JP2013511128A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2013511128A5 JP2013511128A5 JP2012538809A JP2012538809A JP2013511128A5 JP 2013511128 A5 JP2013511128 A5 JP 2013511128A5 JP 2012538809 A JP2012538809 A JP 2012538809A JP 2012538809 A JP2012538809 A JP 2012538809A JP 2013511128 A5 JP2013511128 A5 JP 2013511128A5
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- residue
- ion
- gas
- predetermined condition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000002381 Plasma Anatomy 0.000 claims description 42
- 238000004140 cleaning Methods 0.000 claims description 10
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 3
- 229910052594 sapphire Inorganic materials 0.000 claims description 2
- 239000010980 sapphire Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims 20
- 150000002500 ions Chemical class 0.000 claims 15
- 241000894007 species Species 0.000 claims 8
- 238000010884 ion-beam technique Methods 0.000 claims 7
- 238000005468 ion implantation Methods 0.000 claims 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims 2
- 229910052796 boron Inorganic materials 0.000 claims 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 2
- 229910052799 carbon Inorganic materials 0.000 claims 2
- 150000001875 compounds Chemical class 0.000 claims 2
- 239000002019 doping agent Substances 0.000 claims 2
- 238000004949 mass spectrometry Methods 0.000 claims 2
- 230000003287 optical Effects 0.000 claims 2
- 229910052760 oxygen Inorganic materials 0.000 claims 2
- 239000001301 oxygen Substances 0.000 claims 2
- 239000004215 Carbon black (E152) Substances 0.000 claims 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N Fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims 1
- 238000004458 analytical method Methods 0.000 claims 1
- 238000009529 body temperature measurement Methods 0.000 claims 1
- 238000000605 extraction Methods 0.000 claims 1
- 239000012530 fluid Substances 0.000 claims 1
- 150000002430 hydrocarbons Chemical class 0.000 claims 1
- 230000000116 mitigating Effects 0.000 claims 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims 1
- 238000004611 spectroscopical analysis Methods 0.000 claims 1
- 230000001939 inductive effect Effects 0.000 description 2
Description
図7は、ガス供給源ライン518内に位置する第2プラズマ源702内にクリーニングプラズマが実際に発生している、ある実施形態を示している。この実施形態において、反応ガス(図2におけるガスクリーニング供給210,212から供給される。)は、ガス供給源ライン518の長さ分(例えば、およそ2メートル)輸送される。この実施形態において、ガス供給源ライン518は、第1伝導性ダクト706と第2伝導性ダクト708
との間で連結された誘電性ダクト704を含む。第1伝導性ダクト706は、ガス供給ラインとして述べられていてもよく、一方、第2伝導性ダクト708は、残光供給ラインとして述べられている。いくつかの実施形態において、誘電性ダクト704は、サファイア(フッ素互換性用)および伝導性ダクト706を含んでもよい。誘導コイル710は、開口524に非常に近いガス供給源ライン518に巻きつけられている。マッチング回路714を介して、誘導コイル710に連結されたRF電源712が活性化されると、高濃度プラズマは、ガス供給ライン518内の領域716において発生される。したがって、プラズマは、反応種が残留物を清浄するよう使用される第1および/または第2室502,516に非常に近接して発生される。図7は、RFコイル710を含む実施形態を示しているが、他の実施形態は、開口524に近接しているマイクロ波源または他のプラズマ発生部品と共に使用することができる。
FIG. 7 illustrates an embodiment in which cleaning plasma is actually generated in the second plasma source 702 located in the gas supply line 518. In this embodiment, the reactive gas (supplied from the gas cleaning supplies 210, 212 in FIG. 2) is transported for the length of the gas supply line 518 (eg, approximately 2 meters). In this embodiment, the gas supply line 518 includes a first conductive duct 706 and a second conductive duct 708.
