JP2013255330A - Control system for electric motor - Google Patents

Control system for electric motor Download PDF

Info

Publication number
JP2013255330A
JP2013255330A JP2012128908A JP2012128908A JP2013255330A JP 2013255330 A JP2013255330 A JP 2013255330A JP 2012128908 A JP2012128908 A JP 2012128908A JP 2012128908 A JP2012128908 A JP 2012128908A JP 2013255330 A JP2013255330 A JP 2013255330A
Authority
JP
Japan
Prior art keywords
value
control device
sub
error
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012128908A
Other languages
Japanese (ja)
Other versions
JP5977589B2 (en
Inventor
Masahiro Maeda
将宏 前田
Akiyoshi Satake
明喜 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2012128908A priority Critical patent/JP5977589B2/en
Publication of JP2013255330A publication Critical patent/JP2013255330A/en
Application granted granted Critical
Publication of JP5977589B2 publication Critical patent/JP5977589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control system that can detect abnormality of a control device further accurately when controlling an electric motor using a plurality of control devices.SOLUTION: A control system for electric motor having a main winding and one or more sub windings includes a main control device connected to the main winding, one or more sub control devices connected to the sub windings, and an abnormality detection unit which detects abnormality. The main control device and the sub control devices each calculate, as an error value, a difference between a command value and a detected value of one of a d-axis current value, a q-axis current value, a d-axis voltage value, and a q-axis voltage value. The abnormality detection unit calculates, as an error value, the ratio of an absolute value of the error value calculated by the main control device and an absolute value of the error value calculated by the sub control device, and determines that abnormality occurs when the error ratio is not within a predefined range.

Description

本発明は、工作機械に利用される電動機の制御システムに係り、主軸などの駆動に利用される電動機で、特に、大容量が求められる電動機の制御システムに関するものである。   The present invention relates to an electric motor control system used for a machine tool, and particularly to an electric motor used for driving a main shaft and the like, and more particularly to an electric motor control system requiring a large capacity.

大型の工作機械の主軸等を駆動するために大容量の電動機が求められている。その一方で、こうした大容量の電動機に適用される大容量の制御装置や電源などを新規開発するには、費用がかかるが、需要が少ないことから、開発費用の償却が困難であった。そこで、従来から、代替手段として、小容量の制御装置を複数並列に接続して、所望の大容量の電動機を駆動する制御システムが採用されている。   A large-capacity electric motor is required to drive the spindle of a large machine tool. On the other hand, it is expensive to newly develop a large-capacity control device or power supply that is applied to such a large-capacity electric motor. However, since the demand is small, it is difficult to amortize development costs. Therefore, conventionally, a control system that drives a desired large-capacity electric motor by connecting a plurality of small-capacity control devices in parallel has been adopted as an alternative means.

複数制御装置を用いるシステムとしては、複数の制御装置が出力する電流の和を単一の巻線を具備する電動機に供給するシステムと、複数の制御装置が出力する各々の電流を複数巻線を具備する電動機の各々の巻線へ供給するシステムとがある。しかし、こうした方法は、複数の制御装置で電動機を駆動するため、制御装置のいずれかに故障が生じたり、人為的な過失により設定される電動機の制御定数に誤りがあるなどの異常が生じたりした場合、所望の出力が得られず、工作機械の場合、加工精度が得られない。また、巻線のいずれかにレイヤショートなどの異常が発生した場合、所望の出力が得られず、加工精度が得られないばかりか、場合により電動機が焼損することもあり得る。   As a system using a plurality of control devices, a system for supplying a sum of currents output from a plurality of control devices to an electric motor having a single winding, and a plurality of windings for each current output from the plurality of control devices. There is a system that supplies power to each winding of an electric motor. However, since such a method drives a motor with a plurality of control devices, a malfunction may occur in any of the control devices, or an abnormality such as an error in the control constant of the motor set due to human error may occur. In this case, a desired output cannot be obtained, and in the case of a machine tool, machining accuracy cannot be obtained. Further, when an abnormality such as a layer short circuit occurs in any of the windings, a desired output cannot be obtained and processing accuracy cannot be obtained, and in some cases, the motor may be burned out.

この問題に対し、特許文献1では、複数の制御装置で単一の巻線を具備する電動機を駆動することを対象とし、各制御装置における実電流と、各制御装置の実電流の平均値とを比較することで、各制御装置の出力電流の不均衡を検出することを可能としている。   With respect to this problem, Patent Document 1 is intended for driving an electric motor having a single winding by a plurality of control devices, and the actual current in each control device and the average value of the actual current in each control device are as follows. By comparing these, it is possible to detect an imbalance in the output current of each control device.

