JP2013513731A - Manufacturing method of high strength and high ductility titanium alloy - Google Patents
Manufacturing method of high strength and high ductility titanium alloy Download PDFInfo
- Publication number
- JP2013513731A JP2013513731A JP2012544404A JP2012544404A JP2013513731A JP 2013513731 A JP2013513731 A JP 2013513731A JP 2012544404 A JP2012544404 A JP 2012544404A JP 2012544404 A JP2012544404 A JP 2012544404A JP 2013513731 A JP2013513731 A JP 2013513731A
- Authority
- JP
- Japan
- Prior art keywords
- titanium alloy
- microstructure
- deformation
- strength
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000005096 rolling process Methods 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 25
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 17
- 238000010438 heat treatment Methods 0.000 abstract description 7
- 238000001816 cooling Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001887 electron backscatter diffraction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 238000005563 spheronization Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metal Rolling (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
【課題】高強度、高延性チタン合金の製造方法が開示される。
【解決手段】本発明の高強度、高延性チタン合金の製造方法は、マルテンサイト組織を有するチタン合金を提供するステップと、前記マルテンサイト組織のチタン合金を、熱および機械的処理により微細組織を部分的に動的球状化させるステップとを含む。本発明は、部分的に動的球状化された微細組織を有するチタン合金を製造し、優れた降伏強度(yield strength、YS)と均一延伸率(uniform elongation、U.EL)を持たせるものである。層状形態を有する微細組織に対して圧延方向と変形量を調整し、微細な等軸組織と層状組織が同時に存在する微細組織に制御することを特徴とし、本発明によれば、既存の熱処理方法に比べて降伏強度と均一延伸率との積(YS×U.EL)が向上したチタン合金を製造することができる。
【選択図】12Disclosed is a method for producing a high strength, high ductility titanium alloy.
A method for producing a high-strength, high-ductility titanium alloy according to the present invention comprises a step of providing a titanium alloy having a martensite structure, and a microstructure of the titanium alloy having the martensite structure by heat and mechanical treatment. Partially dynamic spheroidizing. The present invention manufactures a titanium alloy having a partially dynamic spheroidized microstructure and has excellent yield strength (YS) and uniform elongation (U.EL). is there. According to the present invention, an existing heat treatment method is characterized in that the rolling direction and the amount of deformation are adjusted with respect to a microstructure having a layered form, and the microstructure is controlled to a microstructure in which a fine equiaxed structure and a layered structure exist simultaneously. As compared with the above, a titanium alloy having an improved product (YS × U.EL) of yield strength and uniform stretch ratio can be produced.
[Selection] 12
Description
本発明は、チタン合金に関し、より詳細には、部分的な動的球状化により微細な等軸組織と層状組織が混在する微細組織を有するチタン合金の製造方法に関する。 The present invention relates to a titanium alloy, and more particularly to a method for producing a titanium alloy having a fine structure in which a fine equiaxed structure and a layered structure are mixed by partial dynamic spheroidization.
チタン合金のような、極限の環境で使用される金属素材の場合、降伏強度と均一延伸率は非常に重要な機械的特性である。主に構造用素材として使用されるチタン合金に降伏強度よりも高い強度が外部から加わる場合、素材は永久変形を起こすため、高い降伏強度を得ることは非常に重要である。 In the case of metal materials used in extreme environments, such as titanium alloys, yield strength and uniform stretch ratio are very important mechanical properties. When a strength higher than the yield strength is applied to a titanium alloy mainly used as a structural material from the outside, the material undergoes permanent deformation, and thus it is very important to obtain a high yield strength.
また、均一延伸率よりも高い変形が発生する場合、素材の脆弱部分でネッキングが発生して破断が発生し得るため、高い均一延伸率を得ることも構造用素材の信頼性向上のために欠かせない。 Also, when deformation higher than the uniform stretch rate occurs, necking may occur in the fragile part of the material and breakage may occur, so obtaining a high uniform stretch rate is also essential for improving the reliability of structural materials. I wo n’t.
