JP2013504722A - Method for manufacturing transverse element designed as part of push belt for continuously variable transmission - Google Patents

Method for manufacturing transverse element designed as part of push belt for continuously variable transmission Download PDF

Info

Publication number
JP2013504722A
JP2013504722A JP2012528765A JP2012528765A JP2013504722A JP 2013504722 A JP2013504722 A JP 2013504722A JP 2012528765 A JP2012528765 A JP 2012528765A JP 2012528765 A JP2012528765 A JP 2012528765A JP 2013504722 A JP2013504722 A JP 2013504722A
Authority
JP
Japan
Prior art keywords
transverse element
piece
substrate
peripheral surface
punched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012528765A
Other languages
Japanese (ja)
Other versions
JP5810087B2 (en
Inventor
プリンセン、ルーカス、ヘンドリクス、ロベルタス、マリア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2013504722A publication Critical patent/JP2013504722A/en
Application granted granted Critical
Publication of JP5810087B2 publication Critical patent/JP5810087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/16V-belts, i.e. belts of tapered cross-section consisting of several parts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pulleys (AREA)
  • Punching Or Piercing (AREA)

Abstract

無段変速機用プッシュベルトの一部として設計された横断素子(10)を形成する工程において、横断素子(10)を、矩形の周囲を有する基材(30)のストリップ状の片から打ち抜く。この工程において、基材(30)の片の周表面(31)の部分(32)は切断されないままで横断素子(10)の周表面(13)の部分を構成するのに用いられる。これにより打ち抜き動作が最小化されるとともに基材の無駄及び打ち抜き工具に対する要求が最小化される。
【選択図】図4
In the process of forming a transverse element (10) designed as part of a continuously variable transmission push belt, the transverse element (10) is punched from a strip-shaped piece of substrate (30) having a rectangular perimeter. In this step, the part (32) of the peripheral surface (31) of the piece of the substrate (30) is used to constitute the part of the peripheral surface (13) of the transverse element (10) without being cut. This minimizes punching operations and minimizes substrate waste and punching tool requirements.
[Selection] Figure 4

Description

本発明は、無段変速機用プッシュベルトの一部として設計された横断素子の製造方法に関する。前記横断素子は2つの本体表面と該本体表面間に伸びる周表面とを有し、矩形の周囲を有する基材のストリップ状の片が用意され、該基材もまた2つの本体表面と該本体表面間に伸びる周表面とを有し、前記横断素子が前記基材の片から打ち抜かれる。   The present invention relates to a method for manufacturing a transverse element designed as part of a push belt for a continuously variable transmission. The transverse element has two body surfaces and a peripheral surface extending between the body surfaces, and a strip-like piece of substrate having a rectangular perimeter is provided, the substrate also comprising two body surfaces and the body And a transverse surface extending between the surfaces, the transverse element being punched from a piece of the substrate.

無段変速機用プッシュベルトは一般的に周知である。通常、このようなプッシュベルトは比較的多数の横断素子を搬送する閉ループのように形成された2つのエンドレスなリボン状キャリアを有する。横断素子はキャリアの全周囲に沿って配置され、プッシュベルトの動きに関連した力を伝達できる。   A push belt for a continuously variable transmission is generally known. Such push belts typically have two endless ribbon carriers formed like a closed loop carrying a relatively large number of transverse elements. The transverse elements are arranged along the entire circumference of the carrier and can transmit forces related to the movement of the push belt.

横断素子は、プッシュベルトのキャリアを受けるために2つの側面に凹部を有する。また横断素子はキャリアを支持するための搬送表面を有する。さらに、横断素子と無段階変速機の滑車の綱車と間の接触のため、横断素子は2つの側面に綱車接触表面を有し、これらは搬送表面に近づく方向に互いに対して発散するよう設けられている。以下に記載する「上」及び「下」なる用語は、下から上への方向として定義される発散方向と関連する。   The transverse element has a recess on two sides for receiving the carrier of the push belt. The transverse element also has a transport surface for supporting the carrier. Furthermore, because of the contact between the transverse element and the sheave of the continuously variable transmission pulley, the transverse element has a sheave contact surface on two sides so that they diverge with respect to each other in the direction of approaching the conveying surface. Is provided. The terms “up” and “down” described below relate to the direction of divergence defined as the direction from bottom to top.

下から上に、横断素子は連続的に基部、ネック部及び上部を有し、ネック部の寸法は比較的小さい。基部には搬送表面及び綱車接触表面が設けられている。通常ブッシュベルトにおいて、基部はプッシュベルトの内周側に位置し、上部はプッシュベルトの外周側に位置する。   From bottom to top, the transverse element has a base, a neck and a top in succession, and the dimensions of the neck are relatively small. The base is provided with a transport surface and a sheave contact surface. Usually, in the bush belt, the base is located on the inner peripheral side of the push belt, and the upper part is located on the outer peripheral side of the push belt.

横断素子は、互いに対してほぼ平行に伸びる2つの本体表面を有する。プッシュベルト内の横断素子の正しい位置は、本体表面がプッシュベルトの周方向に対しておおよそ垂直となる位置である。横断素子の第一本体表面の少なくとも一部が、プッシュベルトにおいて隣接する横断素子の第二本体表面の少なくとも一部に当接するよう設計されている。また、横断素子の第二本体表面の少なくとも一部が、プッシュベルトにおいて隣接する別の横断素子の第一本体表面の少なくとも一部に当接するよう設計されている。   The transverse element has two body surfaces that extend substantially parallel to each other. The correct position of the transverse element in the push belt is such that the body surface is approximately perpendicular to the circumferential direction of the push belt. At least a portion of the first body surface of the transverse element is designed to abut at least a portion of the second body surface of the adjacent transverse element in the push belt. Also, at least a part of the second body surface of the transverse element is designed to abut at least a part of the first body surface of another transverse element adjacent in the push belt.

搬送表面及び綱車接触表面を一部に含む周表面は、2つの本体表面間に伸びる。さらに上部は、搬送表面と対向する、周表面の一部でもある2つの保持表面を有する。横断素子がプッシュベルト内に収容されると、搬送表面が一方の側に配置され且つ保持表面が他方の側に配置されることにより、キャリアの位置がプッシュベルトの径方向に定められる。周表面の一部を構成する上部の他の表面は2つの上表面であり、これらは互いに接続し且つ各々が端で保持表面と接続する。   A peripheral surface, partly including a transport surface and a sheave contact surface, extends between the two body surfaces. Furthermore, the upper part has two holding surfaces that are also part of the peripheral surface, facing the conveying surface. When the transverse element is housed in the push belt, the carrier surface is located on one side and the holding surface is located on the other side, thereby positioning the carrier in the radial direction of the push belt. The other surface of the upper part that constitutes a part of the peripheral surface is the two upper surfaces, which connect to each other and each connect to the holding surface at the ends.

