JP2013257961A - Cooler for secondary battery and cooling method of secondary battery - Google Patents

Cooler for secondary battery and cooling method of secondary battery Download PDF

Info

Publication number
JP2013257961A
JP2013257961A JP2012131694A JP2012131694A JP2013257961A JP 2013257961 A JP2013257961 A JP 2013257961A JP 2012131694 A JP2012131694 A JP 2012131694A JP 2012131694 A JP2012131694 A JP 2012131694A JP 2013257961 A JP2013257961 A JP 2013257961A
Authority
JP
Japan
Prior art keywords
secondary battery
temperature
differential value
order differential
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012131694A
Other languages
Japanese (ja)
Other versions
JP6106959B2 (en
Inventor
Naoki Baba
直樹 馬場
Makoto Nagaoka
真 永岡
Takao Inoue
尊夫 井上
Naruaki Okuda
匠昭 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2012131694A priority Critical patent/JP6106959B2/en
Publication of JP2013257961A publication Critical patent/JP2013257961A/en
Application granted granted Critical
Publication of JP6106959B2 publication Critical patent/JP6106959B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooler and a cooling method of a secondary battery which can ensure safety of a secondary battery by suppressing rapid temperature rise of the secondary battery, and lowering the increased temperature of the secondary battery.SOLUTION: A cooler 12 of a secondary battery includes a temperature detection unit 14 for detecting the temperature of a secondary battery 10, a second order differential value calculation unit 22 for determining the second order differential value by performing second order time differentiation of a temperature detected by the temperature detection unit 14, and a cooling unit 16 for cooling the secondary battery 10 when the temperature thereof goes above a predetermined value, and the second order differential value of temperature obtained by the second order differential value calculation unit 22 exceeds a specified value or shifts from a negative value to a positive value.

Description

本発明は、二次電池の冷却装置及び二次電池の冷却方法に関する。   The present invention relates to a secondary battery cooling device and a secondary battery cooling method.

リチウム二次電池等の二次電池の充放電の際、不良電池の存在や充電装置の故障による誤作動によって電池に通常以上の電流が供給されて過充電状態に陥る場合や、内部短絡によって正極と負極との間に短絡電流が流れる場合等が想定される。かかる過充電等の際には、電池反応が急速に進行して、自己発熱を起こし、電池の温度が上昇することがあり得る。特に、二次電池の温度がある温度を超えると、二次電池の自己発熱により二次電池の温度が急激に上昇する場合がある。   When charging or discharging a secondary battery such as a lithium secondary battery, if the battery is overcharged due to malfunction due to the presence of a defective battery or a failure of the charging device, the battery is overcharged, or an internal short circuit It is assumed that a short-circuit current flows between the negative electrode and the negative electrode. During such overcharge, the battery reaction may proceed rapidly, causing self-heating, and the battery temperature may rise. In particular, when the temperature of the secondary battery exceeds a certain temperature, the temperature of the secondary battery may rapidly increase due to self-heating of the secondary battery.

例えば、特許文献1では、過充電状態によるリチウム二次電池の急激な温度上昇を防止するために、リチウム二次電池の温度計測値の時間に対する微分値を用いて、二次電池の充放電を停止させる技術が開示されている。   For example, in Patent Document 1, in order to prevent a rapid temperature rise of a lithium secondary battery due to an overcharged state, the secondary battery is charged / discharged using a differential value with respect to time of a temperature measurement value of the lithium secondary battery. A technique for stopping is disclosed.

また、例えば、特許文献2では、二次電池の温度上昇を防止することを目的とするものではないが、充電時における充電データを記録し、充電時に予め記録した前回の充電データを読み取り、所定の閾値との比較により充電禁止を判定する充電制御方法が開示されている。   Further, for example, in Patent Document 2, although not intended to prevent the temperature rise of the secondary battery, the charging data at the time of charging is recorded, the previous charging data previously recorded at the time of charging is read, A charging control method for determining charging prohibition by comparison with a threshold value is disclosed.

特開平10−92476号公報Japanese Patent Laid-Open No. 10-92476 特開2009−106147号公報JP 2009-106147 A

しかし、特許文献1の技術では、過充電状態による二次電池の急激な温度上昇に対して有効な方法であって、それ以外の要因で二次電池の急激な温度上昇を予測することまではできない。また、従来の二次電池の充電制御では、二次電池の急激な温度上昇を抑えることはできても、上昇した温度を下げることはできない。そのため、二次電池の温度を下げて、二次電池の安全性を確保する新たな方法が求められる。   However, the technique of Patent Document 1 is an effective method for a rapid temperature rise of the secondary battery due to an overcharged state, and until a sudden temperature rise of the secondary battery is predicted due to other factors. Can not. Moreover, in the conventional charge control of the secondary battery, although the rapid temperature rise of the secondary battery can be suppressed, the raised temperature cannot be lowered. Therefore, a new method for reducing the temperature of the secondary battery and ensuring the safety of the secondary battery is required.

そこで、本発明の目的は、二次電池の急激な温度上昇を抑制すると共に、上昇した二次電池の温度を下げて、二次電池の安全性を確保することができる二次電池の冷却装置及び冷却方法を提供する。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a secondary battery cooling device capable of suppressing the rapid temperature rise of the secondary battery and reducing the temperature of the raised secondary battery to ensure the safety of the secondary battery. And a cooling method.