しかし、一般的な熱処理によりチタン素材を製造する場合、降伏強度と均一延伸率は互いに反比例する傾向があり、これを克服しようとする様々な方法が提案されている。最近、韓国特許公開番号第2009−0069647号(2009年7月1日)に、チタンにニオブを添加した合金を製造し、強度と延性を純チタンに比べて向上させる方法が掲示された。 However, when a titanium material is produced by a general heat treatment, the yield strength and the uniform stretch ratio tend to be inversely proportional to each other, and various methods have been proposed to overcome this. Recently, Korean Patent Publication No. 2009-0069647 (July 1, 2009) posted a method for producing an alloy obtained by adding niobium to titanium and improving the strength and ductility as compared with pure titanium.
しかし、この方法の場合、熱/機械的処理前の合金化に関するもので、合金化後に、熱/機械的処理によりすでに開発された合金の強度と延性を増加させる本方法とはその範疇が異なる。 However, this method relates to alloying before thermal / mechanical treatment, and the category is different from this method of increasing the strength and ductility of alloys already developed by thermal / mechanical treatment after alloying. .
一方、本出願人の先出願である韓国特許出願番号第10−2009−0083931号(2009年9月7日)に、層状の微細組織を有するチタン合金に対して温間領域で交差圧延を施して結晶粒を超微細粒化させる方法が掲示された。 On the other hand, Korean patent application No. 10-2009-0083931 (September 7, 2009), which is a prior application of the present applicant, was subjected to cross rolling in a warm region on a titanium alloy having a layered microstructure. A method for making the crystal grains ultrafine has been posted.
より詳細には、初期微細組織を微細な層構造からなるマルテンサイトに誘導した後、変形量、変形率速度、変形温度などが微細組織の変化に及ぼす影響を観察して工程変数を最適化させ、低変形量においてナノ結晶粒の等軸組織を有するチタン合金を製造するものである。 More specifically, after inducing the initial microstructure to martensite having a fine layer structure, the process variables are optimized by observing the effects of deformation, deformation rate, deformation temperature, etc. on the microstructure change. A titanium alloy having an equiaxed structure of nanocrystal grains in a low deformation amount is produced.
しかし、前記方法は、降伏強度が大きく向上するという利点があるが、均一延伸率が一般的な熱処理方法に比べて大きく減少するという欠点があり、降伏強度と均一延伸率との積は、一般的な微細組織に比べて向上しないか、むしろ小さくなるという欠点があった。 However, the above method has the advantage that the yield strength is greatly improved, but has the disadvantage that the uniform stretch ratio is greatly reduced as compared with a general heat treatment method, and the product of the yield strength and the uniform stretch ratio is generally There is a drawback that it does not improve or rather becomes smaller than a typical microstructure.
そのため、チタン合金の信頼性と応用の拡大のためには、熱/機械的処理により降伏強度と均一延伸率の均衡を向上させる技術が必要になる。 Therefore, in order to expand the reliability and application of the titanium alloy, a technique for improving the balance between the yield strength and the uniform stretch ratio by thermal / mechanical treatment is required.
本発明の目的は、降伏強度と均一延伸率の均衡を維持するために、チタン合金に熱および機械的処理を施して微細組織を部分的に動的球状化させ、等軸組織と層状組織が混在したチタン合金の製造方法を提供することを目的とする。 In order to maintain the balance between yield strength and uniform stretch ratio, the object of the present invention is to subject the titanium alloy to dynamic spheroidization by subjecting the titanium alloy to dynamic spheroidization. It aims at providing the manufacturing method of the mixed titanium alloy.
本発明の好ましい実施形態にかかる高強度、高延性チタン合金の製造方法は、マルテンサイト組織を有するチタン合金を提供するステップと、前記マルテンサイト組織のチタン合金を、熱および機械的処理により微細組織を部分的に動的球状化させるステップとを含む。 A method for producing a high-strength, high-ductility titanium alloy according to a preferred embodiment of the present invention includes a step of providing a titanium alloy having a martensite structure, and a microstructure of the martensitic structure titanium alloy by heat and mechanical treatment. Partially dynamic spheroidizing.
前記提供されるチタン合金の微細組織は、層状のマルテンサイト組織を含むことを特徴とする。 The microstructure of the provided titanium alloy includes a layered martensite structure.
前記熱および機械的処理は、変形温度は775℃〜875℃、変形率速度は0.07s−1〜0.13s−1、変形量は−0.2〜−1.6の範囲で圧延することを特徴とする。 The thermal and mechanical treatment is performed by rolling at a deformation temperature of 775 ° C. to 875 ° C., a deformation rate speed of 0.07 s −1 to 0.13 s −1 , and an amount of deformation of −0.2 to −1.6. It is characterized by that.
また、前記熱および機械的処理は、変形温度800℃、変形率速度0.1s−1、変形量−0.2〜−1.6で圧延することを特徴とする。 The heat and mechanical treatment is characterized by rolling at a deformation temperature of 800 ° C., a deformation rate of 0.1 s −1 and a deformation amount of −0.2 to −1.6.
前記圧延は、一方向圧延(uni−directional rolling)によって行われることを特徴とする。 The rolling is performed by uni-directional rolling.
前記部分的な動的球状化により、前記チタン合金の微細組織は、微細な等軸組織と層状組織が同時に存在することを特徴とする。 Due to the partial dynamic spheronization, the microstructure of the titanium alloy is characterized in that a fine equiaxed structure and a layered structure exist simultaneously.
本発明を利用すれば、優れた降伏強度と均一延伸率を有するチタン合金の生産が可能で、使用環境で信頼性が向上し、その応用範囲も拡大することができる。 By using the present invention, it is possible to produce a titanium alloy having an excellent yield strength and uniform stretch ratio, and the reliability can be improved in the use environment and the application range can be expanded.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
部分的に動的球状化された微細組織(つまり、微細な等軸組織と層状組織が同時に存在する微細組織)を得るために、初期微細組織を微細な層構造からなるマルテンサイトに誘導した後、圧延方向、変形量、変形率速度、変形温度などが微細組織の変化に及ぼす影響を観察した。 After inducing the initial microstructure to martensite composed of a fine layered structure in order to obtain a partially dynamic spheroidized microstructure (ie, a microstructure in which a fine equiaxed structure and a layered structure exist simultaneously) The effects of rolling direction, deformation amount, deformation rate speed, deformation temperature, etc. on the microstructure change were observed.
図1ないし図4は、光学顕微鏡を用いて観察された写真で、既存の熱処理方法で得られる代表的な微細組織である。図1は、Ti−6Al−4V合金の初期微細組織で、10μm程度の結晶粒大きさを有する等軸組織である。 1 to 4 are photographs observed using an optical microscope, and are representative microstructures obtained by an existing heat treatment method. FIG. 1 shows an initial microstructure of a Ti-6Al-4V alloy having an equiaxed structure having a crystal grain size of about 10 μm.
図2は、図1の微細組織をベータ(β)変態温度(〜1,000℃)以上の1,040℃で1時間維持後、水冷して得られた微細な層構造を有するマルテンサイト組織である。 FIG. 2 is a martensitic structure having a fine layer structure obtained by maintaining the fine structure of FIG. 1 at 1,040 ° C. for 1 hour at a beta (β) transformation temperature (˜1,000 ° C.) or higher and then cooling with water. It is.
図3は、図1の微細組織を1,040℃で4時間維持後、空冷し、再び730℃で4時間維持後、空冷して得られた粗大な層構造を有する層状組織である。 FIG. 3 is a layered structure having a coarse layer structure obtained by maintaining the fine structure of FIG. 1 at 1,040 ° C. for 4 hours, air cooling, again maintaining at 730 ° C. for 4 hours, and air cooling.
図4は、図1の微細組織を950℃で4時間維持後、水冷し、再び540℃で6時間維持後、空冷して得られた粗大な等軸組織と層状組織とからなる二重組織である。 FIG. 4 shows a double structure composed of a coarse equiaxed structure and a layered structure obtained by maintaining the microstructure of FIG. 1 at 950 ° C. for 4 hours, water cooling, again maintaining at 540 ° C. for 6 hours and air cooling. It is.