特開平9−114504号公報JP-A-9-114504

しかし、この特許文献1の技術では、不均衡の検出は可能となるが、複数ある制御装置のうち、どの制御装置において異常が発生しているかの検出は行うことが出来ない。例えば、2つの制御装置で電動機を駆動する構成では、双方の制御装置における実電流と、各制御装置の実電流の平均値との差の絶対値は同一となり、どちらの制御装置で異常が発生しているかの判別が出来ない。   However, with the technique of Patent Document 1, it is possible to detect an imbalance, but it is not possible to detect which control device among a plurality of control devices has an abnormality. For example, in a configuration in which an electric motor is driven by two control devices, the absolute value of the difference between the actual current of both control devices and the average value of the actual current of each control device is the same, and an abnormality occurs in which control device. I can't tell if I'm doing it.

そこで、本発明は、前述した制御装置の故障、電動機制御定数の不一致、巻線の異常を検出し、さらに複数ある制御装置のうち、どの制御装置において異常が発生しているかの検出を可能とする、電動機の制御システムを提供することを目的とする。   Therefore, the present invention can detect the failure of the control device, the mismatch of the motor control constant, the abnormality of the winding, and the detection of which control device among the plurality of control devices is abnormal. An object of the present invention is to provide an electric motor control system.

本発明の電動機の制御システムは、主巻線および一以上の副巻線を備えた電動機の制御装置であって、前記主巻線に電流を印加するべく、前記主巻線に接続された主制御装置であって、d軸電流値、q軸電流値、d軸電圧値、q軸電圧値のいずれか一つの値について、指令値と検出値との差を誤差値として算出する主制御装置と、前記副巻線に電流を印加するべく、前記副巻線に接続された一以上の副制御装置であって、d軸電流値、q軸電流値、d軸電圧値、q軸電圧値のいずれか一つの値について、指令値と検出値との差を誤差値として算出する一以上の副制御装置と、前記主制御装置で算出された誤差値の絶対値と、前記副制御装置で算出された誤差値の絶対値との比を誤差比として算出し、前記誤差比が予め規定された範囲外の時に、異常発生と判断する異常検出部と、を備えることを特徴とする。   An electric motor control system according to the present invention is a motor control device including a main winding and one or more sub windings, and is connected to a main winding connected to the main winding to apply a current to the main winding. A control device for calculating a difference between a command value and a detected value as an error value for any one of a d-axis current value, a q-axis current value, a d-axis voltage value, and a q-axis voltage value One or more sub-control devices connected to the sub-winding to apply a current to the sub-winding, the d-axis current value, the q-axis current value, the d-axis voltage value, the q-axis voltage value One or more sub-control devices that calculate the difference between the command value and the detected value as an error value, the absolute value of the error value calculated by the main control device, and the sub-control device The ratio of the calculated error value to the absolute value is calculated as an error ratio, and when the error ratio is outside the predetermined range An abnormality detection unit for determining that an abnormality occurs, characterized in that it comprises a.

好適な態様では、前記異常検出部は、前記主制御装置と副制御装置のうち、前記誤差値の絶対値が大きい制御装置において異常が発生していると判断する。   In a preferred aspect, the abnormality detection unit determines that an abnormality has occurred in a control device having a large absolute value of the error value among the main control device and the sub control device.

本発明によれば、複数巻線を具備する電動機を、複数の駆動装置で並列駆動する場合に、駆動装置の故障や、設定される電動機の制御定数の不一致、巻線の異常を検出し、さらに複数ある制御装置のうち、どの制御装置において異常が発生しているかを検出することができる。   According to the present invention, when a motor having a plurality of windings is driven in parallel by a plurality of driving devices, the failure of the driving device, the mismatch of the control constants of the set motor, and the winding abnormality are detected, Furthermore, it is possible to detect which control device has an abnormality among a plurality of control devices.

