JP2013256601A - System and method for producing light oil - Google Patents

System and method for producing light oil Download PDF

Info

Publication number
JP2013256601A
JP2013256601A JP2012133935A JP2012133935A JP2013256601A JP 2013256601 A JP2013256601 A JP 2013256601A JP 2012133935 A JP2012133935 A JP 2012133935A JP 2012133935 A JP2012133935 A JP 2012133935A JP 2013256601 A JP2013256601 A JP 2013256601A
Authority
JP
Japan
Prior art keywords
oil
cracked
reactor
light
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012133935A
Other languages
Japanese (ja)
Inventor
Kazuki Hayashi
一毅 林
Kazuhiro Sato
和宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2012133935A priority Critical patent/JP2013256601A/en
Publication of JP2013256601A publication Critical patent/JP2013256601A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system for producing light oil capable of improving yield of light oil than the conventional art.SOLUTION: A system for producing light oil includes: a filter for filtering raw material oil; a pre-heater for pre-heating the filtered raw material oil; a reactor including a solid catalyst with which the pre-heated raw material oil is brought into contact to be converted into cracked oil comprising hydrocarbons; a high temperature fractionating column condensing heavy oil (heavy fraction) from the cracked oil to feed hydrocarbon oil other than the condensed heavy oil in a gas state to a rear stage; a recirculation section for recirculating the heavy oil to the reactor, the heavy oil having being condensed in the high temperature fractionating column to be separated; a low temperature fractionating column for condensing cracked oil (gas oil fraction) with light oil quality from the hydrocarbon oil in a gas state having been fed from the high temperature fractionating column and discharging a naphtha/gas component other than the condensed cracked oil (gas oil fraction) with light oil quality to a rear stage; a cooling column for cooling the cracked oil (gas oil fraction) with light oil quality having been condensed (fractionally distilled) in the low temperature fractionating column; and a light oil recovery section for recovering the light oil having been obtained by being cooled in the cooling column.

Description

本発明は、固体触媒を用いて製造する軽油製造システムおよび軽油製造方法に関する。特に、軽油の製造原料として、廃食油、植物系油脂、動物系油脂、各種鉱物油を単体または混合して用いることが可能な、接触分解法による軽油の製造システムおよび軽油の製造方法に関するものである。   The present invention relates to a light oil production system and a light oil production method produced using a solid catalyst. In particular, the present invention relates to a light oil production system and a light oil production method using a catalytic cracking method, which can use waste edible oil, vegetable oil, animal oil, and various mineral oils as a raw material for light oil. is there.

廃食油などの油脂類を用いて軽油を製造する方法として接触分解法がある(例えば、特許文献1)。この接触分解法では、固体触媒の作用により油脂のエステル結合部を開裂する脱炭酸分解反応により、軽油状の炭化水素、二酸化炭素、プロパンなどの軽質ガスに分解するものである。特許文献1では、常圧下反応で、小規模処理を可能とする軽油製造システムを開示している。   As a method for producing light oil using fats and oils such as waste cooking oil, there is a catalytic cracking method (for example, Patent Document 1). In this catalytic cracking method, it decomposes into light oils such as light oily hydrocarbons, carbon dioxide, propane, etc., by a decarboxylation cracking reaction that cleaves the ester bond part of fats and oils by the action of a solid catalyst. Patent Document 1 discloses a light oil production system that enables small-scale processing by reaction under normal pressure.

特開2011−032408号公報JP 2011-032408 A

しかしながら、上記特許文献1では、触媒反応工程後の各分留工程で発生する分留ロスや重質油(分)を反応の熱源に利用しているため、軽油の収率についてはさらに向上させたいとの要求がある。   However, in Patent Document 1, fractional loss and heavy oil (min) generated in each fractionation step after the catalytic reaction step are used as a heat source for the reaction, so the yield of light oil is further improved. There is a request to want.

そこで、本発明は、上記状況に鑑みてなされたものであって、その目的は、従来よりも軽油の収率を向上させることができる軽油製造システムおよび軽油製造方法を提供することにある。   Then, this invention is made | formed in view of the said condition, The objective is to provide the light oil manufacturing system and light oil manufacturing method which can improve the yield of light oil conventionally.

本発明の軽油製造システムは、
原料油を貯留する原料タンクと、
前記原料油をろ過するろ過器と、
前記ろ過器でろ過された前記原料油を予熱する予熱器と、
前記予熱器で予熱された前記原料油を接触させて、炭化水素からなる分解油に変換する固体触媒を有する反応器と、
前記反応器で得られた前記分解油から、重質油(重質留分)を凝縮し、当該凝縮された重質油以外の炭化水素油をガス状態で後段へ送る高温分留塔と、
前記高温分留塔で凝縮されて分離された前記重質油を、前記反応器へ還流する還流部と、
前記高温分留塔から送られた前記ガス状態の炭化水素油から、軽油質の分解油(軽油留分)を凝縮し、当該凝縮された軽油質の分解油以外のナフサ・ガス成分を後段へ排出する低温分留塔と、
前記低温分留塔で凝縮(分留)された軽油質の分解油(軽油留分)を冷却する冷却塔と、
前記冷却塔で冷却して得られた軽油を回収する軽油回収部と、を有する。
The light oil production system of the present invention comprises:
A raw material tank for storing raw material oil;
A filter for filtering the raw oil;
A preheater for preheating the raw oil filtered by the filter;
A reactor having a solid catalyst that contacts the feed oil preheated by the preheater and converts it into cracked oil comprising hydrocarbons;
A high-temperature fractionating tower that condenses heavy oil (heavy fraction) from the cracked oil obtained in the reactor and sends hydrocarbon oil other than the condensed heavy oil in a gaseous state to the subsequent stage;
A reflux section for refluxing the heavy oil condensed and separated in the high-temperature fractionating column to the reactor;
Gas oil cracked oil (light oil fraction) is condensed from the gaseous hydrocarbon oil sent from the high temperature fractionating tower, and naphtha gas components other than the condensed light oil cracked oil are passed to the subsequent stage. A low-temperature fractionating tower to be discharged;
A cooling tower that cools the light oily cracked oil (light oil fraction) condensed (fractionated) in the low-temperature fractionating tower;
A light oil recovery section for recovering light oil obtained by cooling in the cooling tower.

以上の構成によれば、高温分留塔で分離された重質油(重質留分)を反応器へ還流し、反応器で再び接触分解反応をさせて、ナフサ、灯油、軽油質に分解させることができ、システム全体として軽油の収率を従来よりも向上させることができる。また、従来では必要であった重質油(重質留分)の回収装置(例えば排出弁、回収タンクなど)を必ず設置する必要がなくなる。   According to the above configuration, the heavy oil (heavy fraction) separated in the high-temperature fractionation tower is refluxed to the reactor, and is subjected to catalytic cracking reaction again in the reactor to be decomposed into naphtha, kerosene, and light oil. The yield of light oil as a whole system can be improved as compared with the conventional system. In addition, it is no longer necessary to install a heavy oil (heavy fraction) recovery device (for example, a discharge valve, a recovery tank, etc.) that was conventionally required.

