JP2013253271A - Film deposition apparatus - Google Patents

Film deposition apparatus Download PDF

Info

Publication number
JP2013253271A
JP2013253271A JP2012128209A JP2012128209A JP2013253271A JP 2013253271 A JP2013253271 A JP 2013253271A JP 2012128209 A JP2012128209 A JP 2012128209A JP 2012128209 A JP2012128209 A JP 2012128209A JP 2013253271 A JP2013253271 A JP 2013253271A
Authority
JP
Japan
Prior art keywords
film forming
lens
optical axis
forming material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012128209A
Other languages
Japanese (ja)
Inventor
Naohisa Kitami
尚久 北見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2012128209A priority Critical patent/JP2013253271A/en
Publication of JP2013253271A publication Critical patent/JP2013253271A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow the observation of an evaporation state for a long period of time in such a state that the influence by sticking or the like of a film deposition material is reduced.SOLUTION: In a film deposition apparatus, since a plurality of pipes 51 constituting a stain preventing part 50 are provided to extend along the optical axis O of a lens 22, the inside of each of the plurality of pipes 51 forms an optical path L along the optical axis O, and it is possible to image a state in the vicinity of a film deposition material Ma without narrowing the imaging area of the lens 22. Further, sticking of the film deposition material particles Mb to the lens 22 can be effectively prevented by providing the plurality of pipes 51 between the lens 22 and the imaging area. Furthermore, since the film deposition material particles Mb can prevent an obstruction of the field of vision by the lens 22, the evaporation state of the film deposition material can be observed for a long period of time in such a state that the influence by sticking or the like of the film deposition material is reduced.

Description

本発明は、プラズマを利用したイオンプレーティング装置をはじめとする成膜装置に関する。   The present invention relates to a film forming apparatus such as an ion plating apparatus using plasma.

被処理物の表面に成膜材料を成膜する方法として、例えば、真空容器中に配置されたハース(陽極)の上に載置された成膜材料に対してプラズマビーム発生器(プラズマ源)からのプラズマビーム照射を行うことによって成膜材料をイオン化し拡散させ、被処理物の表面にイオン化した該成膜材料を付着させて成膜するイオンプレーティング法がある。このイオンプレーティング法を用いた成膜装置では、蒸発材料の蒸発状態が成膜状況に影響を与えることが知られていることから、蒸発材料の蒸発状態を観察するためのカメラを設置する方法が用いられている。ここで、真空容器内にカメラを設けると蒸発材料の飛散等によりレンズが汚れるため、良好な撮像環境を設けることができないため、種々の検討がなされている。例えば、特許文献1では、ハースに載置された蒸発材料とCCDカメラとの間にガラス製のシールド板を設け、蒸発材料が付着してシールド板が曇ると、シールド板を回転することで蒸発材料が付着していない領域をCCDカメラの前に移動させることで、CCDカメラの視界を保つ構成が示されている。   As a method for forming a film forming material on the surface of the object to be processed, for example, a plasma beam generator (plasma source) is applied to the film forming material placed on a hearth (anode) placed in a vacuum vessel. There is an ion plating method in which a film forming material is ionized and diffused by irradiating with a plasma beam, and the ionized film forming material is attached to the surface of an object to be processed. In this film forming apparatus using the ion plating method, it is known that the evaporation state of the evaporation material affects the film formation state, so a method for installing a camera for observing the evaporation state of the evaporation material Is used. Here, when a camera is provided in the vacuum vessel, the lens is soiled due to scattering of the evaporation material and the like, so that a favorable imaging environment cannot be provided, and various studies have been made. For example, in Patent Document 1, a glass shield plate is provided between the evaporation material placed on the hearth and the CCD camera. When the evaporation material adheres and the shield plate becomes cloudy, the shield plate rotates to evaporate. A configuration is shown in which the field of view of the CCD camera is maintained by moving an area where no material is attached in front of the CCD camera.

特開平11−43764号公報JP 11-43764 A

近年、成膜装置の運転時間の長期化という要望があり、これに対応して、蒸発状態の観察についても長期間継続したいという要望がある。しかしながら、特許文献1記載の方法によれば、CCDカメラの前に設けられたシールド板を定期的に交換しなければならないため、メンテナンスをある程度定期的に行う必要があり、メンテナンス間隔の長期化が容易ではない。   In recent years, there has been a demand for extending the operating time of the film forming apparatus, and in response to this, there is a demand for observing the evaporation state for a long time. However, according to the method described in Patent Document 1, since the shield plate provided in front of the CCD camera must be periodically replaced, it is necessary to perform maintenance regularly to some extent, and the maintenance interval is prolonged. It's not easy.

本発明は上記を鑑みてなされたものであり、成膜材料の付着等による影響を低減させた状態で蒸発状態を長期間観察可能な成膜装置を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a film forming apparatus capable of observing the evaporation state for a long period of time in a state in which the influence of adhesion of the film forming material is reduced.

上記目的を達成するため、本発明に係る成膜装置は、プラズマビームによって成膜材料を加熱し、前記成膜材料から気化した粒子を被成膜物に付着させて成膜する成膜装置であって、真空環境を形成する真空容器と、前記真空容器内に前記プラズマビームを生成するプラズマ源と、前記成膜材料を保持し、前記プラズマビームの照射によって前記粒子を発生させる粒子発生手段と、前記粒子発生手段側の撮像領域を撮像する撮像手段と、前記撮像領域と前記撮像手段との間に設けられた汚れ防止部材と、を備え、前記汚れ防止部材によって、前記撮像手段の光学軸方向から見たときに、前記光学軸に沿って前記撮像手段に向かって複数の光路が形成されることを特徴とする。   In order to achieve the above object, a film forming apparatus according to the present invention is a film forming apparatus that heats a film forming material with a plasma beam and deposits particles evaporated from the film forming material on an object to be formed. A vacuum vessel for forming a vacuum environment; a plasma source for generating the plasma beam in the vacuum vessel; and a particle generating means for holding the film forming material and generating the particles by irradiation of the plasma beam. An image pickup means for picking up an image pickup area on the particle generation means side, and a dirt preventing member provided between the image pickup area and the image pickup means, and the optical axis of the image pickup means is provided by the dirt preventive member. When viewed from the direction, a plurality of optical paths are formed along the optical axis toward the imaging unit.

上記の成膜装置においては、成膜材料側の撮像領域と前記撮像手段との間に、汚れ防止部材によって、光学軸に沿って複数の光路が形成される。上記のように光学軸に沿って複数の光路が形成されることで、各光路はそれぞれ光路径が小さくなり、成膜材料から気化した粒子の光路内への侵入が抑制され、その結果、撮像手段に成膜材料からの粒子が付着することを防止することができる。したがって、成膜材料の付着等による影響を低減させた状態で蒸発状態を長期間観察することが可能となる。   In the film forming apparatus, a plurality of optical paths are formed along the optical axis by the antifouling member between the imaging region on the film forming material side and the imaging means. By forming a plurality of optical paths along the optical axis as described above, each optical path has a smaller optical path diameter, and the intrusion of particles vaporized from the film forming material into the optical path is suppressed. It is possible to prevent particles from the film forming material from adhering to the means. Therefore, it is possible to observe the evaporation state for a long time in a state in which the influence due to adhesion of the film forming material is reduced.

ここで、上記作用を効果的に奏する構成として、具体的には、前記複数の光路は、前記光学軸に沿って前記光学軸前記汚れ防止部材の全長に渡って形成される態様が挙げられる。   Here, as a configuration that effectively exhibits the above-described operation, specifically, an aspect in which the plurality of optical paths are formed along the optical axis over the entire length of the optical axis dirt prevention member.

また、前記複数の光路は、前記光学軸に沿って伸びる複数のパイプによって形成される態様としてもよい。この場合、パイプを用いて複数の光路を容易に形成することができるため、汚れ防止部材として大きな装置や部材を必要とすることなく成膜材料の付着等による影響を低減させた状態で蒸発状態の長期間観察が可能となる。   The plurality of optical paths may be formed by a plurality of pipes extending along the optical axis. In this case, a plurality of optical paths can be easily formed using a pipe, so that the evaporation state is reduced in the state where the influence due to the deposition of the film forming material is reduced without requiring a large apparatus or member as a contamination prevention member. Long-term observation is possible.

本発明によれば、蒸発材料の付着等による影響を低減させた状態で蒸発状態を長期間観察可能な成膜装置が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the film-forming apparatus which can observe an evaporation state for a long period in the state which reduced the influence by adhesion of evaporation material etc. is provided.

本実施形態に係る成膜装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the film-forming apparatus which concerns on this embodiment. 撮像手段及び汚れ防止部材の構成を説明する概略斜視図である。It is a schematic perspective view explaining the structure of an imaging means and a stain | pollution | contamination prevention member. 図2における撮像手段のレンズの光学軸Oに沿った概略断面図である。It is a schematic sectional drawing along the optical axis O of the lens of the imaging means in FIG. 本実施形態に係る成膜装置の汚れ防止部材の変形例について説明する概略斜視図である。It is a schematic perspective view explaining the modification of the stain | pollution | contamination prevention member of the film-forming apparatus which concerns on this embodiment. 本実施形態に係る成膜装置の汚れ防止部材の変形例について説明する図であり、図3に対応する図である。It is a figure explaining the modification of the stain | pollution | contamination prevention member of the film-forming apparatus which concerns on this embodiment, and is a figure corresponding to FIG. 本実施形態に係る成膜装置の汚れ防止部材の他の変形例について説明する概略斜視図である。It is a schematic perspective view explaining the other modification of the stain | pollution | contamination prevention member of the film-forming apparatus which concerns on this embodiment.

以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本実施形態に係る成膜装置の構成を示す概略断面図である。本実施形態に係る成膜装置1は、所謂イオンプレーティング装置である。また、図1には、説明を容易にするためにXYZ直交座標系を示している。   FIG. 1 is a schematic cross-sectional view showing a configuration of a film forming apparatus according to the present embodiment. The film forming apparatus 1 according to this embodiment is a so-called ion plating apparatus. FIG. 1 shows an XYZ orthogonal coordinate system for ease of explanation.

成膜装置1は、主陽極機構2、搬送機構3、プラズマガン4、補助陽極6、及び真空容器10を備える。   The film forming apparatus 1 includes a main anode mechanism 2, a transport mechanism 3, a plasma gun 4, an auxiliary anode 6, and a vacuum container 10.

真空容器10は、導電性の材料からなり接地電位に接続されている。真空容器10は、成膜対象である被成膜物5を搬送するための搬送室10aと、成膜材料Maを拡散させる成膜室10bとを有する。搬送室10aは、所定の搬送方向(図1の矢印A方向)に延びており、成膜室10b上に配置されている。なお、本実施形態では、矢印Aで示す搬送方向はX軸に沿っている。   The vacuum vessel 10 is made of a conductive material and connected to the ground potential. The vacuum container 10 has a transfer chamber 10a for transferring the film formation target 5 to be formed, and a film formation chamber 10b for diffusing the film formation material Ma. The transfer chamber 10a extends in a predetermined transfer direction (the direction of arrow A in FIG. 1) and is disposed on the film forming chamber 10b. In the present embodiment, the conveyance direction indicated by the arrow A is along the X axis.

搬送機構3は、被成膜物5を支持する機能を有する。搬送機構3は、複数の搬送室10a内に等間隔に設置された複数の搬送ローラ31と被成膜物5を保持する被処理物保持部材32とを有し、被成膜物5が成膜材料Maの露出表面と対向した状態で被処理物保持部材32を搬送方向Aに搬送する。   The transport mechanism 3 has a function of supporting the deposition target 5. The transport mechanism 3 includes a plurality of transport rollers 31 installed at equal intervals in a plurality of transport chambers 10a and a workpiece holding member 32 that holds the film deposition target 5, and the film deposition target 5 is formed. The workpiece holding member 32 is transported in the transport direction A in a state facing the exposed surface of the film material Ma.

プラズマガン4は、圧力勾配型のプラズマ源であって、その本体部分が成膜室10bの側壁(プラズマ口10c)に設けられている。プラズマガン4は、陰極41により一端が閉塞されたガラス管42を備え、ガラス管42の内部においては、LaB製の円盤43及びタンタル(Ta)製のパイプ44を内蔵するモリブデン(Mo)製の円筒45が陰極41に固定されている。パイプ44は、アルゴン(Ar)等のキャリアガスGをプラズマガン4内に導入するために設けられる。 The plasma gun 4 is a pressure gradient type plasma source, and its main body is provided on the side wall (plasma port 10c) of the film forming chamber 10b. Plasma gun 4 is provided with a glass tube 42 having one end closed by the cathode 41, in the interior of the glass tube 42, made of molybdenum (Mo) with a built-in pipe 44 made of LaB 6 made of disk 43 and tantalum (Ta) The cylinder 45 is fixed to the cathode 41. The pipe 44 is provided for introducing a carrier gas G such as argon (Ar) into the plasma gun 4.

ガラス管42の陰極41とプラズマ口10cとの間には、第1の中間電極(グリッド)46と、第2の中間電極(グリッド)47とが同心的に配置されている。第1の中間電極46の内部にはプラズマビームを収束するための環状永久磁石46aが内蔵されている。また、第2の中間電極47の内部にもプラズマビームを収束するための電磁石コイル47aが内蔵されている。   A first intermediate electrode (grid) 46 and a second intermediate electrode (grid) 47 are concentrically disposed between the cathode 41 of the glass tube 42 and the plasma port 10c. An annular permanent magnet 46 a for converging the plasma beam is built in the first intermediate electrode 46. An electromagnet coil 47 a for converging the plasma beam is also built in the second intermediate electrode 47.

プラズマガン4が装着されたプラズマ口10cの周囲には、プラズマビームPを成膜室10bへ導くためのステアリングコイル48が設けられる。ステアリングコイル48は、ステアリングコイル用の電源により励磁され、これにより、プラズマビームPの出射方向が制御される。なお、陰極41と第1の中間電極46及び第2の中間電極47との間には、それぞれ抵抗器を介して可変電源が接続される。   A steering coil 48 for guiding the plasma beam P to the film forming chamber 10b is provided around the plasma port 10c to which the plasma gun 4 is attached. The steering coil 48 is excited by a power source for the steering coil, and thereby the emission direction of the plasma beam P is controlled. A variable power source is connected between the cathode 41 and the first intermediate electrode 46 and the second intermediate electrode 47 via resistors.

補助陽極6は、プラズマビームPを図1の所定位置Cに対して導くための装置である。補助陽極6は、熱伝導率の高い導電性材料(例えば銅)を含み、外形が環状であって、所定位置Cを取り囲むように成膜室10bの底部側に配置される。補助陽極6は環状の中空容器を有し、この中空容器の内部には、フェライト製の永久磁石6bと、永久磁石6bと同心的に積層されたコイル6aとが収容されている。コイル6a及び永久磁石6bは、コイル6aに流れる電流量に応じてプラズマビームPの向きを制御する機能を有する。   The auxiliary anode 6 is a device for guiding the plasma beam P to a predetermined position C in FIG. The auxiliary anode 6 includes a conductive material (for example, copper) having high thermal conductivity, has an annular outer shape, and is disposed on the bottom side of the film forming chamber 10b so as to surround the predetermined position C. The auxiliary anode 6 has an annular hollow container, and a ferrite permanent magnet 6b and a coil 6a laminated concentrically with the permanent magnet 6b are accommodated in the hollow container. The coil 6a and the permanent magnet 6b have a function of controlling the direction of the plasma beam P in accordance with the amount of current flowing through the coil 6a.

また、補助陽極6により囲われた所定位置Cには、被成膜物5の表面を成膜する際に成膜材料Maを保持する主陽極部材7が設けられる。主陽極部材7は、円柱状の外形を有し、下端付近の外形が下端へ向けて拡大している。また、内部には、成膜材料Maを保持する凹部が形成されている。この主陽極部材7は、成膜材料Maを保持すると共にプラズマビームPを吸引するハースとして機能する。すなわち、主陽極部材7は、成膜材料Maを保持すると共に、プラズマビームPの照射によって成膜材料Maが気化した粒子を発生させる粒子発生手段として機能する。なお、成膜材料Maとしては、SiOやSiON等の絶縁性の封止材料や、ITO等の導電材料が例示される。 A main anode member 7 that holds the film forming material Ma when the surface of the film formation target 5 is formed is provided at a predetermined position C surrounded by the auxiliary anode 6. The main anode member 7 has a cylindrical outer shape, and the outer shape near the lower end is enlarged toward the lower end. In addition, a recess for holding the film forming material Ma is formed inside. The main anode member 7 functions as a hearth that holds the film forming material Ma and sucks the plasma beam P. That is, the main anode member 7 functions as a particle generating unit that holds the film forming material Ma and generates particles vaporized by the plasma beam P irradiation. Examples of the film forming material Ma include an insulating sealing material such as SiO 2 and SiON, and a conductive material such as ITO.

また、成膜室10bの内部には、本実施形態に特徴をなす撮像手段20及び汚れ防止手段50が設けられる。撮像手段20は、例えばCCDカメラ等からなり、本体部21と、レンズ22とを含んで構成される。撮像手段20は、成膜材料Maの表面の状況を観察するために設けられて、レンズ22による撮像領域が主陽極部材7の成膜材料Ma近傍となるように、成膜室10b内部に設けられる。したがって、レンズ22の光学軸は成膜材料Ma又はその近傍に向けて延び、撮像手段20による撮像領域は主陽極部材7近傍(粒子発生手段側)となる。また、汚れ防止手段50は、撮像手段20のレンズ22と成膜材料Maとの間に設けられる。   Further, inside the film forming chamber 10b, an imaging unit 20 and a stain prevention unit 50 that are characteristic of the present embodiment are provided. The imaging means 20 is composed of, for example, a CCD camera or the like, and includes a main body 21 and a lens 22. The imaging means 20 is provided in order to observe the surface condition of the film forming material Ma, and is provided inside the film forming chamber 10 b so that the image pickup region by the lens 22 is in the vicinity of the film forming material Ma of the main anode member 7. It is done. Therefore, the optical axis of the lens 22 extends toward or near the film forming material Ma, and the imaging region by the imaging unit 20 is in the vicinity of the main anode member 7 (particle generation unit side). Further, the dirt preventing means 50 is provided between the lens 22 of the imaging means 20 and the film forming material Ma.

ここで、撮像手段20の汚れ防止部材50について、図2及び図3を用いてより詳細に説明する。図2は、撮像手段20及び汚れ防止部材50の構成を説明する概略斜視図であり、図3は、図2における撮像手段20のレンズ22の光学軸Oに沿った概略断面図である。   Here, the dirt preventing member 50 of the imaging unit 20 will be described in more detail with reference to FIGS. 2 and 3. FIG. 2 is a schematic perspective view illustrating the configuration of the imaging unit 20 and the antifouling member 50, and FIG. 3 is a schematic cross-sectional view along the optical axis O of the lens 22 of the imaging unit 20 in FIG.

汚れ防止部材50は、複数本のパイプ51と、これらを束ねるための外装部材52とを含んで構成される。複数本のパイプ51はそれぞれ円筒状であり、レンズ22の光学軸Oに沿って中空領域が伸びるように設けられている。パイプ51のレンズ22側の端部は、レンズ22の表面22aと接する領域まで伸びる。また、複数本のパイプ51は、同じくレンズ22の光学軸Oに沿って伸びた円筒状の外装部材52に収容される。外装部材52のレンズ22側の端部は、レンズ22の外周を覆うように形成されている。   The dirt prevention member 50 includes a plurality of pipes 51 and an exterior member 52 for bundling them. Each of the plurality of pipes 51 has a cylindrical shape, and is provided so that a hollow region extends along the optical axis O of the lens 22. The end of the pipe 51 on the lens 22 side extends to a region in contact with the surface 22 a of the lens 22. Further, the plurality of pipes 51 are accommodated in a cylindrical exterior member 52 that extends along the optical axis O of the lens 22. The end of the exterior member 52 on the lens 22 side is formed so as to cover the outer periphery of the lens 22.

パイプ51及び外装部材52は、耐熱性を有していれば特に材料は限定されない。パイプ51の内径は特に限定されないが、1mm〜十数mm程度とすることができる。また、パイプ51の長さについては、適宜変更することができるが、長さが5cm以上であることが好ましい。   The material of the pipe 51 and the exterior member 52 is not particularly limited as long as it has heat resistance. The inner diameter of the pipe 51 is not particularly limited, but can be about 1 mm to several tens of mm. Moreover, about the length of the pipe 51, although it can change suitably, it is preferable that length is 5 cm or more.

ここで、光学軸Oに沿って汚れ防止部材50の成膜材料Ma側の端面51aからレンズ22方向を見ると、パイプ51によって外装部材52の内部が区切られることにより、光学軸Oに沿って複数の光路Lが形成されうる。すなわち、汚れ防止部材50の端面51aから複数のパイプ51のうちのいずれかの内部に入射した光は、光学軸Oに沿って各パイプ51の内部の光路を進み、撮像手段20のレンズ22の表面22aから入射する。レンズ22に入射した光は本体部21において画像情報に変換されて、外部に出力される。   Here, when the lens 22 is viewed from the end surface 51a on the film forming material Ma side of the antifouling member 50 along the optical axis O, the interior of the exterior member 52 is partitioned by the pipe 51, and thus along the optical axis O. A plurality of optical paths L can be formed. That is, light that has entered the interior of any one of the plurality of pipes 51 from the end face 51 a of the antifouling member 50 travels along the optical path inside each pipe 51 along the optical axis O, and the light of the lens 22 of the imaging unit 20. Incident from the surface 22a. The light incident on the lens 22 is converted into image information in the main body 21 and output to the outside.

上記の成膜装置1では、プラズマガン4からプラズマビームPを成膜室10bへ照射すると共に、補助陽極6を用いて、プラズマビームPを主陽極部材7の方向へ導く。ここで、主陽極部材7は、プラズマビームPを吸引する。成膜材料Maが絶縁性物質からなる場合は、主陽極部材7がプラズマビームPを吸引すると、プラズマビームPからの電流により、主陽極部材7が加熱されることで成膜材料Maの表面部分が気化し、プラズマビームPによってイオン化される。これにより、イオン化した成膜材料粒子Mbが成膜室10b内に拡散しながら成膜室10bの上方(Z軸の正方向)に移動し、搬送室10a内において被成膜物5の表面に膜状に付着する。これにより、被成膜物5の表面に所望の膜が形成される。このとき、搬送室10aのうち、成膜室10bの上方であって成膜材料粒子Mbが被成膜物5の表面に付着して被成膜物5が成膜される領域Dが被成膜部となる。   In the film forming apparatus 1, the plasma beam P is irradiated from the plasma gun 4 to the film forming chamber 10 b and the auxiliary anode 6 is used to guide the plasma beam P toward the main anode member 7. Here, the main anode member 7 sucks the plasma beam P. When the film forming material Ma is made of an insulating material, when the main anode member 7 sucks the plasma beam P, the main anode member 7 is heated by the current from the plasma beam P, so that the surface portion of the film forming material Ma Is vaporized and ionized by the plasma beam P. As a result, the ionized film-forming material particles Mb move upward (in the positive direction of the Z axis) while being diffused into the film-forming chamber 10b, and are moved to the surface of the film-forming object 5 in the transfer chamber 10a. Adhere to a film. Thereby, a desired film is formed on the surface of the film formation target 5. At this time, in the transfer chamber 10a, a region D above the film formation chamber 10b and where the film formation material particles Mb adhere to the surface of the film formation target 5 to form the film formation target 5 is formed. It becomes a film part.

ここで、従来は、成膜材料Maの表面の状況を観察する目的から成膜室10bの内部にカメラを設置した場合に、プラズマビームPによってイオン化して飛散した成膜材料粒子Mb等のカメラのレンズへの付着によって、カメラの視界が妨げられるという問題に対して、カメラの前に定期的に交換が必要なシールド板を設けることによって対処していた。これに対して、本実施形態の成膜装置1では、レンズ22と、撮像手段20による撮像領域、すなわち成膜材料Ma近傍との間に汚れ防止部材50が設けられる。   Here, conventionally, when a camera is installed in the film forming chamber 10b for the purpose of observing the surface condition of the film forming material Ma, a camera such as film forming material particles Mb ionized and scattered by the plasma beam P is used. The problem that the field of view of the camera is hindered by the attachment of the lens to the lens has been addressed by providing a shield plate that needs to be replaced periodically in front of the camera. On the other hand, in the film forming apparatus 1 of the present embodiment, the antifouling member 50 is provided between the lens 22 and the imaging region by the imaging means 20, that is, the vicinity of the film forming material Ma.

汚れ防止部材50を構成する複数のパイプ51は、レンズ22の光学軸Oに沿って伸びるように設けられているため、複数のパイプ51のそれぞれの内部が光学軸Oに沿った光路Lを形成し、レンズ22の撮像可能な領域を狭めることなく成膜材料Ma近傍の状況を撮像することができる。また、複数のパイプ51がレンズ22と撮像領域との間に設けられることで、レンズ22に対する成膜材料粒子Mbの付着を効果的に防止することができる。これは、真空工学上、内径が小さなパイプの内部には成膜材料粒子Mbが侵入しづらいことによる。このため、汚れ防止部材50の端面51aからパイプ51の内部に侵入する成膜材料粒子Mbを大幅に減らすことができる。また、成膜材料粒子Mbがレンズ22による視界を塞ぐことを防止することができるため、蒸発材料の付着等による影響を低減させた状態を長期間維持することができ、従来用いられていた定期的に交換が必要なシールド板と比較して、メンテナンス等を必要とせず成膜材料の蒸発状態を長期間観察することが可能となる。   Since the plurality of pipes 51 constituting the antifouling member 50 are provided so as to extend along the optical axis O of the lens 22, each of the plurality of pipes 51 forms an optical path L along the optical axis O. In addition, the situation in the vicinity of the film forming material Ma can be imaged without narrowing the imageable area of the lens 22. Further, by providing the plurality of pipes 51 between the lens 22 and the imaging region, it is possible to effectively prevent the deposition material particles Mb from adhering to the lens 22. This is because the film-forming material particles Mb hardly enter the inside of a pipe having a small inner diameter in vacuum engineering. For this reason, the film forming material particles Mb that enter the inside of the pipe 51 from the end surface 51a of the antifouling member 50 can be greatly reduced. Further, since it is possible to prevent the film forming material particles Mb from blocking the field of view by the lens 22, it is possible to maintain a state in which the influence due to the adhesion of the evaporation material or the like is reduced for a long period of time. In comparison with a shield plate that requires replacement, it is possible to observe the evaporation state of the film forming material for a long period of time without requiring maintenance or the like.

次に、本実施形態に係る成膜装置の変形例について図4及び図5を用いて説明する。図4は、撮像手段20及び変形例に係る汚れ防止部材50Aの構成を説明する概略斜視図であり、図5は、図4における撮像手段20のレンズ22の光学軸Oに沿った概略断面図である。   Next, a modification of the film forming apparatus according to this embodiment will be described with reference to FIGS. FIG. 4 is a schematic perspective view for explaining the configuration of the imaging unit 20 and the antifouling member 50A according to the modification, and FIG. 5 is a schematic cross-sectional view along the optical axis O of the lens 22 of the imaging unit 20 in FIG. It is.

上述したように撮像手段20のレンズ22と撮像領域となる成膜材料Maとの間に、レンズ22の光路を複数に区切る汚れ防止部材を取り付けることで、成膜材料粒子Mbがレンズ22にまで到達することを防止することができる。そこで、変形例に係る汚れ防止部材50Aは、光路を複数に区切る部材として、上記実施形態に示した複数のパイプ51に代えて、レンズ22の外側を覆い且つ光学軸Oに沿って伸びる外装部材52の内部を互いに複数の仕切り板53により区切られている。   As described above, the film-forming material particle Mb reaches the lens 22 by attaching the anti-smudge member that divides the optical path of the lens 22 into a plurality of parts between the lens 22 of the imaging unit 20 and the film-forming material Ma serving as the imaging region. Reaching can be prevented. Therefore, the antifouling member 50A according to the modified example is an exterior member that covers the outside of the lens 22 and extends along the optical axis O instead of the plurality of pipes 51 shown in the above embodiment as a member that divides the optical path into a plurality of parts. The interior of 52 is separated from each other by a plurality of partition plates 53.

図4に示すように、光学軸Oに沿って伸びる複数の平板状の仕切り板53が互いに直交するように設けられている。複数の仕切り板53により区切られる格子状の光路は、光学軸Oに沿って、端面53a側から見たときに、それぞれ一辺が1mm〜十数mm程度の四角形状をなすように、外装部材52の内部を区切られている。この結果、汚れ防止部材50Aの仕切り板53によって区切られた領域のそれぞれが光学軸Oに沿った光路Lを形成し、レンズ22の撮像領域を狭めることなく主陽極部材7の成膜材料Ma近傍の状況を撮像することができる。また、外装部材52の内部を格子状に区切る仕切り板53がレンズ22と撮像領域との間に設けられることで、レンズ22に対する成膜材料粒子Mbの付着を効果的に防止することができる。   As shown in FIG. 4, a plurality of flat partition plates 53 extending along the optical axis O are provided so as to be orthogonal to each other. The lattice-shaped optical path partitioned by the plurality of partition plates 53 has an exterior member 52 so that each side has a quadrangular shape with one side of about 1 mm to several tens of mm when viewed from the end surface 53a side along the optical axis O. The inside is separated. As a result, each of the regions partitioned by the partition plate 53 of the antifouling member 50A forms an optical path L along the optical axis O, and the vicinity of the film forming material Ma of the main anode member 7 without narrowing the imaging region of the lens 22 The situation can be imaged. Further, the partition plate 53 that divides the interior of the exterior member 52 into a lattice shape is provided between the lens 22 and the imaging region, so that the deposition material particles Mb can be effectively prevented from adhering to the lens 22.

次に、本実施形態に係る成膜装置の他の変形例について図6を用いて説明する。図6は、撮像手段20及び変形例に係る汚れ防止部材50Bの構成を説明する概略斜視図である。   Next, another modification of the film forming apparatus according to the present embodiment will be described with reference to FIG. FIG. 6 is a schematic perspective view illustrating the configuration of the imaging unit 20 and the antifouling member 50B according to the modification.

図2,3に示した汚れ防止部材50及び図4,5に示した汚れ防止部材50Aでは、いずれの外装部材52の内部で複数の光路を形成する部材(汚れ防止部材50ではパイプ51、汚れ防止部材50Aでは仕切り板53がそれぞれ該当する)が汚れ防止部材の(光学軸O方向の)全長にわたって設けられていた。すなわち、汚れ防止部材のうち、撮像領域側の端面51a(53a)からレンズ22の表面22aに渡るまで、複数の光路がそれぞれ独立して形成されていた。しかしながら、これらの複数の光路は、成膜材料粒子Mbの内部への侵入を防止することが目的で設けられているのであって、レンズ22への光路を独立させることが重要というわけではない。すなわち、光学軸Oに沿って成膜材料粒子Mbが侵入しない程度の長さに渡って、成膜材料粒子Mbが侵入しない程度の光路径となるように光路を区切ってあればよい。   2 and 3 and the dirt preventing member 50A shown in FIGS. 4 and 5 are members that form a plurality of optical paths inside any exterior member 52 (pipe 51, dirt in the dirt preventing member 50). In the prevention member 50A, the partition plate 53 corresponds to each other over the entire length (in the direction of the optical axis O) of the contamination prevention member. That is, among the anti-smudge members, a plurality of optical paths are formed independently from the end surface 51a (53a) on the imaging region side to the surface 22a of the lens 22. However, these plural optical paths are provided for the purpose of preventing the intrusion into the film forming material particles Mb, and it is not important to make the optical paths to the lens 22 independent. That is, it is only necessary to divide the optical path along the optical axis O so that the optical path diameter is such that the film forming material particles Mb do not enter over a length that does not allow the film forming material particles Mb to enter.

したがって、例えば、図6に示すように、汚れ防止部材50Bの外装部材52がレンズ22の外周に到達するまで取り付けてある場合に、そのうち光学軸Oに沿った一部の領域(図6では、撮像領域となる端面54a側)に限って複数のパイプ54が設けられて、複数の光路が形成されている態様であってもよい。このような構成を有している場合も、複数のパイプ54により形成された光路に対しては成膜材料粒子Mbが侵入しづらいため、レンズ22の視界が成膜材料粒子Mbにより妨げられることを防止することができ、当該撮像手段20を用いて成膜材料Ma表面の状態を長期間にわたり観察することが可能となる。   Therefore, for example, as shown in FIG. 6, when the exterior member 52 of the antifouling member 50B is attached until it reaches the outer periphery of the lens 22, a part of the region along the optical axis O (in FIG. It may be an aspect in which a plurality of pipes 54 are provided only on the end surface 54a side as an imaging region and a plurality of optical paths are formed. Even in such a configuration, the film forming material particles Mb are difficult to enter the optical path formed by the plurality of pipes 54, so that the field of view of the lens 22 is hindered by the film forming material particles Mb. Therefore, it is possible to observe the state of the film forming material Ma surface over a long period of time using the imaging means 20.

なお、複数のパイプ54により区切られることにより複数の光路が形成される領域は、図6に示すように汚れ防止部材50Bのうちの撮像領域側(レンズ22側とは逆の側)である必要はなく、レンズ22側であってもよいし、光学軸Oに沿って汚れ防止部材50Bの中央付近であってもよい。   Note that the region where the plurality of optical paths are formed by being divided by the plurality of pipes 54 needs to be on the imaging region side (the side opposite to the lens 22 side) of the antifouling member 50B as shown in FIG. It may be on the lens 22 side, or near the center of the antifouling member 50B along the optical axis O.

以上、本発明の実施形態について説明したが、本発明に係る成膜装置は上記に限定されず、種々の変更を行うことができる。   As mentioned above, although embodiment of this invention was described, the film-forming apparatus based on this invention is not limited above, A various change can be performed.

例えば、上記実施形態では、撮像手段20及び汚れ防止部材50は、成膜室10bの内部に設けられた構成について説明した。しかしながら、設備の配置等の理由により、撮像手段20を成膜室10bの外部に設ける構成とする場合もある。この場合には、撮像手段20のレンズ22と撮像領域(成膜材料Ma近傍)とを結ぶ光路と交差する成膜室10bの壁面を例えばガラス等の透光性の材料に変更することで、外部に設けられた撮像手段20によって成膜室10bの内部の成膜材料Ma近傍を撮像することになると考えられる。上記のような状況においては、レンズ22に入射する光が通過する成膜室10bの壁面に成膜材料粒子Mbが付着すると、結果的に撮像手段20による撮像が困難になるため、成膜室10bの壁面と成膜材料Maが載置された主陽極機構7近傍の撮像領域との間に本実施形態に係る汚れ防止部材を設けることにより、壁面に付着する成膜材料粒子Mbを減らすことができ、成膜材料の観察を長期間連続して行うことが可能となる。   For example, in the above-described embodiment, the configuration in which the imaging unit 20 and the antifouling member 50 are provided in the film forming chamber 10b has been described. However, there may be a configuration in which the imaging unit 20 is provided outside the film formation chamber 10b for reasons such as the arrangement of equipment. In this case, by changing the wall surface of the film forming chamber 10b intersecting the optical path connecting the lens 22 of the image pickup unit 20 and the image pickup region (near the film forming material Ma) to a light-transmitting material such as glass, for example. It is considered that the vicinity of the film forming material Ma inside the film forming chamber 10b is picked up by the image pickup means 20 provided outside. In the situation as described above, if the film forming material particles Mb adhere to the wall surface of the film forming chamber 10b through which the light incident on the lens 22 passes, imaging by the image pickup unit 20 becomes difficult as a result. By providing the antifouling member according to this embodiment between the wall surface 10b and the imaging region near the main anode mechanism 7 on which the film forming material Ma is placed, the film forming material particles Mb adhering to the wall surface are reduced. It is possible to observe the film forming material continuously for a long period of time.

また、上記実施形態では、撮像手段20がCCDカメラである場合について説明したが、撮像手段は他の種類のカメラであってもよい。   In the above embodiment, the case where the imaging unit 20 is a CCD camera has been described, but the imaging unit may be another type of camera.

また、上記実施形態では、パイプ31及び外装部材51の形状が円筒状である場合について説明したが、パイプ31及び外装部材51の形状は適宜変更できる。同様に、光学軸Oに沿って伸び、光路を複数に区切ることができればよいという観点から、仕切り板33により光路を区切る場合も上記実施形態のように光路の断面形状が四角形状となるように区切る必要はなく、例えば、三角形、六角形等の他の形状に適宜変更をすることができる。   Moreover, although the said embodiment demonstrated the case where the shape of the pipe 31 and the exterior member 51 was a cylindrical shape, the shape of the pipe 31 and the exterior member 51 can be changed suitably. Similarly, from the viewpoint that it suffices to extend along the optical axis O and to divide the optical path into a plurality of sections, when the optical path is partitioned by the partition plate 33, the cross-sectional shape of the optical path is a quadrangular shape as in the above embodiment. It is not necessary to divide, for example, it can change suitably to other shapes, such as a triangle and a hexagon.

1…成膜装置、2…主陽極機構、3…搬送機構、4…プラズマガン、5…被成膜物、6…補助陽極、7…主陽極部材、10…真空容器、20…撮像手段、50…汚れ防止部材、Ma…成膜材料、Mb…成膜材料粒子。
DESCRIPTION OF SYMBOLS 1 ... Film-forming apparatus, 2 ... Main anode mechanism, 3 ... Conveyance mechanism, 4 ... Plasma gun, 5 ... Film-forming object, 6 ... Auxiliary anode, 7 ... Main anode member, 10 ... Vacuum container, 20 ... Imaging means, 50: Antifouling member, Ma: Film forming material, Mb: Film forming material particles.

Claims (3)

プラズマビームによって成膜材料を加熱し、前記成膜材料から気化した粒子を被成膜物に付着させて成膜する成膜装置であって、
真空環境を形成する真空容器と、
前記真空容器内に前記プラズマビームを生成するプラズマ源と、
前記成膜材料を保持し、前記プラズマビームの照射によって前記粒子を発生させる粒子発生手段と、
前記粒子発生手段側の撮像領域を撮像する撮像手段と、
前記撮像領域と前記撮像手段との間に設けられた汚れ防止部材と、
を備え、
前記汚れ防止部材によって、前記撮像手段の光学軸方向から見たときに、前記光学軸に沿って前記撮像手段に向かって複数の光路が形成される
ことを特徴とする成膜装置。
A film forming apparatus for forming a film by heating a film forming material by a plasma beam and attaching particles evaporated from the film forming material to an object to be formed,
A vacuum vessel forming a vacuum environment;
A plasma source for generating the plasma beam in the vacuum vessel;
Particle generating means for holding the film forming material and generating the particles by irradiation with the plasma beam;
Imaging means for imaging the imaging region on the particle generating means side;
A dirt preventing member provided between the imaging region and the imaging means;
With
The film forming apparatus, wherein when seen from the direction of the optical axis of the imaging unit, a plurality of optical paths are formed along the optical axis toward the imaging unit by the anti-smudge member.
前記複数の光路は、前記光学軸に沿って前記光学軸前記汚れ防止部材の全長に渡って形成される
ことを特徴とする請求項1記載の成膜装置。
The film forming apparatus according to claim 1, wherein the plurality of optical paths are formed along the optical axis over the entire length of the optical axis and the antifouling member.
前記複数の光路は、前記光学軸に沿って伸びる複数のパイプによって形成される
ことを特徴とする請求項1又は2記載の成膜装置。

The film forming apparatus according to claim 1, wherein the plurality of optical paths are formed by a plurality of pipes extending along the optical axis.

JP2012128209A 2012-06-05 2012-06-05 Film deposition apparatus Pending JP2013253271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012128209A JP2013253271A (en) 2012-06-05 2012-06-05 Film deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012128209A JP2013253271A (en) 2012-06-05 2012-06-05 Film deposition apparatus

Publications (1)

Publication Number Publication Date
JP2013253271A true JP2013253271A (en) 2013-12-19

Family

ID=49951032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012128209A Pending JP2013253271A (en) 2012-06-05 2012-06-05 Film deposition apparatus

Country Status (1)

Country Link
JP (1) JP2013253271A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071066U (en) * 1993-06-03 1995-01-10 東海カーボン株式会社 Viewing port of vacuum deposition equipment
JPH1143764A (en) * 1997-07-24 1999-02-16 Sumitomo Heavy Ind Ltd Evaporating state detector for evaporating material and vacuum coating forming device using it
JP2008106293A (en) * 2006-10-24 2008-05-08 Sumitomo Metal Mining Co Ltd Vacuum treatment device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071066U (en) * 1993-06-03 1995-01-10 東海カーボン株式会社 Viewing port of vacuum deposition equipment
JPH1143764A (en) * 1997-07-24 1999-02-16 Sumitomo Heavy Ind Ltd Evaporating state detector for evaporating material and vacuum coating forming device using it
JP2008106293A (en) * 2006-10-24 2008-05-08 Sumitomo Metal Mining Co Ltd Vacuum treatment device

Similar Documents

Publication Publication Date Title
JP5769244B2 (en) Industrial X-ray tube
US8681943B2 (en) X-ray window
TWI609094B (en) Electron beam evaporation source and vacuum processing apparatus
JP2019525386A (en) X-ray source with ionization tool
WO2015016019A1 (en) Target for x-ray generation and x-ray generation device
US9408577B2 (en) Multiradiation generation apparatus and radiation imaging system utilizing dual-purpose radiation sources
US20110005923A1 (en) Sputtering system, rotatable cylindrical target assembly, backing tube, target element and cooling shield
TWI498934B (en) Vacuum processing apparatus
JP2012124098A5 (en) Radiation generating tube, radiation generating apparatus and radiographic apparatus
JP6214880B2 (en) Laser ion source and heavy particle beam therapy system
JP2008248311A (en) Vacuum deposition system
KR102240886B1 (en) Electron beam evaporation apparatus
JP2013253271A (en) Film deposition apparatus
JP7074762B2 (en) Electron beam evaporator, coating device and coating method
JP2012112002A (en) Vapor deposition apparatus
JP4511629B2 (en) Film forming apparatus and film forming method
JP3958869B2 (en) MgO film forming method and panel
JP4339562B2 (en) Ion plating method and apparatus therefor
JP3958870B2 (en) Vacuum deposition system
KR102571324B1 (en) Filtered cathodic arc source device including trigger electrode
JP6178296B2 (en) Electron beam emission tube
JP2012207287A (en) Film-forming apparatus
JP6087212B2 (en) Evaporator
KR20230031495A (en) Filtered cathodic arc source device operating system and Filtered cathodic arc source operating method using the same
JP2014227595A (en) Plasma measuring device and film deposition device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160202