And a dielectric duct 704 connected between the two. The first conductive duct 706 may be described as a gas supply line, while the second conductive duct 708 is described as an afterglow supply line. In some embodiments, dielectric duct 704 may include sapphire (for fluorine compatibility) and conductive duct 706. The induction coil 710 is wound around a gas supply line 518 very close to the opening 524. When the RF power source 712 coupled to the induction coil 710 is activated via the matching circuit 714, a high concentration plasma is generated in the region 716 in the gas supply line 518. Thus, the plasma is generated in close proximity to the first and / or second chambers 502, 516 where the reactive species are used to clean the residue. Although FIG. 7 illustrates an embodiment that includes an RF coil 710, other embodiments can be used with a microwave source or other plasma generating component proximate the opening 524.
Claims (26)
第1伝導性ダクトと第2伝導性ダクトとの間で左右に接続された誘電性ダクトを含むガス供給ラインにおいて第1プラズマを生成し、
前記イオン源部品から第1残留物の除去を促進するために、フッ素を含む前記第1プラズマを使用し、
前記第1プラズマが使用された後、前記イオン源部品から、その位置で、前記第1残留物とは異なる第2残留物の除去を促進するために酸素ラジカルを含む第2プラズマを使用することを特徴とする、方法。 A method for removing residues from ion source components used to extract an ion beam, comprising:
Generating a first plasma in a gas supply line including a dielectric duct connected to the left and right between the first conductive duct and the second conductive duct;
To facilitate removal of the first residue from the ion source component, using said first plasma containing fluorine,
After the first plasma is used, use a second plasma containing oxygen radicals to facilitate removal of a second residue different from the first residue from the ion source component at that location. A method characterized by.
いるどうかに関連し、
前記残留物はプラズマが前記第2プラズマ源に点火されるときに光子または光を放出することを特徴とする、請求項4に記載の方法。 The first predetermined condition indicates whether the first plasma has completely removed the first residue from the ion source component by optical spectroscopic analysis using a second plasma source. Related to
The method of claim 4 , wherein the residue emits photons or light when a plasma is ignited in the second plasma source.
前記残留物はプラズマが前記第2プラズマ源に点火されるときに光子または光を放出することを特徴とする、請求項10に記載の方法。 The second predetermined condition indicates whether the second plasma has completely removed the second residue from the ion source component, as indicated by optical spectroscopy using a second plasma source. Related to
The method of claim 10 , wherein the residue emits photons or light when a plasma is ignited to the second plasma source.
ビーム通路に沿って第1イオンビームを抽出し、前記イオン源部品における第1残留物を増加させ、前記第1イオンビームは、第1分子種を含む第1ガスを使用することによって発生され、
前記ビーム通路に沿って第2イオンビームを抽出し、前記イオン源部品における第2残留物を増加させ、前記第2イオンビームは、第2分子種を含む第2ガスを使用することによって発生され、前記第2残留物は、前記第1残留物と構成上異なっており、
第1伝導性ダクトと第2伝導性ダクトとの間で左右に接続された誘電性ダクトを含むガス供給ラインにおいて、第1クリーニングプラズマ放電および第2クリーニングプラズマ放電を選択的に発生させ、前記イオン源部品からの前記第1残留物および前記第2残留物それぞれの除去を促進させることを特徴とする、方法。 A method for removing residues from ion source components used to extract an ion beam, comprising:
Extracting a first ion beam along a beam path to increase a first residue in the ion source component, wherein the first ion beam is generated by using a first gas containing a first molecular species;
A second ion beam is extracted along the beam path to increase a second residue in the ion source component, and the second ion beam is generated by using a second gas containing a second molecular species. The second residue is structurally different from the first residue,
In the gas supply line including a dielectric duct connected to the left and right between the first conductive duct and the second conductive duct, a first cleaning plasma discharge and a second cleaning plasma discharge are selectively generated, and the ions A method of facilitating removal of each of the first residue and the second residue from a source part.
留物それぞれを除去するために、前記第1残留物および前記第2残留物それぞれに接触することを特徴とする、請求項15に記載の方法。 The first cleaning plasma discharge and the second cleaning plasma discharge cause a first afterglow and a second afterglow, which are downstream of the first plasma discharge and the second plasma discharge, respectively, and the first afterglow and 16. The method according to claim 15 , wherein the second afterglow contacts each of the first residue and the second residue to remove the first residue and the second residue, respectively. The method described.
