JP2013507582A - Circuit for operating solenoid valve - Google Patents

Circuit for operating solenoid valve Download PDF

Info

Publication number
JP2013507582A
JP2013507582A JP2012532508A JP2012532508A JP2013507582A JP 2013507582 A JP2013507582 A JP 2013507582A JP 2012532508 A JP2012532508 A JP 2012532508A JP 2012532508 A JP2012532508 A JP 2012532508A JP 2013507582 A JP2013507582 A JP 2013507582A
Authority
JP
Japan
Prior art keywords
valve
circuit
force
solenoid valve
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012532508A
Other languages
Japanese (ja)
Inventor
ラップ ホルガー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2013507582A publication Critical patent/JP2013507582A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2006Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost capacitor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2037Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit for preventing bouncing of the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2041Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit for controlling the current in the free-wheeling phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F2007/1894Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings minimizing impact energy on closure of magnetic circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

本発明は、電磁弁を動作させるための次のような回路(40)、すなわち、電磁弁の閉弁過程において少なくとも該電磁弁の閉弁時点の後、該電磁弁の開弁方向に作用する力と該電磁弁の閉弁方向に作用する力との差が低減していく時間特性を実現するように構成された少なくとも1つの部品を有する回路(40)に関する。本発明はさらに、電磁弁のための回路の動作方法にも関する。  The present invention operates as follows in the circuit (40) for operating the solenoid valve, that is, in the solenoid valve closing process, at least after the solenoid valve is closed, in the valve opening direction. The present invention relates to a circuit (40) having at least one component configured to realize a time characteristic in which a difference between a force and a force acting in a valve closing direction of the solenoid valve is reduced. The invention further relates to a method of operating a circuit for a solenoid valve.

Description

本発明は電磁弁を動作させるための回路と、電磁弁のための回路の動作方法とに関する。   The present invention relates to a circuit for operating a solenoid valve and a method of operating a circuit for a solenoid valve.

先行技術
コモンレールインジェクタ用の電磁弁では、とりわけ電磁弁の切換過程の精度、とりわけ遮断過程の精度が、インジェクタの調量精度に重要である。コモンレールインジェクタにおける電磁弁の役割は、ニードル弁の上方に位置する制御空間内の圧力条件を制御することにより、該ニードル弁の開弁運動を制御することである。
Prior Art In a solenoid valve for a common rail injector, the accuracy of the switching process of the solenoid valve, especially the accuracy of the shut-off process is particularly important for the metering accuracy of the injector. The role of the electromagnetic valve in the common rail injector is to control the valve opening movement of the needle valve by controlling the pressure condition in the control space located above the needle valve.

DE102007003211A1に、電磁弁の制御方法が記載されている。同文献では、無通電時には電磁弁のニードルは第1の位置をとり、通電時には第2の位置をとる。ニードルが第2の位置から第1の位置に移行する際には、所定の時点から所定の時間にわたって後通電が行われる。   DE102007003211A1 describes a method for controlling a solenoid valve. In this document, the needle of the solenoid valve takes a first position when no power is supplied, and takes a second position when power is supplied. When the needle moves from the second position to the first position, post-energization is performed for a predetermined time from a predetermined time point.

発明の概要
本発明は、電磁弁を動作させるための次のような回路、すなわち、電磁弁の閉弁過程において少なくとも該電磁弁の閉弁時点の後、該電磁弁の開弁方向に作用する力と該電磁弁の閉弁方向に作用する力との差が低減していく時間特性を実現するように構成された少なくとも1つの部品を有する回路に関する。
SUMMARY OF THE INVENTION The present invention operates in the following circuit for operating a solenoid valve, that is, in the solenoid valve closing process, at least after the solenoid valve is closed, in the valve opening direction. The present invention relates to a circuit having at least one component configured to realize a time characteristic in which a difference between a force and a force acting in a valve closing direction of the solenoid valve is reduced.

本発明はさらに、電磁弁のための回路の動作方法にも関し、本発明の動作方法では、該電磁弁の閉弁過程において、少なくとも該電磁弁の閉弁時点の後に、該電磁弁の開弁方向に作用する力と該電磁弁の閉弁方向に作用する力との差が時間的に低減していく時間特性になるようにする。   The present invention further relates to a method of operating a circuit for a solenoid valve, wherein in the process of closing the solenoid valve, the solenoid valve is opened at least after the solenoid valve is closed. The difference between the force acting in the valve direction and the force acting in the valve closing direction of the solenoid valve is made to have a time characteristic that is reduced in time.

従属請求項および明細書に、本発明の別の実施形態が記載されている。   In the dependent claims and the description, further embodiments of the invention are described.

通常、前記電磁弁は噴射ノズルないしはインジェクタの構成部品として構成されており、弁部材によって開閉し、該弁部材は、少なくとも1つの閉弁部材によって生成された閉弁方向の力によって弁座内に押しつけられ、かつ該弁部材は、前記少なくとも1つの閉弁部材の力に抗し電磁コイルによって生成された開弁方向の力によって開弁される。   Usually, the solenoid valve is configured as a component part of an injection nozzle or an injector, and is opened and closed by a valve member. The valve member is placed in the valve seat by a force in a valve closing direction generated by at least one valve closing member. The valve member is pressed and opened by the force in the valve opening direction generated by the electromagnetic coil against the force of the at least one valve closing member.