本発明の二次電池の冷却装置は、二次電池の温度を検出する温度検出手段と、前記温度検出手段によって検出された温度を時間で二階微分し、温度二階微分値を求める二階微分値演算手段と、前記二次電池の温度が所定値以上で、且つ前記二階微分値演算手段により求められた前記温度二階微分値が既定値を超える際又は前記二階微分値演算手段により求められた前記温度二階微分値が負から正へ転じる際に、前記二次電池を冷却処理する二次電池冷却手段と、を備える。   The secondary battery cooling device of the present invention includes a temperature detection means for detecting the temperature of the secondary battery, and a second-order differential value calculation for obtaining a second-order differential value by second-order differentiation of the temperature detected by the temperature detection means with time. And the temperature obtained when the temperature of the secondary battery is equal to or higher than a predetermined value and the second-order differential value obtained by the second-order differential value computing means exceeds a predetermined value or by the second-order differential value computing means. And a secondary battery cooling means for cooling the secondary battery when the second-order differential value changes from negative to positive.

また、本発明の二次電池の冷却方法は、二次電池の温度を検出する温度検出ステップと、前記温度検出ステップで検出された温度を時間で二階微分し、温度二階微分値を求める二階微分値演算ステップと、前記二次電池の温度が所定値以上で、且つ前記二階微分値演算ステップで求められた前記温度二階微分値が所定値を超える際又は前記二階微分値演算手段により求められた前記温度二階微分値が負から正へ転じる際に、前記二次電池を冷却処理する二次電池冷却ステップと、を備える。   The secondary battery cooling method of the present invention includes a temperature detection step for detecting a temperature of the secondary battery, and a second-order differentiation for obtaining a second-order differential value by second-order differentiation of the temperature detected in the temperature detection step with time. A value calculation step, when the temperature of the secondary battery is equal to or higher than a predetermined value, and the second-order differential value calculated in the second-order differential value calculation step exceeds a predetermined value or is determined by the second-order differential value calculation means A secondary battery cooling step for cooling the secondary battery when the second-order temperature differential value changes from negative to positive.

本発明によれば、二次電池の急激な温度上昇を抑制すると共に、上昇した二次電池の温度を下げて、二次電池の安全性を確保することができる。   ADVANTAGE OF THE INVENTION According to this invention, while suppressing the rapid temperature rise of a secondary battery, the temperature of the raised secondary battery can be lowered | hung and the safety | security of a secondary battery can be ensured.

本実施形態に係る二次電池の冷却装置を備える二次電池システムの構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of a secondary battery system provided with the cooling device of the secondary battery which concerns on this embodiment. 本実施形態の二次電池の冷却装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the cooling device of the secondary battery of this embodiment. 本実施形態の二次電池の冷却装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the cooling device of the secondary battery of this embodiment. 二次電池の自己発熱による温度上昇をシミュレーションするために使用したモデル図である。It is the model figure used in order to simulate the temperature rise by the self-heating of a secondary battery. 加熱経過時間と電池缶壁温度のシミュレーション結果を示す図である。It is a figure which shows the simulation result of heating elapsed time and battery can wall temperature. 図5に示す電池缶壁温度を時間で二階微分した温度二階微分値を示す図である。It is a figure which shows the temperature second-order differential value which differentiated the battery can wall temperature shown in FIG. 加熱経過時間と冷却処理した電池缶壁温度のシミュレーション結果を示す図である。It is a figure which shows the simulation result of heating elapsed time and the battery can wall temperature which carried out the cooling process. 二次電池の自己発熱による温度上昇を回避する冷却処理試験に使用した装置を示す図である。It is a figure which shows the apparatus used for the cooling process test which avoids the temperature rise by the self-heating of a secondary battery. 加熱経過時間と冷却処理した電池缶壁温度の結果を示す図である。It is a figure which shows the result of heating elapsed time and the battery can wall temperature which carried out the cooling process.

過充電状態等によって引き起こされる二次電池の自己発熱による急激な温度上昇は、二次電池の温度が上昇して、二次電池の温度二階微分値が負から正に転じた時、或いは予め設定した規定値を超えた時から、ある程度の時間が経過した後に生じることを本発明者らは見出した。したがって、以下の実施形態で説明するように、二次電池の温度が上昇して、二次電池の温度二階微分値が負から正に転じた時、或いは予め設定した規定値を超えた時に、二次電池を十分に冷却すれば、急激な温度上昇を抑制することができる。以下に、本発明の実施形態について、図面に基づいて説明する。   A sudden temperature increase due to secondary battery self-heating caused by an overcharged state, etc., occurs when the secondary battery temperature rises and the secondary differential temperature value of the secondary battery changes from negative to positive, or is preset. The present inventors have found that this occurs after a certain amount of time has passed since the specified value was exceeded. Therefore, as will be described in the following embodiment, when the temperature of the secondary battery rises and the secondary differential temperature of the secondary battery changes from negative to positive, or exceeds a preset specified value, If the secondary battery is sufficiently cooled, a rapid temperature rise can be suppressed. Embodiments of the present invention will be described below with reference to the drawings.

図1は、本実施形態に係る二次電池の冷却装置を備える二次電池システムの構成の一例を示す模式図である。図1に示す二次電池システム1は、二次電池10、二次電池の冷却装置12を備える。二次電池10は、例えばリチウムイオン二次電池等、種々の二次電池である。本実施形態の二次電池の冷却装置12は、温度検出部14、冷却部16、制御部18を備えている。   FIG. 1 is a schematic diagram illustrating an example of a configuration of a secondary battery system including a secondary battery cooling device according to the present embodiment. A secondary battery system 1 shown in FIG. 1 includes a secondary battery 10 and a secondary battery cooling device 12. The secondary battery 10 is various secondary batteries such as a lithium ion secondary battery. The secondary battery cooling device 12 of this embodiment includes a temperature detection unit 14, a cooling unit 16, and a control unit 18.

