合されていない第1の時間窓1で繰り返される。第2の時間窓2は変化しないままであり得る。この実施形は測定を妨げることなくバックグラウンドにおいて追加の周期的信号が検索され除去され得るという利点を持つ。
図1bに図示の通り、測定経路と参照経路の復調時間窓1,2は最初は同じ期間を持ち得るが、復調時間窓1,1',1"の期間は測定中に削減され得る。しかしながら、最初に、第1の復調時間窓1が第2の復調窓2よりも短い期間を持ってもよい(不図示)。特に、第1の復調時間窓1の期間は第2の復調時間窓2の期間よりもかなり小さくてもよい。
図2a及び2bは胎児心臓モニタリング中の妊婦3の略断面図である。図2a及び2bは胎児5の心臓4と母親の腹部動脈6の空間的分離を図示する。さらに、図2a及び2bは、母親の腹部動脈6の周期的信号が、瞬時心拍数など胎児心臓信号を計算するために使用される胎児5の心臓4の周期的信号と重なり合わないように、復調時間窓の削減によって妊婦3の腹部に置かれる超音波胎児心臓モニタリング装置7の検出ボリューム8の深度が削減されることを示す。
図3aは測定経路を持つが参照経路を持たない本発明にかかる方法と装置の別の実施形態を図示するブロック図である。図3aは超音波信号を生成するため、及び胎児によって反射される超音波信号を受信するための超音波振動子10、特定期間を持つ少なくとも1つの時間窓において受信信号を復調するための復調器20、少なくとも1つの時間窓が1つよりも多くの周期的信号を含むかどうか評価するための不明確性検出器30、不明確性検出器30からの信号が1つよりも多くの周期的信号を示す場合に復調器20の少なくとも1つの時間窓の期間を適合させるための窓制御器40、及び少なくとも1つの復調信号に基づいて胎児心臓信号(FCS)を計算するための胎児心臓信号計算器50を有する、超音波胎児心臓モニタリング装置を示す。
図3aは装置が超音波振動子10によって受信される超音波信号を増幅するための増幅器11をさらに有することを図示する。この増幅された受信信号は増幅器11から復調器20へ送信される。図3aはさらに装置が側波帯を除去し復調器20の復調信号のアンチエイリアシングフィルタリングを実行するためのフィルタ21を有することを示す。さらに、図3aは装置がフィルタ21の復調されフィルタされた信号を変換するためのアナログデジタル変換器22を有することを示す。さらに、図3aは装置がアナログデジタル変換器22の復調され、フィルタされ、A/D変換された信号を調整するための信号調整器23を有することを図示する。
図3aは不明確性検出器30と心臓信号計算器50が両方とも信号調整器23に接続され、不明確性検出器30が窓制御器40と、復調クロック41に接続されるゲート42によって、復調器10に接続されることを示す。
図3bは測定経路と参照経路を持つ本発明にかかる方法と装置の別の実施形態を図示するブロック図である。図3bに図示の実施形態は、装置が受信信号を測定経路(上経路)と参照経路(下経路)に分割するための信号分割器12を有する点で図3aに図示の実施形態と本質的に異なる。ここで、測定経路と参照経路は両方とも復調器20,20'、復調器20,20'に接続されるフィルタ21,21'、フィルタ21,21'に接続されるアナログデジタル変換器22,22'、及びアナログデジタル変換器22,22'に接続される信号調整器23,23'を有する。図3bは胎児心臓信号計算器50が測定経路の信号調整器23に接続され、一方不明確性検出器30が参照経路の信号調整器23'に接続され、窓制御器40とゲート42,42'(このゲートは復調クロック41に接続される)を介して測定経路の復調器20に接続されることを図示する。
図3a及び3bに図示の実施形態において超音波振動子10は送信位相中に胎児心臓に向かって移動する超音波パケットを生成するために繰り返し励起される圧電素子アレイであり得る。これらの進行波パケットは、例えば胎児心臓及び母親の動脈から、妊婦と胎児の体内の様々な運動層に対するドップラ効果のために反射され周波数シフトされる。胎児心臓と母親の動脈は振動子の表面に対して異なる距離にあるので、ウェーブパケット(波束)は反射点に至るまで及び振動子に戻るまで異なる移動時間を要する。