本発明により、抵抗器とダイオードとを有するネットワークないしは直列回路によって、受動的な衝撃減衰を実現することができる。   According to the present invention, passive shock attenuation can be realized by a network or series circuit having resistors and diodes.

本発明において実現される回路により、とりわけ、弁部材の反動を大きく低減することができる。このことにより、僅かな追加コストのみで、電磁弁の切替過程を格段に安定化させることができる。   With the circuit realized in the present invention, in particular, the recoil of the valve member can be greatly reduced. As a result, the switching process of the solenoid valve can be remarkably stabilized with only a small additional cost.

前記回路は、上述の方法のすべてのステップを実施するように構成されている。この方法の個々のステップは、この回路の個々の構成要素によっても実施可能である。さらに、この回路の動作または該回路の個々の構成要素の動作は、方法のステップに置き換えることができ、また、上記の方法のステップを、上記の回路の個々の構成要素の機能または上記の回路全体の動作に置き換えて実現することも可能である。   The circuit is configured to perform all the steps of the method described above. The individual steps of the method can also be performed by individual components of the circuit. Furthermore, the operation of this circuit or the operation of individual components of the circuit can be replaced by method steps, and the method steps described above can be replaced by the functions of the individual components of the circuit or the circuit described above. It can be realized by replacing the entire operation.

明細書および図面の記載内容から、本発明の別の利点および実施形態を導き出すことができる。   Other advantages and embodiments of the present invention can be derived from the description and the description in the drawings.

上記の特徴および後でさらに説明する特徴は、ここに記載された各組み合わせだけでなく、別の組み合わせまたは単独でも、本発明の範囲を逸脱することなしに使用できることは明らかである。   It will be appreciated that the features described above and further described below can be used not only in the respective combinations described herein, but also in other combinations or alone, without departing from the scope of the present invention.

電磁弁の一実施形態の詳細を示す概略図である。It is the schematic which shows the detail of one Embodiment of a solenoid valve. 従来技術の電磁弁において反動プロセスが生じた場合の動作パラメータを示すグラフである。It is a graph which shows an operation parameter when a reaction process arises in a solenoid valve of a prior art. 本発明の回路の第1の実施形態を示す概略図である。1 is a schematic diagram showing a first embodiment of a circuit of the present invention. 本発明の回路の第2の実施形態を示す概略図である。It is the schematic which shows 2nd Embodiment of the circuit of this invention. 本発明の方法の第1の実施形態において電磁弁の反動プロセス時に得られる動作パラメータを示す第1のグラフと、本発明の方法の第2の実施形態において電磁弁の反動プロセス時に得られる動作パラメータを示す第2のグラフである。A first graph showing operating parameters obtained during the reaction process of the solenoid valve in the first embodiment of the method of the present invention, and an operating parameter obtained during the reaction process of the solenoid valve in the second embodiment of the method of the present invention. It is the 2nd graph which shows.

本発明の実施形態
本発明は、複数の実施形態に基づいて図面に概略的に示されている。以下、これらの図面を参照して本発明を詳細に説明する。
Embodiments of the invention The invention is schematically illustrated in the drawings on the basis of several embodiments. Hereinafter, the present invention will be described in detail with reference to these drawings.

図面では全体的に一貫して、各図の内容が相互に関連しており、参照符号が同一である場合には同一の構成要素を示している。   In the drawings, the contents of the respective drawings are related to each other consistently, and the same components are denoted by the same reference numerals.

図1に概略的に示された電磁弁2の詳細には、コア6を有する電磁コイル4と弁部材8とが含まれる。前記電磁弁2はさらに、閉弁ばねとして設けられた閉弁部材10と、簡単に示されたパッキングシート12ないしは弁座とを有する。図3〜6を参照して本発明の実施形態を説明するが、これらの実施形態を具現化するためのパッキングシート12の具体的な構成は、通常は重要でない。   The details of the electromagnetic valve 2 schematically shown in FIG. 1 include an electromagnetic coil 4 having a core 6 and a valve member 8. The electromagnetic valve 2 further has a valve closing member 10 provided as a valve closing spring and a packing sheet 12 or a valve seat simply shown. Although the embodiments of the present invention will be described with reference to FIGS. 3 to 6, the specific configuration of the packing sheet 12 for embodying these embodiments is not usually important.