温度検出部14は、二次電池10の温度を検出するものであり、例えば、センサ、熱電対等である。温度検出部14の設置箇所は、電池内部が望ましいが、設置が困難であるため、二次電池10の周壁に設置すればよい。温度検出部14は制御部18に電気的に接続されており、温度検出部14により検出された二次電池10の温度データが、制御部18に出力される。   The temperature detection part 14 detects the temperature of the secondary battery 10, for example, a sensor, a thermocouple, etc. The installation location of the temperature detection unit 14 is preferably inside the battery, but it is difficult to install the temperature detection unit 14. The temperature detection unit 14 is electrically connected to the control unit 18, and the temperature data of the secondary battery 10 detected by the temperature detection unit 14 is output to the control unit 18.

制御部18は、電池温度記憶部20と、二階微分値演算部22と、二階微分値記憶部24と、データ処理/指令部26と、を備える。電池温度記憶部20は、温度検出部14により検出された二次電池10の温度データを随時記憶するものである。そして、記憶した温度データは、電池温度記憶部20から二階微分値演算部22及びデータ処理/指令部26に出力される。二階微分値演算部22は、入力されてくる二次電池10の温度データを時間で二階微分した温度二階微分値(dT/dt)を求めるものである。そして、求めた温度二階微分値は、二階微分値演算部22から二階微分値記憶部24に出力される。二階微分値記憶部24は、入力されている温度二階微分値を随時記憶するものである。そして、記憶した温度二階微分値は、データ処理/指令部26に出力される。データ処理/指令部26は、二次電池10の温度データが所定値以上であるか否か、及び二階微分値演算部22に演算指令を出すと共に、演算された温度二階微分値が負から正に転じたか否かを判定し、二次電池10の温度データが所定値以上であって、且つ温度二階微分値が負から正に転じた場合に、冷却部16に、二次電池10の冷却処理指令を出力する。 The control unit 18 includes a battery temperature storage unit 20, a second-order differential value calculation unit 22, a second-order differential value storage unit 24, and a data processing / command unit 26. The battery temperature storage unit 20 stores temperature data of the secondary battery 10 detected by the temperature detection unit 14 as needed. The stored temperature data is output from the battery temperature storage unit 20 to the second-order differential value calculation unit 22 and the data processing / command unit 26. The second-order differential value calculation unit 22 obtains a temperature second-order differential value (d 2 T / dt 2 ) obtained by second-order differentiation of the input temperature data of the secondary battery 10 with respect to time. Then, the calculated second-order differential value is output from the second-order differential value calculation unit 22 to the second-order differential value storage unit 24. The second-order differential value storage unit 24 stores the input second-order temperature differential value as needed. The stored second-order temperature differential value is output to the data processing / command unit 26. The data processing / command unit 26 issues a calculation command to the second-order differential value calculation unit 22 as to whether or not the temperature data of the secondary battery 10 is equal to or greater than a predetermined value, and the calculated temperature second-order differential value is negative to positive. When the temperature data of the secondary battery 10 is equal to or higher than a predetermined value and the second-order differential value of the secondary battery 10 is changed from negative to positive, the cooling unit 16 cools the secondary battery 10 Output processing instructions.

また、データ処理/指令部26は、入力された二次電池10の温度データが所定値以上であるか否か、及び入力されてくる温度二階微分値が既定値を超えたか否かを判定し、二次電池10の温度データが所定値以上であって、且つ温度二階微分値が既定値を超えた場合に、冷却部16に、二次電池10の冷却処理指令を出力するものであってもよい。二次電池10の温度が高温になればなるほど、二次電池10の温度二階微分値が負から正に転じた時から二次電池10の自己発熱による急激な温度上昇が起こるまでの時間は短くなるため、冷却処理指令を出力するまでに許容される時間も短くなる場合がある。したがって、二次電池10の急激な温度上昇が起こるまでに、二次電池10を十分に冷却することができる時間を確保できるような温度二階微分値の既定値を設定し、その既定値を超えた時に、二次電池10の冷却処理を実行するようにしてもよい。ここで、温度二階微分値の既定値は、その既定値を超えた後に二次電池10の急激な温度上昇が起こる値であり、予め、シミュレーションや実験等によってその既定値を設定し、データ処理/指令部26に記憶させておくことが望ましい。   Further, the data processing / command unit 26 determines whether or not the input temperature data of the secondary battery 10 is equal to or greater than a predetermined value, and whether or not the input temperature second-order differential value exceeds a predetermined value. When the temperature data of the secondary battery 10 is equal to or higher than a predetermined value and the second-order differential value of the temperature exceeds a predetermined value, a cooling process command for the secondary battery 10 is output to the cooling unit 16. Also good. The higher the temperature of the secondary battery 10, the shorter the time from when the second-order differential value of the secondary battery 10 turns from negative to positive until the sudden temperature rise due to self-heating of the secondary battery 10 occurs. Therefore, the time allowed until the cooling processing command is output may be shortened. Therefore, a predetermined value of the second-order temperature differential value is set so as to secure a time during which the secondary battery 10 can be sufficiently cooled before the rapid temperature rise of the secondary battery 10 occurs, and exceeds the predetermined value. At this time, the cooling process of the secondary battery 10 may be executed. Here, the default value of the second-order temperature differential value is a value at which the secondary battery 10 suddenly increases in temperature after exceeding the predetermined value. The default value is set in advance by simulation or experiment, and data processing is performed. / It is desirable to store in the command unit 26.

また、データ処理/指令部26に予め記憶される二次電池10の温度の所定値は、適宜設定されるものであるが、二次電池10の性能劣化が顕著となる温度とすることが好ましく、予めシミュレーションや実験等によりその所定値を設定し、データ処理/指令部26に記憶させておくことが望ましい。なお、リチウムイオン二次電池であれば、所定値は、例えば、60℃に設定することが好ましい。   In addition, the predetermined value of the temperature of the secondary battery 10 stored in advance in the data processing / command unit 26 is set as appropriate, but is preferably set to a temperature at which the performance deterioration of the secondary battery 10 becomes remarkable. It is desirable that the predetermined value is set in advance by simulation or experiment and stored in the data processing / command unit 26. In the case of a lithium ion secondary battery, the predetermined value is preferably set to 60 ° C., for example.

