JP2013258317A - Protection diode built-in solar battery, satellite mounted with protection diode built-in solar battery, solar battery cell and method for assembling protection diode built-in solar battery - Google Patents

Protection diode built-in solar battery, satellite mounted with protection diode built-in solar battery, solar battery cell and method for assembling protection diode built-in solar battery Download PDF

Info

Publication number
JP2013258317A
JP2013258317A JP2012133919A JP2012133919A JP2013258317A JP 2013258317 A JP2013258317 A JP 2013258317A JP 2012133919 A JP2012133919 A JP 2012133919A JP 2012133919 A JP2012133919 A JP 2012133919A JP 2013258317 A JP2013258317 A JP 2013258317A
Authority
JP
Japan
Prior art keywords
solar cell
protective diode
solar battery
solar
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012133919A
Other languages
Japanese (ja)
Inventor
Mitsuru Okubo
充 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012133919A priority Critical patent/JP2013258317A/en
Publication of JP2013258317A publication Critical patent/JP2013258317A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid an increase in the component manufacturing cost which impedes cost reduction due to enlargement of a solar battery and to provide a protection diode built-in solar battery which suppresses an increase in the length of a connection metal fitting to connect the enlarged solar battery and a protection diode in particular.SOLUTION: Usually, a peripheral edge part of a circular semiconductor substrate 9 which is not used as a solar battery 1 is left in the solar battery 1, and an increase in the distance between junction points is eliminated to avoid an increase in the component manufacturing cost and a reduction in reliability of connection. Performance deterioration of the solar battery by leaving the peripheral edge part is avoided by providing a groove part 15 which separates a PN junction layer of the peripheral edge part.

Description

この発明は、人工衛星搭載用の保護用ダイオード組込太陽電池に関するものである。 The present invention relates to a protection diode built-in solar cell for use on an artificial satellite.

1枚の太陽電池セルが発生する電圧は、太陽電池セルの種類により異なるが、高々0.5Vから3Vの範囲である。そのため、使用する所定の電圧を得るために複数の太陽電池セルを直列に接続した回路を構成したものを電源とすることが一般的であって、一般的な太陽電池セル回路では、隣り合って配置された太陽電池セルの表側電極と裏側電極に接続部品を接合して複数の太陽電池セルを直列に接続している。
このように直列に接続された太陽電池列の一部に、人工衛星に搭載されたアンテナ等の影が落ちた場合、影になった太陽電池に残りの影になっていない太陽電池の発生する電流が逆方向に流れ、発熱により太陽電池が破損する現象(ホットスポット)が起こることが知られている。ホットスポットから太陽電池を保護する手法としては太陽電池に並列に保護用ダイオードを敷設する方法が一般的である。
The voltage generated by one solar cell varies depending on the type of the solar cell, but is at most 0.5V to 3V. Therefore, in order to obtain a predetermined voltage to be used, it is common to use a power supply that is configured by a circuit in which a plurality of solar cells are connected in series. In a general solar cell circuit, A plurality of solar cells are connected in series by joining connecting parts to the front and back electrodes of the arranged solar cells.
When a shadow of an antenna mounted on an artificial satellite falls on a part of a series of solar cells connected in series in this way, a remaining solar cell is generated in the shadowed solar cell. It is known that a current flows in the opposite direction and a phenomenon (hot spot) occurs in which the solar cell is damaged by heat generation. As a method for protecting a solar cell from a hot spot, a method of laying a protective diode in parallel with the solar cell is common.

従来、例えば特許文献1に記載されるように、太陽電池セルへの保護用ダイオードの組込みに伴う製作費用の増加及び信頼性の低下を低減し、かつ、太陽電池セルの表側電極の面積を減らして太陽電池セルの発電量を増加するよう、保護用ダイオードを付設した接続方法が開示されている。 Conventionally, as described in, for example, Patent Document 1, an increase in manufacturing cost and a decrease in reliability associated with the incorporation of a protective diode into a solar cell are reduced, and the area of the front electrode of the solar cell is reduced. Thus, there is disclosed a connection method in which a protective diode is attached so as to increase the power generation amount of the solar battery cell.

特許第4039949号公報Japanese Patent No. 4039949

ここで、後述のように、太陽電池を大型化するために、円形結晶性半導体基板から切出す太陽電池を1枚として上下左右に対称の八角形にした場合、保護用ダイオードと隣接する太陽電池の間の距離が大きくなり、保護用ダイオードと太陽電池を接続する接続部品が長くなる。接続部品は金属箔材から作られることが多いため、接続部品が長くなると、材料取り効率が低下して接続部品の製造コストが上昇するという課題あった。
また、低価格化のために線膨張係数の大きな金属を材料とした場合には、温度が変化した際に太陽電池及び保護用ダイオードへの接合点に発生する熱加重が増大し、接合の信頼性が低下するという課題があった。
Here, as will be described later, in order to increase the size of the solar cell, when a single solar cell cut from the circular crystalline semiconductor substrate is formed into a symmetrical octagon vertically and horizontally, the solar cell adjacent to the protective diode The distance between the two becomes larger, and the connecting parts for connecting the protective diode and the solar cell become longer. Since connection parts are often made of a metal foil material, there is a problem in that, when the connection part becomes long, the material collecting efficiency is lowered and the manufacturing cost of the connection part is increased.
In addition, when a metal with a large linear expansion coefficient is used as a material for cost reduction, the thermal load generated at the junction to the solar cell and protective diode increases when the temperature changes, and the reliability of the junction is increased. There was a problem that the performance was lowered.