電磁弁2はパッキングシート12に対する弁部材8の相対位置に依存して開閉される。前記電磁弁2を閉弁するためには、前記弁部材8をパッキングシート12に押し付けるかないしは押圧することによってパッキングシートを封止するための閉弁方向の力14ないしは閉弁力が前記閉弁部材10によって発生するように構成されている。前記弁部材2を開弁するためには、前記電磁コイル4の通電が行われるように構成されており、この通電により、前記閉弁方向の力14に対抗する開弁方向の力16ないしは電磁力が発生する。このようにして前記電磁弁2が開弁する。前記電磁コイル4の通電が終了すると前記電磁力は消失し、前記弁部材8は該弁部材8の閉弁力によってパッキングシート12内に移動して閉弁する。前記弁部材8の閉弁力は通常、プリロードされた閉弁部材の力14である。   The electromagnetic valve 2 is opened and closed depending on the relative position of the valve member 8 with respect to the packing sheet 12. In order to close the electromagnetic valve 2, the valve member 8 is not pressed against the packing sheet 12, or the pressing force 14 or the closing force for sealing the packing sheet by pressing the valve member 8 is closed. It is configured to be generated by the valve member 10. In order to open the valve member 2, the electromagnetic coil 4 is energized. By this energization, a force 16 or electromagnetic force in the valve opening direction that opposes the force 14 in the valve closing direction. Force is generated. In this way, the electromagnetic valve 2 is opened. When the energization of the electromagnetic coil 4 is finished, the electromagnetic force disappears, and the valve member 8 is moved into the packing sheet 12 by the valve closing force of the valve member 8 and is closed. The valve closing force of the valve member 8 is usually the force 14 of the preloaded valve closing member.

前記弁部材8は通常は電機子を有する。その際には、前記弁部材8と前記電機子とを一体に作製することができるが、複数の部品を組み立てることによって該弁部材8および電機子を作製してアセンブリを構成することもできる。前記弁部材8は通常、前記電磁弁2内において燃料によって包囲されている。この燃料は低圧下にある。   The valve member 8 usually has an armature. In that case, the valve member 8 and the armature can be manufactured integrally, but the valve member 8 and the armature can be manufactured by assembling a plurality of parts to constitute an assembly. The valve member 8 is usually surrounded by fuel in the electromagnetic valve 2. This fuel is under low pressure.

図2のグラフでは縦軸20に、従来技術の電磁弁において反動が生じる過程で得られる、該電磁弁の電磁力24の特性と、該電磁弁のパッキングシートに対する弁部材の相対的な弁ストローク26の特性と、弁速度28の特性とを示す。横軸30は時間を示しており、単位はμsである。   In the graph of FIG. 2, the vertical axis 20 shows the characteristics of the electromagnetic force 24 of the electromagnetic valve obtained in the process of reaction in the electromagnetic valve of the prior art and the relative valve stroke of the valve member with respect to the packing sheet of the electromagnetic valve. 26 characteristics and valve speed 28 characteristics. The horizontal axis 30 indicates time, and the unit is μs.

通常、パッキングシートに達したときの弁部材は、無視することができない大きさの運動エネルギーを有する。前記パッキングシートも弁部材も典型的には金属部品であり、ひいては弾性部品であるから、弁部材がパッキングシートに当たった後、該弁部材の運動エネルギーはシート接触時32に弾性変形エネルギーに変換される。この弾性変形エネルギーへの変換が完了すると、変形した両部材は元に戻る。その際には、弾性変形エネルギーが運動エネルギーに変換し戻される。第1の反動時34に再び、弁部材はパッキングシートから離れる。このときに弁部材がパッキングシートから離れていく速度は、その直前に該パッキングシートに達したときの速度に等しい。   Normally, the valve member when reaching the packing sheet has a kinetic energy that cannot be ignored. Since both the packing sheet and the valve member are typically metal parts and eventually elastic parts, the kinetic energy of the valve member is converted into elastic deformation energy at the time of contact with the sheet 32 after the valve member hits the packing sheet. Is done. When the conversion into the elastic deformation energy is completed, the deformed members return to their original positions. At that time, elastic deformation energy is converted back into kinetic energy. At the first recoil 34 again, the valve member leaves the packing sheet. At this time, the speed at which the valve member moves away from the packing sheet is equal to the speed at which the valve member reaches the packing sheet immediately before that.

ここで、図2のグラフに、従来技術の典型的な反動プロセスを示す。時点t=0は電磁弁の駆動制御の終了時点であり、このときにコイル電流の消失が開始し、ひいては、電磁コイルの一定であった電磁力24の消失が開始する。また図2のグラフから、前記弁部材が前記パッキングシートに最初に達する前に、電磁力が実質的に消失していることも分かる。   Here, the typical recoil process of the prior art is shown in the graph of FIG. The time point t = 0 is the end point of the drive control of the electromagnetic valve. At this time, the disappearance of the coil current starts, and consequently the disappearance of the electromagnetic force 24 that has been constant in the electromagnetic coil starts. It can also be seen from the graph of FIG. 2 that the electromagnetic force is substantially lost before the valve member first reaches the packing sheet.

前記運動エネルギーが僅かな減衰作用によって、図1に示された構成要素を有する装置ないしはシステムから完全に取り除かれるまで、上述のプロセスは複数回繰り返される。この過程は反動34と称される。弁部材がパッキングシートから外されるたびに該パッキングシートは開放されるので、上述の反動34は、インジェクタから最終的に噴射される噴射量に大きく影響する。   The above process is repeated multiple times until the kinetic energy is completely removed from the apparatus or system having the components shown in FIG. This process is referred to as reaction 34. Since the packing sheet is released each time the valve member is removed from the packing sheet, the reaction 34 described above greatly affects the amount of injection finally injected from the injector.