横断素子の一つの本体表面上には突出部が設けられており、横断素子のもう一つの本体表面上には、以下くぼみとも称する凹部が設けられている。突出部及びくぼみの位置は互いに対応しており、通常突出部及びくぼみは上部に配置される。プッシュベルトにおいて、各横断素子の突出部が少なくとも部分的に隣接する横断素子のくぼみ内に位置することにより、プッシュベルトの周方向に垂直な面内での横断素子の相互のずれが防止される。   A protrusion is provided on the surface of one body of the transverse element, and a recess, hereinafter also referred to as a recess, is provided on the other body surface of the transverse element. The positions of the protrusion and the depression correspond to each other, and the protrusion and the depression are usually arranged at the upper part. In the push belt, the protrusion of each transverse element is located at least partially in the recess of the adjacent transverse element, thereby preventing the mutual displacement of the transverse elements in a plane perpendicular to the circumferential direction of the push belt. .

基材の片から横断部材を打ち抜くことにより基材の片から横断素子を製造する。横断素子と同じように、基材の片は2つの本体表面及び周表面を有し、横断素子の本体表面は、基材の片の本体表面を基にして得られる。換言すれば、打ち抜き動作が実行されて横断素子が基材の残部から切り離されると、横断素子の本体表面は基材の片の本体表面の打ち抜かれた部分となる。横断素子の周表面は、打ち抜き動作の結果として基材の片から実際に分離された表面である。   A transverse element is produced from a piece of substrate by punching a transverse member from the piece of substrate. As with the transverse element, the piece of substrate has two body surfaces and a peripheral surface, and the body surface of the transverse element is obtained based on the body surface of the piece of substrate. In other words, when the punching operation is performed and the transverse element is cut off from the rest of the substrate, the body surface of the transverse element becomes the stamped portion of the body surface of the piece of substrate. The circumferential surface of the transverse element is the surface that is actually separated from the piece of substrate as a result of the punching operation.

通常、打ち抜き動作は、打ち抜き型が用いられる打ち抜き処理を介して実行され、横断素子を打ち抜くために打ち抜き型が基材の片を貫通して押される。いわゆるファインブランキング処理を用いて横断素子を製造することも可能であり、この処理では打ち抜き型と、基材の片の打ち抜かれた部分を支持するための要素との両方が用いられる。これらの場合のそれぞれにおいて、適切な構造内に基材をクランプすることにより基材の片が保持され、打ち抜き型が基材の片を貫通して動かされ、打ち抜き型の打ち抜き周縁によって基材の片の一部が基材の片の残部から分離される。したがって、打ち抜かれた部分即ち横断素子の周囲は、打ち抜き型の打ち抜き縁と実質的に同じである。   Typically, the punching operation is performed through a punching process in which a punching die is used, and the punching die is pushed through a piece of substrate to punch the transverse element. It is also possible to produce transverse elements using a so-called fine blanking process, which uses both a punching die and an element for supporting the stamped part of a piece of substrate. In each of these cases, the piece of substrate is held by clamping the substrate in the appropriate structure, the punching die is moved through the piece of substrate, and the punching edge of the punching die causes the substrate to A portion of the piece is separated from the remainder of the substrate piece. Thus, the perforated portion, ie the periphery of the transverse element, is substantially the same as the punching edge of the punching die.

打ち抜き型には、打ち抜き縁の他に、ブランキング処理中に打ち抜かれる横断素子の本体表面の一つと接触する表面が設けられている。この表面の形状は、ブランキング処理中に加えられる圧力の影響下で横断素子の本体表面の所望形状を実現するのに適している。例えば、打ち抜き型は、突出部及びくぼみを形成するための突出部又は凹部などの手段を有する。これに関し、通常、基材の片の本体表面は平坦な外見を有する。この事実にもかかわらず、該本体表面の一つは段を有してもよく、これにより横断素子の本体表面の一つに段が形成される。   In addition to the punching edge, the punching die is provided with a surface that contacts one of the body surfaces of the transverse element that is punched during the blanking process. This surface shape is suitable to achieve the desired shape of the body surface of the transverse element under the influence of the pressure applied during the blanking process. For example, the punching die has means such as protrusions or recesses to form protrusions and depressions. In this regard, usually the body surface of the piece of substrate has a flat appearance. Despite this fact, one of the body surfaces may have a step, thereby forming a step on one of the body surfaces of the transverse element.

横断素子の打ち抜き処理から出る廃棄物、このような廃棄物は基材の片の残部を含む、はできるだけ少ないことが要求される。さらに、打ち抜きに使用される手段は、製造が難しく且つ高精度でなければならないことから比較的高価であるので、これらの手段の摩耗及び裂傷はできるだけ少ないことが要求される。   Waste from the punching process of the transverse element, such waste is required to contain as little as possible, including the remainder of the substrate piece. Furthermore, the means used for punching are relatively expensive because they are difficult to manufacture and must be highly accurate, so that wear and tear of these means is required to be as low as possible.

上記した要求を鑑み、本発明は横断素子の製造方法を提案し、基材の片の周表面の部分が、横断素子の周表面の部分として、打ち抜かれる横断素子に含まれる。したがって、本発明を適用すると、横断素子の周表面は、基材の片における横断素子の周形状全体を打ち抜いて得られるのではなく基材の片の周の一部のみを打ち抜くことにより得られ、横断素子の周表面は基材の片の周表面の部分を含む別の部分を有する。基材から打ち抜かれる横断素子は基材の片の周表面の部分に沿って位置し、この部分は横断素子の周表面の部分を構成する。したがって、横断素子の周囲の一部において打抜き動作は行われない。   In view of the above-described requirements, the present invention proposes a method for manufacturing a transverse element, in which a portion of the peripheral surface of a piece of base material is included in a transverse element that is punched out as a portion of the peripheral surface of the transverse element. Therefore, when the present invention is applied, the circumferential surface of the transverse element is not obtained by punching out the entire circumferential shape of the transverse element in the piece of base material, but by punching out only a part of the circumference of the piece of base material. The circumferential surface of the transverse element has another portion including a portion of the circumferential surface of the piece of substrate. The transverse element that is punched from the substrate is located along a portion of the peripheral surface of the piece of substrate, which part constitutes a portion of the peripheral surface of the transverse element. Accordingly, the punching operation is not performed in a part around the transverse element.