本発明による誘導電動機の制御システムの一実施形態を示すブロック図である。It is a block diagram which shows one Embodiment of the control system of the induction motor by this invention. 本発明による同期電動機の制御システムの一実施形態を示すブロック図である。1 is a block diagram showing an embodiment of a synchronous motor control system according to the present invention. FIG. 本発明による、主制御装置と副制御装置間の通信形態を示す図である。It is a figure which shows the communication form between the main controller and a sub controller by this invention. 本発明における異常検出方法を示すフローチャートである。It is a flowchart which shows the abnormality detection method in this invention. 本発明における異常検出方法を示すフローチャートである。It is a flowchart which shows the abnormality detection method in this invention.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は、本発明の一実施形態である誘導電動機の制御システムを示すブロック図である。主制御装置1において、d−q軸電流指令生成部3、位相速度生成部4は、図示されない上位制御装置から入力されるトルク指令STCに基づき、q軸電流指令SIQC、d軸電流指令SIDC、位相速度SOMCを演算する。   FIG. 1 is a block diagram showing an induction motor control system according to an embodiment of the present invention. In the main controller 1, the dq axis current command generation unit 3 and the phase velocity generation unit 4 are based on a torque command STC input from a host controller (not shown), q axis current command SIQC, d axis current command SIDC, The phase velocity SOMC is calculated.

SIQC、SIDC、SOMCは主制御装置1から副制御装置2へ伝送され、主制御装置1では、この伝送にかかる時間を補償するため、遅延器5,6で遅延処理を行い、主制御装置1、副制御装置2間の指令タイミングの同期をとる。   SIQC, SIDC, and SOMC are transmitted from the main control device 1 to the sub-control device 2, and the main control device 1 performs delay processing in the delay units 5 and 6 to compensate for the time required for this transmission. The command timing between the sub-control devices 2 is synchronized.

SOMCは、3相/2相変換部11a,11b、2相/3相変換部10a,10bへ接続される。U相電流検出センサ13a,13bで検出されるU相電流検出値SIDUm,SIDUs、V相電流検出センサ14a,14bで検出されるV相電流検出値SIDVm,SIDVsは、3相/2相変換部11a,11bへ接続され、d軸/q軸電流検出値を演算する。電圧誤差検出部9a,9bは、減算器7a,7b,8a,8bにおいて演算したd軸/q軸電流指令とd軸/q軸電流検出値の差から、d軸電圧誤差ΔVDm,ΔVDs、q軸電圧誤差ΔVQm,ΔVQsを演算する。   The SOMC is connected to the three-phase / two-phase converters 11a and 11b and the two-phase / three-phase converters 10a and 10b. The U-phase current detection values SIDUm and SIDUs detected by the U-phase current detection sensors 13a and 13b, and the V-phase current detection values SIDVm and SITVs detected by the V-phase current detection sensors 14a and 14b are three-phase / two-phase conversion units. 11a and 11b are connected to calculate the d-axis / q-axis current detection value. The voltage error detectors 9a and 9b detect the d-axis voltage errors ΔVDm, ΔVDs, q based on the difference between the d-axis / q-axis current command and the d-axis / q-axis current detection value calculated by the subtractors 7a, 7b, 8a, 8b. The shaft voltage errors ΔVQm and ΔVQs are calculated.

電力変換器12a,12bは、2相/3相変換部10a,10bにおいて電圧誤差を2相/3相変換した値を用いて3相交流に変換した電力により、電動機16を駆動する。異常検出部19は、主制御装置1、副制御装置2それぞれより、d軸電圧誤差ΔVDm,ΔVDsを入力とし、図4にて後述する手順にて、異常発生の有無の判断、および、複数ある制御装置のうち、どの制御装置において異常が発生しているかを検出する。   The power converters 12a and 12b drive the electric motor 16 with the electric power converted into the three-phase alternating current using the value obtained by converting the voltage error into the two-phase / three-phase in the two-phase / three-phase converters 10a, 10b. The abnormality detection unit 19 receives the d-axis voltage errors ΔVDm and ΔVDs from the main control device 1 and the sub-control device 2, respectively, and determines whether or not an abnormality has occurred in the procedure described later with reference to FIG. It is detected which control device among the control devices has an abnormality.

なお、図1では、異常検出部19へd軸電圧誤差ΔVDm,ΔVDsを入力しているが、q軸電圧誤差ΔVQm,ΔVQs、d軸電流誤差、q軸電流誤差を入力としてもよい。また、図1では、副制御装置2が異常検出部19を備えているが、主制御装置1が異常検出部19を備えていても良い。   In FIG. 1, the d-axis voltage errors ΔVDm and ΔVDs are input to the abnormality detection unit 19, but the q-axis voltage errors ΔVQm and ΔVQs, the d-axis current error, and the q-axis current error may be input. In FIG. 1, the sub control device 2 includes the abnormality detection unit 19, but the main control device 1 may include the abnormality detection unit 19.