電磁弁の構成部品は金属から成り、さらに、弁座の摩耗耐性にかかる要求は厳しいので、弁部材が該弁座ないしはパッキングシートに達したときの塑性変形による反動減衰は適していない。シートの接触中に、周囲の燃料における有利な流動条件により、流体力学的な閉弁力が発生し、弁部材が外されるときにはこの流体力学的な閉弁力が該弁部材を、押し込めるときよりも強く、パッキングシートの方向に押し付けることによって、ある程度の反動減衰を実現することができる。しかし、このような条件を実現するのは困難であり、さらに、周囲の媒体の状態に大きく依存する。   The components of the solenoid valve are made of metal, and the requirements for wear resistance of the valve seat are severe. Therefore, the reaction damping due to plastic deformation when the valve member reaches the valve seat or the packing sheet is not suitable. During the seat contact, a favorable flow condition in the surrounding fuel generates a hydrodynamic closing force that, when the valve member is removed, pushes the valve member when the valve member is removed. It is stronger, and a certain amount of reaction damping can be realized by pressing in the direction of the packing sheet. However, it is difficult to realize such a condition, and it greatly depends on the state of the surrounding medium.

本発明の実施形態では、シートの接触中32に‐すなわちパッキングシートに達した時点と該パッキングシートから離れるまでの期間中に‐閉弁方向にさらに付加的な力を形成することにより、反動34を低減することができる。このような作用は、当初開弁方向に未だ残っている力がシートの接触中に消失することによって実現することができる。   In an embodiment of the present invention, during the contact of the sheet 32, i.e., when the packing sheet is reached and during the period until it leaves the packing sheet, the reaction 34 Can be reduced. Such an action can be realized by the fact that the force still remaining in the valve opening direction disappears during the contact of the seat.

本発明の実施形態ではこうするために、パッキングシートに達したときには未だ公称値の電磁力が存在し、かつシートの接触期間中にこの電磁力の勾配が負の公称値になるように、該電磁力の消失を緩慢化させる。こうすることにより、弁部材が弁座に達した後に該弁部材を制動する力が、その後の弾性反発時に該弁部材を加速化させる力より大きくなる。このことにより、弾性反発時に運動エネルギーに変換し戻されるエネルギーは、弁部材が押し込められるときに該弁部材から取り出されるエネルギーよりも小さくなる。このようにしてこの反動速度は、押し込められるときの速度より小さくなる。   In order to do this in an embodiment of the invention, the nominal electromagnetic force still exists when the packing sheet is reached, and the gradient of this electromagnetic force is negative nominal during the sheet contact period. It slows the disappearance of electromagnetic force. By doing so, the force for braking the valve member after the valve member reaches the valve seat becomes larger than the force for accelerating the valve member during the subsequent elastic repulsion. As a result, the energy converted back to kinetic energy at the time of elastic repulsion is smaller than the energy extracted from the valve member when the valve member is pushed in. In this way, the reaction speed is smaller than the speed at which it is pushed in.

本発明の回路40の第1の実施形態を図3において概略的に示す。前記回路40は電磁弁の電磁コイル42を有し、この電磁コイル42にコイル電圧44USpuleが印加される。この電磁コイル42に、減衰抵抗46RDaempfが並列接続されている。前記電磁コイル42と前記減衰抵抗46RDaempfとに電流I47が供給される。 A first embodiment of the circuit 40 of the present invention is shown schematically in FIG. The circuit 40 has an electromagnetic coil 42 of an electromagnetic valve, and a coil voltage 44U Spool is applied to the electromagnetic coil 42. A damping resistor 46R Daempf is connected to the electromagnetic coil 42 in parallel. A current I47 is supplied to the electromagnetic coil 42 and the damping resistor 46R Daempf .

図3中の回路40はさらに、フリーホイールダイオード48と、ブースタダイオード50と、ハイサイドスイッチ52として構成されたスイッチオンおよびスイッチオフ可能な半導体バルブと、ローサイドスイッチ54として構成されたスイッチオンおよびスイッチオフ可能な半導体バルブと、ブースタスイッチ56として構成されたスイッチオンおよびスイッチオフ可能な半導体バルブとを有する。上述のスイッチオンおよびスイッチオフ可能な半導体バルブは通常、電界効果トランジスタ(FET)、絶縁ゲート電子部品バイポーラトランジスタ(IGBT, insulated-gate-biopolartransistor)または同様の電子部品として構成される。さらに前記回路40は、ブースタ電圧60UBoostを生じさせるためのブースタキャパシタ58CBoostと、DC/DCコンバータないしは直流コンバータ62とを有する。前記回路40はさらに、図中にないバッテリーに接続されている。このバッテリーは前記回路40の回路部品にバッテリー電圧62UBattを供給するように設けられている。 The circuit 40 in FIG. 3 further includes a freewheeling diode 48, a booster diode 50, a semiconductor valve configured as a high-side switch 52 and switchable on and off, and a switch-on and switch configured as a low-side switch 54. It has a semiconductor valve that can be turned off and a semiconductor valve that can be switched on and off as a booster switch 56. The above-described switch-on and switch-off semiconductor valves are usually configured as field effect transistors (FETs), insulated gate electronic bipolar transistors (IGBT), or similar electronic components. Further, the circuit 40 includes a booster capacitor 58C Boost for producing a booster voltage 60U Boost, and a DC / DC converter or the DC converter 62. The circuit 40 is further connected to a battery not shown. This battery is provided to supply a battery voltage 62U Batt to the circuit components of the circuit 40.