明確にするために、横断素子の周表面の部分として打ち抜かれる横断素子に含まれる基材の片の周表面の部分を、基材の片の非打ち抜き表面部分と称し、基材の非打ち抜き表面部分と同じである横断素子の周表面の部分を、横断素子の非打ち抜き表面部分と称する。今一度、基材の片の非打ち抜き表面部分及び横断素子の非打ち表面部分は実際には物理的に同じ対象であることを強調する。   For the sake of clarity, the part of the peripheral surface of the piece of substrate contained in the transverse element that is stamped as part of the peripheral surface of the transverse element is referred to as the non-punched surface part of the piece of substrate, The portion of the circumferential surface of the transverse element that is the same as the portion is referred to as the non-punched surface portion of the transverse element. Once again, it is emphasized that the non-punched surface portion of the substrate piece and the non-punched surface portion of the transverse element are actually the same physical object.

基材の片の周表面の部分を横断素子の周表面の部分として使用する利点は、打ち抜き処理から出る廃棄物の量が最小化されることである。その理由は、横断素子の非打ち抜き表面部分の形成において基材の除去が必要ないからである。さらに、基材の片の非打ち抜き表面部分において打ち抜き工具を用いる必要もないので、横断素子の製造コストが削減される。   An advantage of using the peripheral surface portion of the substrate piece as the peripheral surface portion of the transverse element is that the amount of waste from the stamping process is minimized. The reason is that it is not necessary to remove the substrate in the formation of the non-punched surface portion of the transverse element. Furthermore, since it is not necessary to use a punching tool at the non-punched surface portion of the piece of substrate, the manufacturing cost of the transverse element is reduced.

好ましくは、基材の片の非打ち抜き表面部分は、打ち抜かれる横断素子の基部内に位置する。特に、横断素子において非打ち抜き表面部分が綱車接触表面間に伸びるよう、基材の片の非打ち抜き表面部分から打ち抜き動作を開始して綱車接触表面を形成してもよい。綱車接触表面が搬送表面と接続する側と別の側において、各綱車接触表面が非打ち抜き表面部分に接続する。この場合、綱車接触表面が非打ち抜き表面部分に接続する位置で鋭い縁が形成される。横断素子の製造に従来のブランキング処理を用いた場合、横断素子の全周表面の形成には、基材の片を貫いて打ち抜くことにより基材の片の中で材料を切り離す必要がある。この場合、横断素子内の配置に関して横断素子の非打ち抜き表面部分と同等である表面部分と綱車接触表面とが接続する位置において、丸い縁が形成される。したがって、本発明を用いた場合、丸い縁がなくなるので、綱車接触表面をより大きく形成することができ、このことは、搬送力のための表面がより大きくなることから横断素子及び横断素子が適用されるプッシュベルトの性能に寄与する。一方で、綱車接触表面が拡大されなければ横断素子の基部はより小さくなり、重量及びコストが削減される。   Preferably, the non-punched surface portion of the piece of substrate is located within the base of the transverse element to be stamped. In particular, the sheave contact surface may be formed by initiating a punching operation from the non-punched surface portion of the piece of substrate such that the non-punched surface portion extends between the sheave contact surfaces in the transverse element. Each sheave contact surface connects to a non-punched surface portion on a side different from the side where the sheave contact surface connects to the transport surface. In this case, a sharp edge is formed at the position where the sheave contact surface connects to the non-punched surface portion. When a conventional blanking process is used in the production of the transverse element, the formation of the entire circumferential surface of the transverse element requires the material to be separated in the piece of substrate by punching through the piece of substrate. In this case, a rounded edge is formed at a location where the surface portion, which is equivalent to the non-punched surface portion of the transverse element with respect to the arrangement in the transverse element, and the sheave contact surface connect. Thus, when the present invention is used, the sheave contact surface can be made larger because there are no rounded edges, which means that the crossing element and the crossing element have a larger surface for the conveying force. Contributes to the performance of the applied push belt. On the other hand, if the sheave contact surface is not enlarged, the base of the transverse element will be smaller, reducing weight and cost.

基材の片の周表面は平坦な表面部分を有する。具体的には、基材の片の形状はストリップ状であり、基材の片の周囲は矩形である。前記周表面は4つの平坦な表面部分を有する。従来の設計では、横断素子内の配置に関して非打ち抜き部分と同等である横断素子の表面部分の外見は、平坦ではなくくぼんでいた。したがって、非打ち抜き部分を平坦な形状にすることで横断素子の基部の重量が増大し、その一方で横断素子のその他の部分の重量は変わらない。結果として横断素子の元の設計のバランスが失われ、したがってプッシュベルト内の横断素子の動的な振る舞いの低下を防止するためにさらなる対策をとることが好ましい。本発明によれば、上記対策として一以上の穴を横断素子に設ける。有利には、横断素子の基部において非打ち抜き表面部分が周表面の部分である場合には、前記一以上の穴は前記基部に設けられる。   The peripheral surface of the piece of substrate has a flat surface portion. Specifically, the shape of the piece of the base material is a strip shape, and the periphery of the piece of the base material is a rectangle. The peripheral surface has four flat surface portions. In conventional designs, the appearance of the surface portion of the transverse element that is equivalent to the non-punched portion with respect to placement within the transverse element has been recessed rather than flat. Accordingly, by making the non-punched portion flat, the weight of the base of the transverse element increases while the weight of the other parts of the transverse element remains unchanged. As a result, the balance of the original design of the transverse element is lost, so it is preferable to take further measures to prevent degradation of the dynamic behavior of the transverse element in the push belt. According to the present invention, one or more holes are provided in the transverse element as the countermeasure. Advantageously, the one or more holes are provided in the base when the non-punched surface portion is a peripheral surface portion at the base of the transverse element.

基材の片の本体表面の一つに段を設けた場合、前記一以上の穴を基材の片の最も薄い部分に設ければ有利である。穴と横断素子の周表面の間の距離をできるだけ長くするために、穴を段のできる限り近くに位置してもよく、これにより横断素子の強度が適切なレベルに維持されこの部分が破損するリスクが最小化される。実用的な状況では、「段のできる限り近く」とは、例えば段からの距離が0.1mm以内であることを意味する。   When a step is provided on one of the body surfaces of a piece of substrate, it is advantageous if the one or more holes are provided in the thinnest part of the piece of substrate. In order to make the distance between the hole and the circumferential surface of the transverse element as long as possible, the hole may be located as close as possible to the step, thereby maintaining the strength of the transverse element at an appropriate level and breaking this part Risk is minimized. In practical situations, “as close as possible to the step” means, for example, that the distance from the step is within 0.1 mm.

本発明に係る方法を実施する実際の方法において、2つの穴が横断素子に設けられる。具体的には、2つの穴は横断素子の基部に設けられ、ネック部の仮想延長部に当たる基部の中心部の両側に配置される。   In the actual way of carrying out the method according to the invention, two holes are provided in the transverse element. Specifically, the two holes are provided at the base of the transverse element, and are arranged on both sides of the center of the base that corresponds to the virtual extension of the neck.

