JP2013254746A - Carbon material for lithium ion secondary battery negative electrode, and negative electrode mixture for lithium ion secondary battery and lithium ion secondary battery, each using the same - Google Patents

Carbon material for lithium ion secondary battery negative electrode, and negative electrode mixture for lithium ion secondary battery and lithium ion secondary battery, each using the same Download PDF

Info

Publication number
JP2013254746A
JP2013254746A JP2013171340A JP2013171340A JP2013254746A JP 2013254746 A JP2013254746 A JP 2013254746A JP 2013171340 A JP2013171340 A JP 2013171340A JP 2013171340 A JP2013171340 A JP 2013171340A JP 2013254746 A JP2013254746 A JP 2013254746A
Authority
JP
Japan
Prior art keywords
lithium ion
secondary battery
ion secondary
negative electrode
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013171340A
Other languages
Japanese (ja)
Other versions
JP2013254746A5 (en
JP5737347B2 (en
Inventor
Masataka Nunomura
昌隆 布村
Yoshito Ishii
義人 石井
Tatsuya Nishida
達也 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013171340A priority Critical patent/JP5737347B2/en
Publication of JP2013254746A publication Critical patent/JP2013254746A/en
Publication of JP2013254746A5 publication Critical patent/JP2013254746A5/ja
Application granted granted Critical
Publication of JP5737347B2 publication Critical patent/JP5737347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a carbon material used for a negative electrode of a lithium ion secondary battery, having high capacity, excellent in cycle characteristic, having a high level of adhesiveness between a negative electrode agent and a current collector, and capable of maintaining rapid charge and discharge characteristics even after a number of cycles; and a negative electrode mixture for the lithium ion secondary battery and the lithium ion secondary battery, each using the same.SOLUTION: A carbon material used for a negative electrode of a lithium ion secondary battery has an average grain diameter of 10-50 μm, a 30-tap density of 0.5 g/cmor more, and a specific surface area of 7 m/g or less; the product of the 30-tap density and the specific surface area is 30000/cm or more and 60000/cm or less. An interlayer distance d (002) of graphite crystal determined by X-ray diffraction measurement is 3.400 Å or less. Further, there are provided a lithium ion secondary battery negative electrode and a lithium ion secondary battery, each using the carbon material.

Description

本発明は、リチウムイオン二次電池負極用炭素材料、それを用いたリチウムイオン二次電池用負極合剤及びリチウムイオン二次電池に関する。さらに詳しくは、ポータブル機器、電気自動車及び電気貯蔵等の用途に好適な高容量で急速充放電特性及びサイクル性に優れ、負極剤と集電体との接着性が高く、サイクル数を重ねた後にも優れた急速充放電特性を維持するリチウムイオン二次電池負極用炭素材料、それを用いたリチウムイオン二次電池用負極合剤及びリチウムイオン二次電池に関する。   The present invention relates to a carbon material for a negative electrode of a lithium ion secondary battery, a negative electrode mixture for a lithium ion secondary battery using the same, and a lithium ion secondary battery. More specifically, the high capacity suitable for applications such as portable equipment, electric vehicles and electric storage, excellent rapid charge / discharge characteristics and cycleability, high adhesion between the negative electrode agent and the current collector, and after repeated cycles The present invention also relates to a carbon material for a negative electrode of a lithium ion secondary battery that maintains excellent rapid charge / discharge characteristics, a negative electrode mixture for a lithium ion secondary battery and a lithium ion secondary battery using the same.

リチウム二次電池は当初リチウム金属がその優れた電圧及び容量から負極として検討されたが、針状結晶(デンドライト)が成長することなどからサイクル特性が悪かった。これに対し、炭素系材料を負極に、LiCoO等の酸化物を正極に用い、これら電極間にリチウムイオンをインターカレーション/デインターカレーションさせると問題が解決されサイクル特性が良くなることがわかり、まず電解液の種類の影響を受けにくい非晶質炭素が炭素材料として負極に用いられ、それを用いたリチウムイオン二次電池が知られている(例えば、特許文献1参照)。その後、黒鉛との組み合わせでも問題のない電解液が見出され、容量密度がより高い黒鉛材料が非晶質炭素に替わり炭素材料として使用されるようになった(例えば、特許文献2参照)。 Lithium secondary batteries were initially investigated as negative electrodes because of their excellent voltage and capacity, but their cycle characteristics were poor due to the growth of needle crystals (dendrites). On the other hand, if a carbon-based material is used for the negative electrode and an oxide such as LiCoO 2 is used for the positive electrode and lithium ions are intercalated / deintercalated between these electrodes, the problem is solved and the cycle characteristics are improved. As can be seen, first, amorphous carbon that is not easily affected by the type of electrolyte is used as a carbon material for the negative electrode, and a lithium ion secondary battery using the carbon is known (for example, see Patent Document 1). Thereafter, an electrolyte solution having no problem even in combination with graphite was found, and a graphite material having a higher capacity density was used as a carbon material instead of amorphous carbon (for example, see Patent Document 2).

黒鉛材料としては天然黒鉛が利用されたが、その形状は粉砕により主に鱗片状となる。炭素粉末を負極とするには、有機系結着剤及び溶剤又は水と混合し、集電体に塗布し溶剤又は水を乾燥、成形して負極として用いるが、この際に鱗片状黒鉛はその扁平な面(ベーサル面)が集電体の面と向き合うように配向する傾向が強い。リチウムイオンのインターカレーション/デインターカレーションは、ベーサル面ではなく主にエッジ面で起きるため、集積体の面方向に配向した鱗片状黒鉛では急速充放電特性が低いという問題があった。   Natural graphite was used as the graphite material, but its shape is mainly scale-like by grinding. In order to use carbon powder as a negative electrode, it is mixed with an organic binder and a solvent or water, applied to a current collector, dried with a solvent or water, molded, and used as a negative electrode. There is a strong tendency to orient so that the flat surface (basal surface) faces the surface of the current collector. Lithium ion intercalation / deintercalation occurs not on the basal plane but mainly on the edge plane, so that scaly graphite oriented in the plane direction of the aggregate has a problem of low rapid charge / discharge characteristics.

この問題を解決する方法として、コークス、ピッチや有機材料を2000℃以上で焼成した人造黒鉛が炭素材料として使われている。例えば、人造黒鉛は、扁平状の粒子を複数用い完成した炭素粒子において元の扁平状粒子の配向面が炭素粒子の表面及び断面で非平行となるように集合又は結合させた炭素粒子であり、その優れた諸特性から広くリチウムイオン二次電池に採用されている(例えば、特許文献3参照)。   As a method for solving this problem, artificial graphite obtained by firing coke, pitch, or an organic material at 2000 ° C. or higher is used as a carbon material. For example, artificial graphite is a carbon particle assembled or bonded so that the orientation plane of the original flat particle is non-parallel in the surface and cross section of the carbon particle in the carbon particle completed using a plurality of flat particles, Due to its excellent characteristics, it is widely adopted in lithium ion secondary batteries (see, for example, Patent Document 3).

しかしながら、これらの人造黒鉛では、充放電容量を高くするため黒鉛結晶を発達させているため、サイクル数を重ねるとリチウムイオンのインターカレーション/デインターカレーションによる黒鉛粒子の膨張により、負極剤と集電体間に剥離が生じ、サイクル数を重ねた後の急速充放電特性が低下するという問題があるというのが現状である。   However, in these artificial graphites, graphite crystals have been developed to increase the charge / discharge capacity. Therefore, when the number of cycles is repeated, the graphite particles expand due to lithium ion intercalation / deintercalation. At present, there is a problem that peeling occurs between the current collectors and the rapid charge / discharge characteristics after the number of cycles is deteriorated.

特公2685777号公報Japanese Patent Publication No. 2865777 特公昭62−23433号公報Japanese Examined Patent Publication No. 62-23433 特許第3213575号Japanese Patent No. 3213575

本発明は、前記した従来技術の問題点を克服するものであり、詳しくは、高容量でサイクル性に優れ、負極剤と集電体の接着性が高くサイクル数を重ねた後にも急速充放電特性を維持できるリチウムイオン二次電池の負極に用いる炭素材料を提供することを目的とする。   The present invention overcomes the above-mentioned problems of the prior art. Specifically, it has a high capacity and excellent cycleability, and has a high adhesion between the negative electrode agent and the current collector, so that rapid charge / discharge even after repeated cycles. An object of the present invention is to provide a carbon material used for a negative electrode of a lithium ion secondary battery capable of maintaining the characteristics.

本発明者等は、上記課題を解決すべく鋭意検討を重ねた結果、炭素材料を特定の平均粒径、特定の黒鉛結晶の層間距離d(002)とすることで放電容量を大きくできること、またリチウムイオン二次電池においてサイクル数を重ねると負極剤と集電体との間に剥離が生じる原因となる両者の接着性の問題は、炭素材料のタップ密度と比表面積の積と強い相関があることを見出した。
すなわち、本発明は以下のとおりである。
本発明は、(1)平均粒径が10〜50μm、30回タップ密度が0.5g/cm以上、比表面積が7m/g以下及び30回タップ密度と比表面積との積が30000/cm以上60000/cm以下であり、X線回折測定により求められる黒鉛結晶の層間距離d(002)が3.400Å以下であるリチウムイオン二次電池負極用炭素材料に関する。
As a result of intensive studies to solve the above-mentioned problems, the present inventors can increase the discharge capacity by setting the carbon material to a specific average particle diameter and a specific interlayer distance d (002) of a specific graphite crystal, When the number of cycles is repeated in a lithium ion secondary battery, the adhesive problem between the two, which causes separation between the negative electrode agent and the current collector, has a strong correlation with the product of the tap density and specific surface area of the carbon material. I found out.
That is, the present invention is as follows.
In the present invention, (1) the average particle size is 10 to 50 μm, the 30-time tap density is 0.5 g / cm 3 or more, the specific surface area is 7 m 2 / g or less, and the product of the 30-time tap density and the specific surface area is 30000 / More specifically, the present invention relates to a carbon material for a negative electrode of a lithium ion secondary battery, which has a distance of d (002) between graphite crystals of 3.400 mm or less, which is from cm to 60000 / cm.