本発明の回路70の第2の実施形態を図4において概略的に示す。前記回路70は、図3を参照してすでに説明した本発明の第1の実施形態の回路40の部品をすべて有する。この第2の実施形態の回路70はさらに、前記減衰抵抗46に直列接続されたダイオード72を有する。したがってこのダイオード72は、電磁コイル42にも並列接続されている。   A second embodiment of the circuit 70 of the present invention is shown schematically in FIG. The circuit 70 has all the components of the circuit 40 of the first embodiment of the present invention already described with reference to FIG. The circuit 70 of the second embodiment further includes a diode 72 connected in series with the attenuation resistor 46. Therefore, the diode 72 is also connected to the electromagnetic coil 42 in parallel.

本発明の一実施形態では、電磁力の所望の特性経過は、減衰抵抗46と電磁コイル42とを並列接続することによって実現される。このことにより、駆動制御の終了時にはコイル電流は完全に消失することがなく、むしろ、該コイル電流はさらに、電磁コイル42と減衰抵抗46とから構成されたネットワークに流れていき、該減衰抵抗46における電圧降下に抗して緩慢に消失していく。このことにより、電磁力の消失もより緩慢になる。   In one embodiment of the present invention, the desired characteristic course of the electromagnetic force is achieved by connecting the damping resistor 46 and the electromagnetic coil 42 in parallel. As a result, the coil current does not disappear completely at the end of the drive control. Rather, the coil current further flows through the network composed of the electromagnetic coil 42 and the damping resistor 46, and the damping resistor 46. It disappears slowly against the voltage drop. This also makes the disappearance of electromagnetic force slower.

前記減衰抵抗46は出力段に組み込むこともできるが、本発明の一実施形態では該減衰抵抗46を電磁弁に配置することもでき、特に有利には、この電磁弁のコネクタ部材に該減衰抵抗46を設けることもできる。その際には、たとえば圧電インジェクタにおいて使用されるブリーダ抵抗と同様に、コネクタのコンタクトラグ間に減衰抵抗46を配置し、その後にこれを射出成形により包囲することができる。また、圧電インジェクタに設けられるブリーダ抵抗ディスクリート部品の代わりに使用できる導電性合成樹脂のような導電性合成樹脂を、コネクタ部材の射出成形包囲材料または合成樹脂材料として使用することにより、減衰抵抗46を設けることもできる。   The damping resistor 46 can also be incorporated in the output stage, but in one embodiment of the invention the damping resistor 46 can also be arranged in a solenoid valve, and particularly advantageously the damping resistor is connected to the connector member of this solenoid valve. 46 can also be provided. In that case, a damping resistor 46 can be placed between the contact lugs of the connector, and then surrounded by injection molding, similar to a bleeder resistor used in, for example, a piezoelectric injector. Further, by using a conductive synthetic resin such as a conductive synthetic resin that can be used in place of the bleeder resistance discrete component provided in the piezoelectric injector as the injection molding surrounding material or the synthetic resin material of the connector member, the damping resistor 46 is provided. It can also be provided.

図4に示された第2の実施形態の回路70では、電磁コイル42を含む磁気回路の遮断期間になるまで、ダイオード72が減衰抵抗46の作用を制限する。このことによってとりわけ、駆動制御の開始時に減衰抵抗46が電磁力の形成も緩慢化するのを阻止することができる。さらに前記ダイオード72によって、前記電磁力の形成中に、前記減衰抵抗46に電流を流すためにブースタキャパシタ58またはバッテリーからさらにエネルギーを取り出さなければならなくなるのを回避することもできる。   In the circuit 70 according to the second embodiment shown in FIG. 4, the diode 72 limits the action of the damping resistor 46 until the cutoff period of the magnetic circuit including the electromagnetic coil 42 is reached. In particular, this makes it possible to prevent the damping resistor 46 from slowing down the formation of electromagnetic force at the start of drive control. Furthermore, the diode 72 can avoid having to extract more energy from the booster capacitor 58 or the battery in order to pass current through the damping resistor 46 during the generation of the electromagnetic force.

このことにより、電磁コイル42に印加された電圧がたとえば−0.8Vの限界電圧より大きい間は、減衰抵抗46が機能することがなくなる。このことは典型的には、駆動制御期間全体に当てはまる。磁界が遮断されたときに初めて、減衰抵抗は所望の作用を発揮する。   As a result, the damping resistor 46 does not function while the voltage applied to the electromagnetic coil 42 is larger than the limit voltage of, for example, −0.8V. This is typically true for the entire drive control period. Only when the magnetic field is interrupted does the damping resistor have the desired effect.