本発明に係る方法を適用した場合であって横断素子の非打ち抜き部分が平坦である場合、横断素子の最終工程に関するプラス効果が実現する。特に、横断素子に焼き入れを用いる硬化処理を施してもよく、ここで横断素子の材料が最初に膨張し、その後非常に早く縮小する。一般的な形状の横断素子の場合、この早い縮小工程はいくらか不均一に生じ、その結果、綱車接触表面の方位角分布が望ましくないものとなる。横断素子において綱車接触表面間に伸びる平坦な非打ち抜き部分があると、この部分の位置において比較的大きな曲げ剛性があり、綱車接触表面の方位角分布が減少すると考えられる。   When the method according to the present invention is applied and the non-punched portion of the transverse element is flat, a positive effect on the final process of the transverse element is realized. In particular, the transverse element may be subjected to a hardening treatment using quenching, where the transverse element material first expands and then shrinks very quickly. In the case of a generally shaped transverse element, this rapid reduction process occurs somewhat unevenly, resulting in an undesirable azimuthal distribution of the sheave contact surface. It is considered that if there is a flat non-punched portion extending between the sheave contact surfaces in the transverse element, there is a relatively large bending rigidity at the position of this portion, and the azimuth distribution of the sheave contact surface is reduced.

さらに、横断素子に上記した穴を設けた場合、横断素子の基部に対してより均一な冷却処理を実現でき、これにより縮小工程がさらに均一になる。縮小工程が最も均一となり変形が最小となるよう、穴の位置、形状及び寸法などの因子を適合できる。これに関し、穴の縁及び一番近い綱車接触表面の間の距離と、穴の縁及び綱車接触表面間に伸びる横断素子の下表面の間の距離とがおおよそ同じになるよう、各穴を位置決めすることが有利である。何れに場合にも、穴の縁と下表面との間の最小距離が、穴の縁と一番近い綱車接触表面との間の最小距離よりも大きく、且つ穴の縁と一番近い綱車接触表面との間の最大距離よりも小さいことが有利である。ここで、一番近い綱車接触表面までの距離は、発散する綱車接触表面間に伸びる仮想対称面に垂直な方向に沿って決定される。   Further, when the above-described hole is provided in the transverse element, a more uniform cooling process can be realized on the base of the transverse element, thereby further reducing the reduction process. Factors such as hole location, shape and dimensions can be adapted so that the reduction process is most uniform and deformation is minimized. In this regard, each hole is such that the distance between the hole edge and the nearest sheave contact surface is approximately the same as the distance between the bottom surface of the transverse element that extends between the hole edge and the sheave contact surface. It is advantageous to position In any case, the minimum distance between the edge of the hole and the lower surface is greater than the minimum distance between the edge of the hole and the nearest sheave contact surface, and the rope closest to the hole edge. Advantageously, it is less than the maximum distance between the car contact surfaces. Here, the distance to the nearest sheave contact surface is determined along a direction perpendicular to a virtual symmetry plane extending between the sheave contact surfaces that diverge.

本発明の範囲内で、必要な打ち抜き動作を実現するためにブランキング法を適用してもよい。一般的に、一回の打ち抜きストロークで基材の片から横断素子を打ち抜くような方法を適用することが可能である。そうすることにより、打ち抜き処理において横断素子は別の横断素子と組み合わされて、両方の横断素子が一回のストロークで基材の片から打ち抜かれて同時に又はその後切り離される。2つ以上の横断素子を同時に打ち抜くことも可能である。   Within the scope of the present invention, a blanking method may be applied to realize the necessary punching operation. In general, it is possible to apply a method in which the transverse element is punched from a piece of the substrate with a single punching stroke. By doing so, the transverse element is combined with another transverse element in the punching process, so that both transverse elements are punched from the piece of substrate in one stroke and simultaneously or subsequently separated. It is also possible to punch two or more transverse elements simultaneously.

本発明は、基材の片の周表面の部分を横断素子の周表面の部分として用いるというものであり、この部分は処理する必要がなく、この部分の位置において打ち抜き動作を省くことができる。本発明はまた、非打ち抜き部分が存在する横断素子を有する無段変速機用プッシュベルトに関し、またそのようなプッシュベルトを有する無段変速機に関する。   In the present invention, the peripheral surface portion of the base piece is used as the peripheral surface portion of the transverse element. This portion does not need to be processed, and the punching operation can be omitted at the position of this portion. The present invention also relates to a continuously variable transmission push belt having a transverse element in which a non-punched portion exists, and to a continuously variable transmission having such a push belt.

プッシュベルトを有する無段変速機の側面図である。It is a side view of a continuously variable transmission having a push belt. 本発明に係る横断素子の図である。FIG. 3 is a diagram of a transverse element according to the present invention. 本発明に係る横断素子を別の方向から見た図である。It is the figure which looked at the transverse element which concerns on this invention from another direction. 横断素子の周表面の部分と、横断素子の製造工程中に横断素子が打ち抜かれる基材の片の周表面の部分とがどのように一致するかを示す図である。It is a figure which shows how the part of the surrounding surface of a transverse element and the part of the surrounding surface of the piece of the base material by which a transverse element is pierce | punched during the manufacturing process of a transverse element correspond.

以下、図面を参照して発明を説明する。図中、同等又は類似の構成要素には同じ符号を付している。   The invention will be described below with reference to the drawings. In the drawing, the same or similar components are denoted by the same reference numerals.

図1は、自動車などにおいて利用される無段変速機を示す。無段変速機は全体的に参照符号1で示される。   FIG. 1 shows a continuously variable transmission used in an automobile or the like. The continuously variable transmission is indicated generally by the reference numeral 1.

無段変速機1は、別個の滑車シャフト2、3上に配置された2つの滑車4、5を有する。閉ループ状のエンドレスなプッシュベルト6が滑車4、5の周囲に配置されて滑車シャフト2、3間のトルクを伝達する機能を果たす。それ自体が周知のように、各滑車4、5は2つの綱車を有し、摩擦の助けを借りて力が滑車4、5及びプッシュベルト間に伝えられるよう、プッシュベルト6が前記2つの綱車間に配置されてクランプされる。図1において、各滑車4、5の綱車の一つが図示される。   The continuously variable transmission 1 has two pulleys 4, 5 arranged on separate pulley shafts 2, 3. A closed loop endless push belt 6 is arranged around the pulleys 4 and 5 and functions to transmit torque between the pulley shafts 2 and 3. As is known per se, each pulley 4, 5 has two sheaves, and with the help of friction, a push belt 6 is connected to the two pulleys so that a force is transmitted between the pulleys 4, 5 and the push belt. It is placed between the sheaves and clamped. In FIG. 1, one of the sheaves of each pulley 4, 5 is illustrated.