また、本発明は、(2)リチウムイオン二次電池負極用炭素材料は、平均粒径、30回タップ密度及び比表面積が異なる、2種以上の炭素粒子の混合粉末であり、
少なくとも炭素粒子Aを含み、該炭素粒子Aは扁平状粒子を複数集合又は結合させた炭素粒子であって、且つ前記扁平状粒子の配向面が前記集合又は結合した炭素粒子の表面及び断面で非平行となっており、アスペクト比が1.2〜5である上記(1)記載のリチウムイオン二次電池負極用炭素材料に関する。
また、本発明は、(3)前記炭素粒子Aは、炭素材料全体に対する割合が15〜65質量%である上記(2)のリチウムイオン二次電池負極用炭素材料に関する。
In addition, the present invention provides (2) a carbon material for a negative electrode of a lithium ion secondary battery, which is a mixed powder of two or more types of carbon particles having different average particle diameters, 30 times tap density and specific surface area,
At least carbon particles A, the carbon particles A are carbon particles in which a plurality of flat particles are assembled or bonded, and the orientation surfaces of the flat particles are not on the surface or cross section of the carbon particles combined or bonded. It is related with the carbon material for lithium ion secondary battery negative electrodes of the said (1) description which is parallel and whose aspect ratio is 1.2-5.
Moreover, this invention relates to the carbon material for lithium ion secondary battery negative electrodes of said (2) whose ratio with respect to the whole carbon material (3) said carbon particle A is 15-65 mass%.

また、本発明は、(4)前記(1)〜(3)のいずれか一つに記載の炭素材料と有機系結着剤とを含有し、その密度を1.5〜1.9g/cmとしたリチウムイオン二次電池用負極合剤に関する。
また、本発明は、(5)前記(4)のリチウムイオン二次電池用負極と、リチウム化合物を含む正極と、を有するリチウムイオン二次電池に関する。
Moreover, this invention contains the carbon material and organic binder as described in any one of (4) said (1)-(3), and the density is 1.5-1.9 g / cm. The present invention relates to a negative electrode mixture for lithium ion secondary battery 3 .
The present invention also relates to a lithium ion secondary battery having (5) the negative electrode for a lithium ion secondary battery of (4) and a positive electrode containing a lithium compound.

本発明によれば、高容量でサイクル性に優れ、負極剤と集電体の接着性が高く、サイクル数を重ねた後にも急速充放電特性を維持するリチウムイオン二次電池用負極に好適な炭素材料を提供できる。   According to the present invention, high capacity, excellent cycleability, high adhesion between the negative electrode agent and the current collector, and suitable for a negative electrode for a lithium ion secondary battery that maintains rapid charge / discharge characteristics even after repeated cycles. Carbon material can be provided.

30回タップ密度と比表面積との比及び接着力との関係を示す図である。It is a figure which shows the relationship between the ratio of 30 times tap density and a specific surface area, and adhesive force. 炭素粒子Aの表面及び断面のSEM写真を示す。The SEM photograph of the surface and cross section of the carbon particle A is shown. 本発明のリチウム二次電池の一例を示す概略図である。It is the schematic which shows an example of the lithium secondary battery of this invention.

本発明におけるリチウムイオン二次電池負極用炭素材料は、平均粒径が10〜50μm、30回タップ密度が0.5g/cm以上、比表面積が7m/g以下及び30回タップ密度と比表面積との積が30000/cm以上60000/cm以下であり、X線回折測定により求められる黒鉛結晶の層間距離d(002)が3.400Å以下であることを特徴とする。 The carbon material for a lithium ion secondary battery negative electrode in the present invention has an average particle size of 10 to 50 μm, a 30-time tap density of 0.5 g / cm 3 or more, a specific surface area of 7 m 2 / g or less, and a 30-time tap density and ratio. The product with the surface area is 30000 / cm or more and 60000 / cm or less, and the interlayer distance d (002) of the graphite crystal obtained by X-ray diffraction measurement is 3.400 mm or less.

本発明におけるリチウムイオン二次電池負極用炭素材料の30回タップ密度は0.5g/cm以上であることが好ましい。炭素材料の30回タップ密度が0.5g/cmより小さいとリチウムイオン二次電池の負極に用いた場合、より多くの結着剤が必要とされる傾向があり、その結果リチウムイオン二次電池のエネルギー密度が小さくなる傾向がある。30回タップ密度の上限値に特に制限はないが、通常1.2g/cm以下とされる。30回タップ密度の測定は、容量100cmのメスシリンダに測定試料を約100cm入れ栓をした後、メスシリンダを5cmの高さから30回落下させた後の試料体積で試料質量を除して算出される。
炭素材料の30回タップ密度を0.5g/cm以上とするには、粉砕機や篩を用いて粒径を調整する方法が挙げられる。
The 30-time tap density of the carbon material for a lithium ion secondary battery negative electrode in the present invention is preferably 0.5 g / cm 3 or more. If the 30-time tap density of the carbon material is less than 0.5 g / cm 3 , when used for the negative electrode of a lithium ion secondary battery, more binder tends to be required, and as a result, the lithium ion secondary The energy density of the battery tends to decrease. Although there is no restriction | limiting in particular in the upper limit of a 30 times tap density, Usually, it shall be 1.2 g / cm < 3 > or less. Tapping density is measured 30 times. The sample volume is divided by the sample volume after dropping the measuring cylinder 30 times from the height of 5 cm after plugging the measuring sample about 100 cm 3 into a measuring cylinder of 100 cm 3 capacity. Is calculated.
In order to set the 30-time tap density of the carbon material to 0.5 g / cm 3 or more, a method of adjusting the particle diameter using a pulverizer or a sieve can be used.

また、本発明におけるリチウムイオン二次電池負極用炭素材料の比表面積は7m/g以下であることが好ましく、より好ましくは6m/g以下であり、さらに好ましくは2〜6m/gである。比表面積が7m/gを越えると、得られるリチウムイオン二次電池の第一サイクル目の不可逆容量が大きくなり電池のエネルギー密度が小さくなる傾向がある。比表面積が2m/gより小さいと、リチウムイオン二次電池のサイクル特性が下がる傾向がある。炭素材料の比表面積はBET法(窒素ガス吸着によるBET5点法)等の既知の方法で測定できる。
炭素材料の比表面積を7m/g以下とするには、機械的は表面改質処理、粉砕等により粒径を調整する方法が挙げられる。例えば、粒径を小さくすると比表面積は大きくなる傾向があり、粒径を大きくすると比表面積は小さくなる傾向がある。
In addition, the specific surface area of the carbon material for a lithium ion secondary battery negative electrode in the present invention is preferably 7 m 2 / g or less, more preferably 6 m 2 / g or less, and further preferably 2 to 6 m 2 / g. is there. When the specific surface area exceeds 7 m 2 / g, the irreversible capacity at the first cycle of the obtained lithium ion secondary battery tends to increase and the energy density of the battery tends to decrease. When the specific surface area is smaller than 2 m 2 / g, the cycle characteristics of the lithium ion secondary battery tend to be lowered. The specific surface area of the carbon material can be measured by a known method such as the BET method (BET 5-point method by nitrogen gas adsorption).
In order to set the specific surface area of the carbon material to 7 m 2 / g or less, a method of mechanically adjusting the particle diameter by surface modification treatment, pulverization or the like can be mentioned. For example, when the particle size is decreased, the specific surface area tends to increase, and when the particle size is increased, the specific surface area tends to decrease.

本発明におけるリチウムイオン二次電池負極用炭素材料の30回タップ密度と比表面積との積は30000/cm以上60000/cm以下であることが好ましく、40000/cm以上60000/cm以下であることがより好ましい。リチウムイオン二次電池においてサイクル数を重ねると負極剤と集電体との間に剥離が生じる問題は、両者の接着性が低いことが一因といえる。そこで、負極剤と集電体との接着性と、炭素材料との関係を以下のようにして調べた。
まず、30回タップ密度と比表面積との積が20000〜70000となる数種類の炭素材料を用意した。各炭素材料98質量部に対して、結着剤であるSBR(日本ゼオン株式会社製、BM−400B)1質量部、CMC(ダイセル化学工業株式会社製、CMC2200)1質量部及び水103質量部の割合のスラリをそれぞれ作製した。
The product of the 30-time tap density and the specific surface area of the carbon material for a lithium ion secondary battery negative electrode in the present invention is preferably 30000 / cm or more and 60000 / cm or less, and preferably 40000 / cm or more and 60000 / cm or less. More preferred. The problem that peeling occurs between the negative electrode agent and the current collector when the number of cycles is repeated in a lithium ion secondary battery can be attributed to the low adhesiveness between the two. Therefore, the relationship between the adhesion between the negative electrode agent and the current collector and the carbon material was examined as follows.
First, several types of carbon materials having a product of 30 times tap density and specific surface area of 20000 to 70000 were prepared. 1 part by mass of SBR (manufactured by Nippon Zeon Co., Ltd., BM-400B), 1 part by mass of CMC (manufactured by Daicel Chemical Industries, Ltd., CMC2200) and 103 parts by mass of water with respect to 98 parts by mass of each carbon material Each of the slurries of the ratio was prepared.

このスラリを厚み11μmの圧延銅箔の片面に塗布し、その後120℃で1時間乾燥した。乾燥後、ロールプレスによって電極を加圧成形して厚みを86μmとした。単位面積当たりの負極剤塗布量は12mg/cmとなり、負極剤密度は1.6g/cmとなり、幅10mm長さ55mmの大きさに切り出して接着性測定用試験片を作製した。試験片を長さ方向の中央付近で銅箔を内側に90°折り曲げ、一方の負極剤面を両面テープ等で固定し、他方の端を応力検出器に繋ぎ所定の速度で試験片を引っ張るテストを各炭素材料で行い、負極剤と集電体との間に剥離が生じる応力を接着力とした。その結果、図1に示すように、リチウムイオン二次電池負極用炭素材料の30回タップ密度と比表面積の積が接着性に非常に強く相関(相関係数:0.889)することが見出された。30回タップ密度と比表面積との積が30000/cmより小さな場合は、負極剤と集電体との接着性が小さくなり剥離が生じ易くなる傾向がある。30回タップ密度と比表面積との積が60000/cmより大きな場合は、接着性には優れるが、実質的に比表面積が7m/g以上となることが多く、前述したようにリチウムイオン二次電池の第一サイクル目の不可逆容量が大きくなり電池のエネルギー密度が小さくなる傾向があることから好ましくないことがわかった。
炭素材料の30回タップ密度と比表面積との積が30000/cm以上60000/cm以下とするには、上記積が範囲内となるように適当な30回タップ密度と適当な比表面積の値を有する炭素材料を適宜選択すればよい。
This slurry was applied to one side of a rolled copper foil having a thickness of 11 μm and then dried at 120 ° C. for 1 hour. After drying, the electrode was pressure-formed by a roll press to a thickness of 86 μm. The coating amount of the negative electrode agent per unit area was 12 mg / cm 2 , the negative electrode agent density was 1.6 g / cm 3 , and a test piece for measuring adhesiveness was cut into a size of 10 mm in width and 55 mm in length. A test in which the test piece is bent 90 ° inside the copper foil near the center in the length direction, one negative electrode surface is fixed with double-sided tape, the other end is connected to a stress detector, and the test piece is pulled at a predetermined speed Was performed with each carbon material, and the stress at which peeling occurred between the negative electrode agent and the current collector was defined as the adhesive strength. As a result, as shown in FIG. 1, it can be seen that the product of the 30-time tap density and the specific surface area of the carbon material for the negative electrode of the lithium ion secondary battery has a very strong correlation (correlation coefficient: 0.889) with the adhesiveness. It was issued. When the product of the 30-time tap density and the specific surface area is smaller than 30000 / cm, the adhesiveness between the negative electrode agent and the current collector tends to be small and peeling tends to occur. When the product of the 30 times tap density and the specific surface area is larger than 60000 / cm, the adhesiveness is excellent, but the specific surface area is substantially more than 7 m 2 / g. It was found that the irreversible capacity in the first cycle of the secondary battery tends to increase and the energy density of the battery tends to decrease, which is not preferable.
In order for the product of the 30-time tap density and the specific surface area of the carbon material to be 30000 / cm or more and 60000 / cm or less, an appropriate 30-time tap density and an appropriate specific surface area value are set so that the product is within the range. What is necessary is just to select the carbon material to have suitably.

本発明におけるリチウムイオン二次電池負極用炭素材料は、平均粒径、30回タップ密度及び比表面積が異なる、2種以上の炭素粒子の混合粉末であっても良く、そのうちの少なくとも1種が、後述する炭素粒子Aであることが好ましい。
炭素粒子Aは、扁平状の粒子を複数集合又は結合させた炭素粒子であって、且つ前記扁平状粒子の配向面が前記集合又は結合した炭素粒子の表面及び断面で非平行となっており、アスペクト比が1.2〜5である炭素粒子を意味する。
炭素粒子Aは、アスペクト比が1.2〜5であることから集電体の面方向で配向し難い傾向があるため、炭素材料Aを含む炭素材料も配向し難くなり、リチウムイオンを吸蔵・放出し易くなり、急速充放電特性が良くなる。
The carbon material for a lithium ion secondary battery negative electrode in the present invention may be a mixed powder of two or more carbon particles having different average particle diameter, 30-time tap density, and specific surface area, at least one of which is It is preferable that it is the carbon particle A mentioned later.
The carbon particles A are carbon particles in which a plurality of flat particles are assembled or bonded, and the orientation planes of the flat particles are non-parallel in the surface and cross section of the carbon particles bonded or bonded, Carbon particles having an aspect ratio of 1.2 to 5 are meant.
Since the carbon particles A have an aspect ratio of 1.2 to 5 and tend to be difficult to be oriented in the surface direction of the current collector, the carbon material including the carbon material A is also difficult to be oriented. It becomes easy to discharge and quick charge / discharge characteristics are improved.

前記炭素粒子Aを含む炭素材料を用いる場合、前記炭素粒子Aは、リチウムイオン二次電池負極用炭素材料全体に対する割合が15〜65質量%であることが好ましく、20〜65質量%であることがより好ましい。15質量%未満では、急速充放電特性が低下する傾向がある。65質量%を超えると、一般に集合又は結合した炭素粒子は、30回タップ密度と比表面積との積が小さくなる傾向があるため、リチウムイオン二次電池負極用炭素材料全体の30回タップ密度と比表面積との積も小さくなり、炭素粒子Aを有する炭素材料を用いた負極材と集電体との接着性が低下する傾向がある。
前記炭素粒子Aを含む炭素材料を用いる場合、前記炭素粒子A、それ以外の炭素粒子の30回タップ密度は、炭素材料全体で0.5g/cm以上となれば特に制限はない。
前記炭素材料Aを用いる場合、前記炭素粒子A、それ以外の炭素粒子の平均粒径は、炭素材料全体で10〜50μmとなれば特に制限はない。
前記炭素材料Aを用いる場合、前記炭素粒子A、それ以外の炭素粒子の比表面積は、炭素材料全体で7m/g以下となれば特に制限はない。
また、前記炭素粒子Aを含む炭素材料を用いる場合、前記炭素粒子A、それ以外の炭素粒子の30回タップ密度と比表面積との積は、30000〜60000/cmとなれば特に制限はない。
When using the carbon material containing the said carbon particle A, it is preferable that the said carbon particle A is 15-65 mass% with respect to the whole carbon material for lithium ion secondary battery negative electrodes, and is 20-65 mass%. Is more preferable. If it is less than 15% by mass, the rapid charge / discharge characteristics tend to deteriorate. When the mass exceeds 65 mass%, generally, the aggregated or bonded carbon particles tend to have a product of a 30-times tap density and a specific surface area, so that the 30-times tap density of the entire carbon material for a lithium ion secondary battery negative electrode The product with the specific surface area also becomes small, and the adhesion between the negative electrode material using the carbon material having the carbon particles A and the current collector tends to decrease.
When using the carbon material containing the carbon particles A, the 30-times tap density of the carbon particles A and other carbon particles is not particularly limited as long as the carbon material is 0.5 g / cm 3 or more.
When the carbon material A is used, there is no particular limitation as long as the average particle size of the carbon particles A and other carbon particles is 10 to 50 μm in the entire carbon material.
When the carbon material A is used, the specific surface area of the carbon particles A and other carbon particles is not particularly limited as long as the total carbon material is 7 m 2 / g or less.
Moreover, when using the carbon material containing the said carbon particle A, there will be no restriction | limiting in particular if the product of the 30 times tap density and specific surface area of the said carbon particle A and other carbon particles will be 30000-60000 / cm.

前記炭素粒子Aは、例えば、黒鉛化可能な骨材又は黒鉛と、炭素化可能なバインダとの混合物に黒鉛化触媒を1〜50質量%添加して混合し、焼成した後に粉砕することにより製造できる。製造方法については後述する。   The carbon particles A are produced, for example, by adding 1 to 50% by mass of a graphitization catalyst to a mixture of graphitizable aggregate or graphite and a carbonizable binder, mixing, firing, and pulverizing. it can. The manufacturing method will be described later.

上記黒鉛化可能な骨材としては、例えば、コークス粉末及び樹脂の炭化物等が用いられるが、他の黒鉛化可能な粉末材料であってもよい。好ましい材料としては、ニードルコークス等の易黒鉛化コークスの粉末が挙げられる。また、上記黒鉛としては、天然黒鉛粉末及び人造黒鉛粉末が利用でき、粉末状であれば特に制限はない。
バインダと混合される黒鉛化可能な骨材や黒鉛の平均粒径は、完成した炭素材料Aの平均粒径より小さいことが好ましく、2/3以下であることがより好ましい。
As the aggregate capable of graphitization, for example, coke powder and resin carbide are used, but other graphitizable powder materials may be used. Preferable materials include easily graphitized coke powder such as needle coke. Moreover, as said graphite, natural graphite powder and artificial graphite powder can be utilized, and if it is a powder form, there will be no restriction | limiting in particular.
The average particle size of graphitizable aggregate or graphite mixed with the binder is preferably smaller than the average particle size of the completed carbon material A, and more preferably 2/3 or less.

前記炭素化可能なバインダとしては、例えばタール、ピッチ、熱硬化性樹脂及び熱可塑性樹脂等が挙げられる。バインダの好ましい配合量は、黒鉛化可能な骨材又は黒鉛100質量部に対し、5〜80質量部であり、より好ましくは10〜80質量部であり、さらに好ましくは15〜80質量部である。バインダの配合量が5質量部%未満あるいは80質量部を越えると、製造される炭素粒子Aのアスペクト比及び比表面積が大きくなりすぎる傾向がある。なお、アスペクト比に関しては後述する。   Examples of the carbonizable binder include tar, pitch, thermosetting resin, and thermoplastic resin. A preferable blending amount of the binder is 5 to 80 parts by mass, more preferably 10 to 80 parts by mass, and further preferably 15 to 80 parts by mass with respect to 100 parts by mass of the graphitizable aggregate or graphite. . When the blending amount of the binder is less than 5 parts by mass or exceeds 80 parts by mass, the aspect ratio and specific surface area of the produced carbon particles A tend to be too large. The aspect ratio will be described later.

前記黒鉛化触媒としては、例えば鉄、ニッケル、チタン、珪素及びホウ素等の金属、又はこれら金属の炭化物並びに酸化物等を用いることができる。これらの中で、珪素及びホウ素の炭化物又は酸化物が好ましい。これら黒鉛化触媒の添加量は、得られる炭素粒子A全量に対し、好ましくは1〜50質量%、より好ましくは3〜40質量%、さらに好ましくは5〜35質量%とされる。黒鉛化触媒の添加量が1質量%未満では炭素粒子Aの結晶性が低くなる傾向があり、50質量%を越えると他の材料と均一に混合することが困難となり、炭素粒子Aの品質にばらつきが生じ易くなる傾向がある。   As the graphitization catalyst, for example, metals such as iron, nickel, titanium, silicon and boron, or carbides and oxides of these metals can be used. Of these, silicon and boron carbides or oxides are preferred. The addition amount of these graphitization catalysts is preferably 1 to 50% by mass, more preferably 3 to 40% by mass, and further preferably 5 to 35% by mass with respect to the total amount of carbon particles A to be obtained. If the addition amount of the graphitization catalyst is less than 1% by mass, the crystallinity of the carbon particles A tends to be low, and if it exceeds 50% by mass, it becomes difficult to uniformly mix with other materials, and the quality of the carbon particles A is improved. There is a tendency that variations easily occur.