圧電素子アレイ10は両方向に使用され得る。送信が終了したとき、振動子10は送信から受信モードへスイッチする。増幅器11による増幅後、受信信号は2つの信号経路、すなわち参照経路と測定経路に随意に分割される。両信号経路は信号処理の最初の三段階は完全に同一であり得る。
図3aに図示の参照経路のないより単純な実施形態において、不明確性検出器30のための信号は測定経路の信号調整器23から生じる。測定経路と参照経路を組み合わせることによって、不明確性検出の実施の効率性が向上される。
個別の参照経路の有無にかかわらず、信号は特に最初に復調段階を通過する。復調器20,20'は搬送波信号からドップラシフト信号を抽出する。ドップラシフト信号を復調するために、全く同じ周波数のパルス信号が搬送波信号として復調器20,20'の入力に印加される(同期復調)。パルス信号の期間は窓制御器40によって制御される。上述の通り、本発明の文脈において参照経路と測定経路は必ずしも同じ復調信号の期間と始点を持たなければならないわけではない。
好適には、帯域フィルタ21,21'は100Hz及び500Hzにおいて遮断周波数を持ち、側波帯を除去しアンチエイリアシングフィルタリングを実行する。アナログデジタル変換器22,22'によるアナログデジタル変換後、生の信号は信号調整器23,23'を通過し、ここで信号はDCオフセットを除去するために高域フィルタされ、平滑化のために整流され低域フィルタされ得る。
最後に、測定経路の胎児心臓信号計算器50が例えばフーリエ変換若しくは自己相関及び後続の採点及び決定ユニットを用いることによって心拍数を計算し得る。
実施形態に応じて、測定経路若しくは参照経路の信号調整器23,23'の出力のいずれかが不明確性検出器30においてさらに処理される。不明確性検出は特に前処理信号の高速フーリエ変換(FFT)処理によってなされ得る。しかしながら、自己相関のような他の方法もまた使用され得る。アーチファクト感度を下げるために、高速フーリエ変換は例えば約4s乃至8sの長い時間フレームにわたって計算される。単一源からの純粋な信号は基底周波数において1つのピークを、基底周波数の倍数において追加ピークを示す。胎児心臓と母親の動脈など、異なる周波数を持つ2つの源からの信号では、2つのピークとそれらの倍数が周波数ドメインにおいて見える。不明確性検出のためにピークは経時的に分類されカウントされる。特定時間内の不明確ピークの数が所定閾値に達する場合、窓制御ユニット40への信号は少なくとも測定経路の復調時間窓の変化を強制し得る。測定経路の復調時間窓がその最大値であったと仮定すると、深度範囲は胎児心臓と母親の動脈の信号合計をカバーし得る。
不明確信号によって強制されると、復調時間窓は所定値削減され得る。その結果超音波ビームの最大範囲の削減は比例する。復調時間窓期間の削減は測定セッションの全期間維持され得る。全深度へのリセットは例えば信号損失の検出に、又は独立参照経路の存在に依存して、不明確信号の消失に結合される。
参照チャネルが利用可能でない場合、復調時間窓期間の削減は固定ステップによって、又は不明確性が消えるかどうかの後続チェックとともに窓期間が徐々に削減されるループにおいてなされ得る。
本発明は図面と上記説明において詳細に図示され記載されているが、かかる図示と記載は例示もしくは説明であって限定ではないと見なされ、本発明は開示の実施形態に限定されない。開示の実施形態への他の変更は、図面、開示及び添付の請求項の考察から、請求された発明を実施する上で当業者によって理解されもたらされることができる。請求項において"有する"という語は他の要素若しくはステップを除外せず、不定冠詞"a"若しくは"an"は複数を除外しない。特定の手段が相互に異なる従属請求項に列挙されているという単なる事実は、これらの手段の組み合わせが有利に使用されることができないことを示すものではない。請求項における任意の参照符号は範囲を限定するものと解釈されてはならない。