プッシュベルト6は、通常多数のリングから構成される一以上のエンドレスなキャリア7を有する。キャリア7の全長に沿って横断素子10が配置され、横断素子10は互いに相互に隣接しており、キャリ7に対して周方向に動くことができる。簡潔化のために、これらの横断素子10のいくつかのみを図1に示す。通常、キャリア7と横断素子10の両方が金属から製造される。   The push belt 6 has one or more endless carriers 7 which are usually composed of a number of rings. Transverse elements 10 are arranged along the entire length of the carrier 7, and the transverse elements 10 are adjacent to each other and can move in the circumferential direction relative to the carrier 7. For simplicity, only some of these transverse elements 10 are shown in FIG. Usually both the carrier 7 and the transverse element 10 are made of metal.

図2及び図3に横断素子10を示す。横断素子10の第一本体表面が参照符号11により全体的に示され、横断素子10の第二本体表面が参照符号12により全体的に示される。周表面13は本体表面11、12間に伸びる。   2 and 3 show the transverse element 10. The first body surface of the transverse element 10 is indicated generally by the reference numeral 11 and the second body surface of the transverse element 10 is indicated generally by the reference numeral 12. The peripheral surface 13 extends between the main body surfaces 11 and 12.

下から上に、横断素子10は、連続的に、基部14、比較的幅狭なネック部15及び全体的に矢の先端のような形状の上部16を有する。通常、プッシュベルト6において、基部14はプッシュベルト6の内周側に位置し、上部16はプッシュベルト6の外周側に位置する。さらに、プッシュベルト6において、横断素子10の第一本体表面11の少なくとも一部が、後続の横断素子10の第二本体表面12の少なくとも一部に当接し、横断素子10の第二本体表面12の少なくとも一部が、先行する横断素子10の第一本体表面11の少なくとも一部に当接する。ネック部15への遷移において、横断素子10の基部14には、2つのキャリア7を支持する役割を果たす2つの搬送表面17が設けられている。さらに基部14には2つの綱車接触表面18が設けられている。横断素子10が滑車4、5上を移動するとき、横断素子10と綱車の接触表面との間の接触が、前記綱車接触表面18を介して実現する。下表面19は、綱車接触表面18間に伸びる。搬送表面17、綱車接触表面18及び下表面19は、周表面13の一部である。   From bottom to top, the transverse element 10 has a base 14, a relatively narrow neck 15 and an upper portion 16 generally shaped like an arrow tip. Usually, in the push belt 6, the base portion 14 is located on the inner peripheral side of the push belt 6, and the upper portion 16 is located on the outer peripheral side of the push belt 6. Furthermore, in the push belt 6, at least part of the first body surface 11 of the transverse element 10 abuts at least part of the second body surface 12 of the subsequent transverse element 10, and the second body surface 12 of the transverse element 10. At least partly abuts at least part of the first body surface 11 of the preceding transverse element 10. In the transition to the neck 15, the base 14 of the transverse element 10 is provided with two transport surfaces 17 that serve to support the two carriers 7. In addition, the sheave 14 is provided with two sheave contact surfaces 18. As the transverse element 10 moves over the pulleys 4, 5, contact between the transverse element 10 and the sheave contact surface is achieved via the sheave contact surface 18. The lower surface 19 extends between the sheave contact surfaces 18. The conveying surface 17, the sheave contact surface 18 and the lower surface 19 are part of the peripheral surface 13.

横断素子の第一本体表面11には、くぼみ21が設けられている。図3においてくぼみ21は点線で示される。図示した実施例では、くぼみ21は上部16に位置し第二本体表面12上の突出部22に対応する。プッシュベルト6において、横断素子10の突出部22は少なくとも部分的に、後続の横断素子10のくぼみ21内に位置する。突出部22及び対応するくぼみ21は、隣り合う横断素子10同士の、プッシュベルト6の周方向に垂直な面における相互の位置ずれを防ぐ役割を果たす。   A recess 21 is provided in the first body surface 11 of the transverse element. In FIG. 3, the recess 21 is indicated by a dotted line. In the illustrated embodiment, the recess 21 is located in the upper portion 16 and corresponds to the protrusion 22 on the second body surface 12. In the push belt 6, the protrusion 22 of the transverse element 10 is at least partly located in the recess 21 of the subsequent transverse element 10. The protrusions 22 and the corresponding recesses 21 serve to prevent mutual displacement between adjacent transverse elements 10 on a plane perpendicular to the circumferential direction of the push belt 6.

上部16は搬送表面17に対向する2つの保持表面23を有する。横断素子10がプッシュベルト6内に配置されると、一方の側の搬送表面17及び他方の側の保持表面23によりキャリア7の径方向の位置が定まる。さらに、上部16は、互いに接続した2つの上表面24を有する。各上表面24は端において上部16の保持表面23に接続している。保持表面23及び上表面24は周表面13の一部である。   The upper part 16 has two holding surfaces 23 facing the conveying surface 17. When the transverse element 10 is arranged in the push belt 6, the radial position of the carrier 7 is determined by the conveying surface 17 on one side and the holding surface 23 on the other side. Furthermore, the upper part 16 has two upper surfaces 24 connected to each other. Each upper surface 24 is connected at its end to the holding surface 23 of the upper part 16. The holding surface 23 and the upper surface 24 are part of the peripheral surface 13.

横断素子10の第一本体表面11には、くぼみ21の他に、傾斜線25及び段26が設けられている。段26は下部27と上部28の間に位置し、第一本体表面11が基部14の下部27の位置でくぼんでいる。傾斜線25は基部14の上部28に位置し、搬送表面17から比較的短い距離にある。傾斜線25は、横断素子10の本体表面11において凸状に屈曲した遷移域として成形され、プッシュベルト6内の隣り合う横断素子10間の定められた相互接触を全ての状態下で保証する役割を果たし、そのような状態は横断素子10が無段変速機1の滑車4、5上を移動し円形経路に沿って進む必要があるときを含む。傾斜線25及び段26の両方が、横断素子10の全幅に沿って、搬送表面17とほぼ平行に伸びる。   In addition to the recess 21, an inclined line 25 and a step 26 are provided on the first body surface 11 of the transverse element 10. The step 26 is located between the lower portion 27 and the upper portion 28, and the first body surface 11 is recessed at the position of the lower portion 27 of the base portion 14. The inclined line 25 is located in the upper part 28 of the base 14 and is at a relatively short distance from the conveying surface 17. The inclined line 25 is shaped as a convexly bent transition zone on the body surface 11 of the transverse element 10 and serves to ensure a defined mutual contact between adjacent transverse elements 10 in the push belt 6 under all conditions. Such a situation includes when the transverse element 10 needs to move over the pulleys 4, 5 of the continuously variable transmission 1 and travel along a circular path. Both the inclined line 25 and the step 26 extend substantially parallel to the conveying surface 17 along the entire width of the transverse element 10.