炭素粒子Aを得るための、黒鉛化可能な骨材又は黒鉛とバインダの混合方法は、特に制限が無く、ニーダー等を用いて混合物を得るが、バインダの軟化点以上の温度で混合することが好ましい。具体的にはバインダがピッチ又はタールの場合は50〜300℃が好ましく、熱硬化性樹脂の場合は20〜120℃が好ましい。   There are no particular limitations on the method of mixing the graphitizable aggregate or graphite and binder to obtain the carbon particles A, and a mixture is obtained using a kneader or the like, but may be mixed at a temperature above the softening point of the binder. preferable. Specifically, when the binder is pitch or tar, 50 to 300 ° C is preferable, and when the binder is a thermosetting resin, 20 to 120 ° C is preferable.

次に上記混合物を焼成し、黒鉛化処理を行う。なお、この焼成処理の前に上記混合物を粉砕、成形しても良く、その成形後700〜1300℃程度の温度で前焼成しても良い。黒鉛化の焼成は、前記混合物が酸化を起こしにくい条件で行うことが好ましく、例えば焼成雰囲気を窒素、アルゴン又は真空とする方法が挙げられる。黒鉛化の温度は2200℃以上が好ましく、より好ましくは2500℃以上であり、さらに好ましい温度は2800〜3200℃である。黒鉛化の温度が2200℃未満では黒鉛結晶が十分に発達せず、充放電容量が低くなる傾向があり、3200℃より高いと黒鉛が昇華する傾向が強くなる。   Next, the mixture is fired and graphitized. In addition, you may grind | pulverize and shape | mold the said mixture before this baking process, and you may pre-fire at the temperature of about 700-1300 degreeC after the shaping | molding. The graphitization is preferably performed under conditions where the mixture does not easily oxidize. Examples thereof include a method in which the baking atmosphere is nitrogen, argon, or vacuum. The graphitization temperature is preferably 2200 ° C. or more, more preferably 2500 ° C. or more, and further preferably 2800 to 3200 ° C. When the graphitization temperature is less than 2200 ° C., the graphite crystals are not sufficiently developed, and the charge / discharge capacity tends to be low. When the graphitization temperature is higher than 3200 ° C., the tendency of the graphite to sublimate becomes strong.

炭素粒子Aを得るための、焼成後の黒鉛の粉砕は、平均粒径、30回タップ密度、比表面積が本発明の範囲内となるように調整できれば特に制限はないが、例えばジェットミル、振動ミル、ピンミル及びハンマーミル等の公知の装置を使用することができる。   The pulverization of the graphite after firing for obtaining the carbon particles A is not particularly limited as long as the average particle size, 30-time tap density, and specific surface area can be adjusted within the scope of the present invention. Known apparatuses such as a mill, a pin mill and a hammer mill can be used.

本発明における炭素粒子Aとしては、前述のように扁平状粒子を複数集合又は結合させた炭素粒子であって、扁平状粒子の配向面が、前記集合又は結合した炭素粒子の表面及び断面で非平行となるように集合又は結合されており、アスペクト比が1.2〜5である炭素粒子が好ましい。   The carbon particle A in the present invention is a carbon particle in which a plurality of flat particles are assembled or bonded as described above, and the orientation plane of the flat particles is not on the surface and cross section of the collected or bonded carbon particles. Carbon particles that are aggregated or bonded so as to be parallel and have an aspect ratio of 1.2 to 5 are preferable.

本発明において、扁平状粒子とは、長軸と短軸を有する形状の粒子のことであり、完全な球状でないものをいう。例えば鱗状、鱗片状、一部の塊状等の形状のものがこれに含まれる。具体的には、粉砕したコークス粉末を黒鉛化した人造黒鉛や鱗片状黒鉛等を用いることができるが、扁平状の一次粒子であれば他の粉末材料を扁平状粒子として用いてもよい。なお、本発明における扁平状粒子は、例えば、炭素粒子Aを走査型電子顕微鏡(SEM)等により観察した際に、炭素粒子Aを構成していると認められる粒子単位をいう。   In the present invention, flat particles are particles having a major axis and a minor axis, and are not completely spherical. For example, those having a shape such as a scale shape, a scale shape, or a part of a lump shape are included. Specifically, artificial graphite or scaly graphite obtained by graphitizing the pulverized coke powder can be used, but other powder materials may be used as the flat particles as long as they are flat primary particles. In addition, the flat particle | grains in this invention say the particle | grain unit recognized that the carbon particle A is comprised when the carbon particle A is observed with a scanning electron microscope (SEM) etc., for example.

炭素粒子Aにおいて、複数の扁平状粒子の配向面が炭素粒子Aの表面及び断面で非平行とは、それぞれの扁平状粒子の形状において有する扁平した面、換言すれば最も平らに近い面を配向面として、複数の扁平状粒子がそれぞれの配向面を一定の方向にそろうことなく集合している状態をいう。
「複数の扁平状粒子がそれぞれの配向面を一定の方向にそろうことなく集合している状態」の確認は、粒子の断面を走査型電子顕微鏡(SEM)写真で観察して行う。炭素粒子Aの表面及び炭素粒子Aの断面SEM写真の一例を図2に示す。
In the carbon particles A, the orientation planes of the plurality of flat particles are non-parallel in the surface and cross section of the carbon particles A. The flat surfaces in the shape of the respective flat particles, in other words, the planes closest to the flat are oriented. A surface refers to a state in which a plurality of flat particles are gathered without aligning their respective orientation surfaces in a certain direction.
Confirmation of “a state in which a plurality of flat particles are gathered without aligning their orientation planes in a certain direction” is performed by observing a cross section of the particles with a scanning electron microscope (SEM) photograph. An example of the surface of the carbon particle A and a cross-sectional SEM photograph of the carbon particle A is shown in FIG.

この炭素粒子Aにおいて扁平状粒子は集合又は結合しているが、結合とは、互いの粒子が、タール、ピッチ、熱硬化性樹脂、熱可塑性樹脂等のバインダを炭素化した炭素質を介して、化学的に結合している状態をいう。集合とは、互いの粒子が化学的に結合してはないが、その形状等に起因して、その集合体としての形状を保っている状態をいう。機械的な強度の面から、結合しているものが好ましい。
1つの炭素粒子Aにおいて、扁平状粒子の集合又は結合する数としては、3個以上であることが好ましい。個々の扁平状粒子の大きさとしては、平均粒径で1〜100μmであることが好ましく、これらが集合又は結合した炭素粒子の平均粒径の2/3以下であることが好ましい。
In the carbon particles A, the flat particles are aggregated or bonded, and the bonding means that the particles are carbonized by carbonizing a binder such as tar, pitch, thermosetting resin, and thermoplastic resin. , Refers to a chemically bonded state. The term “aggregate” refers to a state in which the particles are not chemically bonded but the shape of the aggregate is maintained due to the shape or the like. From the viewpoint of mechanical strength, those bonded are preferable.
In one carbon particle A, the number of flat particles aggregated or bonded is preferably 3 or more. The size of each flat particle is preferably 1 to 100 μm in terms of average particle diameter, and preferably 2/3 or less of the average particle diameter of the carbon particles in which they are aggregated or bonded.

前記炭素粒子Aを炭素材料として負極に使用すると、集電体の面方向に炭素材料が配向し難く、且つ電解液との濡れ性が向上し、負極黒鉛にリチウムイオンを吸蔵・放出し易くなるため、得られるリチウムイオン二次電池の急速充放電特性及びサイクル特性を向上させることができる。   When the carbon particles A are used as a carbon material for the negative electrode, the carbon material is difficult to be oriented in the surface direction of the current collector, the wettability with the electrolytic solution is improved, and lithium ions are easily occluded / released into the negative electrode graphite. Therefore, the rapid charge / discharge characteristics and cycle characteristics of the obtained lithium ion secondary battery can be improved.

また、アスペクト比が5を越える炭素粒子Aは、集電体の面方向で炭素粒子が配向し易い傾向があり、リチウムイオンを吸蔵・放出し難い傾向がある。アスペクト比が1.2未満では、炭素粒子間の接触面積が減ることにより、導電性が低下する傾向にある。特に好ましいアスペクト比は1.3〜3である。   In addition, the carbon particles A having an aspect ratio of more than 5 tend to be easily oriented in the surface direction of the current collector, and have a tendency to hardly occlude / release lithium ions. When the aspect ratio is less than 1.2, the contact area between the carbon particles decreases, and the conductivity tends to decrease. A particularly preferred aspect ratio is 1.3 to 3.

なお、アスペクト比は、炭素粒子Aの長軸方向の長さをa、短軸方向の長さをbとしたとき、a/bで表される。本発明におけるアスペクト比は、電子顕微鏡で炭素粒子Aを拡大し、任意に20個の炭素粒子Aを選択し、a/bを測定し、その平均値をとったものである。
ここで炭素粒子Aの長軸と短軸を決定する際は、走査型電子顕微鏡(SEM)で炭素粒子Aを拡大し、色々な方向から炭素粒子Aを観察して炭素粒子Aの三次元的な特徴を考慮した上で炭素粒子Aの長軸方向の長さをa、短軸方向の長さをbと決定する。
例えば、炭素粒子Aが球状、球塊状、塊状等の様に近似的に球状をなす場合は、SEM画像で二次元視野内に投影された炭素粒子Aについて、最も長い部分の長さを長軸aとし、上記長径に直交する最も長い部分の長さを短軸bとする。
また、炭素粒子Aが、鱗状、板状、ブロック状等のように薄く平たく厚さ方向を有する場合には、短軸bは粒子の厚みとなる。また、棒状、針状等のような炭素粒子Aの場合、長軸aは炭素粒子の長さであり、短軸bは棒状(又は針状等)炭素粒子の太さとなる。また、例えば、炭素粒子Aを機械的な力等を加え形状を変化させたような場合は、色々な方向から炭素粒子を観察して炭素粒子の三次元的な特徴を考慮し近似的に炭素粒子Aの形状を判断した上で上記のように長軸a及び長軸bの値を決定する。
上記製造方法により、炭素粒子Aのアスペクト比は1.2〜5の範囲内となる。
The aspect ratio is represented by a / b, where a is the length in the major axis direction of the carbon particles A and b is the length in the minor axis direction. The aspect ratio in the present invention is obtained by enlarging the carbon particles A with an electron microscope, arbitrarily selecting 20 carbon particles A, measuring a / b, and taking the average value.
Here, when the major axis and the minor axis of the carbon particle A are determined, the carbon particle A is enlarged by a scanning electron microscope (SEM), and the carbon particle A is observed from various directions, and the three-dimensional of the carbon particle A is observed. In consideration of these characteristics, the length of the carbon particles A in the major axis direction is determined as a, and the length in the minor axis direction is determined as b.
For example, when the carbon particle A is approximately spherical, such as spherical, spherical, or massive, the longest part of the carbon particle A projected in the two-dimensional field of view in the SEM image is the major axis. Let a be the longest axis perpendicular to the major axis be the minor axis b.
Further, when the carbon particle A is thin, flat, and has a thickness direction such as a scale shape, a plate shape, or a block shape, the short axis b is the thickness of the particle. Further, in the case of carbon particles A such as rod-like or needle-like, the major axis a is the length of the carbon particles, and the minor axis b is the thickness of the rod-like (or needle-like) carbon particles. Further, for example, when the shape of the carbon particle A is changed by applying mechanical force or the like, the carbon particle is observed from various directions, and the carbon particle A is approximated by considering the three-dimensional characteristics of the carbon particle. After determining the shape of the particle A, the values of the major axis a and the major axis b are determined as described above.
By the manufacturing method, the aspect ratio of the carbon particles A is in the range of 1.2 to 5.

本発明におけるリチウムイオン二次電池負極用炭素材料の平均粒径は10〜50μmであることが好ましく、10〜40μmであることがより好ましい。リチウムイオン二次電池負極を作製する際には、まず炭素材料を有機系結着剤及び溶剤又は水と混合しスラリを調合するが、平均粒径が10μmより小さすぎると、このスラリの粘度が高くなる傾向があり、取り扱いが不自由となる。また、平均粒径が50μmを超えると、作製するリチウムイオン二次電池負極表面にスジ引き等の凹凸ができやすくなる傾向がある。なお、本発明において炭素材料の平均粒径は、レーザー回折粒度分布計で測定する50%Dとして求める。なお、炭素材料の平均粒径を調整するには、粉砕機や篩を用いて所望の大きさの粒径を得ればよい。   The average particle diameter of the carbon material for a lithium ion secondary battery negative electrode in the present invention is preferably 10 to 50 μm, and more preferably 10 to 40 μm. When preparing a negative electrode for a lithium ion secondary battery, first, a carbon material is mixed with an organic binder and a solvent or water to prepare a slurry. If the average particle size is too small, the viscosity of the slurry is reduced. It tends to be high and handling becomes inconvenient. On the other hand, if the average particle size exceeds 50 μm, the surface of the negative electrode of the lithium ion secondary battery to be produced tends to be uneven, such as streaking. In the present invention, the average particle size of the carbon material is determined as 50% D measured with a laser diffraction particle size distribution meter. In addition, what is necessary is just to obtain the particle size of a desired magnitude | size using a grinder and a sieve, in order to adjust the average particle diameter of a carbon material.

本発明におけるリチウムイオン二次電池負極用炭素材料は、黒鉛結晶の層間距離d(002)が3.400Å以下であることが好ましく、3.380Å以下であることがより好ましく、3.370Å以下であることがさらに好ましい。黒鉛結晶の層間距離d(002)が3.400Åを超えると、放電容量が小さくなる傾向がある。
本発明の炭素材料のd(002)の測定は、学振法による広角X線回折測定によって求めることができる。詳しくは、X線(CuKα線)を炭素材料に照射し、回折線をゴニオメーターにより測定して得られた回折プロファイルにより、回折角2θ=24〜26°付近に現れる炭素d(002)面に対応した回折ピークより、ブラッグの式を用い算出する。
層間距離d(002)を3.400Å以下とするには用いる炭素粒子、黒鉛粒子の結晶性を高くすればよい。結晶性を高くするには、2200℃以上の高温で熱処理すれる方法が挙げられる。
炭素材料の結晶のC軸方向の結晶子サイズLc(002)は500Å以上であると放電容量が大きくなることから好ましく、700Å以上であればより好ましく、1000Å以上であればさらに好ましい。結晶子サイズLc(002)を500Å以上とするには、用いる炭素材料の結晶性を高くすれよい。
また、本発明の炭素材料の真比重は、2.1以上が好ましく、2.2以上であればさらに好ましい。本発明の炭素材料の真比重はブタノール置換法で求めることができる。真比重は、2.1以上とするには、用いる炭素材料の結晶性を高くすればよい。
本発明のリチウムイオン二次電池負極用炭素材料は結晶性が高い方が放電容量の点で好ましく、結晶性が低くなると、Lc(002)及び真比重も小さくなる傾向がある。
In the carbon material for a negative electrode of a lithium ion secondary battery in the present invention, the interlayer distance d (002) of the graphite crystal is preferably 3.400 mm or less, more preferably 3.380 mm or less, and 3.370 mm or less. More preferably it is. When the interlayer distance d (002) of the graphite crystal exceeds 3.400 mm, the discharge capacity tends to be small.
The measurement of d (002) of the carbon material of the present invention can be obtained by wide angle X-ray diffraction measurement by the Gakushin method. Specifically, the carbon material is irradiated with X-rays (CuKα-rays), and the diffraction profile obtained by measuring the diffraction lines with a goniometer shows that the carbon d (002) plane appears at a diffraction angle 2θ = 24 to 26 °. Calculate from the corresponding diffraction peak using the Bragg equation.
In order to set the interlayer distance d (002) to 3.400 mm or less, the crystallinity of the carbon particles and graphite particles used may be increased. In order to increase the crystallinity, a method in which heat treatment is performed at a high temperature of 2200 ° C. or higher can be used.
The crystallite size Lc (002) in the C-axis direction of the carbon material crystal is preferably 500 liters or more from the viewpoint of increasing the discharge capacity, more preferably 700 liters or more, and even more preferably 1000 liters or more. In order to set the crystallite size Lc (002) to 500 mm or more, the crystallinity of the carbon material to be used may be increased.
The true specific gravity of the carbon material of the present invention is preferably 2.1 or more, more preferably 2.2 or more. The true specific gravity of the carbon material of the present invention can be determined by a butanol substitution method. In order to set the true specific gravity to 2.1 or higher, the crystallinity of the carbon material to be used may be increased.
The carbon material for the negative electrode of the lithium ion secondary battery of the present invention is preferably high in crystallinity in terms of discharge capacity. When the crystallinity is low, Lc (002) and true specific gravity tend to be low.

本発明において、炭素材料として上記平均粒径、30回タップ密度及び比表面積が異なる2種以上の炭素粒子を用いる場合、炭素材料Aの他に使用される炭素粒子としては、例えば、人造黒鉛、鱗片状黒鉛、鱗状黒鉛等の黒鉛粒子が用いられる。好ましくは、天然黒鉛を球状に加工した球状化天然黒鉛が挙げられる。   In the present invention, when two or more kinds of carbon particles having different average particle diameter, 30 times tap density and specific surface area are used as the carbon material, examples of the carbon particles used in addition to the carbon material A include artificial graphite, Graphite particles such as scaly graphite and scaly graphite are used. Preferably, spheroidized natural graphite obtained by processing natural graphite into a spherical shape is used.

本発明におけるリチウムイオン二次電池負極用炭素材料は、有機系結着剤及び溶剤又は水と混合し、集電体に塗布し溶剤又は水を乾燥し、加圧成形することによりリチウム二次電池用負極とすることができ、炭素材料と有機系結着剤の混合物である負極合剤の密度が1.5〜1.9g/cmであることが好ましい。負極合剤の密度を1.5g/cm以上とすることで、この負極を用いて得られるリチウムイオン二次電池の体積あたりのエネルギー密度を大きくすることができる。一方、1.9g/cmを超えるとリチウムイオン二次電池を作製するときの電解液の注液性が悪くなるだけでなく、作製するリチウムイオン二次電池の急速充放電特性及びサイクル特性が低下しやすくなる。
負極合剤の密度は、成形された合剤層(負極層)の質量及び体積の測定値から算出できる。
負極合剤の密度は、炭素材料及び有機系結着剤等の混合物を集電体に塗布し、溶剤等を乾燥後に加圧する際の圧力や、ロールプレス等の装置のクリアランス等により適宜調整することができる。
The carbon material for a negative electrode of a lithium ion secondary battery in the present invention is mixed with an organic binder and a solvent or water, applied to a current collector, dried on the solvent or water, and pressure-molded to form a lithium secondary battery. The negative electrode mixture, which is a mixture of a carbon material and an organic binder, preferably has a density of 1.5 to 1.9 g / cm 3 . By setting the density of the negative electrode mixture to 1.5 g / cm 3 or more, the energy density per volume of the lithium ion secondary battery obtained using this negative electrode can be increased. On the other hand, when it exceeds 1.9 g / cm 3 , not only does the pouring property of the electrolytic solution when producing a lithium ion secondary battery worsen, but the rapid charge / discharge characteristics and cycle characteristics of the produced lithium ion secondary battery are also reduced. It tends to decrease.
The density of the negative electrode mixture can be calculated from the measured values of the mass and volume of the molded mixture layer (negative electrode layer).
The density of the negative electrode mixture is appropriately adjusted by applying a mixture of a carbon material and an organic binder to the current collector and pressurizing the solvent after drying, the clearance of an apparatus such as a roll press, etc. be able to.

有機系結着剤としては、例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンラバー、ブタジエンゴム、スチレンブタジエンゴム、カルボキシメチルセルロース、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリアクリロニトリル等の高分子化合物等が用いられる。炭素材料と有機系結着剤の混合割合は、炭素材料100質量部に対し有機系結着剤0.5〜20質量部が好ましい。   Examples of the organic binder include polymer compounds such as polyethylene, polypropylene, ethylene propylene rubber, butadiene rubber, styrene butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, and polyacrylonitrile. The mixing ratio of the carbon material and the organic binder is preferably 0.5 to 20 parts by mass of the organic binder with respect to 100 parts by mass of the carbon material.

炭素材料と有機系結着剤の混合に使用する溶剤としては特に制限が無く、N−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、γ−ブチロラクトン等が用いられる。   The solvent used for mixing the carbon material and the organic binder is not particularly limited, and N-methylpyrrolidone, dimethylacetamide, dimethylformamide, γ-butyrolactone and the like are used.

炭素材料は、有機系結着剤及び溶剤又は水と混錬され粘度を調整後、集電体に塗布し乾燥し、加圧成形して負極とされる。集電体としては、例えばニッケル、銅等の箔やメッシュ等が使用できる。   The carbon material is kneaded with an organic binder and a solvent or water to adjust the viscosity, and then applied to a current collector, dried, and pressure-molded to form a negative electrode. As the current collector, for example, a foil or mesh of nickel, copper or the like can be used.

得られた負極を用いて、本発明のリチウムイオン二次電池とするために、例えばリチウム化合物を含む正極とセパレータを介して対向して配置し、電解液を注入する。リチウム化合物を含む正極としては、例えば、LiNiO、LiCoO、LiMn等を単独又は混合して使用することができる。正極は、負極と同様にして、集電体表面上に正極層を形成すること得ることができる。
また、電解液は、例えばLiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、例えばエチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、ジメチルカーボネート、メチルエチルカーボネートテトラヒドロフラン等に溶解したものが使用できる。また、電解液のかわりに固体又はゲル状のいわゆるポリマ電解質を用いることもできる。
In order to obtain the lithium ion secondary battery of the present invention using the obtained negative electrode, for example, the positive electrode containing a lithium compound is placed opposite to the separator, and an electrolytic solution is injected. The positive electrode containing a lithium compound, for example, can be used alone or as a mixture of LiNiO 2, LiCoO 2, LiMn 2 O 4 or the like. The positive electrode can form a positive electrode layer on the current collector surface in the same manner as the negative electrode.
Further, the electrolytic solution is, for example, a lithium salt such as LiClO 4 , LiPF 4 , LiAsF, LiBF 4 , LiSO 3 CF 4 dissolved in, for example, ethylene carbonate, diethyl carbonate, dimethoxyethane, dimethyl carbonate, methyl ethyl carbonate tetrahydrofuran, etc. Can be used. Also, a solid or gel so-called polymer electrolyte can be used in place of the electrolytic solution.

セパレータとしては、例えばポリエチレン、ポリプロピレン等ポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものを用いることができる。なお、作製するリチウムイオン二次電池の正極と負極が直接接触しない構造にした場合は、セパレータを使用しなくてもよい。   As the separator, for example, a nonwoven fabric, a cloth, a microporous film, or a combination thereof having a polyolefin as a main component such as polyethylene or polypropylene can be used. In addition, when it is set as the structure where the positive electrode and negative electrode of the lithium ion secondary battery to produce are not directly contacted, it is not necessary to use a separator.

図3に、本発明の円筒型リチウムイオン二次電池の一つの実施の形態の一部断面正面図を示す。薄板状に加工された正極1と、同様に加工された負極2がポリエチレン製微孔膜等のセパレータ3を介して重ね合わされたものを捲回し、これを金属製等の電池缶7に挿入し密閉化されている。正極1は正極タブ4を介して正極蓋6に接合され、負極2は負極タブ5を介して電池底部へ接合されている。正極蓋6はガスケット8にて電池缶7へ固定されている。   FIG. 3 shows a partially sectional front view of one embodiment of the cylindrical lithium ion secondary battery of the present invention. A thin plate-like positive electrode 1 and a similarly processed negative electrode 2 are stacked with a separator 3 such as a polyethylene microporous membrane, and this is inserted into a battery can 7 made of metal or the like. It is sealed. The positive electrode 1 is bonded to the positive electrode lid 6 via the positive electrode tab 4, and the negative electrode 2 is bonded to the battery bottom via the negative electrode tab 5. The positive electrode lid 6 is fixed to the battery can 7 with a gasket 8.

以下、本発明を実施例により説明する。
(実施例1)
平均粒径12μmの扁平な形状をもつ扁平状粒子としてのコークス粉末50質量部、バインダとしてのピッチ15質量部及びコールタール20質量部、並びに黒鉛化触媒としての炭化珪素10質量部を230℃で1時間混錬した。次いで、この混合物を平均粒径25μmに粉砕し、該粉砕物を金型に入れプレス成形し、直方体とした。この成形体を1000℃で熱処理した後、さらに3000℃で熱処理し、黒鉛成形体を得た。粉砕処理によりこの黒鉛成形体を炭素粒子A1とした。炭素粒子A1の平均粒径、30回タップ密度、比表面積及びアスペクト比の測定結果を表1に示す。
炭素粒子A1の表面及び断面で個々の扁平状粒子が非平行となっていることの確認は、走査型電子顕微鏡(SEM)写真を用いて行った。
平均粒径はレーザー回折式粒度測定機で求めた。比表面積は窒素ガス吸着によるBET5点法で求めた。アスペクト比は、得られた炭素粒子A1を電子顕微鏡で拡大し、20個任意に選び出し測定して算出した。
炭素粒子A1と、鱗片状天然黒鉛を球状に加工した黒鉛粒子a(平均粒径:19.4μm、30回タップ密度:0.84g/cm、比表面積:7.6m/g、アスペクト比:1.8、d002:3.359)を質量比6/4で混合して炭素材料1を得た。なお、天然黒鉛を球状に加工した黒鉛粒子aの平均粒径、30回タップ密度及び比表面積の測定結果を表1に示す。
表2には炭素材料1の平均粒径、30回タップ密度、比表面積、d(002)の測定結果及び30回タップ密度と比表面積の積を示す。
Hereinafter, the present invention will be described with reference to examples.
Example 1
Coke powder 50 parts by mass as flat particles having an average particle size of 12 μm, pitch 15 parts by mass and coal tar 20 parts by mass, and silicon carbide 10 parts by mass as a graphitization catalyst at 230 ° C. Kneaded for 1 hour. Next, the mixture was pulverized to an average particle size of 25 μm, and the pulverized product was put into a mold and press-molded to obtain a rectangular parallelepiped. This molded body was heat treated at 1000 ° C., and further heat treated at 3000 ° C. to obtain a graphite molded body. This graphite molded body was made into carbon particles A1 by pulverization. Table 1 shows the measurement results of the average particle diameter, 30-time tap density, specific surface area, and aspect ratio of the carbon particles A1.
Confirmation that the individual flat particles are non-parallel on the surface and cross section of the carbon particle A1 was performed using a scanning electron microscope (SEM) photograph.
The average particle size was determined with a laser diffraction particle size analyzer. The specific surface area was determined by the BET 5-point method by nitrogen gas adsorption. The aspect ratio was calculated by enlarging the obtained carbon particles A1 with an electron microscope, arbitrarily selecting and measuring 20 particles.
Carbon particles A1 and graphite particles a obtained by processing flaky natural graphite into a spherical shape (average particle size: 19.4 μm, 30-time tap density: 0.84 g / cm 2 , specific surface area: 7.6 m 2 / g, aspect ratio : 1.8, d002: 3.359) at a mass ratio of 6/4 to obtain a carbon material 1. Table 1 shows the measurement results of the average particle diameter, 30-time tap density, and specific surface area of graphite particles a obtained by processing natural graphite into a spherical shape.
Table 2 shows the average particle size, 30-time tap density, specific surface area, measurement result of d (002), and the product of the 30-time tap density and the specific surface area of the carbon material 1.

次いで、得られた炭素材料1を使用してリチウムイオン二次電池を作製した。図3に示した本発明のリチウムイオン二次電池を以下のようにして作製した。
正極活物質としてLiCoO2 88質量%を用いて、導電剤として平均粒径1μmの鱗片状天然黒鉛を7質量%、結着剤としてポリフッ化ビニリデン(PVDF)を5質量%添加して、これにN−メチル−2−ピロリドンを加え混合して正極剤のスラリを調整した。正極剤を厚み20μmのアルミニウム箔の両面に塗布し、その後120℃で1時間乾燥した。乾燥後、ロールプレスによって電極を加圧成形して厚みを181μmとした。単位面積当たりの正極剤塗布量は29mg/cmとなり、幅55mm長さ600mmの大きさに切り出して正極を作製した。但し、正極の両端の長さ10mmの部分は正極剤が塗布されておらずアルミニウム箔が露出しており、この一方に正極タブを溶接した。
一方、負極活物質として炭素粒子A1と天然黒鉛を球状にした黒鉛粒子aを質量比6/4で混合した炭素材料1を用い、評価用の負極を作製した。まず、炭素材料1を98質量部、結着剤であるSBR(日本ゼオン株式会社製、BM−400B)1質量部、CMC(ダイセル化学工業株式会社製、CMC2200)1質量部及び粘度調整剤である水103質量部の割合のスラリを作製した。このスラリを厚み11μmの圧延銅箔の両面に塗布し、その後120℃で1時間乾燥した。乾燥後、ロールプレスによって電極を加圧成形して厚みを152μmとした。単位面積当たりの負極剤混合物の塗布量は12mg/cmとなり、負極の混合物密度は1.7g/cmとなり、幅55mm長さ600mmの大きさに切り出して負極を作製した。正極と同様に、負極の両端の長さ10mmの部分は負極剤が塗布されておらず銅箔が露出しており、この一方に負極タブを溶接した。
Next, a lithium ion secondary battery was produced using the obtained carbon material 1. The lithium ion secondary battery of the present invention shown in FIG. 3 was produced as follows.
Using 88% by mass of LiCoO 2 as the positive electrode active material, 7% by mass of flaky natural graphite having an average particle diameter of 1 μm as the conductive agent, and 5% by mass of polyvinylidene fluoride (PVDF) as the binder, N-methyl-2-pyrrolidone was added and mixed to prepare a slurry of the positive electrode agent. The positive electrode agent was applied to both surfaces of an aluminum foil having a thickness of 20 μm, and then dried at 120 ° C. for 1 hour. After drying, the electrode was pressure-formed by a roll press to a thickness of 181 μm. The coating amount of the positive electrode agent per unit area was 29 mg / cm 2 , and the positive electrode was produced by cutting it into a size of 55 mm in width and 600 mm in length. However, the positive electrode agent was not applied to the 10 mm long portions at both ends of the positive electrode, and the aluminum foil was exposed, and a positive electrode tab was welded to this one.
On the other hand, the negative electrode for evaluation was produced using the carbon material 1 which mixed carbon particle A1 and the graphite particle a which made natural graphite spherical with the mass ratio 6/4 as a negative electrode active material. First, 98 parts by mass of carbon material 1, 1 part by mass of SBR (manufactured by Zeon Corporation, BM-400B), 1 part by mass of CMC (manufactured by Daicel Chemical Industries, Ltd., CMC2200) and a viscosity modifier A slurry having a ratio of 103 parts by mass of water was prepared. This slurry was applied to both sides of a rolled copper foil having a thickness of 11 μm, and then dried at 120 ° C. for 1 hour. After drying, the electrode was pressure-formed by a roll press to a thickness of 152 μm. The coating amount of the negative electrode agent mixture per unit area was 12 mg / cm 2 , the negative electrode mixture density was 1.7 g / cm 2 , and the negative electrode was produced by cutting into a size of 55 mm in width and 600 mm in length. Similar to the positive electrode, the negative electrode agent was not applied to the 10 mm long portions at both ends of the negative electrode, and the copper foil was exposed, and a negative electrode tab was welded to this one.

セパレータは、厚み25μm幅58mmのポリエチレン製の微孔膜を用いた。正極、セパレータ、負極、セパレータの順で重ね合わせ、これを捲回して電極群とした。これを18650円筒型の電池缶に挿入して、負極タブを缶底溶接し、正極蓋をかしめるための絞り部を設けた。体積比が1:3のエチレンカーボネートとジメチルカーボネートの混合溶媒に六フッ化リン酸リチウムを1モル/リットル溶解させた電解液を電池缶に注入した後、正極タブを正極蓋に溶接した後、正極蓋をかしめ付けて電池を作製した。
<充放電特性の測定>
(1)初回充放電効率
上記電池を用いて、充放電電流850mA、充放電終止電圧をそれぞれ4.2V、2.8Vとして充放電を繰り返した。1サイクル目の充電容量と放電容量から初回充放電効率を調べた。
(2)2サイクル目放電容量及び300サイクル目放電容量維持率
上記電池を用いて、充放電電流850mA、充放電終止電圧をそれぞれ4.2V、2.8Vとして充放電を繰り返した。2サイクル目の放電容量とこれを100%とした場合の300サイクル目の放電容量維持率を調べた。
(3)2550mA時放電容量維持率
充放電電流を850mAから2550mAにあげ、2サイクル目の放電容量を100%とした場合の放電維持率を調べることで急速充放電性を評価した。
(4)300サイクル後2550mA時放電容量維持率
300サイクル後に充放電電流を850mAから2550mAにあげ、300サイクル目の放電容量を100%とした場合の放電維持率を評価することでサイクル数を重ねた後の急速充放電性を調べた。結果を表2に示す。
As the separator, a microporous membrane made of polyethylene having a thickness of 25 μm and a width of 58 mm was used. The positive electrode, the separator, the negative electrode, and the separator were stacked in this order, and this was wound to form an electrode group. This was inserted into an 18650 cylindrical battery can, and the negative electrode tab was welded to the bottom of the can to provide a throttle for caulking the positive electrode lid. After injecting into the battery can an electrolytic solution in which 1 mol / liter of lithium hexafluorophosphate was dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate having a volume ratio of 1: 3, the positive electrode tab was welded to the positive electrode lid, A positive electrode lid was caulked to prepare a battery.
<Measurement of charge / discharge characteristics>
(1) Initial charge / discharge efficiency Using the above battery, charge / discharge was repeated with a charge / discharge current of 850 mA and a charge / discharge end voltage of 4.2 V and 2.8 V, respectively. The initial charge / discharge efficiency was examined from the charge capacity and discharge capacity of the first cycle.
(2) Second cycle discharge capacity and 300th cycle discharge capacity retention rate Using the above battery, charge / discharge was repeated with a charge / discharge current of 850 mA and a charge / discharge end voltage of 4.2 V and 2.8 V, respectively. The discharge capacity at the second cycle and the discharge capacity maintenance rate at the 300th cycle when this was taken as 100% were examined.
(3) Discharge capacity maintenance rate at 2550 mA The rapid charge / discharge performance was evaluated by increasing the charge / discharge current from 850 mA to 2550 mA and examining the discharge maintenance rate when the discharge capacity at the second cycle was 100%.
(4) The discharge capacity maintenance rate at 2550 mA after 300 cycles The charge / discharge current was increased from 850 mA to 2550 mA after 300 cycles, and the number of cycles was repeated by evaluating the discharge maintenance rate when the discharge capacity at the 300th cycle was 100%. After that, the rapid charge / discharge characteristics were examined. The results are shown in Table 2.

(実施例2)
実施例1における炭素材料1の炭素粒子A1と鱗片状天然黒鉛を球状にした黒鉛粒子aの質量比を3/7に変更した以外は、実施例1と同様に炭素材料2を得、リチウムイオン二次電池を作製し評価を行った。炭素材料2の平均粒径、30回タップ密度、比表面積、d(002)の測定結果及び比表面積と30回タップ密度の積と、リチウムイオン二次電池の評価結果を表2に示す。
(Example 2)
The carbon material 2 was obtained in the same manner as in Example 1 except that the mass ratio of the carbon particles A1 of the carbon material 1 in Example 1 to the graphite particles a in which the scaly natural graphite was made spherical was changed to 3/7. A secondary battery was produced and evaluated. Table 2 shows the measurement results of the average particle size, 30-time tap density, specific surface area, and d (002) of the carbon material 2, the product of the specific surface area and the 30-time tap density, and the evaluation results of the lithium ion secondary battery.

(実施例3)
実施例1における炭素材料1を、炭素粒子A1と鱗片状天然黒鉛を球状に加工した黒鉛粒子b(平均粒径:22.1μm、30回タップ密度:0.97g/cm、比表面積:5.1m/g、アスペクト比:1.6、d002:3.361)の質量比が3/7として炭素材料3を得た以外は、実施例1と同様にリチウムイオン二次電池を作製し評価を行った。天然黒鉛を球状にした黒鉛粒子bの平均粒径、30回タップ密度及び比表面積の測定結果を表1に示す。炭素材料3の平均粒径、30回タップ密度、比表面積、d(002)の測定結果及び30回タップ密度と比表面積の積と、リチウムイオン二次電池の評価結果を表2に示す。
(Example 3)
Carbon material 1 in Example 1 was obtained by converting carbon particles A1 and scaly natural graphite into spherical shapes (b) (average particle size: 22.1 μm, 30 times tap density: 0.97 g / cm 2 , specific surface area: 5 .1 m 2 / g, aspect ratio: 1.6, d002: 3.361) The lithium ion secondary battery was fabricated in the same manner as in Example 1 except that the carbon material 3 was obtained with a mass ratio of 3/7. Evaluation was performed. Table 1 shows the measurement results of the average particle diameter, 30-time tap density, and specific surface area of graphite particles b obtained by sphering natural graphite. Table 2 shows the average particle diameter, 30-time tap density, specific surface area, d (002) measurement result of carbon material 3, the product of 30-time tap density and specific surface area, and the evaluation results of the lithium ion secondary battery.

(実施例4)
黒鉛化可能な骨材としての、平均粒径14μmのコークス粉末50質量部、バインダとしてのピッチ15質量部及びコールタール20質量部、並びに黒鉛化触媒としての炭化珪素7質量部を230℃で1時間混錬した。次いで、この混合物を平均粒径25μmに粉砕し、該粉砕物を金型に入れプレス成形し、直方体とした。この成形体を1000℃で熱処理した後、さらに3000℃で熱処理し、黒鉛成形体を得た。粉砕処理により黒鉛成形体を炭素粒子A2とした。炭素粒子A2の平均粒径、30回タップ密度、比表面積及びアスペクト比の測定結果を表1に示す。
炭素粒子A2と、鱗片状天然黒鉛を球状に加工した黒鉛粒子aを質量比5/5で混合して炭素材料4を得た。表2に炭素材料4の平均粒径、30回タップ密度、比表面積、d(002)の測定結果及び30回タップ密度と比表面積の積を示す。
リチウムイオン二次電池の作製及び評価は、実施例1と同様に行った。評価結果を表2に示す。
Example 4
50 parts by mass of coke powder having an average particle diameter of 14 μm as an aggregate capable of graphitization, 15 parts by mass of pitch as a binder and 20 parts by mass of coal tar, and 7 parts by mass of silicon carbide as a graphitization catalyst are obtained at 230 ° C. Kneaded for hours. Next, the mixture was pulverized to an average particle size of 25 μm, and the pulverized product was put into a mold and press-molded to obtain a rectangular parallelepiped. This molded body was heat treated at 1000 ° C., and further heat treated at 3000 ° C. to obtain a graphite molded body. The graphite molded body was made into carbon particles A2 by pulverization. Table 1 shows the measurement results of the average particle diameter, 30-time tap density, specific surface area, and aspect ratio of the carbon particles A2.
Carbon material 4 was obtained by mixing carbon particles A2 and graphite particles a obtained by processing flaky natural graphite into a spherical shape at a mass ratio of 5/5. Table 2 shows the average particle size, 30-time tap density, specific surface area, measurement result of d (002), and the product of the 30-time tap density and the specific surface area of the carbon material 4.
The production and evaluation of the lithium ion secondary battery were performed in the same manner as in Example 1. The evaluation results are shown in Table 2.

(実施例5)
実施例1における炭素材料1を、炭素粒子A2と鱗片状天然黒鉛を球状に加工した黒鉛粒子aの質量比を2/8として炭素材料5を得た以外は実施例1と同様にリチウムイオン二次電池を作製し評価を行った。炭素材料5の平均粒径、30回タップ密度、比表面積、d(002)の測定結果及び30回タップ密度と比表面積の積と、リチウムイオン二次電池の評価結果を表2に示す。
(Example 5)
Lithium ion 2 was obtained in the same manner as in Example 1 except that the carbon material 1 in Example 1 was obtained by changing the mass ratio of the graphite particles a obtained by processing the carbon particles A2 and the scaly natural graphite into a spherical shape to 2/8. A secondary battery was produced and evaluated. Table 2 shows the average particle size, 30-time tap density, specific surface area, d (002) measurement result of carbon material 5, the product of 30-time tap density and specific surface area, and the evaluation results of the lithium ion secondary battery.

(比較例1)
実施例1における炭素材料1の替わりに炭素粒子A1を用いた以外は実施例1と同様にリチウムイオン二次電池を作製し評価を行った。リチウムイオン二次電池の評価結果を表2に示す。
(Comparative Example 1)
A lithium ion secondary battery was prepared and evaluated in the same manner as in Example 1 except that the carbon particles A1 were used instead of the carbon material 1 in Example 1. Table 2 shows the evaluation results of the lithium ion secondary battery.

(比較例2)
実施例1における炭素材料1の替わりに鱗片状天然黒鉛を球状に加工した黒鉛粒子aを用いた以外は実施例1と同様にリチウムイオン二次電池を作製し評価を行った。リチウムイオン二次電池の評価結果を表2に示す。
(Comparative Example 2)
A lithium ion secondary battery was prepared and evaluated in the same manner as in Example 1 except that graphite particles a obtained by processing flaky natural graphite into a spherical shape instead of the carbon material 1 in Example 1 were used. Table 2 shows the evaluation results of the lithium ion secondary battery.

(比較例3)
実施例1における炭素材料1を、炭素粒子A1と鱗片状天然黒鉛を球状にした黒鉛粒子c(平均粒径:19.5μm、30回タップ密度:0.78g/cm、比表面積:5.0m/g、アスペクト比:2.0、d002:3372)の質量比を3/7として炭素材料6を得た以外は、実施例1と同様にリチウムイオン二次電池を作製し評価を行った。鱗片状天然黒鉛を球状にした黒鉛粒子cの平均粒径、30回タップ密度及び比表面積の測定結果を表1に示す。炭素材料6の平均粒径、30回タップ密度、比表面積、d(002)の測定結果及び30回タップ密度と比表面積の積と、リチウムイオン二次電池の評価結果を表2に示す。
(Comparative Example 3)
The carbon material 1 in Example 1 was obtained by converting the carbon particles A1 and flaky natural graphite into spherical graphite particles c (average particle size: 19.5 μm, 30 times tap density: 0.78 g / cm 2 , specific surface area: 5. 0m 2 / g, aspect ratio: 2.0, d002: 3372) The mass ratio was 3/7, and a carbon material 6 was obtained in the same manner as in Example 1 except that a lithium ion secondary battery was produced and evaluated. It was. Table 1 shows the measurement results of the average particle diameter, 30-time tap density, and specific surface area of the graphite particles c obtained by spheroidizing natural graphite. Table 2 shows the average particle size, 30-time tap density, specific surface area, measurement result of d (002), the product of the 30-time tap density and the specific surface area, and the evaluation results of the lithium ion secondary battery.

表2に示されるように、本発明の炭素材料は、高容量で急速充放電特性及びサイクル性に優れ、負極剤と集電体の接着性が高くサイクル数を重ねた後にも高い急速充放電特性を維持するリチウムイオン二次電池用負極に好適である。 As shown in Table 2, the carbon material of the present invention has a high capacity, excellent rapid charge / discharge characteristics and cycleability, and high charge / discharge even after the negative electrode agent and the current collector have high adhesiveness and the number of cycles is repeated. It is suitable for a negative electrode for a lithium ion secondary battery that maintains the characteristics.

1 正極
2 負極
3 セパレータ
4 正極タブ
5 負極タブ
6 正極蓋
7 電池缶
8 ガスケット
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode tab 5 Negative electrode tab 6 Positive electrode cover 7 Battery can 8 Gasket

Claims (5)

平均粒径が10〜50μm、30回タップ密度が0.5g/cm以上、比表面積が7m/g以下及び30回タップ密度と比表面積との積が30000/cm以上60000/cm以下であり、X線回折測定により求められる黒鉛結晶の層間距離d(002)が3.400Å以下であるリチウムイオン二次電池負極用炭素材料。 The average particle size is 10 to 50 μm, the 30-time tap density is 0.5 g / cm 3 or more, the specific surface area is 7 m 2 / g or less, and the product of the 30-time tap density and the specific surface area is 30000 / cm or more and 60000 / cm or less. A carbon material for a negative electrode of a lithium ion secondary battery, wherein an interlayer distance d (002) of graphite crystals determined by X-ray diffraction measurement is 3.400 mm or less. リチウムイオン二次電池負極用炭素材料は、平均粒径、30回タップ密度及び比表面積が異なる、2種以上の炭素粒子の混合粉末であり、
少なくとも炭素粒子Aを含み、該炭素粒子Aは、扁平状粒子を複数集合又は結合させた炭素粒子であって、且つ前記扁平状粒子の配向面が前記集合又は結合した炭素粒子の表面及び断面で非平行となっており、アスペクト比が1.2〜5である請求項1記載のリチウムイオン二次電池負極用炭素材料。
The carbon material for the negative electrode of the lithium ion secondary battery is a mixed powder of two or more kinds of carbon particles having different average particle diameters, 30 times tap density and specific surface area,
At least carbon particles A are included, and the carbon particles A are carbon particles in which a plurality of flat particles are assembled or bonded, and the orientation planes of the flat particles are the surfaces and cross sections of the carbon particles in which the flat particles are combined or bonded. The carbon material for a lithium ion secondary battery negative electrode according to claim 1, wherein the carbon material is non-parallel and has an aspect ratio of 1.2 to 5.
前記炭素粒子Aは、炭素材料全体に対する割合が15〜65質量%である請求項2に記載のリチウムイオン二次電池負極用炭素材料。   The said carbon particle A is a carbon material for lithium ion secondary battery negative electrodes of Claim 2 whose ratio with respect to the whole carbon material is 15-65 mass%. 請求項1〜3に記載のいずれか一項に記載の炭素材料と有機系結着剤とを含有し、その密度を1.5〜1.9g/cmとしたリチウムイオン二次電池用負極合剤。 A negative electrode for a lithium ion secondary battery comprising the carbon material according to any one of claims 1 to 3 and an organic binder and having a density of 1.5 to 1.9 g / cm 3. Mixture. 請求項4に記載のリチウムイオン二次電池用負極と、リチウム化合物を含む正極と、を有するリチウムイオン二次電池。   The lithium ion secondary battery which has a negative electrode for lithium ion secondary batteries of Claim 4, and the positive electrode containing a lithium compound.
JP2013171340A 2013-08-21 2013-08-21 Carbon material for negative electrode of lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery and lithium ion secondary battery using the same Active JP5737347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013171340A JP5737347B2 (en) 2013-08-21 2013-08-21 Carbon material for negative electrode of lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery and lithium ion secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013171340A JP5737347B2 (en) 2013-08-21 2013-08-21 Carbon material for negative electrode of lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery and lithium ion secondary battery using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008087655A Division JP5563743B2 (en) 2008-03-28 2008-03-28 Carbon material for negative electrode of lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery and lithium ion secondary battery using the same

Publications (3)

Publication Number Publication Date
JP2013254746A true JP2013254746A (en) 2013-12-19
JP2013254746A5 JP2013254746A5 (en) 2014-04-24
JP5737347B2 JP5737347B2 (en) 2015-06-17

Family

ID=49952053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013171340A Active JP5737347B2 (en) 2013-08-21 2013-08-21 Carbon material for negative electrode of lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery and lithium ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5737347B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152113A1 (en) * 2014-03-31 2015-10-08 Necエナジーデバイス株式会社 Graphite-based negative electrode active material, negative electrode, and lithium ion secondary battery
JP2017126425A (en) * 2016-01-12 2017-07-20 三菱ケミカル株式会社 Carbon material for nonaqueous secondary battery, and lithium ion secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044775A (en) * 2003-01-22 2005-02-17 Hitachi Maxell Ltd Negative electrode for lithium secondary battery, manufacturing method of the same, and lithium secondary battery using the same
JP5563743B2 (en) * 2008-03-28 2014-07-30 日立化成株式会社 Carbon material for negative electrode of lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery and lithium ion secondary battery using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044775A (en) * 2003-01-22 2005-02-17 Hitachi Maxell Ltd Negative electrode for lithium secondary battery, manufacturing method of the same, and lithium secondary battery using the same
JP5563743B2 (en) * 2008-03-28 2014-07-30 日立化成株式会社 Carbon material for negative electrode of lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery and lithium ion secondary battery using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152113A1 (en) * 2014-03-31 2015-10-08 Necエナジーデバイス株式会社 Graphite-based negative electrode active material, negative electrode, and lithium ion secondary battery
JPWO2015152113A1 (en) * 2014-03-31 2017-04-13 Necエナジーデバイス株式会社 Graphite negative electrode active material, negative electrode and lithium ion secondary battery
US10749179B2 (en) 2014-03-31 2020-08-18 Envision Aesc Energy Devices Ltd. Graphite-based negative electrode active material, negative electrode, and lithium ion secondary battery
JP2017126425A (en) * 2016-01-12 2017-07-20 三菱ケミカル株式会社 Carbon material for nonaqueous secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP5737347B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5563743B2 (en) Carbon material for negative electrode of lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery and lithium ion secondary battery using the same
JP6123839B2 (en) Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5831579B2 (en) Carbon-coated graphite negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP4760379B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
TW201935742A (en) Negative electrode material for lithium ion secondary battery, method of producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion sec
JP5540470B2 (en) Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6543428B1 (en) Negative electrode active material for secondary battery and secondary battery
EP1681738A1 (en) Non-aqueous electrolyte secondary battery-use cathode material, production method therefor, non-aqueous electrolyte secondary battery-use cathode and non-aqueous electrolyte secondary battery using the cathode material
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2007294374A (en) Negative electrode material for nonaqueous electrolytic liquid secondary battery, negative electrode for nonaqueous electrolytic liquid secondary battery using negative electrode material, and nonaqueous electrolytic liquid secondary battery
JP5817872B2 (en) Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7009049B2 (en) Lithium-ion secondary battery Carbon material for negative electrode, its intermediate, its manufacturing method, and negative electrode or battery using it
JP4707570B2 (en) Method for producing fine graphite particles
JP5737347B2 (en) Carbon material for negative electrode of lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery and lithium ion secondary battery using the same
JP4635413B2 (en) Method for producing graphite particles for non-aqueous electrolyte secondary battery negative electrode
JP7238884B2 (en) Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019186828A1 (en) Negative electrode material for lithium ion secondary battery, production method for negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2010267629A (en) Negative electrode for lithium secondary battery, and lithium secondary battery
JP6060996B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4985611B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2017033945A (en) Negative electrode for lithium secondary battery and lithium secondary battery
WO2022168170A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode material composition for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6481714B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP5776823B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
KR20240105537A (en) Anode active material for lithium secondary battery, method of manufacturing thereof, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R151 Written notification of patent or utility model registration

Ref document number: 5737347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801