図5aは、本発明の方法の第1の実施形態において電磁弁の反動プロセスで得られる、該電磁弁の動作パラメータを示すグラフである。このグラフでも、横軸の時間軸30に対して縦軸22をプロットしている。このグラフは、電磁力80の特性経過と、電磁弁の弁部材のストローク82の特性経過、ひいては該弁部材と弁座との間の距離とを示している。このグラフはさらに、弁部材の速度84の特性経過と、シートの接触86を示す期間と、減衰抵抗の値が第1の値である場合の第1の反動88とを示す。   FIG. 5a is a graph showing operating parameters of the solenoid valve obtained in the recoil process of the solenoid valve in the first embodiment of the method of the present invention. Also in this graph, the vertical axis 22 is plotted against the time axis 30 on the horizontal axis. This graph shows the characteristic course of the electromagnetic force 80, the characteristic course of the stroke 82 of the valve member of the solenoid valve, and thus the distance between the valve member and the valve seat. The graph further shows the characteristic course of the speed 84 of the valve member, the period of time indicating the seat contact 86, and the first reaction 88 when the damping resistance value is the first value.

図5b中の別のグラフは、電磁力90の特性経過と、弁ストローク92の特性経過と、弁速度94の特性経過と、シート接触期間96と、第1の反動98とを示す。この場合、これら上記の動作パラメータは、電磁コイルに並列接続された減衰抵抗の第2の値によって調整される。   Another graph in FIG. 5 b shows the characteristic course of the electromagnetic force 90, the characteristic course of the valve stroke 92, the characteristic course of the valve speed 94, the seat contact period 96, and the first reaction 98. In this case, these operating parameters are adjusted by the second value of the damping resistor connected in parallel to the electromagnetic coil.

図5aおよび5bに示された電磁力80,90の特性経過と、弁ストローク82,92の特性経過と、弁速度84,94の特性経過は、減衰抵抗の2つの異なる値で、その他の条件は図2と相違しない場合に得られる。これらのグラフから、シート接触86,96中には電磁力80,90が公称値通りに消失し、このことにより、反動速度は押し込め速度よりも低下するのが明らかに分かる。全体的に、第1の反動88,98の開始時の弁部材の運動エネルギーは、減衰抵抗によって最大64%低下する。   The characteristic course of the electromagnetic forces 80 and 90, the characteristic course of the valve strokes 82 and 92, and the characteristic course of the valve speeds 84 and 94 shown in FIGS. 5a and 5b are two different values of damping resistance. Is obtained when not different from FIG. From these graphs it can be clearly seen that during the sheet contacts 86, 96, the electromagnetic forces 80, 90 disappear as nominal, which causes the reaction speed to be lower than the indentation speed. Overall, the kinetic energy of the valve member at the start of the first reaction 88, 98 is reduced by up to 64% due to damping resistance.

従来技術(図2)よりも反動期間が短くなり、反動の大きさが小さくなるのが明らかに分かる。   It can be clearly seen that the reaction period is shorter and the magnitude of the reaction is smaller than in the prior art (FIG. 2).

また、押し込め速度だけでも、従来技術よりもすでに小さくなり、パッキングシートから離れる際にはさらに、パッキングシートから離れていく速度が押し込め速度より約5%減少するのも分かる。一見するとこのことは些細なことに思われるが、この押し込め速度の減少は、シート接触中の弁部材の運動エネルギーが10%減少することを意味し、この押し込め速度の減少と、弁部材を包囲する流体力学的要素の減衰作用とが組み合わされると、全体的に、反動プロセスが調量精度に及ぼす悪影響が完全かつロバストに回避される程度まで反動を低減することができる。   It can also be seen that the indentation speed alone is already smaller than in the prior art, and that when moving away from the packing sheet, the speed away from the packing sheet is further reduced by about 5% from the indentation speed. At first glance, this seems trivial, but this reduction in push-in speed means that the kinetic energy of the valve member during seat contact is reduced by 10%. When combined with the damping action of the hydrodynamic elements, the reaction can be reduced overall to the extent that the adverse effect of the reaction process on the metering accuracy is completely and robustly avoided.

図3中の回路40はさらに、フリーホイールダイオード48と、ブースタダイオード50と、ハイサイドスイッチ52として構成されたスイッチオンおよびスイッチオフ可能な半導体バルブと、ローサイドスイッチ54として構成されたスイッチオンおよびスイッチオフ可能な半導体バルブと、ブースタスイッチ56として構成されたスイッチオンおよびスイッチオフ可能な半導体バルブとを有する。上述のスイッチオンおよびスイッチオフ可能な半導体バルブは通常、電界効果トランジスタ(FET)、絶縁ゲートバイポーラトランジスタ(IGBT, insulated-gate-biopolartransistor)または同様の電子部品として構成される。さらに前記回路40は、ブースタ電圧60UBoostを生じさせるためのブースタキャパシタ58CBoostと、DC/DCコンバータないしは直流コンバータ62とを有する。前記回路40はさらに、図中にないバッテリーに接続されている。このバッテリーは前記回路40の回路部品にバッテリー電圧62UBattを供給するように設けられている。 The circuit 40 in FIG. 3 further includes a freewheeling diode 48, a booster diode 50, a semiconductor valve configured as a high-side switch 52 and switchable on and off, and a switch-on and switch configured as a low-side switch 54. It has a semiconductor valve that can be turned off and a semiconductor valve that can be switched on and off as a booster switch 56. Switching on and off can be semiconductor valve described above is typically a field effect transistor (FET), insulated gate Toba Lee polar transistors (IGBT, insulated-gate-biopolartransistor ) or similar configured as an electronic component. Further, the circuit 40 includes a booster capacitor 58C Boost for producing a booster voltage 60U Boost, and a DC / DC converter or the DC converter 62. The circuit 40 is further connected to a battery not shown. This battery is provided to supply a battery voltage 62U Batt to the circuit components of the circuit 40.