Claims (15)

  1. 胎児心臓モニタリングの方法であって、
    a)胎児によって反射される超音波信号を受信するステップと、
    b)特定期間を持つ少なくとも1つの時間窓において受信される信号を復調するステップと、
    c)少なくとも1つの時間窓が1つよりも多くの周期的信号を含むかどうか評価するステップと、
    d)1つよりも多くの周期的信号が評価される場合に少なくとも1つの時間窓の期間を適合させるステップと
    を有し、前記適合された若しくは適合されていない時間窓でステップa)乃至d)が繰り返される、方法。
  2. a)胎児によって反射される超音波信号を受信し、前記信号を少なくとも1つの測定経路と少なくとも1つの参照経路に分割するステップと、
    b)前記測定経路において特定期間を持つ第1の時間窓において受信される信号の一部分と、前記参照経路において特定期間を持つ第2の時間窓において受信される信号の別の部分とを復調するステップと、
    c)前記参照経路の第2の時間窓が1つよりも多くの周期的信号を含むかどうか評価するステップと、
    d)前記参照経路の第2の時間窓において1つよりも多くの周期的信号が評価される場合に前記測定経路の第1の時間窓の期間を適合させるステップと
    を有し、前記適合された若しくは適合されていない第1の時間窓でステップa)乃至d)が繰り返される、請求項1に記載の方法。
  3. 前記第2の時間窓が前記第1の時間窓よりも長い期間を持つ、請求項2に記載の方法。
  4. 少なくとも1つの復調された信号に基づいて胎児心臓信号が計算される、請求項1又は2に記載の方法。
  5. ステップd)において前記時間窓の期間が削減される、請求項1又は2に記載の方法。
  6. ステップd)において前記時間窓の期間が、前記時間窓の終点を早く設定することによって適合される、特に削減される、請求項1又は2に記載の方法。
  7. 先行するステップc)において前記適合された時間窓において周期的信号が評価されない場合、ステップd)において前記適合された時間窓が元の時間窓にリセットされる、請求項1又は2に記載の方法。
  8. プロセッサが請求項1乃至7のいずれか一項に記載の方法を実行することを可能にするコンピュータプログラム。
  9. 超音波胎児心臓モニタリング装置であって、
    超音波信号を生成するため、及び胎児によって反射される超音波信号を受信するための超音波振動子と、
    特定期間を持つ少なくとも1つの時間窓において受信される信号を復調するための復調器と、
    少なくとも1つの時間窓が1つよりも多くの周期的信号を含むかどうか評価するための不明確性検出器と、
    前記不明確性検出器からの信号が1つよりも多くの周期的信号を示す場合前記復調器の少なくとも1つの時間窓の期間を適合させるための窓制御器と、
    少なくとも1つの復調された信号に基づいて胎児心臓信号を計算するための胎児心臓信号計算器と
    を有する、超音波胎児心臓モニタリング装置。
  10. 前記装置が前記超音波振動子によって受信される超音波信号を増幅するための増幅器を有する、請求項9に記載の装置。
  11. 前記装置が少なくとも1つのフィルタを有する、請求項9に記載の装置。
  12. 前記装置が前記復調された信号を変換するためのアナログデジタル変換器を有する、請求項9に記載の装置。
  13. 前記装置が前記復調された信号を調整するための信号調整器を有する、請求項9に記載の装置。
  14. 前記不明確性検出器と前記心臓信号計算器が両方とも前記信号調整器に接続され、前記不明確性検出器が前記窓制御器によって前記復調器に接続される、請求項9に記載の装置。
  15. 前記装置が前記受信信号を測定経路と参照経路に分割するための信号分割器を有し、前記測定経路と前記参照経路が両方とも復調器と当該復調器に接続される信号調整器とを有し、前記胎児心臓信号計算器が前記測定経路の信号調整器に接続され、前記不明確性検出器が前記参照経路の信号調整器に、及び前記窓制御器を介して前記測定経路の復調器に接続される、請求項9に記載の装置。
JP2013522331A 2010-08-02 2011-07-29 胎児モニタリング中に超音波信号の不明確性を削減する方法 Expired - Fee Related JP5815705B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10171541.5 2010-08-02
EP10171541 2010-08-02
PCT/IB2011/053380 WO2012017364A1 (en) 2010-08-02 2011-07-29 Method of reducing ultrasound signal ambiguity during fetal monitoring

Publications (2)

Publication Number Publication Date
JP2013532570A true JP2013532570A (ja) 2013-08-19
JP5815705B2 JP5815705B2 (ja) 2015-11-17

Family

ID=44534518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013522331A Expired - Fee Related JP5815705B2 (ja) 2010-08-02 2011-07-29 胎児モニタリング中に超音波信号の不明確性を削減する方法

Country Status (6)

Country Link
US (1) US9107584B2 (ja)
EP (1) EP2600772B1 (ja)
JP (1) JP5815705B2 (ja)
CN (1) CN103052356B (ja)
BR (1) BR112013002284A2 (ja)
WO (1) WO2012017364A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018527101A (ja) * 2015-09-15 2018-09-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 胎児心拍数を決定する装置及び方法
JP2018534014A (ja) * 2015-09-26 2018-11-22 クアルコム,インコーポレイテッド 超音波撮像デバイスおよび方法
JP2019516437A (ja) * 2016-05-12 2019-06-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Ctg超音波トランスデューサの位置決め支援及び胎児心拍数レジストレーション支援