図2は、本発明の一実施形態である同期電動機の制御システムを示すブロック図である。なお、図2は図1に示す誘導電動機の制御システムと同じ構成要素は同一符号で示してあり、その説明は重複するので省略する。   FIG. 2 is a block diagram showing a synchronous motor control system according to an embodiment of the present invention. In FIG. 2, the same components as those in the induction motor control system shown in FIG.

電動機16には、これのロータの位置を検出する位置検出器17が設けられている。図示されない上位制御装置から入力されるトルク指令STCと、位置検出器17が検出した位置検出値SMPDと、U相電流センサ13a,13bが検出したU相電流検出値SIDUm,SIDUsと、V相電流検出センサ14a,14bが検出したV相電流検出値SIDVm,SIDVsとに基づいて電動機16が制御される。   The electric motor 16 is provided with a position detector 17 for detecting the position of the rotor. Torque command STC input from a host controller (not shown), position detection value SMPD detected by the position detector 17, U-phase current detection values SIDUm and SIDUs detected by the U-phase current sensors 13a and 13b, and V-phase current The electric motor 16 is controlled based on the V-phase current detection values SIDVm and SIDVs detected by the detection sensors 14a and 14b.

SMPDは主制御装置1から副制御装置2へ伝送され、主制御装置1では、この伝送にかかる時間を補償するため、遅延器18で遅延処理を行い、主制御装置1、副制御装置2間のSMPDタイミングの同期をとる。   The SMPD is transmitted from the main control device 1 to the sub control device 2. In the main control device 1, in order to compensate for the time required for this transmission, delay processing is performed by the delay unit 18, and between the main control device 1 and the sub control device 2. The SMPD timing is synchronized.

SMPDは、3相/2相変換部11a,11b、2相/3相変換部10a,10bへ接続される。U相電流検出値SIDUm,SIDUs、V相電流検出値SIDVm,SIDVsは、3相/2相変換部11a,11bへ接続され、d軸/q軸電流検出値が演算される。電圧誤差検出部9a,9bは、減算器7a,7b,8a,8bにおいて演算したd軸/q軸電流指令値と、d軸/q軸電流検出値との差からd軸電圧誤差ΔVDm,ΔVDs、q軸電圧誤差ΔVQm,ΔVQsを演算する。   The SMPD is connected to the three-phase / two-phase converters 11a and 11b and the two-phase / three-phase converters 10a and 10b. The U-phase current detection values SIDUm and SIDUs and the V-phase current detection values SIdvm and SITVs are connected to the three-phase / two-phase conversion units 11a and 11b, and the d-axis / q-axis current detection values are calculated. The voltage error detectors 9a and 9b detect the d-axis voltage errors ΔVDm and ΔVDs from the difference between the d-axis / q-axis current command value calculated by the subtracters 7a, 7b, 8a, and 8b and the detected d-axis / q-axis current value. Q-axis voltage errors ΔVQm and ΔVQs are calculated.

電力変換器12a,12bは、2相/3相変換部10a,10bにおいて電圧誤差を2相/3相変換した値を用いて3相交流に変換した電力により、電動機16を駆動する。異常検出部19は、主制御装置1、副制御装置2それぞれにより、d軸電圧誤差ΔVDm,ΔVDsを入力とし、図4を参照して後述する手順にて、異常発生の有無の判断、および、複数ある制御装置のうち、どの制御装置において異常が発生しているかを検出する。   The power converters 12a and 12b drive the electric motor 16 with the electric power converted into the three-phase alternating current using the value obtained by converting the voltage error into the two-phase / three-phase in the two-phase / three-phase converters 10a, 10b. The abnormality detection unit 19 receives the d-axis voltage errors ΔVDm and ΔVDs by the main control device 1 and the sub control device 2, respectively, and determines whether or not an abnormality has occurred in the procedure described later with reference to FIG. Among the plurality of control devices, it is detected which control device has an abnormality.

なお、図2では、異常検出部19へd軸電圧誤差ΔVDm,ΔVDsを入力しているが、q軸電圧誤差ΔVQm,ΔVQs、q軸電流誤差、d軸電流誤差を入力としても良い。また、図2では、副制御装置2が異常検出部19を備えているが、主制御装置1が異常検出部19を備えていても良い。   In FIG. 2, the d-axis voltage errors ΔVDm and ΔVDs are input to the abnormality detection unit 19, but the q-axis voltage errors ΔVQm and ΔVQs, the q-axis current error, and the d-axis current error may be input. In FIG. 2, the sub control device 2 includes the abnormality detection unit 19, but the main control device 1 may include the abnormality detection unit 19.