複数の異なるドーパントガス供給と流動的に通じているフロー制御集合体と、複数の異なるクリーニングガス供給と、少なくとも1つのプラズマ室と、
前記異なるドーパントガス供給から1以上の少なくとも1室のプラズマ室にガスを選択的に供給するよう前記フロー制御集合体に指示し、ビームラインに沿った異なるそれぞれの種を有するイオンビームの抽出を促進させるのに適した制御装置とを備え、前記制御装置は、さらに、前記異なるクリーニングガス供給から選択的にガスを供給し、1以上の少なくとも1室のプラズマ室に異なるタイプのプラズマ放電を発生させ、前記異なるタイプのプラズマ放電は、異なる種を有する前記イオンビームが前記ビームラインに沿って抽出されたときに形成された、異なるタイプの残留物の増加を軽減するのに適していることを特徴とする、システム。 A reactive gas supply system for facilitating removal of residues from beam parts,
A flow control assembly in fluid communication with a plurality of different dopant gas supplies; a plurality of different cleaning gas supplies; and at least one plasma chamber;
Directs the flow control assembly to selectively supply gas from the different dopant gas supply to one or more plasma chambers of one or more chambers to facilitate extraction of ion beams having different respective species along the beam line. And a control device suitable for causing the control device to selectively supply gas from the different cleaning gas supplies to generate different types of plasma discharge in one or more plasma chambers. The different types of plasma discharges are suitable for mitigating the increase in different types of residues formed when the ion beam having different species is extracted along the beam line. And the system.
複数のクリーニングガスのうちの1つを前記第1プラズマ室に向けて選択的に供給するのに適したガス供給ラインと、前記ガス供給ラインは、第1伝導性ダクトと第2伝導性ダクトとの間で左右に接続された誘電性ダクトを備え、
前記誘電性ダクトの内部表面によって定められる穴の中でプラズマを発生させるのに適したプラズマ発生部品とを備えることを特徴とする、イオン注入システム。 An ion source including the first plasma chamber such that the first plasma chamber is disposed adjacent to the second plasma chamber;
A gas supply line suitable for selectively supplying one of a plurality of cleaning gases toward the first plasma chamber, the gas supply line comprising: a first conductive duct; a second conductive duct; With dielectric ducts connected to the left and right between
An ion implantation system comprising a plasma generating component suitable for generating a plasma in a hole defined by an inner surface of the dielectric duct.
前記RFコイルを駆動するためのRF電源とを含むことを特徴とする、請求項22に記載のイオン注入システム。 The plasma generating component includes a radio frequency (RF) coil wound around the dielectric duct ;
The ion implantation system according to claim 22 , further comprising an RF power source for driving the RF coil.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/616,662 US20110108058A1 (en) | 2009-11-11 | 2009-11-11 | Method and apparatus for cleaning residue from an ion source component |
US12/616,662 | 2009-11-11 | ||
PCT/US2010/002969 WO2011059504A2 (en) | 2009-11-11 | 2010-11-12 | Method and apparatus for cleaning residue from an ion source component |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2013511128A JP2013511128A (en) | 2013-03-28 |
JP2013511128A5 true JP2013511128A5 (en) | 2015-07-02 |
JP5827235B2 JP5827235B2 (en) | 2015-12-02 |
Family
ID=43735816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012538809A Expired - Fee Related JP5827235B2 (en) | 2009-11-11 | 2010-11-12 | Method and apparatus for cleaning residues |
Country Status (7)
Country | Link |
---|---|
US (2) | US20110108058A1 (en) |
EP (1) | EP2499653A2 (en) |
JP (1) | JP5827235B2 (en) |
KR (1) | KR101741405B1 (en) |
CN (1) | CN102612731B (en) |
TW (1) | TWI500064B (en) |
WO (1) | WO2011059504A2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG10201507319XA (en) * | 2010-09-15 | 2015-10-29 | Praxair Technology Inc | Method for extending lifetime of an ion source |
US9653327B2 (en) * | 2011-05-12 | 2017-05-16 | Applied Materials, Inc. | Methods of removing a material layer from a substrate using water vapor treatment |
RU2522662C2 (en) * | 2011-08-03 | 2014-07-20 | Федеральное государственное бюджетное учреждение "Государственный научный центр Российской Федерации - Институт Теоретической и Экспериментальной Физики" (ФГБУ "ГНЦ РФ ИТЭФ") | Method for continuous production of beam of carborane ions with constant self-cleaning of ion source and component of ion implanter extraction system |
US20130250293A1 (en) * | 2012-03-20 | 2013-09-26 | Fei Company | Method and Apparatus for Actively Monitoring an Inductively-Coupled Plasma Ion Source using an Optical Spectrometer |
US9142392B2 (en) * | 2013-04-29 | 2015-09-22 | Varian Semiconductor Equipment Associates, Inc. | Self-cleaning radio frequency plasma source |
US9006690B2 (en) * | 2013-05-03 | 2015-04-14 | Axcelis Technologies, Inc. | Extraction electrode assembly voltage modulation in an ion implantation system |
WO2015136377A2 (en) * | 2014-03-11 | 2015-09-17 | Redhill Biopharma Ltd. | Ondansetron extended release solid dosage forms for treating either nausea, vomiting or diarrhea symptoms |
JP6439620B2 (en) * | 2015-07-28 | 2018-12-19 | 株式会社ニューフレアテクノロジー | Electron source cleaning method and electron beam drawing apparatus |
US10062548B2 (en) | 2015-08-31 | 2018-08-28 | Varian Semiconductor Equipment Associates, Inc. | Gas injection system for ion beam device |
US10141161B2 (en) | 2016-09-12 | 2018-11-27 | Varian Semiconductor Equipment Associates, Inc. | Angle control for radicals and reactive neutral ion beams |
US10161034B2 (en) | 2017-04-21 | 2018-12-25 | Lam Research Corporation | Rapid chamber clean using concurrent in-situ and remote plasma sources |
US10676370B2 (en) * | 2017-06-05 | 2020-06-09 | Axcelis Technologies, Inc. | Hydrogen co-gas when using aluminum iodide as an ion source material |
US10580632B2 (en) * | 2017-12-18 | 2020-03-03 | Agilent Technologies, Inc. | In-situ conditioning in mass spectrometry systems |
CN113663988B (en) * | 2018-10-18 | 2023-09-05 | 汉辰科技股份有限公司 | Method and device for cleaning fluorinated surface in ion implanter |
CN109447013B (en) * | 2018-11-06 | 2022-02-15 | 重庆工程职业技术学院 | Computer user identification equipment |
JP7385809B2 (en) * | 2019-09-05 | 2023-11-24 | 日新イオン機器株式会社 | How to clean ion beam irradiation equipment |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2631258B1 (en) * | 1988-05-10 | 1991-04-05 | Prestations Services Sps | DELAYED PLASMA SURFACE CLEANING PROCESS |
US5200023A (en) * | 1991-08-30 | 1993-04-06 | International Business Machines Corp. | Infrared thermographic method and apparatus for etch process monitoring and control |
JPH06176724A (en) * | 1992-01-23 | 1994-06-24 | Tokyo Electron Ltd | Ion source device |
JP2618817B2 (en) * | 1993-07-09 | 1997-06-11 | 岩谷産業株式会社 | Non-plasma cleaning method in semiconductor manufacturing equipment |
JPH0786242A (en) * | 1993-09-10 | 1995-03-31 | Fujitsu Ltd | Manufacture of semiconductor device |
US5554854A (en) * | 1995-07-17 | 1996-09-10 | Eaton Corporation | In situ removal of contaminants from the interior surfaces of an ion beam implanter |
US5661308A (en) * | 1996-05-30 | 1997-08-26 | Eaton Corporation | Method and apparatus for ion formation in an ion implanter |
US5812403A (en) * | 1996-11-13 | 1998-09-22 | Applied Materials, Inc. | Methods and apparatus for cleaning surfaces in a substrate processing system |
US5814823A (en) * | 1997-07-12 | 1998-09-29 | Eaton Corporation | System and method for setecing neutral particles in an ion bean |
US6135128A (en) * | 1998-03-27 | 2000-10-24 | Eaton Corporation | Method for in-process cleaning of an ion source |
US6182603B1 (en) * | 1998-07-13 | 2001-02-06 | Applied Komatsu Technology, Inc. | Surface-treated shower head for use in a substrate processing chamber |
US6355933B1 (en) * | 1999-01-13 | 2002-03-12 | Advanced Micro Devices, Inc. | Ion source and method for using same |
US6221169B1 (en) * | 1999-05-10 | 2001-04-24 | Axcelis Technologies, Inc. | System and method for cleaning contaminated surfaces in an ion implanter |
US6420275B1 (en) * | 1999-08-30 | 2002-07-16 | Micron Technology, Inc. | System and method for analyzing a semiconductor surface |
US6228563B1 (en) * | 1999-09-17 | 2001-05-08 | Gasonics International Corporation | Method and apparatus for removing post-etch residues and other adherent matrices |
US20030056388A1 (en) * | 2000-07-18 | 2003-03-27 | Hiromoto Ohno | Cleaning gas for semiconductor production equipment |
US6635144B2 (en) * | 2001-04-11 | 2003-10-21 | Applied Materials, Inc | Apparatus and method for detecting an end point of chamber cleaning in semiconductor equipment |
GB0128913D0 (en) * | 2001-12-03 | 2002-01-23 | Applied Materials Inc | Improvements in ion sources for ion implantation apparatus |
US7106438B2 (en) * | 2002-12-12 | 2006-09-12 | Perkinelmer Las, Inc. | ICP-OES and ICP-MS induction current |
US20040235299A1 (en) * | 2003-05-22 | 2004-11-25 | Axcelis Technologies, Inc. | Plasma ashing apparatus and endpoint detection process |
US7791047B2 (en) * | 2003-12-12 | 2010-09-07 | Semequip, Inc. | Method and apparatus for extracting ions from an ion source for use in ion implantation |
KR100883148B1 (en) * | 2003-12-12 | 2009-02-10 | 세미이큅, 인코포레이티드 | Method and apparatus for extending equipment uptime in ion implantation |
US20080223409A1 (en) * | 2003-12-12 | 2008-09-18 | Horsky Thomas N | Method and apparatus for extending equipment uptime in ion implantation |
GB2412488B (en) * | 2004-03-26 | 2007-03-28 | Applied Materials Inc | Ion sources |
US7819981B2 (en) * | 2004-10-26 | 2010-10-26 | Advanced Technology Materials, Inc. | Methods for cleaning ion implanter components |
US7109085B2 (en) * | 2005-01-11 | 2006-09-19 | Taiwan Semiconductor Manufacturing Co., Ltd. | Etching process to avoid polysilicon notching |
US8278222B2 (en) * | 2005-11-22 | 2012-10-02 | Air Products And Chemicals, Inc. | Selective etching and formation of xenon difluoride |
WO2007070321A2 (en) * | 2005-12-09 | 2007-06-21 | Semequip Inc. | System and method for the manufacture of semiconductor devices by the implantation of carbon clusters |
US7531819B2 (en) * | 2005-12-20 | 2009-05-12 | Axcelis Technologies, Inc. | Fluorine based cleaning of an ion source |
SG171606A1 (en) * | 2006-04-26 | 2011-06-29 | Advanced Tech Materials | Cleaning of semiconductor processing systems |
US8110815B2 (en) * | 2006-06-12 | 2012-02-07 | Semequip, Inc. | Vapor delivery to devices under vacuum |
US8013312B2 (en) * | 2006-11-22 | 2011-09-06 | Semequip, Inc. | Vapor delivery system useful with ion sources and vaporizer for use in such system |
KR20090127366A (en) * | 2007-03-30 | 2009-12-10 | 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 | Method of forming ultra-shallow junctions for semiconductor devices |
US7947966B2 (en) * | 2007-07-31 | 2011-05-24 | Axcelis Technologies, Inc. | Double plasma ion source |
SG188150A1 (en) * | 2008-02-11 | 2013-03-28 | Advanced Tech Materials | Ion source cleaning in semiconductor processing systems |
US8158017B2 (en) * | 2008-05-12 | 2012-04-17 | Lam Research Corporation | Detection of arcing events in wafer plasma processing through monitoring of trace gas concentrations |
US8809800B2 (en) * | 2008-08-04 | 2014-08-19 | Varian Semicoductor Equipment Associates, Inc. | Ion source and a method for in-situ cleaning thereof |
US8263944B2 (en) * | 2008-12-22 | 2012-09-11 | Varian Semiconductor Equipment Associates, Inc. | Directional gas injection for an ion source cathode assembly |
US7999479B2 (en) * | 2009-04-16 | 2011-08-16 | Varian Semiconductor Equipment Associates, Inc. | Conjugated ICP and ECR plasma sources for wide ribbon ion beam generation and control |
US8003959B2 (en) * | 2009-06-26 | 2011-08-23 | Varian Semiconductor Equipment Associates, Inc. | Ion source cleaning end point detection |
-
2009
- 2009-11-11 US US12/616,662 patent/US20110108058A1/en not_active Abandoned
-
2010
- 2010-11-11 TW TW099138796A patent/TWI500064B/en active
- 2010-11-12 WO PCT/US2010/002969 patent/WO2011059504A2/en active Application Filing
- 2010-11-12 EP EP10787593A patent/EP2499653A2/en not_active Withdrawn
- 2010-11-12 JP JP2012538809A patent/JP5827235B2/en not_active Expired - Fee Related
- 2010-11-12 KR KR1020127015073A patent/KR101741405B1/en active IP Right Grant
- 2010-11-12 CN CN201080051134.6A patent/CN102612731B/en active Active
-
2013
- 2013-07-23 US US13/948,280 patent/US20130305989A1/en not_active Abandoned
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013511128A5 (en) | ||
JP5827235B2 (en) | Method and apparatus for cleaning residues | |
JP5536041B2 (en) | Method for detecting arcing phenomenon during wafer plasma processing by monitoring trace gas concentration, and plasma processing apparatus | |
TWI390592B (en) | Method and apparatus for ashing a substrate using carbon dioxide | |
JP2019511843A5 (en) | ||
CN111837222A (en) | Plasma processing method and plasma processing apparatus | |
DE60128460D1 (en) | METHOD FOR INSERTING A PHOTOLACK WITH A MICROWAVE PLASMA IN A CAMERA FOR DIELECTRIC COATINGS AND PLASMA MACHINES THEREFOR | |
JP2007522935A5 (en) | ||
CN110494967A (en) | Optical Emission Spectrometer (OES) for remote plasma monitoring | |
JP2005244065A (en) | Plasma processing apparatus and method | |
CN106575598B (en) | Plasma cleaning of mass spectrometer | |
JP2006210948A (en) | Plasma processing apparatus | |
US10249509B2 (en) | Substrate cleaning method and system using atmospheric pressure atomic oxygen | |
EP0868836A1 (en) | Fluorine assisted stripping and residue removal in sapphire downstream plasma asher | |
KR20190109239A (en) | Plasma processing method and plasma processing apparatus | |
JP2013511807A5 (en) | ||
JP2010147052A (en) | Plasma processing method, plasma processing apparatus, and moisture content detecting method of plasma processing apparatus | |
JP4873215B2 (en) | Material detection system and semiconductor material removal system for detecting solid substances in plasma | |
JP6983558B2 (en) | Magnets used in plasma cleaners | |
JP5198616B2 (en) | Plasma processing equipment | |
JP6219623B2 (en) | Etching method | |
CN116453931B (en) | Wafer processing apparatus | |
KR102288382B1 (en) | Method for removing of L-FC in plasma etching procedure and system therefor | |
JP2013074091A (en) | Dry etching method and apparatus | |
TW201409017A (en) | Plasma treatment system |