冷却部16は、二次電池10の温度データが所定値以上であって、且つ温度二階微分値が負から正に転じた場合、或いは二次電池10の温度データが所定値以上であって、且つ温度二階微分値が既定値を超えた場合の条件を満たした時に、二次電池10の冷却処理を行うものである。ここで、本実施形態の冷却部16による二次電池10の冷却処理とは、上記条件を満たした場合に、冷却部16が稼働し、二次電池10を冷却する場合だけでなく、上記条件を満たした場合に、冷却部16によりこれまで冷却していた二次電池10の冷却率より高い冷却率で二次電池10を冷却する場合も含まれる。例えば、二次電池10の温度が所定値以上(例えば60℃以上)であっても、温度二階微分値が負のままであれば、通常時に設定される冷却率で二次電池10を冷却する(冷却していなくてもよい)。温度二階微分値が負値となる温度上昇であれば、冷却部16による冷却率が二次電池10の自己発熱率より高いため(或いは、急激な温度上昇が起こり得る状態には至っていないため)、冷却率を増加(或いは冷却を開始)する必要はない。しかし、二次電池10の温度が所定値以上であって、温度二階微分値が負から正に転じる温度上昇が生じると、二次電池10の自己発熱率が増大したことに起因し、急激な温度上昇が起こり得る状態となっているため、冷却率を必要量増加(或いは必要量の冷却率で冷却を開始)して、二次電池10を冷却する。上記条件を満たした時の冷却部16による二次電池10の冷却率(単位時間当たりに低下する二次電池10の温度)は、二次電池10の急激な温度上昇を抑制する観点から、上記条件を満たした時の二次電池10の自己発熱率より高い値にすることが望ましく、シミュレーションや実験等により、予め求めておくことが望ましい。   When the temperature data of the secondary battery 10 is equal to or higher than the predetermined value and the second-order differential value changes from negative to positive, or the temperature data of the secondary battery 10 is equal to or higher than the predetermined value. In addition, the cooling process of the secondary battery 10 is performed when the condition when the temperature second-order differential value exceeds the predetermined value is satisfied. Here, the cooling process of the secondary battery 10 by the cooling unit 16 of the present embodiment is not only the case where the cooling unit 16 operates and cools the secondary battery 10 when the above condition is satisfied, but also the above condition. The case where the secondary battery 10 is cooled at a cooling rate higher than the cooling rate of the secondary battery 10 that has been cooled by the cooling unit 16 is also included. For example, even if the temperature of the secondary battery 10 is equal to or higher than a predetermined value (for example, 60 ° C. or higher), the secondary battery 10 is cooled at a cooling rate set at a normal time as long as the second-order differential value remains negative. (It may not be cooled). If the temperature rise is such that the second-order differential value is a negative value, the cooling rate by the cooling unit 16 is higher than the self-heating rate of the secondary battery 10 (or because the temperature has not reached a state where a rapid temperature rise can occur). There is no need to increase the cooling rate (or start cooling). However, when the temperature of the secondary battery 10 is equal to or higher than a predetermined value and the temperature rises such that the second-order differential value turns from negative to positive, the self-heating rate of the secondary battery 10 increases, which is abrupt. Since the temperature can rise, the cooling rate is increased by a required amount (or cooling is started at the required cooling rate), and the secondary battery 10 is cooled. The cooling rate of the secondary battery 10 by the cooling unit 16 when the above conditions are satisfied (the temperature of the secondary battery 10 that decreases per unit time) is as described above from the viewpoint of suppressing a rapid temperature increase of the secondary battery 10. It is desirable to set a value higher than the self-heating rate of the secondary battery 10 when the condition is satisfied, and it is desirable to obtain in advance by simulation or experiment.

本実施形態の冷却部16は、ファンにより送風して二次電池10を冷却する空冷方式や冷却媒体を二次電池10に循環して熱を外部に移送する液冷方式等が挙げられる。   Examples of the cooling unit 16 of the present embodiment include an air cooling system that blows air using a fan to cool the secondary battery 10 and a liquid cooling system that circulates a cooling medium to the secondary battery 10 and transfers heat to the outside.

以下に、本実施形態の冷却装置の動作を説明する。   Below, operation | movement of the cooling device of this embodiment is demonstrated.