図3(a)、図3(b)は、主制御装置1と副制御装置2間の通信形態を示す図である。図3(a)において、2組の巻線を具備する電動機31は主制御装置34と副制御装置36で駆動される。制御装置にはそれぞれ、電源装置33,35が接続される。   FIG. 3A and FIG. 3B are diagrams illustrating a communication form between the main control device 1 and the sub control device 2. In FIG. 3A, the electric motor 31 having two sets of windings is driven by a main controller 34 and a sub controller 36. Power supply devices 33 and 35 are connected to the control devices, respectively.

図3(b)においては、3組の巻線を具備する電動機32は主制御装置34と副制御装置36,38で駆動される。制御装置にはそれぞれ、電源装置33,35,37が接続される。制御装置間は、バス接続されるLink1、もしくは、シリアル接続されるLink2、もしくは、その双方において、主制御装置で演算される電流指令、回転子速度、通信周期毎の回転子位相角を副制御装置へ送信し、また、主制御装置と副制御装置各々で演算したd軸/q軸電圧誤差、d軸/q軸電流誤差とを相互通信する。   In FIG. 3B, the motor 32 having three sets of windings is driven by the main control device 34 and the sub-control devices 36 and 38. Power supply devices 33, 35, and 37 are connected to the control devices, respectively. Between the control devices, the current command calculated by the main control device, the rotor speed, and the rotor phase angle for each communication cycle are sub-controlled in the bus-connected Link 1 or serial-connected Link 2 or both. The data is transmitted to the apparatus, and the d-axis / q-axis voltage error and the d-axis / q-axis current error calculated by the main control apparatus and the sub-control apparatus are mutually communicated.

次に、制御装置の故障、電動機制御定数の不一致、巻線の異常を検出する方法について説明する。図4、図5は、図1、図2に示すような主制御装置と1つの副制御装置とを具備するシステムにおける異常検出方法の一実施形態を示すフローチャートである。以下、各ステップに従って説明する。   Next, a description will be given of a method for detecting a failure of the control device, a mismatch of the motor control constants, and a winding abnormality. 4 and 5 are flowcharts showing an embodiment of an abnormality detection method in a system including the main controller and one sub-controller as shown in FIGS. Hereinafter, it demonstrates according to each step.

上述の異常検出処理は、主制御装置1と副制御装置2のどちらが行っても良い。図4は副制御装置2が異常検出処理を行う場合を示す。   Either the main control device 1 or the sub-control device 2 may perform the above-described abnormality detection processing. FIG. 4 shows a case where the sub control device 2 performs an abnormality detection process.

副制御装置2は、主制御装置1からd軸電圧誤差ΔVDmを受信する(ステップ41)。受信したΔVDmと、副制御装置自身のd軸電圧誤差ΔVDsの絶対値の大小を比較する(ステップ42)。   The sub control device 2 receives the d-axis voltage error ΔVDm from the main control device 1 (step 41). The received ΔVDm is compared with the magnitude of the absolute value of the d-axis voltage error ΔVDs of the sub-control device itself (step 42).

電圧誤差の絶対値が大きい方を、小さい方の値で除した値を電圧誤差比として算出する(ステップ43,44)。算出した電圧誤差比と、あらかじめ定めた電圧誤差閾値とを比較する(ステップ45,46)。この電圧誤差閾値は、正常運転時の電圧誤差の状態を観察しながら実験的に定める値である。   A value obtained by dividing the larger absolute value of the voltage error by the smaller value is calculated as the voltage error ratio (steps 43 and 44). The calculated voltage error ratio is compared with a predetermined voltage error threshold (steps 45 and 46). This voltage error threshold is a value determined experimentally while observing the state of voltage error during normal operation.

ステップ45,46で電圧誤差が電圧誤差閾値を超えた場合に、上位制御装置へ、ステップ43,44で算出した電圧誤差比と、電圧誤差の絶対値が大きいとステップ42で判断された制御装置側にて異常が発生していることを知らせることができる。上位制御装置は、ステップ47,48で通知された電圧誤差比から、場合によっては電動機の駆動を停止する処理を行う。なお、図4では異常検出にd軸電圧誤差を用いているが、q軸電圧誤差、d軸電流誤差、q軸電流誤差を用いてもよい。   When the voltage error exceeds the voltage error threshold value in steps 45 and 46, the control device determined in step 42 that the voltage error ratio calculated in steps 43 and 44 and the absolute value of the voltage error are large. It is possible to inform that an abnormality has occurred on the side. From the voltage error ratio notified in steps 47 and 48, the host controller performs processing for stopping the driving of the electric motor in some cases. Although the d-axis voltage error is used for abnormality detection in FIG. 4, a q-axis voltage error, a d-axis current error, and a q-axis current error may be used.