この発明は係る課題を解決するためになされたものであり、保護用ダイオードと隣接する太陽電池セルの間を接続する接続部品のコストを低減する保護用ダイオード組込太陽電池を提供することを目的とする。 This invention was made in order to solve the subject which concerns, and it aims at providing the protection diode built-in solar cell which reduces the cost of the connection component which connects between a protection diode and the adjacent photovoltaic cell. And

この発明に係る保護用ダイオード組込太陽電池は、保護用ダイオードを並列接続した太陽電池セルを直列に複数接続して構成される保護用ダイオード組込太陽電池であって、前記太陽電池セルは、前記太陽電池セルの基板上に積層した半導体層において結晶欠陥が他の領域より多い領域の半導体層と、前記他の領域の半導体層を分離する溝部を備える。   The protective diode built-in solar cell according to the present invention is a protective diode built-in solar cell configured by connecting a plurality of solar cells connected in parallel with protective diodes in series, and the solar cell is The semiconductor layer stacked on the substrate of the solar battery cell includes a semiconductor layer in a region having more crystal defects than other regions, and a groove that separates the semiconductor layer in the other region.

この発明に係る保護用ダイオード組込太陽電池によれば、1枚の円形結晶性半導体基板から1枚を切出した大型電池に、接続金具の製造コスト上昇及び接続の信頼性の低下を招くことなく、保護用ダイオードを組込んだ保護用ダイオード組込太陽電池を提供することができる。   According to the protective diode-embedded solar cell of the present invention, a large battery obtained by cutting one piece from one circular crystalline semiconductor substrate does not cause an increase in the manufacturing cost of connection fittings and a decrease in connection reliability. A protective diode-embedded solar cell incorporating a protective diode can be provided.

本発明の実施の形態1において、太陽電池セルを円形結晶性半導体基板9から切出す場合の太陽電池セル1の形状を示す平面図である。In Embodiment 1 of this invention, it is a top view which shows the shape of the photovoltaic cell 1 in the case of cutting out a photovoltaic cell from the circular crystalline semiconductor substrate 9. FIG. 本発明の実施の形態1における保護用ダイオード組込太陽電池の構造の一例を示す平面図である。It is a top view which shows an example of the structure of the protection diode built-in solar cell in Embodiment 1 of this invention. 本発明の実施の形態1における保護用ダイオード組込太陽電池の構造の一例を示す側面図である。It is a side view which shows an example of the structure of the protection diode built-in solar cell in Embodiment 1 of this invention. 本発明の実施の形態1における保護用ダイオード組込太陽電池の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the protection diode built-in solar cell in Embodiment 1 of this invention. 従来の、1枚の円形結晶性半導体基板9から2枚の保護用ダイオード組込太陽電池セルを切出す場合の太陽電池セル1の形状を示す平面図である。It is a top view which shows the shape of the photovoltaic cell 1 in the case of cutting out two protection diode built-in photovoltaic cells from the conventional circular crystalline semiconductor substrate 9 conventionally. 従来の、1枚の円形結晶性半導体基板9から2枚の保護用ダイオード組込太陽電池セルを切出した場合の、従来の保護用ダイオード組込太陽電池の構造を示す平面図である。It is a top view which shows the structure of the conventional protection diode built-in solar cell at the time of cutting out the two protection diode built-in solar cells from the conventional one circular crystalline semiconductor substrate 9. FIG. 従来の保護用ダイオード組込太陽電池の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the conventional protection diode built-in solar cell. 従来の保護用ダイオード組込太陽電池1枚を1枚の円形結晶性半導体基板9から切出す場合の太陽電池セル1の形状を示す平面図である。It is a top view which shows the shape of the photovoltaic cell 1 in the case of cutting out one conventional protection diode built-in solar cell from one circular crystalline semiconductor substrate 9. FIG. 従来の1枚の円形結晶性半導体基板9から1枚切出した従来の保護用ダイオード組込太陽電池の構造を示す平面図である。It is a top view which shows the structure of the conventional protection diode built-in solar cell cut out from one conventional circular crystalline semiconductor substrate 9. FIG.