原料油は、例えば、廃食油、植物系油脂、動物系油脂、各種鉱物油を単体または混合したものである。廃食油としては、例えば、てんぷら油、から揚げ油等である。植物系油脂としては、菜種油、大豆油、ゴマ油、紅花油、綿実油、米油、落花生油、ひまわり油、とうもろこし油、オリーブ油、パーム油、ココナッツ油、ジャトロファ油、ピーナッツ油等が挙げられる。動物系油脂としては、例えば、牛脂(ヘット)、豚油(ラード)等が挙げられる。鉱物油としては、炭化水素系の各種鉱物油が挙げられる。   The raw material oil is, for example, a simple or mixed waste cooking oil, vegetable oil, animal oil, and various mineral oils. Examples of the waste cooking oil include tempura oil and fried oil. Examples of vegetable oils include rapeseed oil, soybean oil, sesame oil, safflower oil, cottonseed oil, rice oil, peanut oil, sunflower oil, corn oil, olive oil, palm oil, coconut oil, jatropha oil, peanut oil and the like. Examples of animal fats include beef tallow (hett), pork oil (lard) and the like. Examples of the mineral oil include various hydrocarbon-based mineral oils.

原料油は、ろ過器で異物を除去する。原料油中の異物を除去することで、異物が固体触媒に付着することによる接触分解反応の効率低下を防止できる。ろ過性能としては、0.5μm〜5μm程度のフィルターで構成することができ、1μm程度が好ましい。異物としては、てんぷら油中の天カス等が挙げられる。なお、原料油を予めろ過器でろ過してから原料油タンクに貯蔵しておいてもよい。   The foreign material is removed from the raw oil using a filter. By removing the foreign matter in the raw material oil, it is possible to prevent a reduction in the efficiency of the catalytic cracking reaction due to the foreign matter adhering to the solid catalyst. As filtration performance, it can comprise with a filter of about 0.5 micrometer-5 micrometers, and about 1 micrometer is preferred. Examples of the foreign material include heaven waste in tempura oil. In addition, you may store raw material oil in a raw material oil tank, after filtering with a filter beforehand.

原料油は、予熱器で予め加熱される。加熱された原料油の温度は、気化しない温度範囲であって、効率良く触媒反応が行われる温度範囲が好ましく、例えば、200〜400℃の温度範囲、好ましくは、300〜350℃の温度範囲である。原料油を予熱して液体のまま触媒反応温度域にしているため、気化による酸化劣化がないので好ましい。   The raw material oil is preheated with a preheater. The temperature of the heated raw material oil is a temperature range in which vaporization does not occur, and a temperature range in which a catalytic reaction is efficiently performed is preferable. For example, a temperature range of 200 to 400 ° C, preferably a temperature range of 300 to 350 ° C. is there. Since the raw material oil is preheated and kept in the catalytic reaction temperature range while being liquid, it is preferable because there is no oxidative deterioration due to vaporization.

接触分解法で用いられる触媒は、固体触媒である。固体触媒としては、例えば、ゼオライト、イオン交換樹脂、石灰、クレー、金属酸化物、金属炭酸塩、SiO−MgOやSiO−CaO等の複合酸化物または担持金属酸化物等が挙げられ、特にSiO−MgOの担持金属酸化物が好ましい。このSiO−MgOの担持金属酸化物を用いた場合、得られるディーゼル燃料(軽油)の収率が60%以上となり好ましい。また、固体触媒を固定する方法は特に制限されず、固定部材に固体触媒を固定して、固定式触媒反応器を構成する。 The catalyst used in the catalytic cracking method is a solid catalyst. Examples of the solid catalyst include zeolite, ion exchange resin, lime, clay, metal oxide, metal carbonate, composite oxide such as SiO 2 —MgO and SiO 2 —CaO, or supported metal oxide, and the like. A supported metal oxide of SiO 2 —MgO is preferred. When this supported metal oxide of SiO 2 —MgO is used, the yield of the obtained diesel fuel (light oil) is preferably 60% or more. In addition, the method for fixing the solid catalyst is not particularly limited, and the fixed catalyst reactor is configured by fixing the solid catalyst to the fixing member.

原料油が固定式触媒反応器で反応することで得られた分解油は、高温分留塔と、低温分留塔による2段階の分留が行われる。高温分留塔の分留温度範囲は、軽油以上の沸点成分を分離させるのに好ましい温度範囲であり、例えば、240〜360℃、好ましくは250〜350℃である。低温分留塔は、高温分留塔の分留温度範囲よりも低い分留温度範囲であって、軽油以下の沸点成分を分離させるのに好ましい温度範囲であり、例えば、120℃〜200℃の温度範囲が好ましく、140℃〜170℃の温度範囲がより好ましい。   The cracked oil obtained by reacting the raw material oil in the fixed catalyst reactor is subjected to two-stage fractionation using a high-temperature fractionation tower and a low-temperature fractionation tower. The fractionation temperature range of the high-temperature fractionation tower is a preferred temperature range for separating a boiling point component higher than light oil, and is, for example, 240 to 360 ° C, preferably 250 to 350 ° C. The low-temperature fractionation column is a fractionation temperature range lower than the fractionation temperature range of the high-temperature fractionation column, and is a preferable temperature range for separating boiling components below light oil, for example, 120 ° C to 200 ° C. A temperature range is preferable, and a temperature range of 140 ° C to 170 ° C is more preferable.

上記2段階の分留によって、燃焼性ガス成分、ナフサ・灯油・軽油、残渣(コーク)等の炭化水素油を連続的に分留する。そして、低温分留塔で得られた軽油留分(ガス状)を冷却塔で冷却して液体の軽油(ディーゼル燃料)を得て、これを回収部(例えば、貯蔵タンクなど)で回収する。本発明によって製造された軽油は、JIS K2204規格に合致した軽油であり、従来のバイオディーゼル燃料(BDF(登録商標))、軽油代替燃料とは区別される。   By the two-stage fractionation, hydrocarbon oils such as combustible gas components, naphtha / kerosene / light oil, and residues (coke) are continuously fractionated. And the light oil fraction (gaseous form) obtained in the low temperature fractionation tower is cooled in the cooling tower to obtain liquid light oil (diesel fuel), which is recovered in a recovery part (for example, a storage tank). The light oil produced by the present invention is light oil that conforms to the JIS K2204 standard, and is distinguished from conventional biodiesel fuel (BDF (registered trademark)) and light oil substitute fuel.

また、上記発明の一実施形態において、前記低温分留塔から排出された前記ナフサ・ガス成分を、前記予熱器へ供給して熱源として利用する供給ラインを、さらに有する。   Moreover, in one Embodiment of the said invention, it further has the supply line which supplies the said naphtha gas component discharged | emitted from the said low temperature fractionation column to the said preheater, and utilizes it as a heat source.

この構成によれば、ナフサ・ガス成分(灯油分も含む)を予熱器の熱源として利用できるため、システム全体の熱エネルギー利用効率が高いものとなり、反応器から排出される分解油(炭化水素油蒸気)の保有顕熱を利用して、加熱エネルギーなしにオンラインで分留操作ができる。   According to this configuration, since the naphtha gas component (including kerosene) can be used as a heat source for the preheater, the thermal energy utilization efficiency of the entire system becomes high, and cracked oil (hydrocarbon oil) discharged from the reactor The fractionation operation can be performed online without heating energy using the sensible heat of steam.

また、上記発明の一実施形態において、前記還流部が、直線状の連結管であり、前記反応器の上方に前記高温分留塔が設置され、前記反応器の上部開口部と、前記高温分留塔の底部開口部とが前記連結管で連結された構造である。   In one embodiment of the invention, the reflux part is a straight connecting pipe, the high-temperature fractionating tower is installed above the reactor, an upper opening of the reactor, and the high-temperature fraction This is a structure in which the bottom opening of the distillation column is connected by the connecting pipe.