図5は主制御装置1が異常検出処理を行う場合を示す。主制御装置1は、副制御装置2からd軸電圧誤差ΔVDsを受信する(ステップ51)。受信したΔVDsと、主制御装置1自身のd軸電圧誤差ΔVDmの絶対値の大小を比較する(ステップ52)。   FIG. 5 shows a case where main controller 1 performs an abnormality detection process. Main controller 1 receives d-axis voltage error ΔVDs from sub-controller 2 (step 51). The received ΔVDs is compared with the absolute value of the d-axis voltage error ΔVDm of the main controller 1 itself (step 52).

電圧誤差の絶対値が大きい方を、小さい方の値で除し、電圧誤差比を算出する(ステップ53,54)。算出した電圧誤差比と、あらかじめ定めた電圧誤差閾値とを比較する(ステップ55,56)。この電圧誤差閾値は、正常運転時の電圧誤差の状態を観察しながら実験的に定める値である。   The voltage error ratio is calculated by dividing the larger voltage error absolute value by the smaller value (steps 53 and 54). The calculated voltage error ratio is compared with a predetermined voltage error threshold (steps 55 and 56). This voltage error threshold is a value determined experimentally while observing the state of voltage error during normal operation.

ステップ55,56で電圧誤差が電圧誤差閾値を超えた場合に、上位制御装置へ、ステップ53,54で算出した電圧誤差比と、電圧誤差の絶対値が大きいとステップ52で判断された制御装置側にて異常が発生していることを知らせることができる。上位制御装置は、ステップ57,58で通知された電圧誤差比から、場合によっては電動機の駆動を停止する処理を行う。なお、図5では異常検出にd軸電圧誤差を用いているが、q軸電圧誤差、d軸電流誤差、q軸電流誤差を用いてもよい。   When the voltage error exceeds the voltage error threshold value in steps 55 and 56, the control device determined in step 52 that the voltage error ratio calculated in steps 53 and 54 and the absolute value of the voltage error are large. It is possible to inform that an abnormality has occurred on the side. From the voltage error ratio notified in steps 57 and 58, the host controller performs processing for stopping the driving of the electric motor in some cases. In FIG. 5, the d-axis voltage error is used for abnormality detection, but a q-axis voltage error, a d-axis current error, and a q-axis current error may be used.

また、図3(b)に示すような複数の副制御装置を具備するシステムの場合には、図4に示す異常検出処理を複数の副制御装置それぞれにおいて行う。各副制御装置は、図4のステップ45,46で電圧誤差が電圧誤差式位置を超えた場合には、ステップ42で電圧誤差比の絶対値が大きいと判断された制御装置側にて異常が発生していること、および、ステップ43また44で算出した電圧誤差比、を上位制御装置へ知らせる。上位制御装置は、ステップ47,48で通知される情報から、主制御装置、もしくは、複数ある副制御装置のうち、異常を通知してきた副制御装置において、異常が発生していると判断する。さらに、上位制御装置は、ステップ47,48で通知された電圧誤差比から、場合によっては、電動機の駆動を停止する処理を行う。なお、前述したとおり、図4では異常検出にd軸電圧誤差を用いているが、q軸電圧誤差、d軸電流誤差、q軸電流誤差を用いてもよい。   In the case of a system having a plurality of sub-control devices as shown in FIG. 3B, the abnormality detection process shown in FIG. 4 is performed in each of the plurality of sub-control devices. When the voltage error exceeds the voltage error expression position in steps 45 and 46 in FIG. 4, each sub-control device has an abnormality on the control device side determined that the absolute value of the voltage error ratio is large in step 42. The host controller is notified of the occurrence and the voltage error ratio calculated in step 43 or 44. From the information notified in steps 47 and 48, the host control device determines that an abnormality has occurred in the main control device or the sub-control device that has notified the abnormality among the plurality of sub-control devices. Further, the host control device performs a process of stopping the driving of the electric motor depending on the case from the voltage error ratio notified in steps 47 and 48. As described above, the d-axis voltage error is used for abnormality detection in FIG. 4, but a q-axis voltage error, a d-axis current error, and a q-axis current error may be used.