図2及び3は、本実施形態の二次電池の冷却装置の動作を説明するためのフローチャートである。図2に示すように、ステップS10では、温度検出部14によって二次電池10の温度が検出される。ステップS12では、データ処理/指令部26により、温度検出部14によって検出された温度データが、所定値以上であるか否かが判定される。温度検出部14によって検出された温度データが所定値以上である場合には、ステップS14に進み、温度データが所定値未満である場合には、ステップS10に戻る。ステップS14では、時間が計測されると共に、温度検出部14によって検出された温度データを時間で二階微分した温度二階微分値が、二階微分値演算部22によって求められる。そして、ステップS16では、データ処理/指令部26により、二階微分値演算部22によって求められた温度二階微分値が負から正に転じたか否かが判定される。温度二階微分値が負から正に転じた際(dT/dt<0,dT/dt>0)には、ステップS18に進み、温度二階微分値が負から正に転じていない場合には、ステップS14に戻る。ステップS18では、データ処理/指令部26から冷却部16へ二次電池10の冷却処理指令が送信され、冷却部16により、前述した二次電池10の冷却処理が行われる。図3に示すフローチャートでは、ステップS26において、データ処理/指令部26により、二階微分値演算部22によって求められた温度二階微分値が既定値を超えているか否かが判定され、超えている場合には、冷却部16により、前述した二次電池10の冷却処理が行われる(ステップS28)こと以外は、図2に示すフローチャートと同様である。 2 and 3 are flowcharts for explaining the operation of the secondary battery cooling device of the present embodiment. As shown in FIG. 2, in step S <b> 10, the temperature of the secondary battery 10 is detected by the temperature detection unit 14. In step S12, the data processing / command unit 26 determines whether or not the temperature data detected by the temperature detection unit 14 is equal to or greater than a predetermined value. If the temperature data detected by the temperature detector 14 is greater than or equal to a predetermined value, the process proceeds to step S14, and if the temperature data is less than the predetermined value, the process returns to step S10. In step S <b> 14, time is measured, and a second-order differential value calculation unit 22 obtains a temperature second-order differential value obtained by second-order differentiation of the temperature data detected by the temperature detection unit 14 with respect to time. In step S16, the data processing / command unit 26 determines whether the second-order temperature differential value obtained by the second-order differential value calculation unit 22 has changed from negative to positive. When the temperature second-order differential value changes from negative to positive (d 2 T / dt 2 <0, d 2 T / dt 2 > 0), the process proceeds to step S18, and the temperature second-order differential value changes from negative to positive. If not, the process returns to step S14. In step S <b> 18, a cooling process command for the secondary battery 10 is transmitted from the data processing / command unit 26 to the cooling unit 16, and the cooling process for the secondary battery 10 described above is performed by the cooling unit 16. In the flowchart shown in FIG. 3, in step S <b> 26, the data processing / command unit 26 determines whether or not the temperature second-order differential value obtained by the second-order differential value calculation unit 22 exceeds a predetermined value. 2 is the same as the flowchart shown in FIG. 2 except that the cooling process of the secondary battery 10 described above is performed by the cooling unit 16 (step S28).

図2及び3に示すように、本実施形態の二次電池の冷却装置12の動作では、温度二階微分値の計算負荷を避ける等の観点から、温度検出部14によって検出された温度データが所定値以上である場合(ステップS12)には、ステップS14に進み、温度検出部14によって検出された温度データを時間で二階微分した温度二階微分値が、二階微分値演算部22によって求められる。しかし、必ずしもこれに制限されるものではなく、二次電池10の温度検出と共に、二次電池10の温度を時間で二階微分した温度二階微分値を求め、データ処理/指令部26において、温度検出部14によって検出された温度データが、所定値以上であるか否か、及び二階微分値演算部22によって求められた温度二階微分値が負から正に転じたか否か(或いは温度二階微分値が既定値を超えたか否か)を判定してもよい。そして、温度検出部14によって検出された温度データが所定値以上であり、温度二階微分値が負から正に転じた際(温度二階微分値が既定値を超えた際)には、データ処理/指令部26から冷却部16に二次電池10の冷却処理指令が送信され、冷却部16により、前述した二次電池10の冷却処理が行われる。本実施形態における冷却部16の冷却停止タイミングは、所定時間経過後、又は二次電池10の温度が所定温度以下になった時等である。また、冷却停止後、二次電池10の温度が上昇するような場合には、再度、冷却部16による二次電池10の冷却処理を実施することが望ましい。また、温度二階微分値が負から正に転じた際(温度二階微分値が既定値を超えた際)に、充放電を行っている場合には、冷却部16の冷却処理と共に、充放電の停止も行うことが望ましい。   As shown in FIGS. 2 and 3, in the operation of the secondary battery cooling device 12 of the present embodiment, the temperature data detected by the temperature detector 14 is predetermined from the viewpoint of avoiding the calculation load of the second-order differential value. If the value is greater than or equal to the value (step S12), the process proceeds to step S14, and the second-order differential value calculation unit 22 obtains a temperature second-order differential value obtained by second-order differentiation of the temperature data detected by the temperature detection unit 14 with respect to time. However, the present invention is not necessarily limited to this. In addition to the temperature detection of the secondary battery 10, a temperature second-order differential value obtained by second-order differentiation of the temperature of the secondary battery 10 with respect to time is obtained, and the data processing / command unit 26 detects the temperature. Whether or not the temperature data detected by the unit 14 is equal to or greater than a predetermined value and whether or not the second-order differential value obtained by the second-order differential value calculation unit 22 has changed from negative to positive (or the second-order differential value is It may be determined whether or not a predetermined value has been exceeded. When the temperature data detected by the temperature detection unit 14 is equal to or greater than a predetermined value and the second-order temperature differential value changes from negative to positive (when the second-order temperature differential value exceeds a predetermined value), data processing / A command for cooling the secondary battery 10 is transmitted from the command unit 26 to the cooling unit 16, and the cooling process for the secondary battery 10 described above is performed by the cooling unit 16. The cooling stop timing of the cooling unit 16 in the present embodiment is when a predetermined time has elapsed or when the temperature of the secondary battery 10 has become equal to or lower than a predetermined temperature. Further, when the temperature of the secondary battery 10 rises after the cooling is stopped, it is desirable to perform the cooling process of the secondary battery 10 by the cooling unit 16 again. Further, when charging / discharging is performed when the second-order temperature differential value changes from negative to positive (when the second-order temperature differential value exceeds a predetermined value), the charging / discharging is performed together with the cooling process of the cooling unit 16. It is also desirable to stop.

