JP2013258558A - Optical receiver and optical reception method - Google Patents

Optical receiver and optical reception method Download PDF

Info

Publication number
JP2013258558A
JP2013258558A JP2012133282A JP2012133282A JP2013258558A JP 2013258558 A JP2013258558 A JP 2013258558A JP 2012133282 A JP2012133282 A JP 2012133282A JP 2012133282 A JP2012133282 A JP 2012133282A JP 2013258558 A JP2013258558 A JP 2013258558A
Authority
JP
Japan
Prior art keywords
optical
phase
circuit
signal
optical filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012133282A
Other languages
Japanese (ja)
Inventor
Shigeru Kuwano
茂 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012133282A priority Critical patent/JP2013258558A/en
Publication of JP2013258558A publication Critical patent/JP2013258558A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To implement a technique in which a distortion does not affect a wideband signal in an analog ROF technique which uses a phase modulation-direct detection system.SOLUTION: An optical receiver comprises: an optical differentiation circuit (210) which differentiates the phase modulation light optical-phase-modulated by an analog signal; a photoelectric converter (220) which converts output light from the optical differentiation circuit (210) into an electric signal; and an integration circuit (230) which integrates the electric signal from the photoelectric converter (220). An optical filter having frequency transfer characteristics equivalent to frequency transfer characteristics of the differentiation circuit is used as the optical differentiation circuit.

Description

本発明はアナログ信号が光位相変調された光位相変調信号を受信する光受信機および光受信方法に関する。   The present invention relates to an optical receiver and an optical reception method for receiving an optical phase modulation signal in which an analog signal is optical phase modulated.

ファイバ無線(Radio over Fiber:ROF)技術は、無線装置を変復調部分と無線送受信部分に分け、それらの間で無線変調信号を光ファイバ上で伝送する技術である。このROF技術を活用することにより、無線装置配置の柔軟化、集約化が可能となり、高機能な無線ネットワークを実現することができる。   The radio over fiber (ROF) technology is a technology in which a radio apparatus is divided into a modulation / demodulation part and a radio transmission / reception part, and a radio modulation signal is transmitted between them in an optical fiber. By utilizing this ROF technology, the arrangement of wireless devices can be made flexible and integrated, and a highly functional wireless network can be realized.

ROFの実現手段として広く用いられるのが、無線変調信号で光を直接変調するアナログROF方式であり、無線送受信部分が実装されるリモート局の構成が簡易になるという特徴がある。アナログROF方式において、変調方法としては、強度変調、周波数変調および位相変調があるが、近年、位相変調−直接検波方式を用いた雑音特性、歪み特性に優れた方式が提案されている(例えば、非特許文献1参照。)。   An analog ROF system that directly modulates light with a radio modulation signal is widely used as means for realizing ROF, and has a feature that the configuration of a remote station on which a radio transmission / reception part is mounted is simplified. In the analog ROF method, there are intensity modulation, frequency modulation and phase modulation as modulation methods. Recently, a method excellent in noise characteristics and distortion characteristics using a phase modulation-direct detection method has been proposed (for example, (Refer nonpatent literature 1.).

この位相変調−直接検波方式では、図8に示すように、光送信機100が光源110からの光をアナログ信号で位相変調した位相変調光を送信し、光受信機200がマッハツェンダ干渉計を用いた光微分回路210で遅延検波を行い、光電変換器220で電気信号に変換してアナログ信号を抽出する。マッハツェンダ干渉計を用いた光微分回路210で遅延検波を行う際、光源110の強度雑音成分が大幅に相殺されるため、高い品質で信号を伝送することが可能となる。   In this phase modulation-direct detection method, as shown in FIG. 8, the optical transmitter 100 transmits phase-modulated light obtained by phase-modulating the light from the light source 110 with an analog signal, and the optical receiver 200 uses a Mach-Zehnder interferometer. The optical differential circuit 210 performs delay detection, and the photoelectric converter 220 converts it to an electrical signal to extract an analog signal. When delay detection is performed by the optical differentiation circuit 210 using a Mach-Zehnder interferometer, the intensity noise component of the light source 110 is largely canceled, so that a signal can be transmitted with high quality.