1,34 主制御装置、2,36,38 副制御装置、3 d−q軸電流指令生成部、4 位相速度生成部、5,6,18 遅延器、7a,7b,8a,8b 減算器、9a,9b 電圧誤差検出部、10a,10b 2相/3相変換部、11a,11b 3相/2相変換部、12a,12b 電力変換器、13a,13b U相電流検出センサ、14a,14b V相電流検出センサ、15 ロータ速度演算部、16 電動機、17 位置検出器、19 異常検出部、31 2組の巻線を具備する電動機、32 3組の巻線を具備する電動機、33,35,37 電源装置。   1, 34 Main controller, 2, 36, 38 Sub controller, 3 dq axis current command generator, 4 phase velocity generator, 5, 6, 18 delay unit, 7a, 7b, 8a, 8b subtractor, 9a, 9b Voltage error detection unit, 10a, 10b 2 phase / 3 phase conversion unit, 11a, 11b 3 phase / 2 phase conversion unit, 12a, 12b Power converter, 13a, 13b U phase current detection sensor, 14a, 14b V Phase current detection sensor, 15 rotor speed calculation unit, 16 electric motor, 17 position detector, 19 abnormality detection unit, 31 electric motor provided with two sets of windings, 32 electric motor provided with 3 sets of windings, 33, 35, 37 Power supply.

Claims (2)

主巻線および一以上の副巻線を備えた電動機の制御システムであって、
前記主巻線に電流を印加するべく、前記主巻線に接続された主制御装置であって、d軸電流値、q軸電流値、d軸電圧値、q軸電圧値のいずれか一つの値について、指令値と検出値との差を誤差値として算出する主制御装置と、
前記副巻線に電流を印加するべく、前記副巻線に接続された一以上の副制御装置であって、d軸電流値、q軸電流値、d軸電圧値、q軸電圧値のいずれか一つの値について、指令値と検出値との差を誤差値として算出する一以上の副制御装置と、
前記主制御装置で算出された誤差値の絶対値と、前記副制御装置で算出された誤差値の絶対値との比を誤差比として算出し、前記誤差比が予め規定された範囲外の時に、異常発生と判断する異常検出部と、
を備えることを特徴とする電動機の制御システム。
A control system for an electric motor having a main winding and one or more sub windings,
A main control device connected to the main winding for applying a current to the main winding, wherein one of a d-axis current value, a q-axis current value, a d-axis voltage value, and a q-axis voltage value For the value, a main controller that calculates the difference between the command value and the detected value as an error value;
One or more sub-control devices connected to the sub-winding to apply a current to the sub-winding, and any one of a d-axis current value, a q-axis current value, a d-axis voltage value, and a q-axis voltage value One or more sub-control devices for calculating the difference between the command value and the detected value as an error value for one value;
A ratio between the absolute value of the error value calculated by the main control device and the absolute value of the error value calculated by the sub control device is calculated as an error ratio, and when the error ratio is outside a predetermined range. An abnormality detection unit that determines that an abnormality has occurred;
An electric motor control system comprising:
請求項1に記載の電動機の制御システムであって、
前記異常検出部は、前記主制御装置と副制御装置のうち、前記誤差値の絶対値が大きい制御装置において異常が発生していると判断する、ことを特徴とする電動機の制御システム。
The motor control system according to claim 1,
The motor control system according to claim 1, wherein the abnormality detection unit determines that an abnormality has occurred in a control device having a large absolute value of the error value among the main control device and the sub-control device.
JP2012128908A 2012-06-06 2012-06-06 Electric motor control system Active JP5977589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012128908A JP5977589B2 (en) 2012-06-06 2012-06-06 Electric motor control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012128908A JP5977589B2 (en) 2012-06-06 2012-06-06 Electric motor control system

Publications (2)

Publication Number Publication Date
JP2013255330A true JP2013255330A (en) 2013-12-19
JP5977589B2 JP5977589B2 (en) 2016-08-24

Family

ID=49952407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012128908A Active JP5977589B2 (en) 2012-06-06 2012-06-06 Electric motor control system

Country Status (1)

Country Link
JP (1) JP5977589B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017002672A1 (en) 2016-03-31 2017-10-05 Fanuc Corporation Control device for a motor with multiple windings
JP2018130007A (en) * 2016-11-11 2018-08-16 株式会社デンソー Rotary electric machine control apparatus and electric power steering apparatus using the same
JP2018191424A (en) * 2017-05-02 2018-11-29 ファナック株式会社 Abnormality diagnostic device and abnormality diagnostic method
JP2019007814A (en) * 2017-06-23 2019-01-17 ファナック株式会社 Abnormality diagnosis device and abnormality diagnosis method
JP2020054187A (en) * 2018-09-28 2020-04-02 ミネベアミツミ株式会社 Motor drive controller