以上のような二次電池10の冷却方法によって、急激な温度上昇と共に電流の流れを遮断するPTC(positive temperature coefficient)素子や電流遮断装置(CID:current interrupt device)等の安全性保障デバイスが作動する前に、二次電池10の自己発熱による急激な温度上昇を抑制することができる。更に、二次電池10の温度を低下させ、二次電池10の充放電を停止させることもできるため、より二次電池10の安全性を確保することが可能となる。   According to the cooling method of the secondary battery 10 as described above, a safety guarantee device such as a PTC (positive temperature coefficient) element or a current interrupt device (CID) that cuts off the flow of current as the temperature rises suddenly operates. Before this, a rapid temperature increase due to self-heating of the secondary battery 10 can be suppressed. Furthermore, since the temperature of the secondary battery 10 can be lowered and charging / discharging of the secondary battery 10 can be stopped, the safety of the secondary battery 10 can be further ensured.

本実施形態に係る二次電池の冷却装置及び冷却方法は、携帯型パーソナルコンピュータ、デジタルカメラ、携帯電話機等のモバイル電子機器、電気自動車、ハイブリッドカー等の車両等に搭載される二次電池の冷却に利用される。   The secondary battery cooling device and cooling method according to the present embodiment includes a cooling method for a secondary battery mounted on a mobile electronic device such as a portable personal computer, a digital camera, or a mobile phone, an electric vehicle, a vehicle such as a hybrid car, or the like. Used for

以下、実施例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail more concretely, this invention is not limited to a following example.

<二次電池の自己発熱による温度上昇のシミュレーション>
図4は、二次電池の自己発熱による温度上昇をシミュレーションするために使用したモデル図である。図4に示すように、φ25mmの円筒孔28を有する筐体30の上下にヒータ32を設置し、筐体30の円筒孔28内にφ18mmの二次電池10を設置した。シミュレーションでは、ヒータ32による加熱温度を130℃、135℃、138℃、140℃、145℃、150℃、160℃に設定した。このような条件の下、加熱経過時間における電池缶壁温度をシミュレーションし、また、電池缶壁温度を時間で二階微分した温度二階微分値を求めた。その結果を、図5及び6に示す。図5の電池缶壁温度は、図4に示す点B,Dの2つの測定点の平均値とした。
<Simulation of temperature rise due to self-heating of secondary battery>
FIG. 4 is a model diagram used for simulating a temperature increase due to self-heating of the secondary battery. As shown in FIG. 4, heaters 32 were installed above and below a housing 30 having a φ25 mm cylindrical hole 28, and a φ18 mm secondary battery 10 was installed in the cylindrical hole 28 of the housing 30. In the simulation, the heating temperature by the heater 32 was set to 130 ° C, 135 ° C, 138 ° C, 140 ° C, 145 ° C, 150 ° C, 160 ° C. Under such conditions, the battery can wall temperature at the heating elapsed time was simulated, and a second-order temperature differential value was obtained by second-order differentiation of the battery can wall temperature with time. The results are shown in FIGS. The battery can wall temperature in FIG. 5 was an average value of two measurement points of points B and D shown in FIG.

本シミュレーション結果では、図5に示すように、ヒータ加熱壁面の温度が140℃以上になると、二次電池10の自己発熱による急激な温度上昇が起こった。図5に示す枠A〜Aは、図6に示す枠B〜B(温度二階微分値が負から正に転じる変曲点)に対応しているが、電池缶壁温度が高くなるほど、温度二階微分値が負から正に転じる変曲点が低温側に移った。そして、ヒータ加熱壁面の温度が高くなるほど、温度二階微分値が負から正に転じる変曲点から二次電池10の自己発熱による急激な温度上昇が起こるまでの時間が短くなった。 In this simulation result, as shown in FIG. 5, when the temperature of the heater heating wall surface was 140 ° C. or higher, a rapid temperature increase occurred due to self-heating of the secondary battery 10. The frames A 1 to A 4 shown in FIG. 5 correspond to the frames B 1 to B 4 (inflection points where the temperature second-order differential value turns from negative to positive) shown in FIG. 6, but the battery can wall temperature is high. In fact, the inflection point at which the second-order temperature differential value turns from negative to positive has shifted to the low temperature side. As the temperature of the heater heating wall surface increases, the time from the inflection point at which the temperature second-order differential value turns from negative to positive becomes shorter until the rapid temperature rise due to self-heating of the secondary battery 10 occurs.

<実施例1:二次電池の自己発熱による温度上昇を回避する冷却処理シミュレーション>
図4に示すモデルを用いて、ヒータ32による加熱温度を145℃に設定して、二次電池10を加熱しながら、電池缶壁温度を時間で二階微分した温度二階微分値を求めていき、温度二階微分値が負から正に転じる変曲点において、42L/min(25℃)の送風量で空気を筐体30の円筒孔28に送風し、二次電池10を冷却するシミュレーションを行った。図7は、加熱経過時間と冷却処理した電池缶壁温度のシミュレーション結果を示す図である。なお、図7には、実際に、φ25mmの円筒孔28を有する筐体30の上下にヒータ32を設置し、筐体30の円筒孔28内にφ18mmの二次電池10を設置して、ヒータ32による加熱温度を145℃に設定して、二次電池10を加熱した時の、電池缶壁温度の実測値も示す。
<Example 1: Cooling process simulation to avoid temperature rise due to self-heating of secondary battery>
Using the model shown in FIG. 4, the heating temperature by the heater 32 is set to 145 ° C., and while heating the secondary battery 10, the temperature second-order differential value obtained by second-order differentiation of the battery can wall temperature with time is obtained. A simulation was performed to cool the secondary battery 10 by blowing air into the cylindrical hole 28 of the housing 30 at an inflection point where the second-order differential value of the temperature changes from negative to positive at a flow rate of 42 L / min (25 ° C.). . FIG. 7 is a diagram showing simulation results of the elapsed time of heating and the temperature of the cooled battery can wall. In FIG. 7, the heater 32 is actually installed above and below the casing 30 having the φ25 mm cylindrical hole 28, and the φ18 mm secondary battery 10 is installed in the cylindrical hole 28 of the casing 30. The measured value of the battery can wall temperature when the secondary battery 10 is heated by setting the heating temperature by 32 to 145 ° C. is also shown.