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9232929B2 (en) * 2013-03-13 2016-01-12 General Electric Company Method and device for fetal heart rate monitoring with maternal contribution detection
CN103190913B (zh) * 2013-04-15 2015-03-11 深圳邦健生物医疗设备股份有限公司 一种胎动识别方法、设备及胎儿监护仪
CN103462642B (zh) * 2013-08-20 2015-05-06 广东工业大学 基于时频分析的多普勒胎心音的瞬时心率检测方法及装置
US10376243B2 (en) * 2013-09-27 2019-08-13 Texas Instruments Incorporated Method and apparatus for low complexity ultrasound based heart rate detection
US10129902B2 (en) 2014-03-19 2018-11-13 Interdigital Patent Holdings, Inc. Device to-device synchronization
CN104473631B (zh) * 2014-12-12 2016-07-13 广东工业大学 一种基于非负盲分离胎儿心电瞬时心率识别方法及系统
US9737223B2 (en) 2015-05-13 2017-08-22 Medtronic, Inc. Determining onset of cardiac depolarization and repolarization waves for signal processing
US10542961B2 (en) 2015-06-15 2020-01-28 The Research Foundation For The State University Of New York System and method for infrasonic cardiac monitoring
US9610045B2 (en) 2015-07-31 2017-04-04 Medtronic, Inc. Detection of valid signals versus artifacts in a multichannel mapping system
US9782094B2 (en) 2015-07-31 2017-10-10 Medtronic, Inc. Identifying ambiguous cardiac signals for electrophysiologic mapping
US11266375B2 (en) 2015-09-15 2022-03-08 Koninklijke Philips N.V. Device and method for determining fetal heart rate
KR101779018B1 (ko) * 2015-11-11 2017-09-26 (주)비스토스 초음파 도플러 태아감시 장치의 심박 검출 신호처리 방법
CN106994025B (zh) * 2016-01-22 2019-11-15 深圳市理邦精密仪器股份有限公司 获取胎心率的方法、系统及设备
US11419539B2 (en) 2017-12-22 2022-08-23 Regents Of The University Of Minnesota QRS onset and offset times and cycle selection using anterior and posterior electrode signals
JP7240415B2 (ja) 2018-05-02 2023-03-15 コーニンクレッカ フィリップス エヌ ヴェ 超音波スクリーニングのためのシステム及び方法
CN108921090A (zh) * 2018-06-30 2018-11-30 华南理工大学 一种基于经验模态分解和小波时频分析的胎心率提取方法
US11771398B1 (en) * 2022-12-02 2023-10-03 Aronix LLC Fetal heart rate transducer
US11863355B1 (en) * 2022-12-02 2024-01-02 Aronix LLC Fail-safe circuit for a low voltage differential signaling receiver

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272035A (ja) * 1985-05-25 1986-12-02 ヒューレット・パッカード・カンパニー 心摶検出装置
GB2220487A (en) * 1988-07-07 1990-01-10 Nat Res Dev Apparatus for monitoring fetal heart rate
US20050251044A1 (en) * 2004-05-04 2005-11-10 Hoctor Ralph T Method and apparatus for non-invasive ultrasonic fetal heart rate monitoring
WO2010035022A1 (en) * 2008-09-23 2010-04-01 Huntleigh Technology Limited Fetal heart monitoring

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3910259A (en) 1973-11-23 1975-10-07 Gould Inc System and method for determining fetal heart rate
JPS567592B2 (ja) * 1974-10-31 1981-02-18
US4052896A (en) * 1975-11-26 1977-10-11 Badger Meter, Inc. Ultrasonic flow meter
US4143650A (en) * 1976-10-06 1979-03-13 Hoffmann-La Roche Inc. Directional doppler ultrasound systems for biosignal acquisition and method of using the same
DE2818768C2 (de) 1978-04-28 1986-07-24 Hewlett-Packard GmbH, 7030 Böblingen Verfahren und Vorrichtung zum Messen der Frequenz bzw. der Periodendauer der Grundschwingung eines annähernd periodischen Eingangssignales
US4573479A (en) 1984-06-22 1986-03-04 American Home Products Corporation Systems and methods for monitoring the fetal heart
US4569356A (en) 1984-11-05 1986-02-11 Nihon Kohden Corporation Method and apparatus for detecting fetal heart rate by autocorrelation
US4781200A (en) * 1985-10-04 1988-11-01 Baker Donald A Ambulatory non-invasive automatic fetal monitoring system
EP0359839B1 (en) 1988-09-17 1990-12-27 Hewlett-Packard GmbH Synchronous demodulator
US5170791A (en) * 1991-03-28 1992-12-15 Hewlett-Packard Company Method and apparatus for calculating the fetal heart rate
UA65566C2 (uk) * 1997-05-05 2004-04-15 Тріг Медікал Лтд Спосіб та пристрій для контролю за перебігом пологів
US5749831A (en) * 1997-06-23 1998-05-12 Baker; Donald A. Fetal cardiac monitoring utilizing umbilical blood flow parameters and heartbeat information
US7758522B2 (en) * 2007-01-03 2010-07-20 General Electric Company Combined uterine activity and fetal heart rate monitoring device
US20080188750A1 (en) * 2007-02-05 2008-08-07 Penrith Corporation Automated movement detection with audio and visual information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272035A (ja) * 1985-05-25 1986-12-02 ヒューレット・パッカード・カンパニー 心摶検出装置
GB2220487A (en) * 1988-07-07 1990-01-10 Nat Res Dev Apparatus for monitoring fetal heart rate
US20050251044A1 (en) * 2004-05-04 2005-11-10 Hoctor Ralph T Method and apparatus for non-invasive ultrasonic fetal heart rate monitoring
WO2010035022A1 (en) * 2008-09-23 2010-04-01 Huntleigh Technology Limited Fetal heart monitoring