Claims (10)

電磁弁(2)を動作させるための回路であって、
前記回路は、前記電磁弁(2)の閉弁過程において少なくとも該電磁弁(2)の閉弁時点の後、該電磁弁(2)の開弁方向の力(16)と該電磁弁(2)の閉弁方向の力(14)との差が低減していく時間特性を実現するように構成された少なくとも1つの部品を有することを特徴とする、回路。
A circuit for operating the solenoid valve (2),
In the valve closing process of the electromagnetic valve (2), the circuit includes a force (16) in the valve opening direction of the electromagnetic valve (2) and the electromagnetic valve (2) at least after the electromagnetic valve (2) is closed. ) Having at least one component configured to realize a time characteristic in which the difference from the force (14) in the valve closing direction is reduced.
前記少なくとも1つの部品は、前記電磁弁(2)の電磁コイル(4,42)に並列接続された減衰抵抗(46)を含む、請求項1記載の回路。   The circuit of claim 1, wherein the at least one component includes a damping resistor (46) connected in parallel to an electromagnetic coil (4, 42) of the solenoid valve (2). 前記回路は、前記減衰抵抗(46)に直列接続されたダイオード(72)を有する、請求項2記載の回路。   The circuit of claim 2, wherein the circuit comprises a diode (72) connected in series with the damping resistor (46). 前記減衰抵抗(46)は、前記電磁弁(2)に対して固定された空間的な対応関係で配置されている、請求項2または3記載の回路。   The circuit according to claim 2 or 3, wherein the damping resistor (46) is arranged in a spatial correspondence fixed with respect to the solenoid valve (2). 前記減衰抵抗(46)は前記電磁弁(2)のコネクタ部材に設けられている、請求項2から4までのいずれか1項記載の回路。   The circuit according to any one of claims 2 to 4, wherein the damping resistor (46) is provided on a connector member of the electromagnetic valve (2). 前記閉弁部材(10)は閉弁ばねとして設けられている、請求項1から5までのいずれか1項記載の回路。   6. The circuit according to claim 1, wherein the valve-closing member (10) is provided as a valve-closing spring. 電磁弁(2)のための回路の動作方法であって、
前記電磁弁(2)の閉弁過程において、少なくとも該電磁弁(2)の閉弁時点の後に、該電磁弁(2)の開弁方向の力(16)と該電磁弁(2)の閉弁方向の力(14)との差が低減していく時間特性を実現させることを特徴とする、動作方法。
A method of operating a circuit for a solenoid valve (2), comprising:
In the valve closing process of the electromagnetic valve (2), at least after the closing time of the electromagnetic valve (2), the force (16) in the valve opening direction of the electromagnetic valve (2) and the closing of the electromagnetic valve (2). An operation method characterized by realizing a time characteristic in which a difference from a force (14) in a valve direction is reduced.
請求項1から6までのいずれか1項記載の回路を動作させる、請求項7記載の動作方法。   The operation method according to claim 7, wherein the circuit according to any one of claims 1 to 6 is operated. 前記閉弁方向の力(14)が上昇していくようにする、請求項7または8記載の動作方法。   The operating method according to claim 7 or 8, wherein the force (14) in the valve closing direction increases. 前記開弁方向の力(16)を消失させる、請求項7から9までのいずれか1項記載の動作方法。   The operating method according to any one of claims 7 to 9, wherein the force (16) in the valve opening direction is eliminated.
JP2012532508A 2009-10-12 2010-08-16 Circuit for operating solenoid valve Pending JP2013507582A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE200910045581 DE102009045581A1 (en) 2009-10-12 2009-10-12 Circuit for operating a solenoid valve
DE102009045581.7 2009-10-12
PCT/EP2010/061886 WO2011045104A1 (en) 2009-10-12 2010-08-16 Circuit for operating a solenoid valve

Publications (1)

Publication Number Publication Date
JP2013507582A true JP2013507582A (en) 2013-03-04

Family

ID=42829558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012532508A Pending JP2013507582A (en) 2009-10-12 2010-08-16 Circuit for operating solenoid valve

Country Status (5)

Country Link
EP (1) EP2488741A1 (en)
JP (1) JP2013507582A (en)
CN (1) CN102575605B (en)
DE (1) DE102009045581A1 (en)
WO (1) WO2011045104A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3165751B1 (en) * 2015-11-03 2021-01-20 C.R.F. Società Consortile per Azioni Solenoid-valve control system
CN109237107B (en) * 2017-07-10 2020-04-07 联合汽车电子有限公司 Electromagnetic valve control system and control method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10022A (en) * 1853-09-13 Lard-lamp
JPS61157765U (en) * 1985-03-23 1986-09-30
JPH1019162A (en) * 1996-07-02 1998-01-23 Ckd Corp Lamp display electric circuit fitting structure
JPH10122415A (en) * 1996-10-14 1998-05-15 Sanmei Denki Kk Miniature solenoid valve
JPH10184974A (en) * 1996-12-26 1998-07-14 Koganei Corp Solenoid valve driving device
JPH10184972A (en) * 1996-12-26 1998-07-14 Mitsubishi Heavy Ind Ltd Controller of proportional solenoid valve
JPH11166562A (en) * 1996-12-16 1999-06-22 Ogura Clutch Co Ltd Electromagnetic coupling device
JP2000018419A (en) * 1998-07-06 2000-01-18 Techno Excel Co Ltd Electromagnetic proportional control valve and electromagnetic proportional control valve device
WO2009077254A1 (en) * 2007-12-17 2009-06-25 Robert Bosch Gmbh Method for operating an injection device
WO2009095125A1 (en) * 2008-01-30 2009-08-06 Robert Bosch Gmbh Method for controlling solenoid valves
WO2009122683A1 (en) * 2008-03-31 2009-10-08 株式会社フジキン Solenoid valve