図5ないし図8は、図2のようなマルテンサイト組織を有するTi−6Al−4V合金に対して工程条件を変化させながら一方向圧延(uni−directional rolling)後、電子後方散乱回折(electron backscattered diffraction、EBSD)装置で観察した逆極点図(inverse pole figure、IPF)である。 FIGS. 5 to 8 show an electron backscattered diffraction pattern after uni-directional rolling while changing process conditions for a Ti-6Al-4V alloy having a martensite structure as shown in FIG. It is an inverse pole figure (inverse pole figure, IPF) observed with a diffraction (EBSD) apparatus.
図5の工程条件は、変形温度:800℃、変形率速度:0.1s−1、変形量:−0.4である。 The process conditions of FIG. 5 are deformation temperature: 800 ° C., deformation rate speed: 0.1 s −1 , deformation amount: −0.4.
図6の工程条件は、変形温度:800℃、変形率速度:0.1s−1、変形量:−0.8である。 The process conditions of FIG. 6 are deformation temperature: 800 ° C., deformation rate speed: 0.1 s −1 , deformation amount: −0.8.
図7の工程条件は、変形温度:800℃、変形率速度:0.1s−1、変形量:−1.2である。 The process conditions of FIG. 7 are deformation temperature: 800 ° C., deformation rate speed: 0.1 s −1 , deformation amount: −1.2.
図8の工程条件は、変形温度:800℃、変形率速度:0.1s−1、変形量:−1.6である。 The process conditions of FIG. 8 are deformation temperature: 800 ° C., deformation rate speed: 0.1 s −1 , deformation amount: −1.6.
図5ないし図8に示されているように、一方向圧延時に変形量が増加するにつれて、図2のマルテンサイト組織が分節化されて形成された微細な等軸組織の分率が増加する変化はあるが、図5ないし図8の微細組織は、全て微細な等軸組織と層状組織(赤色で表される部分)が同時に存在している。 As shown in FIGS. 5 to 8, as the amount of deformation increases during unidirectional rolling, the fraction of the fine equiaxed structure formed by segmenting the martensite structure of FIG. 2 increases. However, all of the fine structures shown in FIGS. 5 to 8 have a fine equiaxed structure and a layered structure (portions represented in red) at the same time.
図4の組織と、図5ないし図8の微細組織との相違点は、図4の場合、粗大な等軸組織とコロニー(colony)を形成している層状組織が混在している反面、図5ないし図8の場合、微細な等軸組織とコロニーを形成しない層状組織が混在することである。一方、変形量が増加するにつれて微細な等軸組織の分率が増加するのは、各々の層状構造の内部に生成された亜結晶粒が効果的に大傾角境界を有する結晶粒に変化するからである。 The difference between the structure of FIG. 4 and the fine structure of FIGS. 5 to 8 is that, in the case of FIG. 4, a coarse equiaxed structure and a layered structure forming a colony are mixed. In the case of FIGS. 5 to 8, a fine equiaxed structure and a layered structure not forming a colony are mixed. On the other hand, as the amount of deformation increases, the fraction of the fine equiaxed structure increases because the sub-crystal grains generated inside each layered structure effectively change into crystal grains having a large tilt boundary. It is.
結果的に、図5ないし図8の微細組織およびその工程条件が本方法の核心である。 As a result, the microstructure and process conditions of FIGS. 5 to 8 are the core of the present method.
図9は、図2のマルテンサイト組織を有するTi−6Al−4V合金を、変形温度:800℃、変形率速度:0.1s−1、変形量:−1.6で交差圧延(cross−rolling)後、電子後方散乱回折装置で観察した逆極点図である。 FIG. 9 is a cross-rolling of the Ti-6Al-4V alloy having the martensitic structure of FIG. 2 at a deformation temperature of 800 ° C., a deformation rate speed of 0.1 s −1 and a deformation amount of −1.6. ) After that, it is an inverted pole figure observed with an electron backscattering diffractometer.