V.J.Urick他,“ Phase Modulation With Interferometric Detection as an Alternative to Intensity Modulation With Direct Detection for Analog−Photonic Links,” IEEE Transactions on Microwave Theory and Techniques, vol.55, no.9, pp.1978−1985, 2007.V. J. et al. Urick et al., “Phase Modulation With Interferometric Detection as an Alternative to Intensity Modulation with Detective for the Electric Link”. 55, no. 9, pp. 1978-1985, 2007.

マッハツェンダ干渉計を用いる際に、復調波形にはその周波数伝達特性に応じた歪みが生じる。これまでに検討されている位相変調−直接検波方式では、図10に示すように、無線搬送波周波数と無線信号帯域幅の比帯域が十分に大きいため、この点については特に考慮されていない。しかし、比帯域が小さい場合は、図11に示すように、周波数伝達特性に応じた歪みの影響を受けてしまう。   When the Mach-Zehnder interferometer is used, the demodulated waveform is distorted according to its frequency transfer characteristics. In the phase modulation-direct detection system studied so far, as shown in FIG. 10, the ratio band between the radio carrier frequency and the radio signal bandwidth is sufficiently large, so this point is not particularly taken into consideration. However, when the ratio band is small, as shown in FIG. 11, it is affected by distortion according to the frequency transfer characteristic.

本発明の目的は、位相変調−直接検波方式を用いたアナログROF技術において、広帯域の信号に対しても上記の歪みの影響を受けない技術を実現することである。   An object of the present invention is to realize a technique which is not affected by the above distortion even for a wideband signal in an analog ROF technique using a phase modulation-direct detection system.

本発明に係る光受信機は、アナログ信号で位相変調された位相変調光を微分する光微分回路と、前記光微分回路からの出力光を電気信号に変換する光電変換器と、前記光電変換器からの電気信号を積分する積分回路と、を備える。   An optical receiver according to the present invention includes an optical differentiating circuit that differentiates phase-modulated light phase-modulated with an analog signal, a photoelectric converter that converts output light from the optical differentiating circuit into an electric signal, and the photoelectric converter. And an integration circuit for integrating the electrical signal from.

本発明に係る光受信機では、前記光微分回路は、微分回路と同等の周波数伝達特性を有する光フィルタを備えていてもよい。   In the optical receiver according to the present invention, the optical differentiation circuit may include an optical filter having a frequency transfer characteristic equivalent to that of the differentiation circuit.

本発明に係る光受信機では、前記光フィルタは、非対称のマッハツェンダ干渉計であってもよい。   In the optical receiver according to the present invention, the optical filter may be an asymmetric Mach-Zehnder interferometer.

本発明に係る光受信機では、前記光フィルタは、ファブリペロー干渉計であってもよい。   In the optical receiver according to the present invention, the optical filter may be a Fabry-Perot interferometer.

本発明に係る光受信方法は、アナログ信号が光位相変調された位相変調光を微分して電気信号に変換し、当該電気信号を積分することによって前記アナログ信号を取り出す。   In the optical receiving method according to the present invention, the phase-modulated light obtained by optical-phase-modulating the analog signal is differentiated and converted into an electric signal, and the electric signal is integrated to extract the analog signal.

本発明に係る光受信方法では、微分回路と同等の周波数伝達特性を有する光フィルタを通過させることによって、位相変調光の微分を行ってもよい。   In the optical receiving method according to the present invention, the phase-modulated light may be differentiated by passing through an optical filter having a frequency transfer characteristic equivalent to that of the differentiating circuit.

本発明に係る光受信方法では、前記光フィルタとして非対称のマッハツェンダ干渉計を用いてもよい。   In the optical receiving method according to the present invention, an asymmetric Mach-Zehnder interferometer may be used as the optical filter.