温度二階微分値が負から正に転じる変曲点(図7に示す枠C)において、42L/min(25℃)の送風量で空気を筐体30の円筒孔28に送風し、二次電池10を冷却するシミュレーションを行った結果、図7に示すように、二次電池10の自己発熱による急激な温度上昇に至ることなく、二次電池10が冷却され、電池缶壁温度が低下するという結果が得られた。   At the inflection point (frame C shown in FIG. 7) where the second-order differential value of the temperature changes from negative to positive, air is blown into the cylindrical hole 28 of the housing 30 at an air flow rate of 42 L / min (25 ° C.). As a result of performing a simulation of cooling 10, as shown in FIG. 7, the secondary battery 10 is cooled and the battery can wall temperature decreases without causing a rapid temperature increase due to self-heating of the secondary battery 10. Results were obtained.

<実施例2:二次電池の自己発熱による温度上昇を回避する冷却処理試験>
図8は、二次電池の自己発熱による温度上昇を回避する冷却処理試験に使用した装置を示す図である。図8に示すように、実施例2では、実際に、φ25mmの円筒孔28を有する筐体30の上下にヒータ32を設置し、筐体30の円筒孔28内にφ18mmの二次電池10を設置した。また、冷却配管34の一端を円筒孔28に接続し、冷却配管34の他端をマスフローコントローラ36に接続した。実施例2の冷却処理試験では、ヒータ32による加熱温度を145℃に設定して、二次電池10を加熱しながら、電池缶壁温度を時間で二階微分した温度二階微分値を求めていき、温度二階微分値が負から正に転じる変曲点において、マスフローコントローラ36において42L/min(25℃)の送風量に調整した空気を筐体30の円筒孔28に送風し、二次電池10の冷却を行った。図9に加熱経過時間と冷却処理した電池缶壁温度の結果をまとめた。図9の電池缶壁温度は、図8に示す点B,Dの2つの測定点の平均値とした。
<Example 2: Cooling treatment test to avoid temperature rise due to self-heating of secondary battery>
FIG. 8 is a diagram showing an apparatus used for a cooling treatment test for avoiding a temperature rise due to self-heating of the secondary battery. As shown in FIG. 8, in Example 2, the heaters 32 are actually installed above and below the casing 30 having the φ25 mm cylindrical hole 28, and the φ18 mm secondary battery 10 is installed in the cylindrical hole 28 of the casing 30. installed. One end of the cooling pipe 34 was connected to the cylindrical hole 28, and the other end of the cooling pipe 34 was connected to the mass flow controller 36. In the cooling treatment test of Example 2, the heating temperature by the heater 32 is set to 145 ° C., and while the secondary battery 10 is heated, the temperature second-order differential value obtained by second-order differentiation of the battery can wall temperature with time is obtained. At the inflection point at which the second-order differential value changes from negative to positive, the air adjusted to the air flow rate of 42 L / min (25 ° C.) by the mass flow controller 36 is blown into the cylindrical hole 28 of the housing 30, and the secondary battery 10 Cooling was performed. FIG. 9 summarizes the results of the elapsed time of heating and the temperature of the battery can wall after cooling. The battery can wall temperature in FIG. 9 was an average value of two measurement points of points B and D shown in FIG.

図9に示すように、温度二階微分値が負から正に転じる変曲点(図9に示す枠D)において、42L/min(25℃)の送風量で空気を筐体30の円筒孔28に送風し、二次電池10を冷却した結果、図7に示すシミュレーション結果と同様に、二次電池10の自己発熱による急激な温度上昇に至ることなく、二次電池10が冷却され、電池缶壁温度が低下した。   As shown in FIG. 9, at the inflection point (frame D shown in FIG. 9) where the second-order temperature differential value changes from negative to positive, air is blown at the cylindrical hole 28 of the housing 30 with an air flow rate of 42 L / min (25 ° C.). As a result of cooling the secondary battery 10, the secondary battery 10 is cooled without causing a rapid temperature rise due to self-heating of the secondary battery 10, as in the simulation result shown in FIG. The wall temperature has dropped.

1 二次電池システム、10 二次電池、12 二次電池の冷却装置、14 温度検出部、16 冷却部、18 制御部、20 電池温度記憶部、22 二階微分値演算部、24 二階微分値記憶部、26 データ処理/指令部、28 円筒孔、30 筐体、32 ヒータ、34 冷却配管、36 マスフローコントローラ。   DESCRIPTION OF SYMBOLS 1 Secondary battery system, 10 Secondary battery, 12 Secondary battery cooling device, 14 Temperature detection part, 16 Cooling part, 18 Control part, 20 Battery temperature storage part, 22 Second order differential value calculation part, 24 Second order differential value storage Part, 26 data processing / command part, 28 cylindrical hole, 30 housing, 32 heater, 34 cooling pipe, 36 mass flow controller.