横断素子10の製造方法は、基材の片から横断素子10を打ち抜く工程を含む。多くの場合、そして本発明の場合も、基材の片はストリップ状の形状を有し、これにより複数の横断素子10を基材の単一片から作成することができ、横断素子10が一列に連続する位置において基材から打ち抜かれる。これに関し、ストリップ状の基材の片の幅は、連続的に打ち抜かれる横断素子10を二列以上にすることができるよう十分広くてもよい。   The method for manufacturing the transverse element 10 includes a step of punching the transverse element 10 from a piece of substrate. In many cases, and also in the present invention, the strip of substrate has a strip-like shape so that a plurality of transverse elements 10 can be made from a single piece of substrate, with the transverse elements 10 in a row. Punched from the substrate at successive locations. In this regard, the width of the strip-shaped substrate piece may be wide enough so that the transverse elements 10 to be continuously punched can be in two or more rows.

図4は、横断素子10を一列で製造する場合の使用に適した基材30のストリップ状の片の一例を示す。しかしながらこれは、本発明において横断素子10を二列以上で製造する場合の使用に適した基材30を適用してもよいという事実を変えるものではない。図4は、基材30のストリップ状の片の一部と、基材30の片から及び打ち抜かれる横断素子10の周表面13とを示す。有利には、実現される横断素子10のように、基材30の片は2つの本体表面11、12を有し、第一本体表面11に段26が設けられている。周表面31が2つの本体表面11、12間に伸びる。本発明の範囲内で、打ち抜き処理は任意の適切な様式で実施することができ、例えばブランキング処理を用いて実施することができる。   FIG. 4 shows an example of a strip-like piece of substrate 30 suitable for use when producing transverse elements 10 in a row. However, this does not change the fact that a substrate 30 suitable for use in the case where the transverse elements 10 are produced in more than one row in the present invention may be applied. FIG. 4 shows a part of a strip-like piece of the substrate 30 and the peripheral surface 13 of the transverse element 10 that is punched out of and from the piece of substrate 30. Advantageously, like the transverse element 10 to be realized, a piece of the substrate 30 has two body surfaces 11, 12, and a step 26 is provided on the first body surface 11. A circumferential surface 31 extends between the two body surfaces 11, 12. Within the scope of the present invention, the punching process can be carried out in any suitable manner, for example using a blanking process.

本発明によれば、横断素子の下表面19は基材30の片の周表面31の部分32と一致し、この部分32は本明細書において非打ち抜き表面部分32と称する。したがって、横断素子10の下表面を形成するための打ち抜き動作は不要であり、搬送表面17、綱車接触表面18、保持表面23及び上表面24を含む周表面13の他の部分の形成のみが必要となる。   According to the present invention, the lower surface 19 of the transverse element coincides with a portion 32 of the peripheral surface 31 of the piece of substrate 30, which portion 32 is referred to herein as a non-punched surface portion 32. Thus, a punching action to form the lower surface of the transverse element 10 is not necessary, only the formation of other parts of the peripheral surface 13 including the conveying surface 17, sheave contact surface 18, holding surface 23 and upper surface 24. Necessary.

基材30の片の非打ち抜き表面部分32を横断素子10の下表面として使用することを意図するとの事実は多くの利点を有し、例えば基材の無駄の最小化及び横断素子10の下表面19を打ち抜くための工具が不要となる。   The fact that the non-punched surface portion 32 of a piece of substrate 30 is intended to be used as the lower surface of transverse element 10 has many advantages, such as minimizing substrate waste and lower surface of transverse element 10. A tool for punching 19 becomes unnecessary.

図示した例において、基材30の片の非打ち抜き表面部分32は平坦な外見を有する。したがって、横断素子10の下表面19は平坦な外見を有する。下表面19は鋭い端を介して綱車接触表面18と接続し、このことは打ち抜き処理により得られる下表面19の場合とは異なる。この事実は、綱車接触表面18をより大きくすることができ、あるいはもっと小さな基部14を用いた場合にも綱車接触表面18の元の寸法と同じ寸法の綱車接触表面18を得ることができる点で有利である。   In the illustrated example, the non-punched surface portion 32 of the piece of substrate 30 has a flat appearance. Therefore, the lower surface 19 of the transverse element 10 has a flat appearance. The lower surface 19 is connected to the sheave contact surface 18 via a sharp edge, which is different from the case of the lower surface 19 obtained by a stamping process. This fact may allow the sheave contact surface 18 to be larger, or even with a smaller base 14 to obtain a sheave contact surface 18 that is the same size as the original dimension of the sheave contact surface 18. This is advantageous.

平坦な外観であることの他の重要性は、基部14がネック部15及び上部16よりも重いということである。プッシュベルト6において横断素子10の正しいバランス及び横断素子10の適切な振る舞いを保つために、横断素子10の基部14に穴29を設ける。図示された例において、穴29は楕円形の形状であるが、この形状は本発明の範囲内で必須ではない。好ましくは、穴29は、基部14の比較的薄い下部27に配置され、横断素子10が基材30の片から打ち抜かれるのと同時に打ち抜かれる。さらに、横断素子10の強度を許容できない程度にまで落とさないために、ネック部15の仮想延長部に対応する基部14の中心部の外側に、穴29を配置することが好ましい。   Another important aspect of having a flat appearance is that the base 14 is heavier than the neck 15 and top 16. In order to maintain the correct balance of the transverse element 10 and the proper behavior of the transverse element 10 in the push belt 6, a hole 29 is provided in the base 14 of the transverse element 10. In the example shown, the hole 29 is oval in shape, but this shape is not essential within the scope of the invention. Preferably, the hole 29 is located in the relatively thin lower portion 27 of the base 14 and is punched at the same time that the transverse element 10 is punched from a piece of substrate 30. Furthermore, in order not to drop the strength of the transverse element 10 to an unacceptable level, it is preferable to arrange the hole 29 outside the central portion of the base portion 14 corresponding to the virtual extension portion of the neck portion 15.

穴29を段26にできるだけ近づけて配置してもよい。例えば穴29の上端と段26の間の距離はわずか0.1mmである。穴29を設けることにより横断素子10に若干の柔軟性を与え、このことは横断素子10をプッシュベルトに適用するときに非常に有利であり、横断素子10の動的な振る舞いが改善する。   The hole 29 may be arranged as close to the step 26 as possible. For example, the distance between the upper end of the hole 29 and the step 26 is only 0.1 mm. Providing the holes 29 gives the transverse element 10 some flexibility, which is very advantageous when the transverse element 10 is applied to a push belt and improves the dynamic behavior of the transverse element 10.