図9は、完全に動的球状化が発生して微細な等軸組織からなる。図9と図8とを比較すると、変形温度、変形率速度、変形量などの工程条件は同一であるが、圧延方向が異なる。 FIG. 9 consists of a fine equiaxed structure with complete dynamic spheroidization. When FIG. 9 and FIG. 8 are compared, process conditions such as deformation temperature, deformation rate speed, and deformation amount are the same, but the rolling direction is different.
つまり、図8の場合、一方向圧延で得られ、図9の場合、交差圧延で得られた。一方向圧延とは異なって交差圧延を行う場合、奇数の圧延ステップで分節化されていない層状組織が偶数の圧延ステップで効果的に分節化され、結果的に、完全に動的球状化された微細組織が得られるが、これは、部分的に動的球状化されたチタン合金を製造するために避けなければならない条件である。 That is, in the case of FIG. 8, it was obtained by unidirectional rolling, and in the case of FIG. 9, it was obtained by cross rolling. When cross rolling is performed unlike unidirectional rolling, the layered structure that is not segmented in the odd number of rolling steps is effectively segmented in the even number of rolling steps, resulting in a fully dynamic spheroidization. Although a microstructure is obtained, this is a condition that must be avoided to produce a partially dynamic spheroidized titanium alloy.
一方、前述した全ての微細組織について常温機械的特性を調べた。このために、25mmの標点距離を有する試験片を、圧延方向に対して0°、45°、90°の3つの方向で採取した後、伸縮計(extensometer)を試験片に装着し、INSTRON8801を用い、各々の方向に対して3回の引張実験を行った。 On the other hand, room temperature mechanical properties were examined for all the microstructures described above. For this purpose, a test piece having a gauge distance of 25 mm was taken in three directions of 0 °, 45 ° and 90 ° with respect to the rolling direction, and then an extensometer was attached to the test piece, and INSTRON 8801 was installed. , And three tensile experiments were performed in each direction.
つまり、各々の微細組織に対して合わせて9回の実験が繰り返し行われた。図10ないし図12に常温引張実験結果の平均値を示し、表1に比較例と実施例の微細組織、熱処理法を表示した。 That is, nine experiments were repeated for each microstructure. 10 to 12 show average values of the room temperature tensile test results, and Table 1 shows the microstructures and heat treatment methods of Comparative Examples and Examples.
図10は、各微細組織に対する平均降伏強度であり、図11は、各微細組織に対する平均均一延伸率、図12は、各微細組織に対する平均降伏強度と平均均一延伸率との積である。 FIG. 10 shows the average yield strength for each microstructure, FIG. 11 shows the average uniform stretch ratio for each microstructure, and FIG. 12 shows the product of the average yield strength and average uniform stretch ratio for each microstructure.
比較例2、3、4および比較例5などの一般的な熱処理方法を、比較例1の初期微細組織と比較する時、平均降伏強度は増加したが、平均均一延伸率が減少した。 When general heat treatment methods such as Comparative Examples 2, 3, 4 and Comparative Example 5 were compared with the initial microstructure of Comparative Example 1, the average yield strength increased, but the average uniform stretch ratio decreased.
反面、本発明の方法により製造された実施例1の場合、比較例1の初期微細組織と比較する時、平均降伏強度は類似しているが、平均均一延伸率が増加し、実施例2、3の場合、比較例1の初期微細組織と比較する時、平均降伏強度と平均均一延伸率がいずれも増加し、実施例4の場合、比較例1の初期微細組織と比較する時、平均降伏強度が増加し、類似の平均均一延伸率を示した。 On the other hand, in the case of Example 1 manufactured by the method of the present invention, when compared with the initial microstructure of Comparative Example 1, the average yield strength is similar, but the average uniform stretch ratio is increased. In the case of 3, the average yield strength and the average uniform stretch ratio both increase when compared with the initial microstructure of Comparative Example 1, and in the case of Example 4, the average yield when compared with the initial microstructure of Comparative Example 1. The strength increased and showed a similar average uniform stretch ratio.
結論的に、本発明の方法により製造された実施例1、2、3、4の場合、他の熱処理方法と比較して、25〜100%以上向上した平均降伏強度と平均均一延伸率との積を示した。 In conclusion, in the case of Examples 1, 2, 3, and 4 manufactured by the method of the present invention, the average yield strength and average uniform stretch ratio improved by 25 to 100% or more compared with other heat treatment methods. Showed the product.
以上、本発明の実施形態について説明したが、本発明の権利範囲はこれに限定されるものではなく、特許請求の範囲と発明の詳細な説明および添付した図面の範囲内で多様に変形して実施することが可能であり、これも本発明の範囲に属することはいうまでもない。 Although the embodiment of the present invention has been described above, the scope of the right of the present invention is not limited thereto, and various modifications may be made within the scope of the claims, the detailed description of the invention, and the attached drawings. It goes without saying that this can be carried out and this also belongs to the scope of the present invention.
Claims (6)
前記マルテンサイト組織のチタン合金を、熱および機械的処理により微細組織を部分的に動的球状化させるステップとを含むことを特徴とする高強度、高延性チタン合金の製造方法。 Providing a titanium alloy having a martensite structure;
A method for producing a high-strength, high-ductility titanium alloy, comprising the step of dynamically spheroidizing a fine structure of the martensitic titanium alloy by heat and mechanical treatment.
変形温度は775℃〜875℃、変形率速度は0.07s−1〜0.13s−1、変形量は−0.2〜−1.6の範囲で圧延することを特徴とする請求項1に記載の高強度、高延性チタン合金の製造方法。 The thermal and mechanical treatment is
The deformation temperature is 775 ° C to 875 ° C, the deformation rate is 0.07 s -1 to 0.13 s -1 , and the amount of deformation is -0.2 to -1.6. A method for producing a high-strength, high-ductility titanium alloy described in 1.
変形温度800℃、変形率速度0.1s−1、変形量−0.2〜−1.6で圧延することを特徴とする請求項3に記載の高強度、高延性チタン合金の製造方法。 The thermal and mechanical treatment is
The method for producing a high-strength, high-ductility titanium alloy according to claim 3, wherein rolling is performed at a deformation temperature of 800 ° C., a deformation rate of 0.1 s −1 , and a deformation amount of −0.2 to −1.6.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2009-0130762 | 2009-12-24 | ||
KR1020090130762A KR101158477B1 (en) | 2009-12-24 | 2009-12-24 | Method for producing high strength and high ductility titanium alloy |
PCT/KR2010/009272 WO2011078600A2 (en) | 2009-12-24 | 2010-12-23 | Method for producing a high-strength and highly ductile titanium alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013513731A true JP2013513731A (en) | 2013-04-22 |
Family
ID=44196332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012544404A Pending JP2013513731A (en) | 2009-12-24 | 2010-12-23 | Manufacturing method of high strength and high ductility titanium alloy |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130019999A1 (en) |
JP (1) | JP2013513731A (en) |
KR (1) | KR101158477B1 (en) |
CN (1) | CN102665946A (en) |
DE (1) | DE112010005003T5 (en) |
WO (1) | WO2011078600A2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014113740A1 (en) * | 2013-01-18 | 2014-07-24 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Removal of carbon dioxide via dialysis |
CN112143936B (en) * | 2020-09-29 | 2021-12-21 | 中国科学院金属研究所 | High-thermal-stability equiaxial nanocrystalline Ti-Cr alloy and preparation method thereof |
CN113600616B (en) * | 2021-08-09 | 2023-05-30 | 成都先进金属材料产业技术研究院股份有限公司 | Thermal processing method for improving high-speed impact resistance of two-phase titanium alloy |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05295502A (en) * | 1992-04-21 | 1993-11-09 | Nkk Corp | Production of alpha plus beta titanium alloy sheet for superplastic working |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR910003876B1 (en) * | 1988-12-29 | 1991-06-15 | 포항종합제철 주식회사 | Making process for pare ti-material having a good bending property |
KR960007428B1 (en) * | 1993-12-28 | 1996-05-31 | 포항종합제철주식회사 | Making method of titanium alloy |
EP1066415B1 (en) * | 1998-02-02 | 2002-07-24 | Chrysalis Technologies, Incorporated | Two phase titanium aluminide alloy |
CA2669837C (en) | 2006-11-16 | 2016-07-05 | Multisorb Technologies, Inc. | Clean, compressed sorbent tablets |
KR100977801B1 (en) | 2007-12-26 | 2010-08-25 | 주식회사 포스코 | Titanium alloy with exellent hardness and ductility and method thereof |
KR20090121934A (en) * | 2008-05-23 | 2009-11-26 | 포항공과대학교 산학협력단 | Manufacturing method of titanium alloy for superplastic forming |
KR101048124B1 (en) | 2008-06-16 | 2011-07-08 | 기아자동차주식회사 | Spark Plug Tube Unit for Engine |
-
2009
- 2009-12-24 KR KR1020090130762A patent/KR101158477B1/en not_active IP Right Cessation
-
2010
- 2010-12-23 CN CN2010800535482A patent/CN102665946A/en active Pending
- 2010-12-23 JP JP2012544404A patent/JP2013513731A/en active Pending
- 2010-12-23 US US13/511,419 patent/US20130019999A1/en not_active Abandoned
- 2010-12-23 DE DE112010005003T patent/DE112010005003T5/en not_active Ceased
- 2010-12-23 WO PCT/KR2010/009272 patent/WO2011078600A2/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05295502A (en) * | 1992-04-21 | 1993-11-09 | Nkk Corp | Production of alpha plus beta titanium alloy sheet for superplastic working |
Also Published As
Publication number | Publication date |
---|---|
CN102665946A (en) | 2012-09-12 |
WO2011078600A2 (en) | 2011-06-30 |
KR101158477B1 (en) | 2012-06-20 |
DE112010005003T5 (en) | 2012-11-15 |
WO2011078600A3 (en) | 2011-11-17 |
KR20110073950A (en) | 2011-06-30 |
US20130019999A1 (en) | 2013-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Realizing superior ductility of selective laser melted Ti-6Al-4V through a multi-step heat treatment | |
US9803269B2 (en) | α+β type titanium alloy and production method therefor | |
US8864918B2 (en) | Method for producing a component and components of a titanium-aluminum base alloy | |
JP5592818B2 (en) | Α-β type titanium alloy extruded material excellent in fatigue strength and method for producing the α-β type titanium alloy extruded material | |
JP5917558B2 (en) | Fabrication of nano-twinned titanium materials by casting | |
JP5588004B2 (en) | Method for producing nanocrystalline titanium alloy at low deformation | |
JPWO2002070763A1 (en) | Titanium alloy bar and method of manufacturing the same | |
JP2011068955A (en) | Nanocrystal titanium alloy and method for producing the same | |
JP6079294B2 (en) | Free forging method of Ni-base heat-resistant alloy member | |
JP2014161861A5 (en) | ||
JP2013513731A (en) | Manufacturing method of high strength and high ductility titanium alloy | |
JP2020041179A (en) | Zirconium alloy and production method thereof | |
JP5941070B2 (en) | Method for producing titanium alloy having high strength and high formability, and titanium alloy using the same | |
CN105603256B (en) | A kind of TA3 cold rolled sheets and TA3 cold rolled sheet refined crystalline strengthening methods | |
JP6673121B2 (en) | α + β type titanium alloy rod and method for producing the same | |
JP5382518B2 (en) | Titanium material | |
TWI565807B (en) | Method of producing titanium alloy bulk material and application thereof | |
KR101782066B1 (en) | A method of manufacturing titanium alloy billet by forging | |
JP2017002373A (en) | Titanium alloy forging material | |
JPS63130755A (en) | Working heat treatment of alpha+beta type titanium alloy | |
TWI799335B (en) | Hot rolled steel and manufacturing method the same | |
JPH02213453A (en) | Forged product of titanium and its production | |
TWI645917B (en) | Method of producing titanium alloy wire rod | |
JP4765600B2 (en) | Method for producing aluminum alloy member | |
JP2002088456A (en) | Method for manufacturing alpha plus beta titanium alloy having ultrafine-grained structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140320 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141028 |