Claims (2)

二次電池の温度を検出する温度検出手段と、
前記温度検出手段によって検出された温度を時間で二階微分し、温度二階微分値を求める二階微分値演算手段と、
前記二次電池の温度が所定値以上で、且つ前記二階微分値演算手段により求められた前記温度二階微分値が既定値を超える際又は前記二階微分値演算手段により求められた前記温度二階微分値が負から正へ転じる際に、前記二次電池を冷却処理する二次電池冷却手段と、を備えることを特徴とする二次電池の冷却装置。
Temperature detecting means for detecting the temperature of the secondary battery;
Second-order differential value calculation means for second-order differentiation of the temperature detected by the temperature detection means by time and obtaining a temperature second-order differential value;
When the temperature of the secondary battery is equal to or higher than a predetermined value, and the second-order differential value obtained by the second-order differential value calculating means exceeds a predetermined value, or the second-order differential value obtained by the second-order differential value calculating means. And a secondary battery cooling means for cooling the secondary battery when the battery turns from negative to positive.
二次電池の温度を検出する温度検出ステップと、
前記温度検出ステップで検出された温度を時間で二階微分し、温度二階微分値を求める二階微分値演算ステップと、
前記二次電池の温度が所定値以上で、且つ前記二階微分値演算ステップで求められた前記温度二階微分値が所定値を超える際又は前記二階微分値演算手段により求められた前記温度二階微分値が負から正へ転じる際に、前記二次電池を冷却処理する二次電池冷却ステップと、を備えることを特徴とする二次電池の冷却方法。
A temperature detection step for detecting the temperature of the secondary battery;
Second-order differential value calculation step for second-order differentiation of the temperature detected in the temperature detection step with time and obtaining a temperature second-order differential value;
The temperature second-order differential value obtained when the temperature of the secondary battery is equal to or higher than a predetermined value and the second-order differential value obtained in the second-order differential value computation step exceeds a predetermined value or by the second-order differential value computation means. And a secondary battery cooling step of cooling the secondary battery when the battery turns from negative to positive.
JP2012131694A 2012-06-11 2012-06-11 Secondary battery cooling device and secondary battery cooling method Expired - Fee Related JP6106959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012131694A JP6106959B2 (en) 2012-06-11 2012-06-11 Secondary battery cooling device and secondary battery cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012131694A JP6106959B2 (en) 2012-06-11 2012-06-11 Secondary battery cooling device and secondary battery cooling method

Publications (2)

Publication Number Publication Date
JP2013257961A true JP2013257961A (en) 2013-12-26
JP6106959B2 JP6106959B2 (en) 2017-04-05

Family

ID=49954259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012131694A Expired - Fee Related JP6106959B2 (en) 2012-06-11 2012-06-11 Secondary battery cooling device and secondary battery cooling method

Country Status (1)

Country Link
JP (1) JP6106959B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205233A (en) * 2017-06-08 2018-12-27 株式会社豊田中央研究所 Measuring apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599887B (en) * 2020-12-17 2022-04-05 潍柴动力股份有限公司 Battery heat dissipation method, battery heat dissipation device and battery pack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865912A (en) * 1994-08-15 1996-03-08 Toshiba Battery Co Ltd Battery charger
JPH10290535A (en) * 1997-04-14 1998-10-27 Honda Motor Co Ltd Battery charger
JP2000030766A (en) * 1998-07-13 2000-01-28 Toyota Central Res & Dev Lab Inc Method for protecting secondary battery for electric vehicle
JP2002335640A (en) * 2001-05-09 2002-11-22 Makita Corp Charger
JP2011059739A (en) * 2009-09-04 2011-03-24 Fujitsu Ltd Temperature predicting apparatus, temperature predicting method, and temperature predicting program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865912A (en) * 1994-08-15 1996-03-08 Toshiba Battery Co Ltd Battery charger
JPH10290535A (en) * 1997-04-14 1998-10-27 Honda Motor Co Ltd Battery charger
JP2000030766A (en) * 1998-07-13 2000-01-28 Toyota Central Res & Dev Lab Inc Method for protecting secondary battery for electric vehicle
JP2002335640A (en) * 2001-05-09 2002-11-22 Makita Corp Charger
JP2011059739A (en) * 2009-09-04 2011-03-24 Fujitsu Ltd Temperature predicting apparatus, temperature predicting method, and temperature predicting program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205233A (en) * 2017-06-08 2018-12-27 株式会社豊田中央研究所 Measuring apparatus

Also Published As

Publication number Publication date
JP6106959B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
CN109755987B (en) Battery charging method, battery charger and charging combination
KR101685130B1 (en) Apparatus and Method for controlling power for secondary battery
JP5219485B2 (en) Charging method
US8039136B2 (en) Battery cooling device, battery cooling air flow control device, and computer readable medium
US20160380313A1 (en) Battery pack, control circuit, and control method
CN107293821B (en) Power battery heat treatment method and device and electric automobile
JP5378023B2 (en) Power supply device for vehicle and cooling method thereof
US10418673B2 (en) Battery module with a controllable external heat sink
TW201018048A (en) Battery pack, information processing apparatus, charge control system, charge control method by battery pack, and charge control method by charge control system
KR101748642B1 (en) Apparatus and Method for Adjusting Power of Secondary Battery
JP2011187227A (en) Battery pack, electronic equipment, equipment system, control method for battery pack cooling unit, and program
JP3052936B2 (en) Battery cooling fan controller
CN110571492A (en) Energy storage battery thermal management apparatus and method
JP6106959B2 (en) Secondary battery cooling device and secondary battery cooling method
JP6827355B2 (en) Battery control device
JP2013005663A (en) Battery pack input-output controller
CN210296574U (en) Temperature control system for power battery pack, battery box and electric automobile
JP2014120457A (en) Power supply device
JP2016081579A (en) Secondary battery system
CN109473749B (en) Thermal management control method for power battery
JP2007097269A (en) Charging method of secondary battery
CN113437398B (en) Battery thermal runaway treatment method, device, vehicle and medium
JP2019115184A (en) Regeneration device of nickel hydrogen battery and regeneration method
JP2014131452A (en) Charging control device, charging control program, and portable terminal
JP4730671B2 (en) Charger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R150 Certificate of patent or registration of utility model

Ref document number: 6106959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees