JP2013252978A - Translucent ceramic joined body and method of manufacturing the same - Google Patents

Translucent ceramic joined body and method of manufacturing the same Download PDF

Info

Publication number
JP2013252978A
JP2013252978A JP2012127828A JP2012127828A JP2013252978A JP 2013252978 A JP2013252978 A JP 2013252978A JP 2012127828 A JP2012127828 A JP 2012127828A JP 2012127828 A JP2012127828 A JP 2012127828A JP 2013252978 A JP2013252978 A JP 2013252978A
Authority
JP
Japan
Prior art keywords
translucent
ceramic
frame
translucent ceramic
joined body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012127828A
Other languages
Japanese (ja)
Other versions
JP5895719B2 (en
Inventor
Isao Yamashita
勲 山下
Masayuki Kudo
正行 工藤
Koji Tsukuma
孝次 津久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2012127828A priority Critical patent/JP5895719B2/en
Publication of JP2013252978A publication Critical patent/JP2013252978A/en
Application granted granted Critical
Publication of JP5895719B2 publication Critical patent/JP5895719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a translucent ceramic joined body with enhanced joining which exerts a high intensity even when used as small and thin parts, e.g. portable electronic devices and watch members and its manufacturing method.SOLUTION: A translucent ceramic joined body includes a translucent ceramic and a frame in contact with at least a part of the outer periphery of the ceramic, and a compression stress produced on joining of the frame enhances the ceramic. The frame is preferably composed of a zirconia type sintered material.

Description

本発明は、接合強化された透光性セラミックスを有する透光性セラミックス接合体およびその製造方法に関する。   The present invention relates to a light-transmitting ceramic joined body having a light-transmitting ceramic with enhanced bonding and a method for producing the same.

セラミックスは耐熱性、耐摩耗性、耐食性に優れていることから、産業部材用途に広く使用されている。さらに、透明性を付加した透光性セラミックスは、光透過性、耐摩耗性を有するため携帯電話等の電子機器部材、時計部材及び宝飾品などの用途が検討されている。このような用途の拡大に伴い、透光性セラミックスの高強度化の要求が益々高くなっている。   Ceramics are widely used in industrial member applications because of their excellent heat resistance, wear resistance, and corrosion resistance. Furthermore, since translucent ceramics with added transparency have light transmissivity and wear resistance, applications such as electronic device members such as mobile phones, watch members, and jewelry are being studied. With such expansion of applications, there is an increasing demand for higher strength of translucent ceramics.

一般的な透明素材であるガラスでは、風冷強化法、イオン交換法といった強化法が広く用いられている。風冷強化法では、熱処理によって表面層と内部に密度差をつけ、表面付近に圧縮応力を発生させる。イオン交換法では、イオン半径の大きいカリウムなどをガラスにイオン交換させ、表面に付近に圧縮応力を形成している。いずれの方法もガラス表面に存在する圧縮応力により、傷の進展を阻害することで強化している。一方、不透明なセラミックスの場合は、第二相の導入(例えば、特許文献1)、微細組織の改善(例えば、特許文献2)などにより傷の進展しにくい素材が開発されている。   For glass, which is a general transparent material, tempering methods such as an air cooling tempering method and an ion exchange method are widely used. In the air-cooling strengthening method, a density difference is created between the surface layer and the inside by heat treatment, and compressive stress is generated near the surface. In the ion exchange method, potassium having a large ion radius is ion exchanged with glass, and a compressive stress is formed in the vicinity of the surface. Both methods are strengthened by inhibiting the progress of scratches by the compressive stress present on the glass surface. On the other hand, in the case of opaque ceramics, a material in which scratches do not easily progress has been developed by introducing a second phase (for example, Patent Document 1), improving a fine structure (for example, Patent Document 2), and the like.

携帯用の電子機器、時計部材としてセラミックスを使用する場合、数mm程度の厚みで高い強度を有し、且つ高い透明性を示すことが必須である。しかしながら透光性を有するセラミックスにおいては、第二相の導入、微細組織の改善により透明性は低下する。また、ガラス素材に広く用いられる、熱強化法、化学強化法は、ガラス固有の性状を利用しているために、ガラス以外の素材に適用することはできない。従って、これまで透明セラミックスにおいては、透明性を低下させずに強度を向上させた透光性セラミックスおよびその製造方法は存在しなかった。   When using ceramics as a portable electronic device or watch member, it is essential to have high strength with a thickness of several millimeters and high transparency. However, in translucent ceramics, transparency decreases due to the introduction of the second phase and the improvement of the microstructure. In addition, the heat strengthening method and the chemical strengthening method widely used for glass materials cannot be applied to materials other than glass because they utilize properties inherent to glass. Therefore, until now, in transparent ceramics, there has been no translucent ceramic having improved strength without decreasing transparency and a method for producing the same.

特開平3−80153号公報Japanese Patent Laid-Open No. 3-80153 特開平11−1365号公報Japanese Patent Laid-Open No. 11-1365

第二相の導入および組織改善による高強度化では、異相界面および残留気孔の増加による透明性は低下し、高い透明性を維持した高強度化は極めて困難である。従来は部材を厚くする等の形状変更により強度を向上させる方法が一般的であった。   In increasing the strength by introducing the second phase and improving the structure, the transparency due to the increase of the heterogeneous interface and residual pores is lowered, and it is extremely difficult to increase the strength while maintaining high transparency. Conventionally, a method of improving the strength by changing the shape such as increasing the thickness of the member has been common.

一般的な透明素材であるガラスの強化法は、ガラス固有の現象を用いるため、結晶質の透光性セラミックスでは適用することはできない。本発明は、これらの課題を解決した接合強化された透明セラミックスおよびその製造方法を提供する。   Since the glass strengthening method, which is a general transparent material, uses a phenomenon inherent to glass, it cannot be applied to crystalline translucent ceramics. The present invention provides a bonded and strengthened transparent ceramic that solves these problems and a method for producing the same.

上記の課題に鑑み、本研究者らは鋭意検討した結果、枠を加熱により熱膨張させ、透明セラミックスを焼き嵌めすることにより圧縮応力が発生し、透光性セラミックスが強化されることを見出した。   In view of the above-mentioned problems, the present inventors have intensively studied and found that compressive stress is generated by thermally expanding the frame by heating and shrink-fitting the transparent ceramic, and the translucent ceramic is strengthened. .

すなわち、本発明は、透光性セラミックスと、当該セラミックスの外周の少なくとも一部と接触する枠からなり、枠を接合する際に発生した圧縮応力により当該セラミックスが強化されてなる、透光性セラミックス接合体及びその製造方法に関するものである。   That is, the present invention is a translucent ceramic comprising a translucent ceramic and a frame in contact with at least a part of the outer periphery of the ceramic, wherein the ceramic is reinforced by compressive stress generated when the frames are joined. The present invention relates to a joined body and a manufacturing method thereof.

以下、本発明の透光性セラミックス接合体について詳細に説明する。   Hereinafter, the translucent ceramic joined body of the present invention will be described in detail.

枠による透光性セラミックス側への嵌め込み力により、透光性セラミックスを圧縮することで、透光性セラミックスに圧縮応力を発生させる。透光性セラミックスと、当該セラミックスの外周の少なくとも一部と接触する枠は、圧縮応力によって機械的に強固に接合しており接合層は存在しない。この点で、接着剤で接合された接合体や接合層によって接着しているメタライズ接合体とは異なるものである。   The compressive stress is generated in the translucent ceramic by compressing the translucent ceramic by the fitting force on the translucent ceramic side by the frame. The translucent ceramic and the frame in contact with at least a part of the outer periphery of the ceramic are mechanically firmly bonded by compressive stress, and there is no bonding layer. In this respect, it is different from a metallized bonded body bonded with a bonded body or a bonding layer bonded with an adhesive.

金属の熱膨張、冷却収縮を利用し金属/セラミックスを接合する焼きバメ、冷やしバメ技術があるが、それらは金属部材の熱膨張・熱収縮を利用し、機械的な接合を得ること目的としたものである。一方、本発明の透光性セラミックス接合体は、枠の熱膨張を利用して、透光性セラミックスに圧縮応力をかけることを目的としたものであるため、従来の焼きバメ、冷しバメ接合体とは異なるものである。   There are shrinking and chilling technologies for joining metals / ceramics using thermal expansion and cooling shrinkage of metals, but these are aimed at obtaining mechanical joining by utilizing thermal expansion and thermal shrinkage of metal members. Is. On the other hand, the translucent ceramic joined body of the present invention is intended to apply a compressive stress to the translucent ceramic by utilizing the thermal expansion of the frame. It is different from the body.

枠に用いる素材は、熱膨張係数が大きく高い機械的強度を有するものであれば、SUSなどの金属でも良いが、意匠性の面からセラミックスが好ましい。枠となるセラミックスとしては、ジルコニア、サファイヤ、アルミナおよび窒化ケイ素が例示できるが、熱膨張係数が大きく及び強度・靭性が高いジルコニア質焼結体が特に好ましい。   The material used for the frame may be a metal such as SUS as long as it has a large thermal expansion coefficient and high mechanical strength, but ceramics are preferable from the viewpoint of design. Examples of the ceramic used as the frame include zirconia, sapphire, alumina, and silicon nitride, but a zirconia sintered body having a large thermal expansion coefficient and high strength and toughness is particularly preferable.

透光性セラミックスとしては、透光性ジルコニア焼結体、イットリア(酸化イットリウム、Y)焼結体、スピネル(MgAl)焼結体、イットリア−アルミナ−ガーネット(YAG;YAl12)焼結体、透光性アルミナ焼結体、アルミニウムオキシナイトライド(AlON)、シリカガラス、サファイヤ、青板ガラスなどの多結晶体を例示することができる。 Examples of the translucent ceramic include translucent zirconia sintered body, yttria (yttrium oxide, Y 2 O 3 ) sintered body, spinel (MgAl 2 O 4 ) sintered body, yttria-alumina-garnet (YAG; Y 3 Examples thereof include polycrystalline bodies such as Al 5 O 12 ) sintered bodies, translucent alumina sintered bodies, aluminum oxynitride (AlON), silica glass, sapphire, and blue plate glass.

このうち、透光性ジルコニア焼結体は、その結晶構造に立方晶蛍石型構造を含有するジルコニア焼結体であることが好ましく、その結晶構造が立方晶蛍石型構造の単相であることがより好ましい。   Among these, the translucent zirconia sintered body is preferably a zirconia sintered body containing a cubic fluorite structure in its crystal structure, and the crystal structure is a single phase of the cubic fluorite structure. It is more preferable.

また、透光性ジルコニア焼結体としては、イットリア含有ジルコニア焼結体や、チタニア(酸化チタン、TiO)及びイットリア含有ジルコニア焼結体を例示することができる。 As the translucent zirconia sintered body, it can be exemplified and yttria-containing zirconia sintered body, titania (titanium oxide, TiO 2) to and yttria-containing zirconia sintered body.

イットリア含有透光性ジルコニア焼結体が含有するイットリア量は、透光性ジルコニア焼結体中のジルコニアに対して6mol%以上15mol%以下であることが好ましく、7mol%以上12mol%以下であることがより好ましく、8mol%以上10mol%以下であることが更に好ましい。   The amount of yttria contained in the yttria-containing translucent zirconia sintered body is preferably 6 mol% or more and 15 mol% or less with respect to zirconia in the translucent zirconia sintered body, and is 7 mol% or more and 12 mol% or less. Is more preferable, and it is still more preferable that they are 8 mol% or more and 10 mol% or less.

チタニア及びイットリア含有透光性ジルコニア焼結体中のチタニア量は、透光性ジルコニア焼結体中のジルコニア及びイットリアの合計に対して3mol%以上20mol%以下であることが好ましく、5mol%以上15mol%以下であることがより好ましく、8mol%以上12mol%以下であることが更に好ましい。この範囲のチタニアを含有することで、透光性ジルコニア焼結体の透明性が高くなりやすくなる。   The amount of titania in the titania- and yttria-containing translucent zirconia sintered body is preferably 3 mol% or more and 20 mol% or less with respect to the total of zirconia and yttria in the translucent zirconia sintered body. % Or less, more preferably 8 mol% or more and 12 mol% or less. By containing titania in this range, the transparency of the translucent zirconia sintered body is likely to be high.

本発明の透光性セラミックス接合体は、透光性セラミックスが当該セラミックスの外周の少なくとも一部と接触する枠、好ましくは焼結体からなる枠により機械的に挟み込まれており、透光性セラミックス側に圧縮応力が発生している。そのため、圧縮応力により破壊時の傷の進展が阻害され、接合強化された透光性セラミックスの強度は高くなる。圧縮応力が高いほど傷の進展を阻害するため、圧縮応力の平均値として10MPa以上であれば十分な効果を得ることができる。圧縮応力は、光学的に等方的な物質では、セナルモン法による歪測定により評価することができる。また接合による母材の変形量を測定することでも評価可能である。   The translucent ceramic joined body of the present invention is formed by mechanically sandwiching a translucent ceramic with a frame that contacts at least a part of the outer periphery of the ceramic, preferably a frame made of a sintered body. Compressive stress is generated on the side. Therefore, the progress of scratches at the time of destruction is hindered by the compressive stress, and the strength of the light-transmitting ceramic that has been strengthened by bonding increases. As the compressive stress is higher, the progress of flaws is inhibited. Therefore, if the average value of the compressive stress is 10 MPa or more, a sufficient effect can be obtained. The compressive stress can be evaluated by measuring the strain by the Senarmon method for an optically isotropic substance. It can also be evaluated by measuring the amount of deformation of the base material due to bonding.

さらに、本発明のセラミックス接合体は、枠と透光性セラミックスの一部とが接合してなればよいが、、焼結体が透光性セラミックスの外周全てを囲む様に接合してなることが好ましい。   Furthermore, the ceramic joined body of the present invention may be formed by joining the frame and a part of the translucent ceramic, but the sintered body is joined so as to surround the entire outer periphery of the translucent ceramic. Is preferred.

本発明のセラミックス接合体は、透光性セラミックスと、当該セラミックスの外周の少なくとも一部と接触する枠が接合状態にあれば、その形状は特に限定されない。例えば、本発明のセラミックス接合体に含まれる透光性セラミックスの形状として、円形状、楕円形状、長方形状、又は正方形状などの板状の形状を挙げることができる。また複数の透光性セラミックスを嵌め込むこともできる。   The shape of the ceramic joined body of the present invention is not particularly limited as long as the translucent ceramic and a frame that contacts at least a part of the outer periphery of the ceramic are in a joined state. For example, examples of the shape of the translucent ceramic contained in the ceramic joined body of the present invention include a plate shape such as a circular shape, an elliptical shape, a rectangular shape, or a square shape. A plurality of translucent ceramics can also be fitted.

次に、本発明の透光性セラミックス接合体の製造方法について詳細に説明する。   Next, the manufacturing method of the translucent ceramic joined body of this invention is demonstrated in detail.

本発明の製造方法は加熱により枠を熱膨張させ、膨張した枠に透光性セラミックスを挟み込むように配置し、冷却による熱収縮によって枠と透光性セラミックスを嵌め込み、透明セラミックスに圧縮応力を付与することを特徴とする製造方法である。   In the manufacturing method of the present invention, the frame is thermally expanded by heating, the translucent ceramic is sandwiched in the expanded frame, the frame and the translucent ceramic are fitted by thermal contraction by cooling, and compressive stress is applied to the transparent ceramic. It is a manufacturing method characterized by doing.

強化したい透光性セラミックスを、それよりも小さい嵌め込み寸法を有する枠、好ましくは焼結体からなる枠を用いて機械的に嵌め込むことを特徴とする。枠のはめ込みは、加熱による熱膨張を用いることが好ましい。加熱により膨張する嵌め込み寸法が強化したい透光性セラミックスよりも大きくなるようにし、膨張した枠に透光性セラミックスをはめ込みように配置し、冷却による熱収縮により透光性セラミックスを嵌め込む。   The translucent ceramics to be reinforced are mechanically fitted using a frame having a smaller fitting dimension, preferably a frame made of a sintered body. It is preferable to use thermal expansion by heating for fitting the frame. The fitting size that expands by heating is larger than that of the translucent ceramic to be strengthened, the translucent ceramic is placed in the expanded frame, and the translucent ceramic is fitted by thermal contraction by cooling.

加熱による嵌め込みにおいて、加熱による枠の熱膨張を考えた場合、枠の嵌め込み寸法L(mm)と透明母材の大きさa(mm)は、以下の関係で表すことが出来る。   When the thermal expansion of the frame due to heating is considered in fitting by heating, the fitting size L (mm) of the frame and the size a (mm) of the transparent base material can be expressed by the following relationship.

L×(1+α×ΔT)>a (1)
ここでαは熱膨張係数(1/℃)、ΔTは、室温と嵌め込み温度との温度差(℃)である。(1)式を満たす条件であれば、外枠により透明セラミックスが挟み込まれ、透明セラミックスに圧縮応力が発生した接合体を得ることができる。例えば、室温:30℃、ジルコニア焼結体(熱膨張率10.6×10−6/℃)において嵌め込み寸法L=30mmとした場合、300℃における膨張量は86μm程度である。嵌め込みシロ(a−L)を調節することで、透明セラミックスに付与する圧縮応力を調整することができる。
L × (1 + α × ΔT)> a (1)
Here, α is a thermal expansion coefficient (1 / ° C.), and ΔT is a temperature difference (° C.) between room temperature and the fitting temperature. If the conditions satisfy the expression (1), the transparent ceramics are sandwiched between the outer frames, and a joined body in which compressive stress is generated in the transparent ceramics can be obtained. For example, when the fitting dimension L is 30 mm in a zirconia sintered body (thermal expansion coefficient 10.6 × 10 −6 / ° C.) at room temperature: 30 ° C., the expansion amount at 300 ° C. is about 86 μm. By adjusting the fitting size (a-L), the compressive stress applied to the transparent ceramic can be adjusted.

嵌め込みは、透光性セラミックスを冷却し、枠の嵌め込み寸法よりも小さくすることでも行うことが出来る。   The fitting can also be performed by cooling the translucent ceramic and making it smaller than the fitting size of the frame.

接合体の両面および片面にアルミナ、シリカ、ジルコニア等の薄膜を成膜することも可能である。薄膜を形成する方法としては、イオンプレーティング、スパッタリング、CVD、スラリーDIP法等が例示できる。薄膜を成膜することにより、反射率を低くし、強度を増加させる効果がある。   It is also possible to form a thin film of alumina, silica, zirconia or the like on both surfaces and one surface of the joined body. Examples of the method for forming a thin film include ion plating, sputtering, CVD, and a slurry DIP method. Forming a thin film has the effect of reducing the reflectance and increasing the strength.

実施例1で得られたセラミックス接合体の概観を示す図である。1 is a view showing an overview of a ceramic joined body obtained in Example 1. FIG. 実施例1で得られたセラミックス接合体における応力分布を示す図である。FIG. 3 is a diagram showing a stress distribution in the ceramic joined body obtained in Example 1.

以下、実施例及び比較例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

(相対密度)
アルキメデス法を用いて試料の密度を測定した。得られた密度を真密度に対する相対密度として求めた。黒色ジルコニア焼結体の真密度は6.06g/cmとし、イットリア及びチタニア含有透光性ジルコニア焼結体の真密度は5.83g/cmとした。
(Relative density)
The density of the sample was measured using the Archimedes method. The obtained density was determined as a relative density with respect to the true density. The true density of the black zirconia sintered body was 6.06 g / cm 3, and the true density of the yttria- and titania-containing translucent zirconia sintered body was 5.83 g / cm 3 .

(衝撃強度測定)
透光性セラミックス接合体の衝撃強度評価は鋼球落下試験を用いて行った。鋼球落下試験は、「ウオッチ用ガラスの寸法、試験方法」規格のISO14368−3に類似した方法を適用した。すなわち25mmのSUS製鋼球を透光性セラミックスの中心位置に自由落下させ破壊した高さを測定した。試料は3点曲げ強度試験用の支点に支持し、支点間のスパンは3cmとした。なお、測定試料は表面粗さRa=0.02μm以下に両面鏡面研磨したものを用いた。
(直線透過率)
透明セラミックス部分の表面粗さRaを0.02μm以下に両面鏡面研磨した透光性セラミックス接合体を測定試料として用いた。直線透過率はヘーズメーター(日本電色製、商品名「NDH5000」)を用いて測定した。使用光源はD65光線とした。
(圧縮応力測定)
等方的な透光性セラミックスの圧縮応力は、セナルモン法による歪検査器(ルケオ製、商品名「LSM−3002」)を用いて測定した。計算に用いる光弾性定数は、透光性ジルコニア:−1.2nm/cm/10Pa、青板ガラス:2.6nm/cm/10Paを用いた。接合体の長手方向の、圧縮応力(σ1)および短手方向の圧縮応力(σ2)について評価した。
(Lの測定)
光学異方性が存在するサファイヤについては、母材の変形量を測定することにより圧縮応力を評価した。応力の計算は平面応力モデル(セラミックスの破壊学、内田老鶴圃、15ページ)を仮定し、母材の変形量は、測定顕微鏡(ニコン製、商品名「MM−800」)による顕微鏡観察によって行った。計算に用いたサファイヤの弾性定数は、400GPaとした。
(ビッカース測定)
透光性ジルコニア焼結体について強化前後の破壊靭性値をビッカース押し込み試験を用いて評価した。押し込み加重10kgfとし、JIS R1607に準拠して評価した。ここでジルコニアの弾性率は、205GPaとした。
(Impact strength measurement)
The impact strength of the translucent ceramic joined body was evaluated using a steel ball drop test. For the steel ball drop test, a method similar to ISO14368-3 of the “Watch Glass Dimensions, Test Method” standard was applied. That is, the height at which a 25 mm SUS steel ball was dropped and dropped at the center position of the translucent ceramic was measured. The sample was supported on a fulcrum for a three-point bending strength test, and the span between the fulcrums was 3 cm. The measurement sample used was a mirror polished on both sides with a surface roughness Ra = 0.02 μm or less.
(Linear transmittance)
A translucent ceramic joined body in which the surface roughness Ra of the transparent ceramic portion was mirror-polished to 0.02 μm or less was used as a measurement sample. The linear transmittance was measured using a haze meter (trade name “NDH5000” manufactured by Nippon Denshoku). The light source used was D65 light.
(Compressive stress measurement)
The compressive stress of the isotropic translucent ceramic was measured using a strain tester (manufactured by Luceo, trade name “LSM-3002”) by the Senarmont method. As the photoelastic constant used for the calculation, translucent zirconia: −1.2 nm / cm / 10 5 Pa and blue plate glass: 2.6 nm / cm / 10 5 Pa were used. The longitudinal stress of the joined body was evaluated for the compressive stress (σ1) and the compressive stress (σ2) in the short direction.
(Measurement of L)
For sapphire with optical anisotropy, compressive stress was evaluated by measuring the deformation of the base material. The calculation of stress assumes a plane stress model (ceramics fracture mechanics, Uchida Otsukuru, page 15). went. The elastic constant of sapphire used for the calculation was 400 GPa.
(Vickers measurement)
About the translucent zirconia sintered compact, the fracture toughness value before and behind reinforcement | strengthening was evaluated using the Vickers indentation test. The indentation load was set to 10 kgf, and evaluation was performed in accordance with JIS R1607. Here, the elastic modulus of zirconia was set to 205 GPa.

実施例1−3
(ジルコニア焼結体の作製)
黒色ジルコニア粉末(東ソー製,商品名「TZ−Black」)を金型プレスによって圧力50MPaで成形した。成形後の黒色ジルコニア粉末を圧力200MPaの冷間静水圧プレス(CIP)で成形し、縦70mm、横70mmの板状成形体を得た。得られた成形体を常圧焼結して相対密度が99%の黒色ジルコニア焼結体を得た。
Example 1-3
(Preparation of sintered zirconia)
Black zirconia powder (manufactured by Tosoh, trade name “TZ-Black”) was molded at a pressure of 50 MPa by a mold press. The black zirconia powder after molding was molded by a cold isostatic press (CIP) with a pressure of 200 MPa to obtain a plate-shaped molded body having a length of 70 mm and a width of 70 mm. The obtained molded body was sintered under normal pressure to obtain a black zirconia sintered body having a relative density of 99%.

このジルコニア焼結体を機械加工し、縦30mm、横25mm、厚み1.1mmの長方形の中空部を有し、縦50mm、横45mm、厚み1.1mmの枠状の黒色ジルコニア焼結体を得た。   This zirconia sintered body is machined to obtain a rectangular black zirconia sintered body having a rectangular hollow portion of 30 mm in length, 25 mm in width, and 1.1 mm in thickness, and 50 mm in length, 45 mm in width, and 1.1 mm in thickness. It was.

(透光性ジルコニア焼結体の作製)
10mol%イットリア含有ジルコニア粉末(東ソー製,商品名「TZ−10YS」)及び高純度チタニア粉末を、ジルコニアに対して10mol%添加し、エタノール溶媒中で直径10mmのジルコニア製ボールで72時間ボールミル混合した後、乾燥し、原料粉末とした。
(Production of translucent zirconia sintered body)
10 mol% yttria-containing zirconia powder (manufactured by Tosoh, trade name “TZ-10YS”) and high-purity titania powder were added at 10 mol% with respect to zirconia, and ball mill mixed for 72 hours with zirconia balls having a diameter of 10 mm in an ethanol solvent. Thereafter, it was dried to obtain a raw material powder.

原料粉末を金型プレスによって圧力50MPaで成形した後、冷間静水圧プレスによって圧力200MPaで成形し、縦50mm、横40mm、厚さ2mmの板状成形体を得た。   The raw material powder was molded at a pressure of 50 MPa by a die press and then molded at a pressure of 200 MPa by a cold isostatic press to obtain a plate-like molded body having a length of 50 mm, a width of 40 mm, and a thickness of 2 mm.

得られた板状成形体を、大気中、昇温速度100℃/h、焼結温度1350℃、焼結時間2時間で一次焼結して一次焼結体を得た。得られた一次焼結体の相対密度は94%、平均粒径が3μm以下であり、結晶相は立方晶と正方晶の2相であった。   The obtained plate-like molded body was primarily sintered in the atmosphere at a temperature rising rate of 100 ° C./h, a sintering temperature of 1350 ° C., and a sintering time of 2 hours to obtain a primary sintered body. The obtained primary sintered body had a relative density of 94%, an average particle size of 3 μm or less, and the crystal phase was a cubic phase and a tetragonal phase.

次に、温度1500℃、圧力150MPa、保持時間1時間でこの一次焼結体を熱間静水圧プレス(HIP)処理して透光性ジルコニア焼結体を得た。透光性ジルコニア焼結体の密度は100%であった。なお、圧力媒体として純度99.9%のアルゴンガスを用い、また、蓋付きカーボン製容器に一次焼結体を設置してHIP処理を行なった。   Next, this primary sintered body was subjected to a hot isostatic pressing (HIP) treatment at a temperature of 1500 ° C., a pressure of 150 MPa, and a holding time of 1 hour to obtain a translucent zirconia sintered body. The density of the translucent zirconia sintered body was 100%. Note that argon gas having a purity of 99.9% was used as a pressure medium, and the primary sintered body was placed in a carbon container with a lid, and HIP treatment was performed.

得られた透光性ジルコニア焼結体の結晶相は、立方晶蛍石型構造の単相であった。この透光性ジルコニア焼結体を、上記した黒色ジルコニアの中空部寸法に表1に示す嵌め込みシロを足した寸法になるよう機械加工をした。   The crystal phase of the obtained translucent zirconia sintered body was a single phase having a cubic fluorite structure. This translucent zirconia sintered body was machined so as to have a size obtained by adding the fitting white as shown in Table 1 to the above-mentioned hollow size of black zirconia.

(セラミックス接合体の作製)
枠型ジルコニア焼結体をヒーターにより300℃に熱し、中空部に透光性ジルコニア焼結体を配置し、冷却することで接合体を作製した。得られた接合体の概観を図1(実施例1)に示す。またセナルモン法を用いて得られた圧縮応力の様子を図2(実施例1)に示す。枠型ジルコニア焼結体の収縮により、ジルコニア焼結体と透光性ジルコニア焼結体とが接合し、透明ジルコニア側に圧縮応力を付与していることがわかる。強度評価の結果を表1に示す。強化された透光性ジルコニア焼結体は高い強度を供することがわかった。また、透光性ジルコニア焼結体の直線透過率は70%以上であり、高い透明性を有していることがわかった。
(Production of ceramic joined body)
The frame-type zirconia sintered body was heated to 300 ° C. with a heater, and the translucent zirconia sintered body was placed in the hollow portion and cooled to prepare a joined body. An overview of the obtained bonded body is shown in FIG. 1 (Example 1). The state of compressive stress obtained by using the Senalmon method is shown in FIG. 2 (Example 1). It can be seen that due to the shrinkage of the frame-type zirconia sintered body, the zirconia sintered body and the translucent zirconia sintered body are joined, and compressive stress is applied to the transparent zirconia side. Table 1 shows the results of the strength evaluation. The strengthened translucent zirconia sintered body was found to provide high strength. Moreover, the linear transmittance | permeability of the translucent zirconia sintered compact is 70% or more, and it turned out that it has high transparency.

実施例4−6
透光性セラミックスとして市販の青板ガラスを用いた以外は実施例1と同様な方法により、セラミックス接合体を得た。結果を表1に示す。強化された青板ガラスは高い強度を供することがわかった。
Example 4-6
A ceramic joined body was obtained in the same manner as in Example 1 except that a commercially available blue plate glass was used as the translucent ceramic. The results are shown in Table 1. It has been found that tempered blue glass provides high strength.

実施例7
透光性セラミックスとして市販のサファイヤを用いた以外は実施例1と同様な方法により、セラミックス接合体を得た。結果を表1に示す。強化されたサファイヤは高い強度を供することがわかった。
Example 7
A ceramic joined body was obtained in the same manner as in Example 1 except that a commercially available sapphire was used as the translucent ceramic. The results are shown in Table 1. Enhanced sapphire has been found to provide high strength.

実施例8
実施例1の透光性ジルコニア焼結体についてビッカース押し込み法により破壊靭性値を評価した。強化品では2.7MPam0.5であった。
Example 8
The fracture toughness value of the translucent zirconia sintered body of Example 1 was evaluated by the Vickers indentation method. In the reinforced product, it was 2.7 MPam 0.5 .

比較例1、2
強化処理をしていない透光性ジルコニア焼結体、青板ガラスについて、鋼球落下測定を行った。テストピースの寸法は、縦50mm、横45mm、厚み1.1mmとした。破壊高さは、それぞれ2cm、5cmであった。
Comparative Examples 1 and 2
The steel ball drop measurement was performed about the translucent zirconia sintered compact and blue plate glass which have not been strengthened. The dimensions of the test piece were 50 mm long, 45 mm wide, and 1.1 mm thick. The breaking heights were 2 cm and 5 cm, respectively.

比較例3
強化処理をしていな透光性ジルコニア焼結体について、ビッカース押し込み法による破壊靱性測定を行った。未処理の透明ジルコニア焼結体の破壊靭性値は、1.4MPam0.5であった。
Comparative Example 3
Fracture toughness was measured by a Vickers indentation method for a translucent zirconia sintered body that had not been strengthened. The fracture toughness value of the untreated transparent zirconia sintered body was 1.4 MPam 0.5 .

Figure 2013252978
Figure 2013252978

本発明の透光性セラミックス接合体は、携帯用電子機器、時計部材等の小型・薄型部品に好適に使用することができる。   The translucent ceramic joined body of the present invention can be suitably used for small and thin parts such as portable electronic devices and watch members.

Claims (7)

透光性セラミックスと、該セラミックスの外周の少なくとも一部と接触する枠からなり、枠を接合する際に発生した圧縮応力により当該セラミックスが強化されてなる、透光性セラミックス接合体。   A translucent ceramic joined body comprising a translucent ceramic and a frame in contact with at least a part of an outer periphery of the ceramic, and the ceramic is reinforced by compressive stress generated when the frames are joined. 枠がジルコニア質焼結体からなる請求項1記載の接合体。 The joined body according to claim 1, wherein the frame is made of a zirconia sintered body. 透光性セラミックスが透明ジルコニア焼結体からなる請求項1又は2記載の接合体。   The joined body according to claim 1 or 2, wherein the translucent ceramics comprises a transparent zirconia sintered body. 透光性セラミックスの圧縮応力の平均値が、10MPa以上であることを特徴とする請求項1〜3のいずれかに記載の接合体。   The bonded body according to any one of claims 1 to 3, wherein an average value of compressive stress of the translucent ceramic is 10 MPa or more. 加熱により枠を熱膨張させ、膨張した枠に透光性セラミックスを挟み込むように配置し、冷却による熱収縮によって枠と透光性セラミックスを嵌め込み、透光性セラミックスに圧縮応力を付与してなることを特徴とする透光性セラミックス接合体の製造方法。   The frame is thermally expanded by heating, placed so that the translucent ceramic is sandwiched in the expanded frame, the frame and the translucent ceramic are fitted by heat shrinkage by cooling, and compressive stress is applied to the translucent ceramic A method for producing a translucent ceramic joined body characterized by the above. 請求項1〜4のいずれかに記載の接合体を用いた携帯用電子機器。   The portable electronic device using the conjugate | zygote in any one of Claims 1-4. 請求項1〜4のいずれかに記載の接合体を用いた時計部材。   A timepiece member using the joined body according to claim 1.
JP2012127828A 2012-06-05 2012-06-05 Translucent ceramic joined body and manufacturing method Active JP5895719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012127828A JP5895719B2 (en) 2012-06-05 2012-06-05 Translucent ceramic joined body and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012127828A JP5895719B2 (en) 2012-06-05 2012-06-05 Translucent ceramic joined body and manufacturing method

Publications (2)

Publication Number Publication Date
JP2013252978A true JP2013252978A (en) 2013-12-19
JP5895719B2 JP5895719B2 (en) 2016-03-30

Family

ID=49950846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012127828A Active JP5895719B2 (en) 2012-06-05 2012-06-05 Translucent ceramic joined body and manufacturing method

Country Status (1)

Country Link
JP (1) JP5895719B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10710936B2 (en) 2014-08-28 2020-07-14 Byd Company Limited Ceramic substrate and its manufacturing method, power module
WO2020196505A1 (en) * 2019-03-26 2020-10-01 東ソー株式会社 Zirconia sintered body and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712231A (en) * 1993-06-21 1995-01-17 Nippon Steel Corp Biaxial cylinder made of ceramics
JP2001502841A (en) * 1996-10-24 2001-02-27 コーニング インコーポレイテッド Implosion-resistant cathode ray tube envelope
JP2002348180A (en) * 2001-05-28 2002-12-04 Toshiba Ceramics Co Ltd Joined material of quartz glass member and silicon carbide member and its joining method
JP2004131319A (en) * 2002-10-09 2004-04-30 Ngk Insulators Ltd Long ceramic sintered compact, joined body and their manufacturing processes
WO2008123626A1 (en) * 2007-04-03 2008-10-16 Ngk Insulators, Ltd. Composite light emitting tube container

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712231A (en) * 1993-06-21 1995-01-17 Nippon Steel Corp Biaxial cylinder made of ceramics
JP2001502841A (en) * 1996-10-24 2001-02-27 コーニング インコーポレイテッド Implosion-resistant cathode ray tube envelope
JP2002348180A (en) * 2001-05-28 2002-12-04 Toshiba Ceramics Co Ltd Joined material of quartz glass member and silicon carbide member and its joining method
JP2004131319A (en) * 2002-10-09 2004-04-30 Ngk Insulators Ltd Long ceramic sintered compact, joined body and their manufacturing processes
WO2008123626A1 (en) * 2007-04-03 2008-10-16 Ngk Insulators, Ltd. Composite light emitting tube container

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10710936B2 (en) 2014-08-28 2020-07-14 Byd Company Limited Ceramic substrate and its manufacturing method, power module
WO2020196505A1 (en) * 2019-03-26 2020-10-01 東ソー株式会社 Zirconia sintered body and method for producing same
EP3950638A4 (en) * 2019-03-26 2022-12-21 Tosoh Corporation Zirconia sintered body and method for producing same

Also Published As

Publication number Publication date
JP5895719B2 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP5125065B2 (en) Transparent zirconia sintered body
JP5685846B2 (en) Transparent zirconia sintered body, method for producing the same, and use thereof
Krell et al. Transmission physics and consequences for materials selection, manufacturing, and applications
Casolco et al. Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors
WO2010140644A1 (en) High-strength transparent zirconia sintered body, process for production thereof, and use thereof
JP6064567B2 (en) Composite plate and manufacturing method thereof
JP5018142B2 (en) Translucent zirconia sintered body and method for producing the same
WO2009142238A1 (en) Sintered compact, process for production thereof, and optical element
JP5895719B2 (en) Translucent ceramic joined body and manufacturing method
JP2013014471A (en) Translucent ceramics joint, and method for manufacturing the same
US8481439B2 (en) Colored alumina sintered body of high toughness and high translucency, and its production method and its uses
KR102004575B1 (en) Composite plate and production method therefor
JP6464713B2 (en) White zirconia sintered body, method for producing the same, and use thereof
JP5817262B2 (en) Translucent ceramic joined body and manufacturing method thereof
RU2735350C2 (en) Transparent ceramic material as a component of unbreakable optical glasses
JP5790366B2 (en) Plasma-resistant member and manufacturing method thereof
JP5505063B2 (en) Highly transparent zirconia sintered body
US20190127285A1 (en) Method for reinforcing transparent ceramics, and ceramic
Sundararajan et al. Mechanical properties of transparent polycrystalline alumina ceramics processed using an environmentally benign thermal gel casting process
JP2010024107A (en) Translucent ceramic
Roy et al. Water-based gelcasting of lead zirconate titanate and evaluation of mechanical properties of the gelcast samples
TWI846902B (en) Laminated components
WO2022168734A1 (en) Cover member
WO2021015057A1 (en) Layered member
JP2014015362A (en) Translucent alumina sintered compact having surface reinforcing layer and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R151 Written notification of patent or utility model registration

Ref document number: 5895719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151