まず、従来の人工衛星搭載用の保護用ダイオード組込太陽電池について説明した後に、本発明に係る保護用ダイオード組込太陽電池の詳細について説明する。
図5は、保護用ダイオード組込みを考慮した太陽電池セルの円形結晶性半導体基板からの切出しを示す図である。
1枚の円形結晶性半導体基板9から2枚の保護用ダイオード組込太陽電池セルを切出す場合の例であり、切出した太陽電池セル1(上半分)、太陽電池セル11(下半分)の形状を示した平面図である(太陽電池セル1(上半分)、太陽電池セル1(下半分)を以下では太陽電池セル1(上)、1(下)とする。太陽電池セル1(上)と太陽電池セル1(下)は円形結晶性半導体基板9からの切出し箇所が対称部分であり、同じ特性を有するものとする)。
太陽電池セル1(上)、太陽電池セル1(下)は、円形結晶性半導体基板を有効利用するために、2つのコーナークロップを有する6角形とする。
First, after describing a conventional protection diode built-in solar cell mounted on an artificial satellite, details of the protection diode built-in solar cell according to the present invention will be described.
FIG. 5 is a diagram showing the cutting out of the solar cell from the circular crystalline semiconductor substrate considering the incorporation of the protective diode.
This is an example of cutting out two protective diode built-in solar cells from one circular crystalline semiconductor substrate 9, and the cut out solar cells 1 (upper half) and solar cells 11 (lower half) It is the top view which showed the shape (The photovoltaic cell 1 (upper half) and the photovoltaic cell 1 (lower half) are set as the photovoltaic cell 1 (upper) and 1 (lower) below.) The photovoltaic cell 1 (upper) ) And the solar battery cell 1 (bottom) are cut out from the circular crystalline semiconductor substrate 9 in symmetrical portions and have the same characteristics).
Solar cell 1 (upper) and solar cell 1 (lower) are hexagons having two corner crops in order to effectively use a circular crystalline semiconductor substrate.

図6は、太陽電池セル1(上)、太陽電池セル1(下)を直列に接続した回路構成を示した図である。円形結晶性半導体基板から切出した太陽電池セル1(上)、太陽電池セル1(下)が有するコーナークロップに三角形平板型保護用ダイオード2を付設し、裏面接続金具3、表裏接続金具8で電気的に接続される。
図6において、表裏接続金具8aは、保護用ダイオード2aの表面(紙面上面側)と太陽電池セル1(下)の裏面(紙面裏面側)を電気的に接続し、また、太陽電池セル1(上)の表面と太陽電池セル1(下)の裏面(紙面裏面側)を電気的に接続する。
ここで、保護用ダイオード2aの表面と太陽電池セル1(下)の裏面を電気的に接続する箇所の表裏接続金具8aの長さをd2とする。保護用ダイオード2aの端と太陽電池セル1(下)の端が近接しているため、表裏接続金具8aの長さd2も、比較的短く済む。
FIG. 6 is a diagram showing a circuit configuration in which solar cells 1 (upper) and solar cells 1 (lower) are connected in series. Triangular flat plate protection diodes 2 are attached to the corner crops of solar cell 1 (upper) and solar cell 1 (lower) cut out from a circular crystalline semiconductor substrate. Connected.
In FIG. 6, the front / back connection fitting 8a electrically connects the surface (upper surface side of the paper) of the protective diode 2a and the rear surface (back surface of the paper surface) of the solar cell 1 (lower). The upper surface is electrically connected to the back surface of the solar cell 1 (lower) (the back surface side of the paper).
Here, the length of the front / back connection fitting 8a at the location where the front surface of the protective diode 2a and the back surface of the solar battery cell 1 (lower) are electrically connected is defined as d2. Since the end of the protective diode 2a and the end of the solar battery cell 1 (lower) are close to each other, the length d2 of the front / back connection fitting 8a can be relatively short.

図7は、図6の回路構成を基板厚方向(図6のA方向)から見た断面図である。
図7において、表裏接続金具8aは太陽電池セル1(上)の表側電極4a、4b、4cや、保護用ダイオード2aの表側電極6aや、太陽電池セル1(下)の裏面電極5bのそれぞれに、パラレルギャップ溶接等の方法にて接合されている。
これにより、太陽電池セル1(上)と太陽電池セル1(下)は直列に接続され、かつ、太陽電池セル1と保護用ダイオード2は電気的に並列に接続される。
同様に、続く太陽電池セル1の間についても電気的接続が繰り返される。このように接続することで太陽電池セル1同士を直列に接続すると同時に太陽電池セル1に逆方向電圧が加わっても太陽電池セル1が破損するのを防ぐことができる。
7 is a cross-sectional view of the circuit configuration of FIG. 6 as viewed from the thickness direction of the substrate (direction A of FIG. 6).
In FIG. 7, front and back connection fittings 8a are respectively attached to the front electrodes 4a, 4b and 4c of the solar cell 1 (upper), the front electrode 6a of the protective diode 2a, and the back electrode 5b of the solar cell 1 (lower). They are joined by a method such as parallel gap welding.
Thereby, the photovoltaic cell 1 (upper) and the photovoltaic cell 1 (lower) are connected in series, and the photovoltaic cell 1 and the protective diode 2 are electrically connected in parallel.
Similarly, electrical connection is repeated between subsequent solar cells 1. By connecting the solar cells 1 in series, the solar cells 1 can be prevented from being damaged even if a reverse voltage is applied to the solar cells 1 at the same time.

次に、図8は、部品点数の削減によるコスト低減を目的に太陽電池セルを大型化するために、1枚の円形結晶性半導体基板9から切出す太陽電池セルを1枚とし、上下左右に対称の八角形にしたときの太陽電池セル1の形状を示す平面図である。 Next, FIG. 8 shows one solar cell cut out from one circular crystalline semiconductor substrate 9 in order to increase the size of the solar cell for the purpose of cost reduction by reducing the number of parts, and is vertically and horizontally. It is a top view which shows the shape of the photovoltaic cell 1 when it is set as a symmetrical octagon.

ここで、太陽電池用として、円形結晶性半導体基板9上に生成される半導体層は必ずしも円形結晶性半導体基板全域に亘っては一様でなく、特に、基板の端部は結晶欠陥等が多い。このため、通常、基板の端面から2mm程度内側の有効エリア10の外側は太陽電池としては使用せず、有効エリア10から太陽電池セル1が切出される。 Here, the semiconductor layer generated on the circular crystalline semiconductor substrate 9 for solar cells is not necessarily uniform over the entire area of the circular crystalline semiconductor substrate, and in particular, the edge of the substrate has many crystal defects and the like. . For this reason, normally, the outside of the effective area 10 about 2 mm from the end face of the substrate is not used as a solar cell, and the solar cell 1 is cut out from the effective area 10.

このように、基板の有効エリア10から1枚を切出した太陽電池セル1を用いて保護用ダイオード組込太陽電池を製造した場合、コーナークロップのために、図9に示すように、保護用ダイオード2と隣の太陽電池セル1の間の距離が図6のときより大きくなる。保護用ダイオード2の表面と太陽電池セル1の裏面を接続する部分の表裏接続金具8の長さが長くなる。
具体的には、図9において保護用ダイオード2aの表面と太陽電池セル1bの裏面を接続する部分の表裏接続金具8aの長さ(=d1)が、これに相当する箇所で、図6で示した表裏接続金具の長さ(=d2)よりも長くなる。
Thus, when a protective diode built-in solar cell is manufactured using the solar cell 1 cut out from the effective area 10 of the substrate, as shown in FIG. The distance between 2 and the adjacent solar battery cell 1 becomes larger than that in FIG. The length of the front / back connection fitting 8 at the portion connecting the front surface of the protective diode 2 and the back surface of the solar battery cell 1 is increased.
Specifically, in FIG. 6, the length (= d1) of the front / back connection fitting 8a at the portion connecting the front surface of the protective diode 2a and the back surface of the solar battery cell 1b is shown in FIG. It becomes longer than the length (= d2) of the front and back connection fittings.

接続金具は金属箔材から作られることが多いため、接続部品(例えば表裏接続金具)が長くなると、材料取り効率が低下して接続部品の製造コストが上昇するという課題あった。
また、低価格化のために線膨張係数の大きな金属を材料とした場合には、温度が変化した際に太陽電池及び保護用ダイオードへの接合点に発生する熱加重が増大し、接合の信頼性が低下するという課題があった。
Since the connection fitting is often made of a metal foil material, when the connection component (for example, the front and back connection fitting) becomes long, there is a problem that the material collecting efficiency is lowered and the manufacturing cost of the connection component is increased.
In addition, when a metal with a large linear expansion coefficient is used as a material for cost reduction, the thermal load generated at the junction to the solar cell and protective diode increases when the temperature changes, and the reliability of the junction is increased. There was a problem that the performance was lowered.

実施の形態1.
以下、図1〜図4を用いてこの発明に係る実施の形態1について説明する。
宇宙用の太陽電池のうち、III−V属化合物半導体太陽電池は図4に示すように、Ge等の結晶性半導体基板14の上にInGaP系などの接合層を薄膜形成することで製作される。
なお、本実施の形態では、基板14上には第1のPN接合11、第2のPN接合12及び第3のPN接合13が形成され、太陽光の受光面側に設けられた表側電極6と裏面に設けられた裏面電極を介して電力が取出される3接合太陽電池の場合を説明するが、PN接合の数はこれには限られない。
Embodiment 1 FIG.
Embodiment 1 according to the present invention will be described below with reference to FIGS.
Among space solar cells, III-V compound semiconductor solar cells are manufactured by forming a thin InGaP-based bonding layer on a crystalline semiconductor substrate 14 such as Ge as shown in FIG. .
In the present embodiment, the first PN junction 11, the second PN junction 12, and the third PN junction 13 are formed on the substrate 14, and the front electrode 6 provided on the sunlight receiving surface side. Although the case of the 3 junction solar cell from which electric power is taken out through the back electrode provided on the back surface will be described, the number of PN junctions is not limited to this.