本発明に係る光受信方法では、前記光フィルタとしてファブリペロー干渉計を用いてもよい。   In the optical receiving method according to the present invention, a Fabry-Perot interferometer may be used as the optical filter.

本発明は、位相変調光を微分した後に電気信号に変換し、その後電気信号を積分することで、マッハツェンダ干渉計の周波数伝達特性に応じた歪みを防ぐことができる。このため、本発明によれば、位相変調−直接検波方式を用いたアナログROF技術において、広帯域の信号に対しても上記の歪みの影響を防ぐことができる。   In the present invention, the phase-modulated light is differentiated and converted into an electric signal, and then the electric signal is integrated, whereby distortion according to the frequency transfer characteristic of the Mach-Zehnder interferometer can be prevented. For this reason, according to the present invention, in the analog ROF technique using the phase modulation-direct detection method, the influence of the distortion can be prevented even for a wideband signal.

本発明の第1の実施形態を示す。1 shows a first embodiment of the present invention. マッハツェンダ干渉計を用いた受信機構成の一例を示す。An example of a receiver configuration using a Mach-Zehnder interferometer is shown. 第1の実施形態におけるコンスタレーションの一例を示す。An example of the constellation in 1st Embodiment is shown. 積分回路の第1例を示す。The 1st example of an integration circuit is shown. 積分回路の第2例を示す。The 2nd example of an integration circuit is shown. 本発明の第2の実施形態を示す。2 shows a second embodiment of the present invention. 第2の実施形態におけるファブリペロー干渉計の透過特性の一例を示す。An example of the transmission characteristic of the Fabry-Perot interferometer in the second embodiment is shown. 位相変調−直接検波方式を用いたアナログROF技術の構成例を示す。The structural example of the analog ROF technique using a phase modulation-direct detection system is shown. コンスタレーションの比較例を示す。A comparative example of constellation is shown. 比帯域が大きい場合の周波数伝達特性例を示す。An example of frequency transfer characteristics when the ratio band is large is shown. 比帯域が小さい場合の周波数伝達特性例を示す。An example of frequency transfer characteristics when the ratio band is small is shown.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

(第1の実施形態)
図1に本発明の第1の実施形態の構成を示す。
光送信機100において、光源110から出力された光は、光位相変調器120においてアナログ入力信号で光位相変調され出力される。光受信機200では、光伝送路300を伝送された位相変調光を光微分回路210に入力し、光電変換器220で電気信号に変換する。この電気信号を積分回路230で積分処理することにより、もとのアナログ信号を復元する。光微分回路210は、光位相変調信号の時間波形を時間に関して微分する回路である。光微分回路210は、微分回路と同等の周波数伝達特性を有する光フィルタを用いることができ、そのような光フィルタとしては例えばマッハツェンダ干渉計又はファブリペロー干渉計がある。
(First embodiment)
FIG. 1 shows the configuration of the first embodiment of the present invention.
In the optical transmitter 100, the light output from the light source 110 is optically phase-modulated with an analog input signal in the optical phase modulator 120 and output. In the optical receiver 200, the phase-modulated light transmitted through the optical transmission line 300 is input to the optical differentiation circuit 210 and converted into an electrical signal by the photoelectric converter 220. The electrical signal is integrated by the integrating circuit 230 to restore the original analog signal. The optical differentiation circuit 210 is a circuit that differentiates the time waveform of the optical phase modulation signal with respect to time. The optical differentiation circuit 210 can use an optical filter having a frequency transfer characteristic equivalent to that of the differentiation circuit. Examples of such an optical filter include a Mach-Zehnder interferometer and a Fabry-Perot interferometer.