まとめると、無段変速機1用のプッシュベルト6の一部として設計された横断素子10を形成する工程において、矩形の周囲を有する基材30のストリップ状の片から横断素子10を打ち抜く。この工程において、基材30の片の周表面31の部分32は打ち抜かれないまま保たれ、横断素子10の周表面13の部分19を構成するために用いられる。このようにして打ち抜き動作が最小化されるとともに基材の無駄及び打ち抜き工具に対する要求が最小化される。   In summary, in the step of forming the transverse element 10 designed as a part of the push belt 6 for the continuously variable transmission 1, the transverse element 10 is punched from a strip-shaped piece of the base material 30 having a rectangular periphery. In this step, the portion 32 of the peripheral surface 31 of the piece of substrate 30 is kept uncut and used to construct the portion 19 of the peripheral surface 13 of the transverse element 10. In this way, punching operations are minimized and substrate waste and punching tool requirements are minimized.

当業者にとってあきらかであるように、本発明の範囲は、本明細書に記載された実施例に限定されず、添付された特許請求の範囲に記載したように本発明の範囲内で様々な補正及び修正が可能である。   As will be apparent to those skilled in the art, the scope of the present invention is not limited to the embodiments described herein, but various modifications within the scope of the present invention as set forth in the appended claims. And modifications are possible.

Claims (13)

無段変速機(1)用のプッシュベルト(6)の一部として設計された横断素子(10)の製造方法において、
矩形の周囲を有する基材(30)のストリップ状の片を準備する工程と、前記横断素子(10)を前記基材(30)の片から打ち抜く工程と、を含み、
前記横断素子(10)は2つの本体表面(11、12)と該本体表面(11、12)間に伸びる周表面(13)とを有し、
前記基材(30)は2つの本体表面(11、12)と該本体表面(11、12)間に伸びる周表面(31)とを有し、
前記基材(30)の片の前記周表面(31)の部分(32)が、前記横断素子(10)の前記周表面(13)の部分(19)として、打ち抜かれる前記横断素子(10)に含まれる
ことを特徴とする製造方法。
In the method of manufacturing a transverse element (10) designed as part of a push belt (6) for a continuously variable transmission (1),
Providing a strip-shaped piece of substrate (30) having a rectangular perimeter; and punching the transverse element (10) from the piece of substrate (30);
The transverse element (10) has two body surfaces (11, 12) and a peripheral surface (13) extending between the body surfaces (11, 12);
The substrate (30) has two body surfaces (11, 12) and a peripheral surface (31) extending between the body surfaces (11, 12);
The transverse element (10) in which the part (32) of the peripheral surface (31) of the piece of base material (30) is punched out as part (19) of the peripheral surface (13) of the transverse element (10) The manufacturing method characterized by the above-mentioned.
前記横断素子(10)には、比較的広い基部(14)と、上部(16)と、前記基部(14)及び前記上部(16)の間に伸びる比較的小さなネック部(15)と、が形成され、
前記横断素子(10)の前記周表面(13)は、前記基部(14)の位置において、プッシュベルト(6)のキャリア(7)を支持する搬送表面(17)と、無段変速機(1)の滑車(4、5)の綱車と接触する綱車接触表面(18)と、を有し、
前記綱車接触表面(18)は、前記搬送表面(17)に近づく方向に互いに発散するよう構成され、
前記基材(30)の片の前記周表面(31)の前記部分(32)が、前記横断素子(10)の前記基部(14)に位置し、
前記基材(30)の片の前記周表面(31)の前記部分(32)は、前記横断素子(10)の前記周表面(13)の部分(19)として、打ち抜かれる前記横断素子(10)に含まれる
ことを特徴とする請求項1に記載の製造方法。
The transverse element (10) has a relatively wide base (14), a top (16), and a relatively small neck (15) extending between the base (14) and the top (16). Formed,
The circumferential surface (13) of the transverse element (10) has a conveying surface (17) for supporting the carrier (7) of the push belt (6) and a continuously variable transmission (1) at the position of the base (14). A sheave contact surface (18) that contacts the sheave of the pulley (4, 5) of
The sheave contact surface (18) is configured to diverge from each other in a direction approaching the transport surface (17);
The portion (32) of the peripheral surface (31) of the piece of the substrate (30) is located at the base (14) of the transverse element (10);
The part (32) of the peripheral surface (31) of the piece of the substrate (30) is punched as the part (19) of the peripheral surface (13) of the transverse element (10). 2) The production method according to claim 1, wherein
前記綱車接触表面(18)は、前記基材(30)の片の前記周表面(31)の前記部分(32)に接続して形成され、
前記基材(30)の片の前記周表面(31)の前記部分(32)は、前記横断素子(10)の前記周表面(13)の部分(19)として、打ち抜かれる前記横断素子(10)に含まれる
ことを特徴とする請求項2に記載の製造方法。
The sheave contact surface (18) is formed in connection with the portion (32) of the peripheral surface (31) of the piece of base material (30),
The part (32) of the peripheral surface (31) of the piece of the substrate (30) is punched as the part (19) of the peripheral surface (13) of the transverse element (10). 3) The production method according to claim 2, wherein
前記横断素子(10)に一以上の穴(29)を設けることを特徴とする請求項1−3の何れか一項に記載の製造方法。   The method according to any one of claims 1 to 3, wherein the transverse element (10) is provided with one or more holes (29). 前記一以上の穴(29)が前記横断素子(10)の前記基部(14)に配置されることを特徴とする請求項2−4の何れか一項に記載の製造方法。   5. The method according to claim 2, wherein the one or more holes (29) are arranged in the base (14) of the transverse element (10). 前記基材(30)の前記本体表面(11、12)の一つに段(26)が設けられた基材(30)の片を使用し、
前記一以上の穴(29)が前記段(26)の比較的近くに配置される
ことを特徴とする請求項4又は5に記載の製造方法。
Using a piece of substrate (30) provided with a step (26) on one of the body surfaces (11, 12) of the substrate (30),
6. A method according to claim 4 or 5, wherein the one or more holes (29) are arranged relatively close to the step (26).
前記横断素子(10)に2つの穴(29)を設けることを特徴とする請求項4−6の何れか一項に記載の製造方法。   7. A method according to any one of claims 4-6, characterized in that two holes (29) are provided in the transverse element (10). 前記穴(29)は、前記ネック部(15)の仮想延長部分に対応する前記基部(14)の中心部の両側で、前記横断素子(10)の前記基部(14)に配置されることを特徴とする請求項7に記載の製造方法。   The hole (29) is disposed on the base (14) of the transverse element (10) on both sides of the center of the base (14) corresponding to the virtual extension of the neck (15). The manufacturing method according to claim 7, wherein the manufacturing method is characterized. 前記横断素子(10)を、一回の打ち抜きストロークで、前記基材(30)の片から打ち抜くことを特徴とする請求項1−8の何れか一項に記載の製造方法。   9. A method according to any one of the preceding claims, characterized in that the transverse element (10) is punched from a piece of the substrate (30) with a single punch stroke. 前記横断素子(10)を、一回の打ち抜きストロークで、別の横断素子(10)と一緒に前記基材(30)の片から打ち抜くことを特徴とする請求項1−9の何れか一項に記載の製造方法。   10. The transverse element (10) according to any one of the preceding claims, characterized in that it is punched from a piece of the substrate (30) together with another transverse element (10) in a single punching stroke. The manufacturing method as described in. ブランキング法を用いて前記基材(30)の片から前記横断素子(10)を打ち抜き、ここで打ち抜き縁を有する打ち抜き型と前記基材(30)の片とを互いに押し付けることを特徴とする請求項1−10の何れか一項に記載の製造方法。   The transverse element (10) is punched from a piece of the base material (30) using a blanking method, and the punching die having a punching edge and the piece of the base material (30) are pressed against each other. The manufacturing method as described in any one of Claims 1-10. 一以上のエンドレスなキャリア(7)と、前記キャリア(7)の周囲に沿って配置された横断素子(10)と、を有する無段変速機(1)用のプッシュベルト(6)において、前記横断素子(10)が請求項1−11の何れか一項に記載の方法を用いて製造されたことを特徴とするプッシュベルト。   In a push belt (6) for a continuously variable transmission (1) comprising one or more endless carriers (7) and transverse elements (10) arranged along the circumference of the carrier (7), Push belt, characterized in that the transverse element (10) is manufactured using the method according to any one of claims 1-11. 請求項12に記載のプッシュベルト(6)を有することを特徴とする無段変速機(1)。   A continuously variable transmission (1) comprising a push belt (6) according to claim 12.
JP2012528765A 2009-09-11 2010-09-10 Method for manufacturing transverse element designed as part of push belt for continuously variable transmission Active JP5810087B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL1037273A NL1037273C2 (en) 2009-09-11 2009-09-11 Method for manufacturing a transverse element which is destined to be part of a push belt for a continuously variable transmission.
NL1037273 2009-09-11
PCT/NL2010/000131 WO2011031137A1 (en) 2009-09-11 2010-09-10 Method for manufacturing a transverse element which is destined to be part of a push belt for a continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2013504722A true JP2013504722A (en) 2013-02-07
JP5810087B2 JP5810087B2 (en) 2015-11-11