ここで、先述のように、生成される半導体層は必ずしも円形結晶性半導体基板9全域に亘っては一様でなく、特に、円形結晶性半導体基板9の端部は欠陥が多いため、通常は、円形結晶性半導体基板9の端面から2mm程度内側の有効エリア10の外側は太陽電池としては使用せず、有効エリア10から太陽電池が切出される。このため、図8に示した従来例では隣接する太陽電池に組込まれた保護用ダイオードに近接した位置に太陽電池の裏面電極が無いために表裏接続金具8を長くせざるを得ないという課題があった。 Here, as described above, the generated semiconductor layer is not necessarily uniform over the entire region of the circular crystalline semiconductor substrate 9, and in particular, since the end portion of the circular crystalline semiconductor substrate 9 has many defects, The outside of the effective area 10 which is about 2 mm inside from the end face of the circular crystalline semiconductor substrate 9 is not used as a solar cell, and the solar cell is cut out from the effective area 10. For this reason, in the conventional example shown in FIG. 8, there is no problem that the front and back connection fittings 8 have to be lengthened because there is no back electrode of the solar cell in the vicinity of the protective diode incorporated in the adjacent solar cell. there were.

そこで、本実施の形態に係る保護用ダイオード組込太陽電池においては、図1、2に示すように、隣接する太陽電池セル1に組込まれた保護用ダイオード2と、表裏接続金具8で電気的に接続する接続箇所20(図1の点線で囲まれた箇所)については、有効エリア10の外側も含む形で、円形結晶性半導体基板9から太陽電池セル1を切出すようにする。なお、円形結晶性半導体基板9の直径サイズは例えば75mm、100mm、125mm、150mm等である。   Therefore, in the protection diode built-in solar cell according to the present embodiment, as shown in FIGS. 1 and 2, the protection diode 2 incorporated in the adjacent solar cell 1 and the front and back connection fittings 8 are electrically used. As for the connection part 20 (the part surrounded by the dotted line in FIG. 1) connected to the solar cell 1 including the outside of the effective area 10, the solar battery cell 1 is cut out from the circular crystalline semiconductor substrate 9. The diameter size of the circular crystalline semiconductor substrate 9 is, for example, 75 mm, 100 mm, 125 mm, 150 mm, or the like.

図2は、本発明の実施の形態1における保護用ダイオード組込太陽電池の構造の一例を示す平面図である。
図2に示すように、有効エリア10の外側も含む形で太陽電池セルを切出すようにしたことで、太陽電池1aに組込まれた保護用ダイオード2aに対して、従来(図9)より近接した位置に、太陽電池セル1bを配することができる。
FIG. 2 is a plan view showing an example of the structure of the protective diode built-in solar cell according to Embodiment 1 of the present invention.
As shown in FIG. 2, the solar cells are cut out so as to include the outside of the effective area 10, so that they are closer to the protective diode 2 a incorporated in the solar cell 1 a than in the conventional case (FIG. 9). The solar battery cell 1b can be arranged at the position.

このように有効エリア10の外側を含む形で切出した部分を保護用ダイオード2に近接した位置に配することで、保護用ダイオード2aの表面電極と太陽電池セル1bの裏面電極を接続する箇所の表裏接続金具8の長さ(=d)を、図9で示した従来の表裏接続金具8の長さ(=d1)よりも短くすることができる。 Thus, by arranging the portion cut out including the outside of the effective area 10 at a position close to the protective diode 2, the portion connecting the surface electrode of the protective diode 2a and the back electrode of the solar cell 1b is connected. The length (= d) of the front / back connection fitting 8 can be made shorter than the length (= d1) of the conventional front / back connection fitting 8 shown in FIG.

ここで、有効エリア10の外側も含む形で太陽電池セル1を切出すようにしたことにより、有効エリア外の欠陥の多いPN接合の影響によって太陽電池全体の性能低下が生じることが考えられる。その対策について以下、説明する。   Here, it is conceivable that the performance of the entire solar cell is reduced due to the influence of the PN junction having many defects outside the effective area by cutting out the solar cell 1 including the outside of the effective area 10. The countermeasure will be described below.

図3は、図2の回路構成を基板厚方向(図2のA方向)から見た断面図である。
図3において、後述する溝部15が太陽電池セル1bに形成されており、表裏接続金具8aは太陽電池セル1aの表側電極4a、4b、4cや、保護用ダイオード2aの表側電極6aや、太陽電池セル1bの裏面電極5bのそれぞれに、パラレルギャップ溶接等の方法にて接合されている。なお、接続金具を用いた太陽電池の回路構成については、先の特許文献1にも記載がある。
3 is a cross-sectional view of the circuit configuration of FIG. 2 as viewed from the substrate thickness direction (direction A of FIG. 2).
In FIG. 3, a groove 15 to be described later is formed in the solar battery cell 1b, and the front and back connection fitting 8a includes the front electrode 4a, 4b, 4c of the solar battery cell 1a, the front electrode 6a of the protective diode 2a, and the solar battery. Each of the back electrodes 5b of the cell 1b is joined by a method such as parallel gap welding. The circuit configuration of the solar cell using the connection fitting is also described in Patent Document 1 above.