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240171100A1 (en) 2021-05-11 2024-05-23 Mitsubishi Electric Corporation Controller for rotary electric machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364573A (en) * 1986-09-03 1988-03-23 Meidensha Electric Mfg Co Ltd Protection circuit of inverter
JPH11209011A (en) * 1998-01-28 1999-08-03 Toshiba Corp Controlling device for elevator
JP2001086794A (en) * 1999-09-13 2001-03-30 Toshiba Corp Ac motor control apparatus
JP2004032849A (en) * 2002-06-24 2004-01-29 Toshiba Elevator Co Ltd Control device of elevator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364573A (en) * 1986-09-03 1988-03-23 Meidensha Electric Mfg Co Ltd Protection circuit of inverter
JPH11209011A (en) * 1998-01-28 1999-08-03 Toshiba Corp Controlling device for elevator
JP2001086794A (en) * 1999-09-13 2001-03-30 Toshiba Corp Ac motor control apparatus
JP2004032849A (en) * 2002-06-24 2004-01-29 Toshiba Elevator Co Ltd Control device of elevator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017002672A1 (en) 2016-03-31 2017-10-05 Fanuc Corporation Control device for a motor with multiple windings
JP2018130007A (en) * 2016-11-11 2018-08-16 株式会社デンソー Rotary electric machine control apparatus and electric power steering apparatus using the same
CN110063021A (en) * 2016-11-11 2019-07-26 株式会社电装 Rotary electric machine controller and the electric power steering device for having used the rotary electric machine controller
JP7027808B2 (en) 2016-11-11 2022-03-02 株式会社デンソー Rotating electric machine control device and electric power steering device using this
CN110063021B (en) * 2016-11-11 2022-06-10 株式会社电装 Rotating electric machine control device and electric power steering device using same
JP2018191424A (en) * 2017-05-02 2018-11-29 ファナック株式会社 Abnormality diagnostic device and abnormality diagnostic method
US10444288B2 (en) 2017-05-02 2019-10-15 Fanuc Corporation Abnormality diagnosing device and abnormality diagnosing method
JP2019007814A (en) * 2017-06-23 2019-01-17 ファナック株式会社 Abnormality diagnosis device and abnormality diagnosis method
US10396699B2 (en) 2017-06-23 2019-08-27 Fanuc Corporation Anomaly diagnosing device and anomaly diagnosing method
JP2020054187A (en) * 2018-09-28 2020-04-02 ミネベアミツミ株式会社 Motor drive controller
JP7134047B2 (en) 2018-09-28 2022-09-09 ミネベアミツミ株式会社 motor drive controller

Also Published As

Publication number Publication date
JP5977589B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5977589B2 (en) Electric motor control system
JP5398861B2 (en) Multi-winding motor drive device
JP5309242B1 (en) Synchronous motor control device for controlling a synchronous motor to stop the synchronous motor during power regeneration and power failure
JP6068554B2 (en) Servo control device with function to stop control without sensor
JP5628868B2 (en) Induction motor speed control device
JP2014180119A (en) Control system for synchronous motor with abnormality detection and diagnosis function
EP2808454B1 (en) Motor Controller and Construction Machine Provided Therewith
JP6159659B2 (en) Power converter control device and electric vehicle
CN101841298B (en) Control device of three-phase synchronous motor with wiring error detection function
JP2008228548A (en) Power converter and power conversion method for performing parallel operation of inverters
JP2015192582A (en) Current-sensor failure detection apparatus
JP7033505B2 (en) Induction motor overheat monitoring method, induction motor monitoring device, and induction motor control system
JP2010200430A (en) Drive controller for motors
JP2010213557A5 (en)
CN104779872A (en) Synchronous motor controlling device and method
JP2010246328A (en) Fault diagnostic device for inverter
JP5731355B2 (en) Control device for induction motor for vehicle drive
CN104335478B (en) Method for controlling synchronous reluctance motor
WO2014017019A1 (en) Method for determining irregularity in industrial machine
JP5217760B2 (en) Electric motor drive
JP5865776B2 (en) Recirculation pump motor power supply system and power supply method thereof
JP5447400B2 (en) Motor drive device, motor drive system
JP6740842B2 (en) Control device for multi-phase rotating machine
KR20160109859A (en) Apparatus for controlling rotating electrical machine
JP2008086072A (en) Motor control device and motor control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160722

R150 Certificate of patent or registration of utility model

Ref document number: 5977589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150