この構成によれば、反応器の上方に高温分留塔が対向して設置されるため、反応器からは分解油のガスが上昇して高温分留塔へ導入され、一方、高温分留塔で凝縮された重質油は自重によって下方の反応器へ自然に移動する。また、全体の設置面積が小さくなり、かつ反応器から高温分留塔へガスを導入するためのガス導入ラインと還流ラインを同一構造にできるため、全体の構造をシンプルにできる。   According to this configuration, since the high-temperature fractionation tower is installed facing the upper side of the reactor, the cracked oil gas rises from the reactor and is introduced into the high-temperature fractionation tower. The heavy oil condensed in is naturally moved to the lower reactor by its own weight. Further, the entire installation area can be reduced, and the gas introduction line and the reflux line for introducing gas from the reactor to the high-temperature fractionation tower can be made the same structure, so that the overall structure can be simplified.

また、上記発明の一実施形態において、前記反応器の上部開口部と、前記高温分留塔の下部開口部とを連結するガス導入ラインを有し、
前記還流部は、前記ガス導入ラインとは異なり、前記高温分留塔の底部開口部と、前記反応器の上サイド開口部とを連結する還流ラインを有する。
Moreover, in one embodiment of the invention described above, it has a gas introduction line that connects the upper opening of the reactor and the lower opening of the high temperature fractionating column,
Unlike the gas introduction line, the reflux part has a reflux line that connects a bottom opening of the high-temperature fractionating column and an upper side opening of the reactor.

この構成によれば、反応器から出る分解油のガスは、ガス導入ライン(例えば、配管)を通って高温分留塔へ導入され、一方、高温分留塔で凝縮された重質油は別の還流ライン(例えば配管)を通って反応器へ戻る。   According to this configuration, the cracked oil gas exiting the reactor is introduced into the high-temperature fractionation tower through a gas introduction line (for example, piping), while the heavy oil condensed in the high-temperature fractionation tower is separated. And return to the reactor through the reflux line (eg, piping).

また、上記発明の一実施形態において、前記還流ラインは、前記重質油(重質留分)を回収するための回収部を有する。回収部は、例えば、還流ラインに設置された排出弁、排出用管、回収タンクを有して構成される。   Moreover, in one Embodiment of the said invention, the said reflux line has a collection | recovery part for collect | recovering the said heavy oil (heavy fraction). The recovery unit includes, for example, a discharge valve, a discharge pipe, and a recovery tank installed in the reflux line.

この構成によれば、還流ラインと合わせて重質油を回収することができ、必要に応じて、予熱器や反応器の熱源に利用するための重質油回収と、還流ラインを用いて軽油質の分解油の収率を向上させる還流処理とを、切り替え可能にシステムを使用できるため好ましい。   According to this configuration, heavy oil can be recovered together with the reflux line, and if necessary, heavy oil can be recovered for use as a heat source for the preheater and the reactor, and light oil can be recovered using the reflux line. It is preferable because the system can be used in a switchable manner with a reflux treatment for improving the yield of high quality cracked oil.

また、上記発明の一実施形態において、前記還流ラインは、前記反応器から前記高温分留塔へガスの逆流を防止するシール構造を有する。   In one embodiment of the invention, the reflux line has a seal structure that prevents a backflow of gas from the reactor to the high-temperature fractionating tower.

この構成によれば、還流ラインを通って反応器からガスが高温分留塔へ導入されることがなく好ましい。シール構造は、例えば、弁などの機械的構造や重質油そのものでシールする構造(例えば、排水トラップ構造など)が挙げられる。   According to this configuration, it is preferable that no gas is introduced from the reactor into the high-temperature fractionating column through the reflux line. Examples of the sealing structure include a mechanical structure such as a valve and a structure that seals with heavy oil itself (for example, a drain trap structure).

また、上記発明の一実施形態において、前記反応器と前記高温分留塔との間に配置され、前記反応器で得られた前記分解油を改質する改質器を、さらに有し、
前記改質器で改質された分解油が前記高温分留塔へ導入される。
Further, in one embodiment of the present invention, further comprising a reformer that is disposed between the reactor and the high temperature fractionating tower and reforms the cracked oil obtained in the reactor,
The cracked oil reformed by the reformer is introduced into the high temperature fractionating tower.

この構成によれば、例えば、有機酸分解反応、分解油水素化反応などにより、分解油を改質することができる。改質器を設置した場合には、改質器の圧力損失により上記還流ラインを通って反応器から高温分留塔へガスが流れることが懸念され、これを防止するために、上記のシール構造を設けることが好ましい。   According to this configuration, the cracked oil can be modified by, for example, an organic acid decomposition reaction, a cracked oil hydrogenation reaction, or the like. When a reformer is installed, there is a concern that gas flows from the reactor to the high-temperature fractionation tower through the reflux line due to the pressure loss of the reformer, and in order to prevent this, the seal structure described above is used. Is preferably provided.

また、他の本発明の軽油製造方法は、
原料油をろ過するろ過工程と、
前記ろ過工程でろ過された前記原料油を予熱する予熱工程と、
前記予熱工程で予熱された前記原料油を固定触媒に接触させて、炭化水素からなる分解油に変換する触媒反応工程と、
前記触媒反応工程で得られた前記分解油から、重質油を凝縮し、当該凝縮された重質油以外の炭化水素油をガス状態で後段へ送る高温分留工程と、
前記高温分留工程で凝縮されて分離された前記重質油を、前記反応工程へ還流する還流工程と、
前記高温分留工程から送られた前記ガス状態の炭化水素油から、軽油質の分解油を凝縮し、当該凝縮された軽油質の分解油以外のナフサ・ガス成分を後段へ排出する低温分留工程と、
前記低温分留塔で凝縮(分留)された軽油質の分解油(軽油留分)を冷却する冷却工程と、
前記冷却工程で冷却して得られた軽油を回収する軽油回収工程と、を含む。
In addition, the other light oil production method of the present invention,
A filtration step of filtering the raw material oil;
A preheating step of preheating the raw material oil filtered in the filtration step;
A catalytic reaction step in which the raw oil preheated in the preheating step is brought into contact with a fixed catalyst and converted into cracked oil comprising hydrocarbons;
From the cracked oil obtained in the catalytic reaction step, a high-temperature fractionation step of condensing heavy oil and sending hydrocarbon oil other than the condensed heavy oil in a gas state to the subsequent stage;
A refluxing step for refluxing the heavy oil condensed and separated in the high-temperature fractionation step to the reaction step;
Low temperature fractionation that condenses light oil cracked oil from the gaseous hydrocarbon oil sent from the high temperature fractionation step and discharges naphtha gas components other than the condensed light oil cracked oil to the subsequent stage. Process,
A cooling step of cooling the light oily cracked oil (light oil fraction) condensed (fractionated) in the low temperature fractionating tower;
A light oil recovery step of recovering light oil obtained by cooling in the cooling step.

また、上記発明の一実施形態において、前記低温分留工程から排出された前記ナフサ・ガス成分を、前記予熱工程の熱源として利用する工程を、さらに含む。   Moreover, in one Embodiment of the said invention, the process using the said naphtha gas component discharged | emitted from the said low temperature fractionation process as a heat source of the said preheating process is further included.