ここで溝部15は、有効エリア10の外側も含むように切出した太陽電池セル1において、有効エリア10の内側と外側を分離する箇所に設けられる。溝部15は8角形に切出された太陽電池セル1の1つの辺の端部から他の辺の端部に至るまで形成される。より詳しくは、有効エリア10内側の半導体層が、有効エリア10外側の半導体層と電気的に分離される位置に溝部15が設けられ、この溝部15は、太陽電池セル1の1つの辺の端部から他の辺の端部に至るまで形成される。 Here, in the solar battery cell 1 cut out so as to include the outside of the effective area 10, the groove portion 15 is provided at a location where the inside and the outside of the effective area 10 are separated. The groove 15 is formed from the end of one side of the solar cell 1 cut into an octagon to the end of the other side. More specifically, a groove portion 15 is provided at a position where the semiconductor layer inside the effective area 10 is electrically separated from the semiconductor layer outside the effective area 10, and this groove portion 15 is an end of one side of the solar battery cell 1. It is formed from the part to the end of the other side.

溝部15について図4を用いて説明すると、本実施の形態では、全てのPN接合(第1のPN接合11、第2のPN接合12及び第3のPN接合13)を貫通する溝部15を設けて、有効エリア10外側の有効エリア外の半導体層を太陽電池1から電気的に分離する。溝部15は、太陽電池セル1の1辺から他の1辺に達するように形成される(図2参照)。 The groove 15 will be described with reference to FIG. 4. In the present embodiment, the groove 15 that penetrates all the PN junctions (the first PN junction 11, the second PN junction 12, and the third PN junction 13) is provided. Thus, the semiconductor layer outside the effective area outside the effective area 10 is electrically separated from the solar cell 1. The groove 15 is formed so as to reach from one side of the solar battery cell 1 to the other side (see FIG. 2).

このように、有効エリア10の外側を含む形で切出した太陽電池セル1の部分においては、溝部15を設け、溝部15によって、有効エリア10内の半導体層と有効エリア外の半導体層を電気的に分離することで、有効エリア外に積層された半導体層の影響による太陽電池全体の性能低下を抑制することができる。 As described above, the portion of the solar cell 1 cut out including the outside of the effective area 10 is provided with the groove 15, and the groove 15 electrically connects the semiconductor layer inside the effective area 10 and the semiconductor layer outside the effective area 10. By separating into two, the performance degradation of the entire solar cell due to the influence of the semiconductor layer stacked outside the effective area can be suppressed.

なお、上記の溝部15は溝部の位置に対応したフォトレジストを用いて化学的にPN接合層をエッチングするフォトリソグラフィー工程等により形成される。フォトリソグラフィー工程は宇宙用太陽電池1を円形結晶性半導体基板からダイシングによって切出す前に、太陽電池1の外形に沿ってPN接合を全て除去するために通常行われる工程であって、溝部15の追加は太陽電池の製造工程の追加を伴うものではない。
また、溝部15は、図2のように太陽電池セル1の1辺から他の1辺に達するように形成されることが望ましいが、端面まで達せず太陽電池セル1の内側に溝部15が形成されるものであってもよい。
The groove 15 is formed by a photolithography process or the like that chemically etches the PN junction layer using a photoresist corresponding to the position of the groove. The photolithography process is a process normally performed to remove all the PN junctions along the outer shape of the solar cell 1 before cutting the space solar cell 1 from the circular crystalline semiconductor substrate by dicing. The addition does not involve the addition of a solar cell manufacturing process.
The groove 15 is preferably formed so as to reach from one side of the solar battery cell 1 to the other side as shown in FIG. 2, but the groove 15 is formed inside the solar battery cell 1 without reaching the end face. It may be done.

上記のように構成された保護用ダイオード組込太陽電池においては、1枚の円形結晶性半導体基板から1枚を切出した大型電池セル1は表裏接続金具8により直列に接続され、同時に保護用ダイオード2は表裏接続金具8により太陽電池セル1に並列に接続される。
円形結晶性半導体基板の有効エリアの外側を含む形で太陽電池セルを切出すことで、保護用ダイオードと隣接する太陽電池セルの間隔が大きくなることを防止できる。
これにより、接続金具の製造コスト上昇及び接続の信頼性の低下を招くことなく、保護用ダイオードを組込んだ保護用ダイオード組込太陽電池を提供することができる。
In the protective diode built-in solar cell configured as described above, the large battery cell 1 cut out from one circular crystalline semiconductor substrate is connected in series by the front and back connection fitting 8, and at the same time, the protective diode 2 is connected to the solar cell 1 in parallel by the front and back connection fitting 8.
By cutting out the solar cells so as to include the outside of the effective area of the circular crystalline semiconductor substrate, it is possible to prevent an increase in the distance between the protective diode and the adjacent solar cells.
Thereby, the protection diode built-in solar cell incorporating the protection diode can be provided without causing an increase in the manufacturing cost of the connection fitting and a decrease in connection reliability.