光微分回路210として図2に示すマッハツェンダ干渉計211による光フィルタを用いる場合の動作の詳細を、数式を用いて以下に示す。
位相変調光S(t)を等価低域表現で表すと、次式となる。

Figure 2013258558
Details of the operation when the optical filter of the Mach-Zehnder interferometer 211 shown in FIG. 2 is used as the optical differentiation circuit 210 will be described below using mathematical expressions.
When the phase-modulated light S (t) is expressed by an equivalent low-pass expression,
Figure 2013258558

ここで、s(t)は|s(t)|≦1となるように正規化されたアナログ入力信号、mは変調度(m≦1)である。マッハツェンダ干渉計211の遅延時間差をτとし、位相差π/2を付加するとすると、光電変換器220として用いられるバランスド光受信回路221の2つのフォトダイオード221a,221bの出力P(t)、P(t)はそれぞれ、次式となる。

Figure 2013258558
Here, s (t) is an analog input signal normalized so that | s (t) | ≦ 1, and m is a modulation degree (m ≦ 1). When the delay time difference of the Mach-Zehnder interferometer 211 is τ and a phase difference π / 2 is added, outputs P 1 (t) of the two photodiodes 221a and 221b of the balanced light receiving circuit 221 used as the photoelectric converter 220, P 2 (t) is represented by the following equation, respectively.
Figure 2013258558

バランスド光受信回路221出力P(t)は、

Figure 2013258558
となる。 The output P (t) of the balanced light receiving circuit 221 is
Figure 2013258558
It becomes.

ここで、mπ(s(t)−s(t−τ))≒0とすると、

Figure 2013258558
と近似される。 Here, if mπ (s (t) −s (t−τ)) ≈0,
Figure 2013258558
Is approximated by

さらに1/τがs(t)の信号帯域幅より十分に大きいとすると、

Figure 2013258558
となる。 If 1 / τ is sufficiently larger than the signal bandwidth of s (t),
Figure 2013258558
It becomes.

したがって、この信号を積分回路230に通すことにより、

Figure 2013258558
となり、もとのアナログ信号が復元される。 Therefore, by passing this signal through the integration circuit 230,
Figure 2013258558
Thus, the original analog signal is restored.

本実施形態に対する数値シミュレーション結果として、搬送波周波数625MHz、伝送レート156.25Mb/s、遅延時間100ps、変調度0.05の場合のQPSK信号伝送時の伝送後のコンスタレーションを図3に示す。図より、本方式によって従来方式よりコンスタレーションの広がりが抑えられていることが分かる。誤差ベクトル振幅(EVM)で比較すると、従来方式が30.4dBであるのに対して、本実施形態では34.7dBに改善されている。   As a numerical simulation result for this embodiment, FIG. 3 shows a constellation after transmission at the time of QPSK signal transmission when the carrier frequency is 625 MHz, the transmission rate is 156.25 Mb / s, the delay time is 100 ps, and the modulation factor is 0.05. From the figure, it can be seen that the spread of the constellation is suppressed by this method compared with the conventional method. In comparison with the error vector amplitude (EVM), the conventional method is 30.4 dB, whereas in the present embodiment, it is improved to 34.7 dB.

本実施形態を用いることにより、位相変調−直接検波システムにおいて、光フィルタの特性に影響されることなく、アナログ信号を伝送することが可能となる。   By using this embodiment, an analog signal can be transmitted without being affected by the characteristics of the optical filter in the phase modulation-direct detection system.

本実施形態における積分回路としては、図4に示すような単純なRCフィルタのカットオフ周波数より高い周波数での使用や図5に示すオペアンプを用いた積分回路が使用可能である。また、本方式を無線リンクの上り側に適用する場合、バランスド受信出力をAD変換した後にデジタル信号処理で積分演算することも可能である。   As the integration circuit in this embodiment, use at a frequency higher than the cut-off frequency of a simple RC filter as shown in FIG. 4 or an integration circuit using an operational amplifier shown in FIG. 5 can be used. In addition, when this method is applied to the uplink side of a radio link, it is also possible to perform an integration operation by digital signal processing after AD conversion of the balanced reception output.

(第2の実施形態)
図6に本発明の第2の実施形態を示す。第1の実施形態との違いは、光微分回路としてファブリペロー干渉計212による光フィルタを用いている点である。ファブリペロー干渉計212の周波数伝達関数T(f)は次式で与えられる。

Figure 2013258558
ここで、Rは反射率、Δlは干渉計の長さ、cは光速である。 (Second Embodiment)
FIG. 6 shows a second embodiment of the present invention. The difference from the first embodiment is that an optical filter by a Fabry-Perot interferometer 212 is used as an optical differentiation circuit. The frequency transfer function T (f) of the Fabry-Perot interferometer 212 is given by the following equation.
Figure 2013258558
Here, R is the reflectance, Δl is the length of the interferometer, and c is the speed of light.

式7より、図9に示すような周波数伝達関数は周期的な透過特性を示す。このとき、位相変調光の周波数を透過特性の上りスロープの一部分とすることにより、微分特性が得られる。   From Equation 7, the frequency transfer function as shown in FIG. 9 shows periodic transmission characteristics. At this time, the differential characteristic is obtained by setting the frequency of the phase-modulated light as a part of the upstream slope of the transmission characteristic.

本発明は情報通信産業に適用することができる。   The present invention can be applied to the information communication industry.

100:光送信機
110:光源
120:光位相変調器
200:光受信機
210:光微分回路
211:マッハツェンダ干渉計
212:ファブリペロー干渉計
220:光電変換器
221:バランスド光受信回路
221a,221b:フォトダイオード
230:積分回路
300:光伝送路
100: Optical transmitter 110: Light source 120: Optical phase modulator 200: Optical receiver 210: Optical differential circuit 211: Mach-Zehnder interferometer 212: Fabry-Perot interferometer 220: Photoelectric converter 221: Balanced optical receiver circuits 221a and 221b : Photodiode 230: Integration circuit 300: Optical transmission line

Claims (8)

アナログ信号で位相変調された位相変調光を微分する光微分回路と、
前記光微分回路からの出力光を電気信号に変換する光電変換器と、
前記光電変換器からの電気信号を積分する積分回路と、
を備える光受信機。
An optical differentiating circuit for differentiating phase-modulated light phase-modulated with an analog signal;
A photoelectric converter that converts output light from the photodifferential circuit into an electrical signal;
An integrating circuit for integrating the electrical signal from the photoelectric converter;
An optical receiver.
前記光微分回路は、微分回路と同等の周波数伝達特性を有する光フィルタを備えることを特徴とする請求項1に記載の光受信機。   The optical receiver according to claim 1, wherein the optical differentiation circuit includes an optical filter having a frequency transfer characteristic equivalent to that of the differentiation circuit. 前記光フィルタは、非対称のマッハツェンダ干渉計であることを特徴とする請求項2に記載の光受信機。   The optical receiver according to claim 2, wherein the optical filter is an asymmetric Mach-Zehnder interferometer. 前記光フィルタは、ファブリペロー干渉計であることを特徴とする請求項2に記載の光受信機。   The optical receiver according to claim 2, wherein the optical filter is a Fabry-Perot interferometer. アナログ信号が光位相変調された位相変調光を微分して電気信号に変換し、当該電気信号を積分することによって前記アナログ信号を取り出す光受信方法。   An optical receiving method in which phase-modulated light obtained by optical phase modulation of an analog signal is differentiated and converted into an electric signal, and the electric signal is extracted by integrating the electric signal. 微分回路と同等の周波数伝達特性を有する光フィルタを通過させることによって、位相変調光の微分を行うことを特徴とする請求項5に記載の光受信方法。   6. The optical receiving method according to claim 5, wherein the phase-modulated light is differentiated by passing through an optical filter having a frequency transfer characteristic equivalent to that of the differentiating circuit. 前記光フィルタとして非対称のマッハツェンダ干渉計を用いることを特徴とする請求項6に記載の光受信方法。   The optical receiving method according to claim 6, wherein an asymmetric Mach-Zehnder interferometer is used as the optical filter. 前記光フィルタとしてファブリペロー干渉計を用いることを特徴とする請求項6に記載の光受信方法。   The optical reception method according to claim 6, wherein a Fabry-Perot interferometer is used as the optical filter.
JP2012133282A 2012-06-12 2012-06-12 Optical receiver and optical reception method Pending JP2013258558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012133282A JP2013258558A (en) 2012-06-12 2012-06-12 Optical receiver and optical reception method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012133282A JP2013258558A (en) 2012-06-12 2012-06-12 Optical receiver and optical reception method

Publications (1)

Publication Number Publication Date
JP2013258558A true JP2013258558A (en) 2013-12-26

Family

ID=49954648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133282A Pending JP2013258558A (en) 2012-06-12 2012-06-12 Optical receiver and optical reception method

Country Status (1)

Country Link
JP (1) JP2013258558A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111147150A (en) * 2019-12-18 2020-05-12 上海交通大学 Passive phase compensation-based distributed optical frequency transmission device and transmission method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024593A (en) * 1999-05-28 2001-01-26 Trw Inc Feedforward frequency/phase demodulator
JP2003309520A (en) * 2002-04-16 2003-10-31 Toshiba Corp Optical communication system
JP2009094744A (en) * 2007-10-05 2009-04-30 Nippon Telegr & Teleph Corp <Ntt> Interferometer controller and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024593A (en) * 1999-05-28 2001-01-26 Trw Inc Feedforward frequency/phase demodulator
JP2003309520A (en) * 2002-04-16 2003-10-31 Toshiba Corp Optical communication system
JP2009094744A (en) * 2007-10-05 2009-04-30 Nippon Telegr & Teleph Corp <Ntt> Interferometer controller and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111147150A (en) * 2019-12-18 2020-05-12 上海交通大学 Passive phase compensation-based distributed optical frequency transmission device and transmission method
CN111147150B (en) * 2019-12-18 2023-02-07 上海交通大学 Distributed optical frequency transmission device and transmission method based on passive phase compensation

Similar Documents

Publication Publication Date Title
US20210367672A1 (en) Transparent linear optical transmission of passband and baseband electrical signals
AU2016385470B2 (en) In-band optical interference mitigation for direct-detection optical communication systems
US7330667B2 (en) Electrical compensation of optical impairments
WO2017016150A1 (en) Optical module based on amplitude modulation for transparently transmitting monitoring signal in band
CN104410462B (en) Polarization-multiplexing-based method and device for modulating and directly detecting optical signals
JP5404925B2 (en) Optical communication system, optical receiver, optical transponder, wavelength division multiplexing optical communication system, wavelength division multiplexing receiver, and wavelength division multiplexing optical transponder
US20070041735A1 (en) Photonic link using angle modulation and method of use thereof
JP2020516136A5 (en)
CN110350982B (en) Self-coherent signal receiving and transmitting method and device
CN104283609A (en) Direct detection method and system based on two-channel orthogonal pilot frequency optical signals and device
US10014954B2 (en) Imaging cancellation in high-speed intensity modulation and direct detection system with dual single sideband modulation
US9960846B2 (en) Free-space optical communication system and method in scattering environments
US9450678B2 (en) System and method using spectral shaping and expanded channel spacing
US10608685B2 (en) Photonics based interference mitigation
CN110380779A (en) Amplitude for pulse-amplitude modulation signal, which is concerned with, to be detected
US20190052388A1 (en) System and method for optical signal transmission
WO2011032458A1 (en) Method for generating modulated signals and transmission device thereof
CN103401613A (en) Digital microwave transmission device and method
CN106059663A (en) SEFDM-based high frequency efficiency short range optical interaction system and method
Bai et al. A WDM-PON compatible wavelength-reused bidirectional in-band full-duplex radio-over-fiber system
CN105959080B (en) The WDM passive optical network system of single-side belt carrierless amplitude phase modulation
US20180175933A1 (en) Communication device, communication system and communication method for transmitting optical signal
US20170126319A1 (en) Optical Transceiver
JP2013258558A (en) Optical receiver and optical reception method
JP6227990B2 (en) Wireless signal transmission system, master device, remote device, and transmission method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160315