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1317501C (en) * 2004-04-16 2007-05-23 清华大学 Electromagnetic valve drive circuit for engine
JP4478944B2 (en) * 2004-12-17 2010-06-09 株式会社デンソー Fluid metering valve and fuel injection pump using the same
KR100736999B1 (en) * 2005-08-30 2007-07-09 현대자동차주식회사 control circuit for injectors with cut-solenoid of an LPI engine and cut-solenoid control method and diagnostic method thereof
DE102006002893B3 (en) * 2006-01-20 2007-07-26 Siemens Ag Injection valve operation method, involves controlling freewheel operating condition during movement of nozzle needle into its closing position and current is seized by coil during free-wheel operating condition as free-wheel current
DE102007003211A1 (en) 2007-01-22 2008-07-24 Robert Bosch Gmbh Device and method for controlling an electromagnetic valve
DE102007045779A1 (en) * 2007-09-25 2009-04-09 Continental Automotive Gmbh Method for controlling a solenoid valve and associated device
DE102009000132A1 (en) * 2009-01-09 2010-07-15 Robert Bosch Gmbh Method for operating a fuel injection system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10022A (en) * 1853-09-13 Lard-lamp
JPS61157765U (en) * 1985-03-23 1986-09-30
JPH1019162A (en) * 1996-07-02 1998-01-23 Ckd Corp Lamp display electric circuit fitting structure
JPH10122415A (en) * 1996-10-14 1998-05-15 Sanmei Denki Kk Miniature solenoid valve
JPH11166562A (en) * 1996-12-16 1999-06-22 Ogura Clutch Co Ltd Electromagnetic coupling device
JPH10184974A (en) * 1996-12-26 1998-07-14 Koganei Corp Solenoid valve driving device
JPH10184972A (en) * 1996-12-26 1998-07-14 Mitsubishi Heavy Ind Ltd Controller of proportional solenoid valve
JP2000018419A (en) * 1998-07-06 2000-01-18 Techno Excel Co Ltd Electromagnetic proportional control valve and electromagnetic proportional control valve device
WO2009077254A1 (en) * 2007-12-17 2009-06-25 Robert Bosch Gmbh Method for operating an injection device
WO2009095125A1 (en) * 2008-01-30 2009-08-06 Robert Bosch Gmbh Method for controlling solenoid valves
WO2009122683A1 (en) * 2008-03-31 2009-10-08 株式会社フジキン Solenoid valve

Also Published As

Publication number Publication date
DE102009045581A1 (en) 2011-04-14
CN102575605B (en) 2015-05-13
CN102575605A (en) 2012-07-11
EP2488741A1 (en) 2012-08-22
WO2011045104A1 (en) 2011-04-21

Similar Documents

Publication Publication Date Title
CN105736160B (en) Driving device of fuel injection device
US10598114B2 (en) Fuel injection controller and fuel injection system
US20080198529A1 (en) Method For Operating A Solenoid Valve For Quantity Control
CN109642533B (en) Control device for fuel injection device
KR20110106848A (en) Method for operating a fuel injection system of an internal combustion engine
KR101898881B1 (en) Method for operating a fuel delivery device
EP3781804A1 (en) Method of controlling a fuel injector
US20170016552A1 (en) Electromagnetically operated switch valve
JP5748405B2 (en) Solenoid valve with material-connected anchor connection
US9777662B2 (en) Method and device for operating a fuel delivery device of an internal combustion engine
JP7330759B2 (en) How to Determine the Rise Time of an Electromagnetic Fuel Injector
JP2013507582A (en) Circuit for operating solenoid valve
KR101970081B1 (en) Fuel injection valve
JP6561184B2 (en) Drive device for fuel injection device
KR102161370B1 (en) How to operate a fuel injector with an idle stroke
CN107208615B (en) Method for operating a piston pump, actuating device for a piston pump, and piston pump
EP2206940B1 (en) Valve actuator
KR20150085779A (en) Fuel injector
JP6575333B2 (en) Fuel injection control device
JP6386129B2 (en) Drive device for fuel injection device
EP2746564B1 (en) Electromagnetic actuator assembly for a fluid injection valve and method for operating a fluid injection valve
JP2015206371A (en) Drive unit of solenoid valve device
JP4511950B2 (en) Electromagnet especially for solenoid valve
EP2211078B1 (en) Valve actuator
JP5799130B2 (en) Electromagnetic valve device drive device and electromagnetic valve device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130624

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130924

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140203

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140502

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141110