Family

ID=42061114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012528765A Active JP5810087B2 (en) 2009-09-11 2010-09-10 Method for manufacturing transverse element designed as part of push belt for continuously variable transmission

Country Status (4)

Country Link
JP (1) JP5810087B2 (en)
CN (1) CN102483128B (en)
NL (1) NL1037273C2 (en)
WO (1) WO2011031137A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1039982C2 (en) * 2012-12-28 2014-07-03 Bosch Gmbh Robert Drive belt with a carrier ring and transverse segments.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333046U (en) * 1986-08-20 1988-03-03
JPH0694082A (en) * 1991-11-28 1994-04-05 Mitsuboshi Belting Ltd High load transmission belt

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3466042D1 (en) * 1983-07-29 1987-10-15 Bando Chemical Ind V BELT
JPS61103028A (en) * 1984-10-23 1986-05-21 Toyota Motor Corp Power transmission block of endless belt
NL8700156A (en) * 1987-01-23 1988-08-16 Doornes Transmissie Bv DRIVING BELT, CROSS-ELEMENT FOR A DRIVING BELT AND METHOD AND APPARATUS FOR MANUFACTURE THEREOF.
NL9101218A (en) * 1991-07-11 1993-02-01 Doornes Transmissie Bv CROSS-ELEMENT FOR A BELT.
JP2004160497A (en) * 2002-11-13 2004-06-10 Mitsui High Tec Inc Method for manufacturing element of transmission belt for stepless transmission
NL1030702C2 (en) * 2005-12-19 2007-06-20 Bosch Gmbh Robert Method for manufacturing a transverse element intended to form part of a push belt for a continuously variable transmission.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333046U (en) * 1986-08-20 1988-03-03
JPH0694082A (en) * 1991-11-28 1994-04-05 Mitsuboshi Belting Ltd High load transmission belt

Also Published As

Publication number Publication date
WO2011031137A1 (en) 2011-03-17
CN102483128B (en) 2014-12-17
CN102483128A (en) 2012-05-30
NL1037273C2 (en) 2011-03-14
JP5810087B2 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
US8100797B2 (en) Method for forming a tilting zone on a transverse element for a push belt for a continuously variable transmission
JP5350801B2 (en) Method for manufacturing transverse element as part of push belt for continuously variable transmission
JP5212064B2 (en) Transmission belt element forming method and forming apparatus
EP2783771B1 (en) Device and method for punching element
US10612653B2 (en) Metal element for continuously variable transmission and method of manufacturing metal element for continuously variable transmission
JP2006503236A (en) Drive belt with transverse elements and punching device for creating transverse elements
JP5810087B2 (en) Method for manufacturing transverse element designed as part of push belt for continuously variable transmission
JP2002213539A (en) Element for cvt belt and its manufacturing method
JP5726748B2 (en) Forming the transverse element of the push belt
JP5382530B2 (en) Split blanking member designed for use with blanking transverse elements used in push belts for continuously variable transmissions
US20180172061A1 (en) Method of manufacturing washer and washer
JP5401472B2 (en) Blanking assembly for punching transverse elements used in push belts for continuously variable transmissions
US10994323B2 (en) Method of manufacturing washer and washer
JP4837674B2 (en) Transverse element with a predetermined area to receive retraction
KR100751004B1 (en) Tooth profile used with cip mount transfer device and method for producing the same
CN108266494B (en) Method for producing a transverse segment of a drive belt for a continuously variable transmission and transverse segment produced
JP6586373B2 (en) Manufacturing method for recess processed products
JP2010029918A (en) Method and metallic mold for blanking element for cvt belt
JP2023510467A (en) Method for manufacturing transverse segments for pushbelts for continuously variable transmissions and transverse segments obtained by this method
JP2018111132A (en) Method for manufacturing transverse member for drive belt used for continuously variable transmission
CN103282689B (en) Lateral direction element and the transmission belt for transmission belt
CN111526951A (en) Method for manufacturing a transverse segment of a drive belt for a continuously variable transmission
WO2013100759A1 (en) Method for forming a tilting zone on a transverse element for a push belt for a continuously variable transmission
CN104094016B (en) For being punched in the split type die cutting of the lateral direction element used in the driving belt of stepless speed variator
JP2012157871A (en) Device and method for blanking elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R150 Certificate of patent or registration of utility model

Ref document number: 5810087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250