また、上記発明の一実施形態において、前記反応工程と前記高温分留工程との間で実施される工程であって、前記反応工程で得られた前記分解油を改質する改質工程を、さらに含み、前記改質工程で改質された分解油が前記高温分留工程へ導入される。   Moreover, in one embodiment of the invention described above, a reforming step for reforming the cracked oil obtained in the reaction step, which is a step performed between the reaction step and the high temperature fractionation step, Further, the cracked oil modified and modified in the reforming step is introduced into the high temperature fractionation step.

実施形態1の軽油製造システムの一例を説明するための図である。It is a figure for demonstrating an example of the light oil manufacturing system of Embodiment 1. FIG. 実施形態1の還流部を説明するための図である。FIG. 3 is a diagram for explaining a reflux unit according to the first embodiment. 実施形態2の軽油製造システムの一例を説明するための図である。It is a figure for demonstrating an example of the light oil manufacturing system of Embodiment 2. FIG. 実施形態2の還流部を説明するための図である。FIG. 6 is a diagram for explaining a reflux unit according to a second embodiment. 実施形態3の還流部を説明するための図である。It is a figure for demonstrating the recirculation | reflux part of Embodiment 3. FIG. 実施形態4の還流部を説明するための図である。It is a figure for demonstrating the recirculation | reflux part of Embodiment 4. FIG.

(実施形態1)
実施形態1に係る軽油製造システムの一例を図1、2を用いて説明する。軽油製造システムは、原料油を貯留する原料タンク1と、原料油をろ過するろ過器2と、原料油を予熱する予熱器3と、予熱器3で予熱された原料油を接触させて、炭化水素からなる分解油に変換する固体触媒51を有する反応器5と、反応器5で得られた分解油から、重質油(重質留分)を凝縮し、当該凝縮された重質油以外の炭化水素油をガス状態で後段へ送る高温分留塔6と、高温分留塔6で凝縮されて分離された重質油を、反応器5へ還流する還流部(L1)、高温分留塔6から送られたガス状態の炭化水素油から、軽油質の分解油(軽油留分)を凝縮し、当該凝縮された軽油質の分解油(軽油留分)以外のナフサ・ガス成分を後段へ排出する低温分留塔7と、低温分留塔7で凝縮(分留)された軽油質の分解油(軽油留分)を冷却する冷却塔8と、冷却塔8で冷却して得られた軽油を回収する軽油回収部9とを有する。
(Embodiment 1)
An example of a light oil production system according to Embodiment 1 will be described with reference to FIGS. The light oil production system is made by contacting a raw material tank 1 that stores raw material oil, a filter 2 that filters the raw material oil, a preheater 3 that preheats the raw material oil, and a raw material oil preheated by the preheater 3 into carbonization. A heavy oil (heavy fraction) is condensed from the cracked oil obtained in the reactor 5 having the solid catalyst 51 to be converted into cracked oil composed of hydrogen and the reactor 5, and other than the condensed heavy oil High-temperature fractionation tower 6 for sending the hydrocarbon oil of the gas to the subsequent stage in gas state, a reflux section (L1) for refluxing the heavy oil condensed and separated in the high-temperature fractionation tower 6 to the reactor 5, and high-temperature fractionation Gas oil-derived cracked oil (gas oil fraction) is condensed from the gaseous hydrocarbon oil sent from the tower 6, and naphtha gas components other than the condensed gas oil-based cracked oil (light oil fraction) are downstream. The low-temperature fractionation tower 7 discharged to the bottom, and the light oil cracked oil (light oil fraction) condensed (fractionation) in the low-temperature fractionation tower 7 is cooled. Having a cooling tower 8, and a gas oil recovery unit 9 for recovering the gas oil obtained by cooling in the cooling tower 8.

原料タンク1からろ過器2および予熱器3へ原料油を液送するポンプP1をさらに備える。原料油は、まず、ろ過器2で不純物が除去される。次いで、ろ過後の原料油が予熱器3で200℃〜400℃の温度範囲に加熱され、原料油は、反応器5の上部から下部の固体触媒51へ噴霧ノズルによって噴霧供給される。噴霧された原料油が固体触媒51に接触し、炭素9〜20のオレフィン・パラフィンを主成分とする炭化水素混合物である分解油に連続的に変換される。分解油G1は、ガス状態で後段の高温分留塔6へ、連結管L1を通って導入される。このとき、反応器5から出るガス状態の分解油G1の温度は、例えば380℃〜400℃である。   A pump P1 for feeding the raw material oil from the raw material tank 1 to the filter 2 and the preheater 3 is further provided. First, impurities are removed from the feedstock oil by the filter 2. Subsequently, the filtered raw material oil is heated to a temperature range of 200 ° C. to 400 ° C. by the preheater 3, and the raw material oil is sprayed and supplied from the upper part of the reactor 5 to the lower solid catalyst 51. The sprayed raw material oil comes into contact with the solid catalyst 51 and is continuously converted into cracked oil, which is a hydrocarbon mixture mainly composed of carbon 9-20 olefins and paraffins. The cracked oil G1 is introduced into the subsequent high-temperature fractionating tower 6 in a gas state through the connecting pipe L1. At this time, the temperature of the cracked oil G <b> 1 in the gas state exiting from the reactor 5 is, for example, 380 ° C. to 400 ° C.

高温分留塔6では、分解油から重質油(重質留分)が凝縮し、それ以外のガス成分、ナフサ、灯油、軽油等の炭化水素油G2(炭化水素油蒸気)は、ガス状態で排出され低温分留塔7へ導入される。高温分留塔6から出た炭化水素油G2のガス温度は、例えば250℃〜300℃である。   In the high-temperature fractionation tower 6, heavy oil (heavy fraction) is condensed from cracked oil, and other gas components, hydrocarbon oil G2 (hydrocarbon oil vapor) such as naphtha, kerosene, and light oil are in a gas state. And is introduced into the low-temperature fractionation tower 7. The gas temperature of the hydrocarbon oil G2 exiting from the high temperature fractionating tower 6 is, for example, 250 ° C to 300 ° C.

低温分留塔7では、炭化水素油から軽油質の分解油(軽油留分)が凝縮して分離され、冷却塔8で冷却された軽油が軽油回収部9で回収される。ここで軽油回収部9は、回収タンクである。   In the low-temperature fractionation tower 7, the light oily cracked oil (light oil fraction) is condensed and separated from the hydrocarbon oil, and the diesel oil cooled by the cooling tower 8 is recovered by the diesel oil recovery unit 9. Here, the light oil recovery unit 9 is a recovery tank.

また、低温分留塔7で分離されたナフサ、ガス、灯油などの成分は、ガス状態で排出され、ガス供給ラインL5(例えば、配管)を通って予熱器3へ供給され熱源として利用される。ナフサ、ガス、灯油などの成分は、その顕熱を利用するのみならず、ナフサ、ガス、灯油などの成分を燃やし、その熱を利用する構成でもよい。低温分留塔7から出たナフサ、ガス、灯油などの成分の温度は、例えば150℃〜200℃である。なお、このガスを反応器5の熱交換器の熱源に利用してもよい。   In addition, components such as naphtha, gas, and kerosene separated by the low-temperature fractionating tower 7 are discharged in a gas state, supplied to the preheater 3 through the gas supply line L5 (for example, piping), and used as a heat source. . Components such as naphtha, gas, and kerosene may use not only sensible heat but also burn components such as naphtha, gas, and kerosene and use the heat. The temperature of components such as naphtha, gas, and kerosene that have come out of the low-temperature fractionation tower 7 is 150 ° C. to 200 ° C., for example. Note that this gas may be used as a heat source of the heat exchanger of the reactor 5.

本実施形態では、図2に示すように、反応器5の真上に高温分留塔6が対向して配置され、反応器5の上部開口部53と、高温分留塔6の底部開口部61とが直線状の連結管L1(還流部)で連結された構造である。つまり、還流部が連結管L1を兼ねる構造である。高温分留塔6で分留された重質油(重質留分)H1が、その自重で下方に自然に流れ、反応器5へ戻る(還流される)。重質油(重質留分)は、反応器5で固体触媒51と再度反応し、ナフサ、灯油、軽油分に分解される。これによりシステム全体として軽油の収率が向上する。   In the present embodiment, as shown in FIG. 2, a high-temperature fractionation tower 6 is disposed directly above the reactor 5, and an upper opening 53 of the reactor 5 and a bottom opening of the high-temperature fractionation tower 6 are disposed. 61 is connected by a linear connecting pipe L1 (reflux part). That is, the reflux portion also serves as the connecting pipe L1. The heavy oil (heavy fraction) H1 fractionated in the high-temperature fractionation tower 6 naturally flows downward by its own weight and returns to the reactor 5 (refluxed). The heavy oil (heavy fraction) reacts again with the solid catalyst 51 in the reactor 5 and is decomposed into naphtha, kerosene, and light oil. This improves the yield of light oil as a whole system.

ここで、高温分留塔6の構造について図2を参照しながら説明する。図2において、高温分留塔6は、反応器5からの分解油の導入口となる底部開口部61と、充填材64を下で受けるパンチングメタル63と、気液接触を向上させるための充填材64と、炭化水素油蒸気に含まれるミストやヒュームを捕捉するデミスタ65と、炭化水素油蒸気を排出するための上部排出部62とを有する。さらに、その塔の側面にヒータ66が配置され、計測制御部68が、上部排出部62から排出されるガスの温度を計測し、その温度値が一定値になるようにヒータ66の温度出力を制御する。   Here, the structure of the high-temperature fractionating column 6 will be described with reference to FIG. In FIG. 2, a high-temperature fractionating column 6 includes a bottom opening 61 serving as an inlet for cracked oil from the reactor 5, a punching metal 63 receiving the filler 64 below, and a packing for improving gas-liquid contact. It has the material 64, the demister 65 which capture | acquires the mist and fumes contained in hydrocarbon oil vapor | steam, and the upper discharge part 62 for discharging | emitting hydrocarbon oil vapor | steam. Further, a heater 66 is disposed on the side of the tower, and the measurement control unit 68 measures the temperature of the gas discharged from the upper discharge unit 62 and outputs the temperature output of the heater 66 so that the temperature value becomes a constant value. Control.

充填材64は、セラミックなどの活性の無い、例えば、セラミックボール、セラミッククラッシヒリングなどが好ましい。また、その大きさや充填量は、設備の圧力損失などに基づいて設定される。なお、高温分留塔6の構造はこれに制限されない。また、低温分留塔7の構造を高温分留塔6と同様に構成できる。   The filler 64 preferably has no activity such as ceramic, for example, a ceramic ball, a ceramic crash ring, or the like. Moreover, the magnitude | size and filling amount are set based on the pressure loss of an installation, etc. Note that the structure of the high-temperature fractionating column 6 is not limited to this. Further, the structure of the low temperature fractionation tower 7 can be configured in the same manner as the high temperature fractionation tower 6.

(実施形態2)
図3、4に示す実施形態2は、反応器5の上部開口部53と、高温分留塔6の下部開口部611とを連結するガス導入ラインL31を有し、還流部は、ガス導入ラインL31(例えば、配管)とは異なり、高温分留塔6の底部開口部61と、反応器5の上サイド開口部54とを連結する還流ラインL32(例えば、配管)を有する構成である。なお、同じ符号の構成は、実施形態1と同じ機能を有するため説明を省略する。
(Embodiment 2)
The embodiment 2 shown in FIGS. 3 and 4 has a gas introduction line L31 that connects the upper opening 53 of the reactor 5 and the lower opening 611 of the high-temperature fractionating column 6, and the reflux part is a gas introduction line. Unlike L31 (for example, piping), it has a configuration having a reflux line L32 (for example, piping) that connects the bottom opening 61 of the high temperature fractionating column 6 and the upper side opening 54 of the reactor 5. In addition, since the structure of the same code | symbol has the same function as Embodiment 1, description is abbreviate | omitted.

図4において、ガス導入ラインL31を通って、分解油G1(炭化水素油蒸気)が高温分留塔6へ導入される。高温分留塔6で分留された重質油(重質留分)H1が、その自重で下方に自然に流れ、反応器5へ戻る(還流される)。重質油(重質留分)は、反応器5で固体触媒51と再度反応し、ナフサ、灯油、軽油分に分解される。これによりシステム全体として軽油の収率が向上する。   In FIG. 4, cracked oil G <b> 1 (hydrocarbon oil vapor) is introduced into the high temperature fractionating tower 6 through the gas introduction line L <b> 31. The heavy oil (heavy fraction) H1 fractionated in the high-temperature fractionation tower 6 naturally flows downward by its own weight and returns to the reactor 5 (refluxed). The heavy oil (heavy fraction) reacts again with the solid catalyst 51 in the reactor 5 and is decomposed into naphtha, kerosene, and light oil. This improves the yield of light oil as a whole system.

(実施形態3)
図5に示す実施形態3は、反応器5と高温分留塔6との間に配置され、反応器5で得られた分解油G1を改質する改質器501をさらに有する。この改質器501で改質された分解油G1が高温分留塔6へ導入される。改質器501は、反応器5によって生成された分解油G1を、改質目的に応じて、例えば、有機酸分解反応または分解油水素化反応などで改質する機能を有する。
(Embodiment 3)
Embodiment 3 shown in FIG. 5 further includes a reformer 501 that is disposed between the reactor 5 and the high-temperature fractionating tower 6 and reforms the cracked oil G1 obtained in the reactor 5. The cracked oil G1 reformed by the reformer 501 is introduced into the high temperature fractionating tower 6. The reformer 501 has a function of reforming the cracked oil G1 generated by the reactor 5 by, for example, an organic acid decomposition reaction or a cracked oil hydrogenation reaction according to the purpose of reforming.

還流ラインL32に、反応器5から高温分留塔6へガスの逆流を防止するシール構造を有する。図5のシール構造は、高温分留塔6の底部開口部61と連結される内筒102と、この内筒102を内部に挿入配置する外筒101とを有して構成される。外筒101の上部に設けられた配管101aが反応器5の上サイド開口部54に連結される。重質油H1が自重で内筒102を通って外筒101の内部下部に溜まることで、反応器5からのガスの逆流を防止する。外筒101の内底から配管101aまで還流油が溜まり、オーバーフローした分が反応器5へ戻る。   The reflux line L32 has a seal structure that prevents the backflow of gas from the reactor 5 to the high temperature fractionating column 6. The seal structure shown in FIG. 5 includes an inner cylinder 102 connected to the bottom opening 61 of the high-temperature fractionating column 6 and an outer cylinder 101 into which the inner cylinder 102 is inserted and arranged. A pipe 101 a provided at the upper part of the outer cylinder 101 is connected to the upper side opening 54 of the reactor 5. The heavy oil H <b> 1 passes through the inner cylinder 102 by its own weight and accumulates in the lower part of the outer cylinder 101, thereby preventing the gas from flowing back from the reactor 5. The reflux oil is accumulated from the inner bottom of the outer cylinder 101 to the pipe 101a, and the overflowed portion returns to the reactor 5.

(実施形態4)
図6に示す実施形態4は、還流ラインL32に、反応器5から高温分留塔6へガスの逆流を防止するシール構造としてS字の排水トラップ構造201を有する。トラップ部202に溜まった還流油(重質油)自体でガスの逆流をシールする。トラップ部202の高さは、反応器5内と高温分留塔6内の圧力差に基づいて設定できる。トラップ部202に還流油が溜まり、オーバーフローした分が反応器5へ戻る。
(Embodiment 4)
Embodiment 4 shown in FIG. 6 has an S-shaped drain trap structure 201 as a seal structure for preventing a backflow of gas from the reactor 5 to the high-temperature fractionating tower 6 in the reflux line L32. The reflux oil (heavy oil) accumulated in the trap unit 202 is sealed against the backflow of gas. The height of the trap unit 202 can be set based on the pressure difference between the reactor 5 and the high temperature fractionating tower 6. The reflux oil accumulates in the trap portion 202, and the overflowed portion returns to the reactor 5.

(別実施形態)
還流ラインL32は、重質油(重質留分)を回収するための回収部(排出弁、回収タンクなど)を有していてもよい。
(Another embodiment)
The reflux line L32 may have a recovery unit (discharge valve, recovery tank, etc.) for recovering heavy oil (heavy fraction).

(その他の構成要素)
また、予熱器3の加熱源は、例えば電気ヒータ、バーナー、または熱風、スチーム、廃ガス廃熱等を用いた熱交換器等で実現してもよい。
(Other components)
The heating source of the preheater 3 may be realized by, for example, an electric heater, a burner, or a heat exchanger using hot air, steam, waste gas waste heat, or the like.

また、反応器5は、その内部温度や固体触媒51の温度を、触媒反応温度域(例えば、400〜450℃)にするための加熱手段を備えることが好ましい。加熱手段としては、特に制限されず、例えば、電気ヒータ、バーナー、または熱風、スチーム、廃ガス廃熱等を用いた熱交換器等が挙げられる。また、反応器5で発生した分解油を後段に搬送するためのキャリアガスとして、例えば窒素ガス、水蒸気、オフガス等の不活性ガスを用いることが好ましい。このキャリアガスは、運転中連続して供給されてもよく、運転状況に応じて供給されてもよい。   Moreover, it is preferable that the reactor 5 is provided with a heating means for setting the internal temperature and the temperature of the solid catalyst 51 to a catalytic reaction temperature range (for example, 400 to 450 ° C.). The heating means is not particularly limited, and examples thereof include an electric heater, a burner, or a heat exchanger using hot air, steam, waste gas waste heat, and the like. Moreover, it is preferable to use inert gas, such as nitrogen gas, water vapor | steam, offgas, etc. as carrier gas for conveying the cracked oil generate | occur | produced in the reactor 5 to a back | latter stage. This carrier gas may be supplied continuously during operation, or may be supplied according to the operation status.

また、固定触媒51の再生を行うことができる。固体触媒の再生に、ナフサ、可燃性ガス等を燃焼器で燃焼した燃焼排ガスの一部を利用してもよい。固体触媒の耐熱温度を超える局所的な過大燃焼を抑制し、固体触媒51を全体的に効果的に再生できる。また、燃焼排ガスは、その酸素濃度が1〜10%、好ましくは5〜10%の範囲になるように燃焼器において燃焼制御されることが望ましい。また、燃焼排ガスの温度は、触媒に付着しているコークの燃焼を維持できるように、また触媒が過熱しないように、200〜500℃、好ましくは200〜300℃の範囲で反応器5に供給することが望ましい。   In addition, the regeneration of the fixed catalyst 51 can be performed. For regeneration of the solid catalyst, a part of the combustion exhaust gas obtained by burning naphtha, combustible gas or the like in a combustor may be used. The local excessive combustion exceeding the heat resistance temperature of the solid catalyst can be suppressed, and the solid catalyst 51 can be effectively regenerated as a whole. In addition, it is desirable that combustion exhaust gas be combustion controlled in the combustor so that the oxygen concentration is in the range of 1 to 10%, preferably 5 to 10%. The temperature of the combustion exhaust gas is supplied to the reactor 5 in the range of 200 to 500 ° C., preferably 200 to 300 ° C. so that the combustion of coke adhering to the catalyst can be maintained and the catalyst is not overheated. It is desirable to do.

(製造方法)
本発明の軽油の製造方法について以下に説明する。本製造方法は、上記実施形態1〜4の製造システムで好適に実行される。本製造方法は、原料油をろ過するろ過工程と、
前記ろ過工程でろ過された前記原料油を予熱する予熱工程と、前記予熱工程で予熱された前記原料油を固定触媒に接触させて、炭化水素からなる分解油に変換する触媒反応工程と、前記触媒反応工程で得られた前記分解油から、重質油を凝縮し、当該凝縮された重質油以外の炭化水素油をガス状態で後段へ送る高温分留工程と、前記高温分留工程で凝縮されて分離された前記重質油を、前記反応工程へ還流する還流工程と、前記高温分留工程から送られた前記ガス状態の炭化水素油から、軽油質の分解油を凝縮し、当該凝縮された軽油質の分解油以外のナフサ・ガス成分を後段へ排出する低温分留工程と、前記低温分留塔で凝縮(分留)された軽油質の分解油(軽油留分)を冷却する冷却工程と、前記冷却工程で冷却して得られた軽油を回収する軽油回収工程とを含む。
(Production method)
The light oil production method of the present invention will be described below. This manufacturing method is suitably executed in the manufacturing system of the first to fourth embodiments. This production method includes a filtration step of filtering raw material oil,
A preheating step for preheating the raw material oil filtered in the filtration step, a catalytic reaction step for bringing the raw material oil preheated in the preheating step into contact with a fixed catalyst, and converting it into a cracked oil comprising hydrocarbons, and From the cracked oil obtained in the catalytic reaction step, a heavy oil is condensed, and a hydrocarbon oil other than the condensed heavy oil is sent in a gas state to the subsequent stage, and in the high temperature fractionation step, The heavy oil separated by condensation is refluxed to the reaction step, and the light oily cracked oil is condensed from the gaseous hydrocarbon oil sent from the high-temperature fractionation step, Low temperature fractionation process that discharges naphtha gas components other than condensed light oil cracked oil to the subsequent stage, and cools light oil cracked oil (light oil fraction) condensed (fractionated) in the low temperature fractionation tower And recovering light oil obtained by cooling in the cooling process That and a light oil recovery process.

また、前記低温分留工程から排出された前記ナフサ・ガス成分を、前記予熱工程の熱源として利用する工程をさらに含む。   The method further includes a step of using the naphtha gas component discharged from the low temperature fractionation step as a heat source for the preheating step.

また、前記反応工程と前記高温分留工程との間で実施される工程であって、前記反応工程で得られた前記分解油を改質する改質工程をさらに含み、前記改質工程で改質された分解油が前記高温分留工程へ導入される。   The method further includes a reforming step that is performed between the reaction step and the high-temperature fractionation step and reforms the cracked oil obtained in the reaction step, and is modified in the reforming step. The refined cracked oil is introduced into the high temperature fractionation process.

<実施例>
上述の図3,4のシステムを使用し、廃食油を製造原料として軽油を製造した。実施例として、高温分留塔で凝集された重質油(分留ロス、分留残液)を反応器へ還流させた。比較例として、重質油は還流させず、そのまま回収した。
<Example>
Using the system of FIGS. 3 and 4 described above, light oil was produced using waste cooking oil as a production raw material. As an example, heavy oil agglomerated in a high-temperature fractionation tower (fractionation loss, fractionation residue) was refluxed to the reactor. As a comparative example, the heavy oil was recovered as it was without refluxing.

廃食油として1週間使用後のサラダ油を用いた。この実施例では、廃食油100Lに対し、12.5L/hの処理速度で軽油を製造した。固体触媒として、SiO−MgOの担持触媒(SiO−MgOの担持金属酸化物を有して構成されている)を用いた。 Salad oil after 1 week of use was used as waste cooking oil. In this example, light oil was produced at a processing speed of 12.5 L / h with respect to 100 L of waste cooking oil. As a solid catalyst, using a supported catalyst of SiO 2 -MgO (which is configured with a supported metal oxides of SiO 2 -MgO).

まず、廃食油を1μフィルターのろ過器で異物を除去した。次いで、予熱器で400℃程度まで加熱し原料液を得た(気化していない状態である)。次いで、固定式触媒の反応器に、予熱した原料液を噴霧し、固体触媒に接触させて、分解油ガスを得た。なお、それ以外に分解ガスと残渣、コーク等が発生する。   First, foreign substances were removed from the waste cooking oil using a 1 μ filter. Subsequently, it heated to about 400 degreeC with the preheater, and obtained the raw material liquid (it is in the state which is not vaporized). Next, the preheated raw material liquid was sprayed into the reactor of the fixed catalyst and contacted with the solid catalyst to obtain cracked oil gas. In addition, cracked gas, residue, coke, etc. are generated.

反応器で生じた分解油ガスは高温分留塔に導入される。高温分留塔においてこの分解油ガスを350℃で分留を行ない、低温分留塔において120〜150℃で分留を連続して行った。すなわち、ガス成分、ナフサ質(液体)、灯油質(液体)、軽油質(液体)、分留残液、コーク等の炭化水素油を連続的に分留した。   The cracked oil gas generated in the reactor is introduced into a high-temperature fractionating column. This cracked oil gas was subjected to fractional distillation at 350 ° C. in a high-temperature fractionation tower, and fractional distillation was continuously carried out at 120 to 150 ° C. in a low-temperature fractionation tower. That is, hydrocarbon oils such as gas components, naphtha (liquid), kerosene (liquid), light oil (liquid), residual fraction, and coke were continuously fractionated.

このときの、各段階で生じた成分の組成、質量を分析し、重量収支を算出した。その結果を表1に示す。ここで、高温分留塔から、重質油として分留ロスが5%程度、分留残液が2%程度生じた。実施例では、この重質油を反応器へ還流させて、再び分解油を得た。このときの重質油から軽油質を得る重量収率を表2に示す。表1、2の結果から、重質油を還流しないシステム(比較例)では、軽油質の重量収率が70%であったが、重質油を還流したシステム(実施例)では、軽油質がそれよりも4.9%向上する(74.9%)ことを確認した。   At this time, the composition and mass of the components produced at each stage were analyzed, and the weight balance was calculated. The results are shown in Table 1. Here, from the high-temperature fractionation tower, a fractionation loss of about 5% and a fractionation residue of about 2% occurred as heavy oil. In the examples, this heavy oil was refluxed to the reactor to obtain cracked oil again. Table 2 shows the weight yield for obtaining light oil from heavy oil. From the results of Tables 1 and 2, in the system that did not recirculate heavy oil (comparative example), the weight yield of light oil was 70%, but in the system that recirculated heavy oil (Example), Was 4.9% higher (74.9%) than that.

Figure 2013256601
Figure 2013256601

Figure 2013256601
Figure 2013256601

1 原料油タンク
2 ろ過器
3 予熱器
5 反応器
6 高温分留器
7 低温分留器
8 冷却塔
9 軽油回収部
51 固体触媒
DESCRIPTION OF SYMBOLS 1 Raw material oil tank 2 Filter 3 Preheater 5 Reactor 6 High temperature fractionator 7 Low temperature fractionator 8 Cooling tower 9 Light oil recovery part 51 Solid catalyst

Claims (10)

原料油を貯留する原料タンクと、
前記原料油をろ過するろ過器と、
前記ろ過器でろ過された前記原料油を予熱する予熱器と、
前記予熱器で予熱された前記原料油を接触させて、炭化水素からなる分解油に変換する固体触媒を有する反応器と、
前記反応器で得られた前記分解油から、重質油(重質留分)を凝縮し、当該凝縮された重質油以外の炭化水素油をガス状態で後段へ送る高温分留塔と、
前記高温分留塔で凝縮されて分離された前記重質油を、前記反応器へ還流する還流部と、
前記高温分留塔から送られた前記ガス状態の炭化水素油から、軽油質の分解油(軽油留分)を凝縮し、当該凝縮された軽油質の分解油以外のナフサ・ガス成分を後段へ排出する低温分留塔と、
前記低温分留塔で凝縮(分留)された軽油質の分解油(軽油留分)を冷却する冷却塔と、
前記冷却塔で冷却して得られた軽油を回収する軽油回収部と、を有する軽油製造システム。
A raw material tank for storing raw material oil;
A filter for filtering the raw oil;
A preheater for preheating the raw oil filtered by the filter;
A reactor having a solid catalyst that contacts the feed oil preheated by the preheater and converts it into cracked oil comprising hydrocarbons;
A high-temperature fractionating tower that condenses heavy oil (heavy fraction) from the cracked oil obtained in the reactor and sends hydrocarbon oil other than the condensed heavy oil in a gaseous state to the subsequent stage;
A reflux section for refluxing the heavy oil condensed and separated in the high-temperature fractionating column to the reactor;
Gas oil cracked oil (light oil fraction) is condensed from the gaseous hydrocarbon oil sent from the high temperature fractionating tower, and naphtha gas components other than the condensed light oil cracked oil are passed to the subsequent stage. A low-temperature fractionating tower to be discharged;
A cooling tower that cools the light oily cracked oil (light oil fraction) condensed (fractionated) in the low-temperature fractionating tower;
A light oil recovery system that recovers light oil obtained by cooling in the cooling tower.
前記低温分留塔から排出された前記ナフサ・ガス成分を、前記予熱器へ供給して熱源として利用する供給ラインを、さらに有する請求項1に記載の軽油製造システム。   The light oil production system according to claim 1, further comprising a supply line that supplies the naphtha gas component discharged from the low-temperature fractionating tower to the preheater and uses it as a heat source. 前記還流部が、直線状の連結管であり、
前記反応器の上方に前記高温分留塔が設置され、
前記反応器の上部開口部と、前記高温分留塔の底部開口部とが前記連結管で連結された構造である、請求項1または2に記載の軽油製造システム。
The reflux part is a straight connecting pipe;
The high temperature fractionating tower is installed above the reactor,
The light oil production system according to claim 1 or 2, wherein a top opening of the reactor and a bottom opening of the high temperature fractionating column are connected by the connecting pipe.
前記反応器の上部開口部と、前記高温分留塔の下部開口部とを連結するガス導入ラインを有し、
前記還流部は、
前記ガス導入ラインとは異なり、前記高温分留塔の底部開口部と、前記反応器の上サイド開口部とを連結する還流ラインを有する、請求項1または2に記載の軽油製造システム。
A gas introduction line connecting the upper opening of the reactor and the lower opening of the high-temperature fractionating column;
The reflux part is
The gas oil production system according to claim 1, further comprising a reflux line that connects a bottom opening of the high-temperature fractionating column and an upper side opening of the reactor, unlike the gas introduction line.
前記還流ラインは、前記重質油(重質留分)を回収するための回収部を有する、請求項4に記載の軽油製造システム。   The light oil production system according to claim 4, wherein the reflux line includes a recovery unit for recovering the heavy oil (heavy fraction). 前記還流ラインは、前記反応器から前記高温分留塔へガスの逆流を防止するシール構造を有する、請求項4または5に記載の軽油製造システム。   6. The light oil production system according to claim 4, wherein the reflux line has a seal structure that prevents backflow of gas from the reactor to the high-temperature fractionation tower. 前記反応器と前記高温分留塔との間に配置され、前記反応器で得られた前記分解油を改質する改質器を、さらに有し、
前記改質器で改質された分解油が前記高温分留塔へ導入される、請求項4から6のいずれか1項に記載の軽油製造システム。
A reformer that is disposed between the reactor and the high-temperature fractionation tower and reforms the cracked oil obtained in the reactor;
The light oil production system according to any one of claims 4 to 6, wherein the cracked oil reformed by the reformer is introduced into the high temperature fractionating tower.
原料油をろ過するろ過工程と、
前記ろ過工程でろ過された前記原料油を予熱する予熱工程と、
前記予熱工程で予熱された前記原料油を固定触媒に接触させて、炭化水素からなる分解油に変換する触媒反応工程と、
前記触媒反応工程で得られた前記分解油から、重質油を凝縮し、当該凝縮された重質油以外の炭化水素油をガス状態で後段へ送る高温分留工程と、
前記高温分留工程で凝縮されて分離された前記重質油を、前記反応工程へ還流する還流工程と、
前記高温分留工程から送られた前記ガス状態の炭化水素油から、軽油質の分解油を凝縮し、当該凝縮された軽油質の分解油以外のナフサ・ガス成分を後段へ排出する低温分留工程と、
前記低温分留塔で凝縮(分留)された軽油質の分解油(軽油留分)を冷却する冷却工程と、
前記冷却工程で冷却して得られた軽油を回収する軽油回収工程と、を含む軽油製造方法。
A filtration step of filtering the raw material oil;
A preheating step of preheating the raw material oil filtered in the filtration step;
A catalytic reaction step in which the raw oil preheated in the preheating step is brought into contact with a fixed catalyst and converted into cracked oil comprising hydrocarbons;
From the cracked oil obtained in the catalytic reaction step, a high-temperature fractionation step of condensing heavy oil and sending hydrocarbon oil other than the condensed heavy oil in a gas state to the subsequent stage;
A refluxing step for refluxing the heavy oil condensed and separated in the high-temperature fractionation step to the reaction step;
Low temperature fractionation that condenses light oil cracked oil from the gaseous hydrocarbon oil sent from the high temperature fractionation step and discharges naphtha gas components other than the condensed light oil cracked oil to the subsequent stage. Process,
A cooling step of cooling the light oily cracked oil (light oil fraction) condensed (fractionated) in the low temperature fractionating tower;
A light oil recovery step of recovering light oil obtained by cooling in the cooling step.
前記低温分留工程から排出された前記ナフサ・ガス成分を、前記予熱工程の熱源として利用する工程を、さらに含む請求項8に記載の軽油製造方法。   The light oil production method according to claim 8, further comprising a step of using the naphtha gas component discharged from the low temperature fractionation step as a heat source of the preheating step. 前記反応工程と前記高温分留工程との間で実施される工程であって、前記反応工程で得られた前記分解油を改質する改質工程を、さらに含み、
前記改質工程で改質された分解油が前記高温分留工程へ導入される、請求項8または9に記載の軽油製造方法。
A step performed between the reaction step and the high temperature fractionation step, further comprising a reforming step of reforming the cracked oil obtained in the reaction step;
The method for producing diesel oil according to claim 8 or 9, wherein the cracked oil modified in the reforming step is introduced into the high-temperature fractionating step.
JP2012133935A 2012-06-13 2012-06-13 System and method for producing light oil Pending JP2013256601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012133935A JP2013256601A (en) 2012-06-13 2012-06-13 System and method for producing light oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012133935A JP2013256601A (en) 2012-06-13 2012-06-13 System and method for producing light oil

Publications (1)

Publication Number Publication Date
JP2013256601A true JP2013256601A (en) 2013-12-26

Family

ID=49953301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133935A Pending JP2013256601A (en) 2012-06-13 2012-06-13 System and method for producing light oil

Country Status (1)

Country Link
JP (1) JP2013256601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110414070A (en) * 2019-07-03 2019-11-05 中国水利水电科学研究院 Mechanical-draft cooling tower hot gas re-flow impact evaluation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110414070A (en) * 2019-07-03 2019-11-05 中国水利水电科学研究院 Mechanical-draft cooling tower hot gas re-flow impact evaluation method
CN110414070B (en) * 2019-07-03 2020-09-25 中国水利水电科学研究院 Method for evaluating influence of hot gas reflux of mechanical draft cooling tower

Similar Documents

Publication Publication Date Title
JP6752399B2 (en) Method and apparatus for producing aromatic hydrocarbons and olefins by coupling of catalytic hydrogenation and catalytic cracking of biological oils
US10125322B2 (en) Method for revamping a conventional mineral oils refinery to a biorefinery
CN102653691B (en) Device and method for preparing oxygen-containing liquid fuel by catalytically converting biological oil
CN1914117A (en) Hydrocarbon material processing system and method
CN102942954A (en) Double-reaction-pipe heavy-oil alkaline catalytic cracking and gasification coupling technology
Simasatitkul et al. Feasibility Study of Using Waste Cooking Oil and Byproduct from Palm Oil Refinery for Green Diesel Production.
JP5968099B2 (en) Diesel fuel production system and diesel fuel production method
CN104560182B (en) A kind of method that the workflow of gasoline and diesel hydrogenation refining plant and its application and gasoline and diesel hydrogenation refine
CN1521234A (en) Cyclic cracking and gasification technology for heavy oil solid heat carrier
JP5590832B2 (en) Light oil production system and light oil production method
JP2013256601A (en) System and method for producing light oil
CN1600831A (en) Technique of solid phase heat carrier for recycle cracking heavy oil and gasification technique
CN101481626B (en) Process for producing spherical coke by cracking heavy oil
US11578278B2 (en) Renewable transportation fuel process with thermal oxidation system
JP6073197B2 (en) Light oil production system and light oil production method
JP5628713B2 (en) Diesel fuel production refiner and purification method, diesel fuel production system and production method using the same
CN105985804B (en) A kind of mink cell focus processing technology and processing unit (plant)
CN102417830A (en) Method and device for gasifying low tar biomass
JP5984556B2 (en) Diesel fuel production system and diesel fuel production method using the same
JP2012057019A (en) System to produce bio-diesel fuel oil
US20240309293A1 (en) Integrated Process and Integrated System for Obtaining Chemicals From Renewable Organic Material by Hydrotreatment
CN1842584A (en) Recycling method and system
JPH1161158A (en) Reformation of plastic into oil and installation therefor
FR3075942A1 (en) HEAT EXCHANGER COIL FOR HYDROTREATMENT OR HYDROCONVERSION
JP5793288B2 (en) Bio-petroleum fuel production method and catalyst and production system used therefor