1 太陽電池、2 保護用ダイオード、3 裏面接続金具、4 太陽電池の表側電極、5 太陽電池の裏側電極、6 保護用ダイオードの表側電極、7 保護用ダイオードの裏側電極、8 表裏接続金具、9 円盤型結晶性半導体基板、10 有効エリア外形、11 第1のPN接合、12 第2のPN接合、13 第3のPN接合、14 結晶性半導体基板、15 溝部、16 端部段差、20 保護用ダイオードと接続する接続箇所(切出し位置変更箇所)。 DESCRIPTION OF SYMBOLS 1 Solar cell, 2 Protection diode, 3 Back surface attachment metal, 4 Solar cell front side electrode, 5 Solar cell back side electrode, 6 Protection diode front side electrode, 7 Protection diode back side electrode, 8 Front / back connection metal fitting, 9 Disk type crystalline semiconductor substrate, 10 effective area outline, 11 first PN junction, 12 second PN junction, 13 third PN junction, 14 crystalline semiconductor substrate, 15 groove, 16 edge step, 20 for protection Connection point for connecting to the diode (cutting position change point).

Claims (9)

保護用ダイオードを並列接続した太陽電池セルを、直列に複数接続して構成される保護用ダイオード組込太陽電池であって、
前記太陽電池セルは、前記太陽電池セルの基板上に積層した半導体層において結晶欠陥が他の領域より多い領域の半導体層と、前記他の領域の半導体層を分離する溝部を備えることを特徴とする保護用ダイオード組込太陽電池。
A protective diode built-in solar cell configured by connecting a plurality of solar cells connected in parallel with protective diodes in series,
The solar cell includes a semiconductor layer in a semiconductor layer laminated on the substrate of the solar cell, a semiconductor layer in a region having more crystal defects than other regions, and a groove that separates the semiconductor layer in the other region. Protective diode built-in solar cell.
保護用ダイオードを並列接続した太陽電池セルを、直列に複数接続して構成される保護用ダイオード組込太陽電池であって、
前記太陽電池セルは、当該太陽電池セルを切出した円形半導体基板の端部に相当する領域の半導体層と、当該端部を除いた前記円形半導体基板の内側部に相当する領域の半導体層とを分離する溝部を備えることを特徴とする保護用ダイオード組込太陽電池。
A protective diode built-in solar cell configured by connecting a plurality of solar cells connected in parallel with protective diodes in series,
The solar cell includes a semiconductor layer in a region corresponding to an end portion of a circular semiconductor substrate cut out from the solar cell, and a semiconductor layer in a region corresponding to an inner portion of the circular semiconductor substrate excluding the end portion. A protective diode-embedded solar cell comprising a separating groove.
前記端部は、前記円形半導体基板の端から2mm程度内側までの領域であることを特徴とする請求項2記載の保護用ダイオード組込太陽電池。 The protective diode-embedded solar cell according to claim 2, wherein the end portion is a region extending about 2 mm from the end of the circular semiconductor substrate. 前記太陽電池セルは、少なくとも一箇所について前記端部を含むように切出され、略左右上下対称の8角形の形状を備えることを特長とする請求項2、3いずれか記載の保護用ダイオード組込太陽電池。 4. The protective diode set according to claim 2, wherein the solar battery cell is cut out so as to include the end portion at least at one place, and has an octagonal shape that is substantially symmetrical left and right. Embedded solar cell. 前記溝部は、前記太陽電池セルの上面を構成する一辺の辺上の所定位置から他の辺の辺上の所定位置に至るまで形成されることを特徴とする請求項1乃至4いずれか記載の保護用ダイオード組込太陽電池。 The said groove part is formed from the predetermined position on the edge | side of one side which comprises the upper surface of the said photovoltaic cell to the predetermined position on the edge | side of another edge | side. Protection diode built-in solar cell. 請求項1乃至5いずれか記載の保護用ダイオード組込太陽電池であって、
前記保護用ダイオードの裏面電極と、当該保護用ダイオードを並列接続する太陽電池セルの裏面電極とは裏面接続金具により電気的に接続され、
前記保護用ダイオードの表面電極と、隣接する太陽電池セルの裏面電極とは表裏接続金具により電気的に接続され、
前記保護用ダイオードを並列接続した太陽電池セルの表面電極と、前記隣接する太陽電池セルの裏面電極とは前記表裏接続金具で電気的に接続されることを特徴とする保護用ダイオード組込太陽電池。
A protective diode built-in solar cell according to any one of claims 1 to 5,
The back electrode of the protective diode and the back electrode of the solar battery cell connecting the protective diode in parallel are electrically connected by a back connection fitting,
The front electrode of the protective diode and the back electrode of the adjacent solar battery cell are electrically connected by front and back connection fittings,
A protective diode-embedded solar cell in which a front electrode of a solar cell in which the protective diodes are connected in parallel and a back electrode of the adjacent solar cell are electrically connected by the front and back connection fittings .
請求項1乃至6いずれかの保護用ダイオード組込太陽電池を搭載した人工衛星。 An artificial satellite equipped with the protective diode built-in solar cell according to any one of claims 1 to 6. 保護用ダイオード組込太陽電池の組立方法であって、
保護用ダイオードの裏面電極と、当該保護用ダイオードを並列接続する太陽電池セルであって、基板上に積層した半導体層において結晶欠陥が他の領域より多い領域の半導体層と前記他の領域の半導体層を分離する溝部を備えた太陽電池セルの裏面電極とを、裏面接続金具を用いて電気的に接続する工程と、
前記保護用ダイオードの表面電極と、隣接する太陽電池セルの裏面電極とを、表裏接続金具を用いて電気的に接続する工程と、
前記保護用ダイオードを並列接続する太陽電池セルの前記他の領域の半導体層上の表面電極と、前記隣接する太陽電池セルの裏面電極とを前記表裏接続金具を用いて電気的に接続する工程とを備えることを特徴とする保護用ダイオード組込太陽電池の組立方法。
A method of assembling a protective diode built-in solar cell,
A back surface electrode of a protective diode and a solar cell in which the protective diode is connected in parallel, in a semiconductor layer stacked on a substrate, a semiconductor layer in a region having more crystal defects than the other region and a semiconductor in the other region A step of electrically connecting the back surface electrode of the solar battery cell having a groove part for separating the layers using a back surface connection fitting;
Electrically connecting the front surface electrode of the protective diode and the back surface electrode of the adjacent solar battery cell using front and back connection fittings;
Electrically connecting the front surface electrode on the semiconductor layer of the other region of the solar cells to which the protective diodes are connected in parallel and the back surface electrode of the adjacent solar cells using the front and back connection fittings; A method for assembling a protective diode built-in solar cell.
電気的に直列接続して太陽電池を構成する太陽電池セルであって、
前記太陽電池セルは、基板上に積層した半導体層において結晶欠陥が他の領域より多い領域の半導体層と前記他の領域の半導体層とを分離する溝部と、
前記他の領域の半導体層上に形成され、前記直列接続するための電極と、
前記基板裏面に形成され、前記直列接続するための電極と、
を備えることを特徴とする太陽電池セル。
A solar cell that is electrically connected in series to form a solar cell,
The solar battery cell, a semiconductor layer laminated on a substrate, a groove portion separating a semiconductor layer in a region having more crystal defects than other regions and a semiconductor layer in the other region,
An electrode formed on the semiconductor layer of the other region and connected in series;
An electrode formed on the back surface of the substrate and connected in series;
A solar battery cell comprising:
JP2012133919A 2012-06-13 2012-06-13 Protection diode built-in solar battery, satellite mounted with protection diode built-in solar battery, solar battery cell and method for assembling protection diode built-in solar battery Pending JP2013258317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012133919A JP2013258317A (en) 2012-06-13 2012-06-13 Protection diode built-in solar battery, satellite mounted with protection diode built-in solar battery, solar battery cell and method for assembling protection diode built-in solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012133919A JP2013258317A (en) 2012-06-13 2012-06-13 Protection diode built-in solar battery, satellite mounted with protection diode built-in solar battery, solar battery cell and method for assembling protection diode built-in solar battery

Publications (1)

Publication Number Publication Date
JP2013258317A true JP2013258317A (en) 2013-12-26

Family

ID=49954492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133919A Pending JP2013258317A (en) 2012-06-13 2012-06-13 Protection diode built-in solar battery, satellite mounted with protection diode built-in solar battery, solar battery cell and method for assembling protection diode built-in solar battery

Country Status (1)

Country Link
JP (1) JP2013258317A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107735856A (en) * 2015-07-03 2018-02-23 未来儿株式会社 Substrate accommodation container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107735856A (en) * 2015-07-03 2018-02-23 未来儿株式会社 Substrate accommodation container

Similar Documents

Publication Publication Date Title
JP6220979B2 (en) Fabrication of solar cell module with low resistivity electrode
EP2897179B1 (en) Solar cell module
JP6835800B2 (en) Solar cell module
JP4819004B2 (en) Solar cell array and solar cell module
JP2016119445A (en) Solar cell, solar cell module, and assembly method of bypass diode
EP3544060B1 (en) Photovoltaic lamination assembly with bypass diodes
JP2020109863A (en) Solar battery
JP2018011073A (en) Solar battery module
CN108847425B (en) Solar cell module
JP6656353B2 (en) Solar cell module and method of manufacturing the same
JP2009176782A (en) Solar cell module
US20110265857A1 (en) Monolithic integration of bypass diodes with a thin film solar module
KR20180014172A (en) Metallization and stringing methods for back-contacting solar cells
JP2015070260A (en) Solar cell
US10276737B2 (en) Solar cell and solar cell module
JP2018082176A (en) Solar cell and solar cell panel including the same
US9871149B2 (en) Solar cell and solar cell module
JP2013048166A (en) Solar cell module, solar cell module array, and manufacturing method of solar cell module
JP6352894B2 (en) Solar cell module
CN115832093A (en) Photovoltaic cell structure, manufacturing method thereof and photovoltaic module
JP2012134342A (en) Solar cell module and method of manufacturing the same
JP2013258317A (en) Protection diode built-in solar battery, satellite mounted with protection diode built-in solar battery, solar battery cell and method for assembling protection diode built-in solar battery
WO2013031296A1 (en) Solar cell module
US20210408312A1 (en) Photovoltaic module, solar cell and method for manufacturing thereof
JP2012023412A (en) Solar cell module

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140327