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018527101A (ja) * 2015-09-15 2018-09-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 胎児心拍数を決定する装置及び方法
JP2018534014A (ja) * 2015-09-26 2018-11-22 クアルコム,インコーポレイテッド 超音波撮像デバイスおよび方法
JP7028767B2 (ja) 2015-09-26 2022-03-02 クアルコム,インコーポレイテッド 超音波撮像デバイスおよび方法
JP2019516437A (ja) * 2016-05-12 2019-06-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Ctg超音波トランスデューサの位置決め支援及び胎児心拍数レジストレーション支援

Also Published As

Publication number Publication date
US9107584B2 (en) 2015-08-18
CN103052356B (zh) 2015-11-25
WO2012017364A1 (en) 2012-02-09
EP2600772B1 (en) 2016-03-16
EP2600772A1 (en) 2013-06-12
CN103052356A (zh) 2013-04-17
JP5815705B2 (ja) 2015-11-17
BR112013002284A2 (pt) 2016-05-24
US20130123637A1 (en) 2013-05-16

Similar Documents

Publication Publication Date Title
JP5815705B2 (ja) 胎児モニタリング中に超音波信号の不明確性を削減する方法
Jezewski et al. A novel technique for fetal heart rate estimation from Doppler ultrasound signal
CN108289653B (zh) 用于确定胎儿心率的设备和方法
EP2967489B1 (en) Method and device for fetal heart rate monitoring with maternal contribution detection
JP6574521B2 (ja) 胎児心拍数を決定する装置及び方法
CN103845079B (zh) 一种基于盲分离的多普勒胎心音瞬时心率的检测方法
CN103169498A (zh) 在胎儿心脏监测期间的母亲贡献检测
CN103169497A (zh) 胎儿心脏监测范围
CN104367344A (zh) 一种基于香农包络的胎儿瞬时心率检测方法及装置
US20180325494A1 (en) Heartbeat detection signal processing method for ultrasound doppler fetus monitoring device
KR101335107B1 (ko) 심전도 전극이 부착된 초음파 프로브를 이용한 산모와 태아의 심박수 동시 측정장치
JP6129166B2 (ja) 動脈の閉塞/再開を検出するための方法及び装置並びに収縮期血圧を測定するためのシステム
CN102860843A (zh) 一种胎心信号采集的方法及装置
Algunaidi et al. Evaluation of an improved algorithm for fetal QRS detection
JP2022530001A (ja) 胎児超音波処理ユニット
JP3578680B2 (ja) 超音波診断装置
TWI362923B (en) Apparatus and method for fetal heart rate detection
WO2013014647A1 (en) Ultrasound probe, method and device for acquiring a blood flow signal of an artery and system for measuring systolic blood pressure
US20180116628A1 (en) Method and apparatus for detecting instantaneous fetal heart rate of doppler fetal heart sound based on time-frequency analysis
JP2008212746A (ja) 超音波診断装置
JP2004222754A (ja) 超音波診断装置
RU126921U1 (ru) Цифровое ультразвуковое устройство для измерения частоты сердечных сокращений плода
RU117794U1 (ru) Ультразвуковое устройство для измерения частоты сердечных сокращений плода
US11911136B2 (en) System and method for calculating cardiac pulse transit or arrival time information
US11497473B2 (en) Ultrasound cardiac processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150924

R150 Certificate of patent or registration of utility model

Ref document number: 5815705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees