WO2022168734A1 - Cover member - Google Patents

Cover member Download PDF

Info

Publication number
WO2022168734A1
WO2022168734A1 PCT/JP2022/003151 JP2022003151W WO2022168734A1 WO 2022168734 A1 WO2022168734 A1 WO 2022168734A1 JP 2022003151 W JP2022003151 W JP 2022003151W WO 2022168734 A1 WO2022168734 A1 WO 2022168734A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
sintered body
cover member
less
yttrium
Prior art date
Application number
PCT/JP2022/003151
Other languages
French (fr)
Japanese (ja)
Inventor
光二 松井
明生 池末
雄一 幾原
Original Assignee
国立大学法人 東京大学
株式会社ワールドラボ
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, 株式会社ワールドラボ, 東ソー株式会社 filed Critical 国立大学法人 東京大学
Priority to JP2022579499A priority Critical patent/JPWO2022168734A1/ja
Publication of WO2022168734A1 publication Critical patent/WO2022168734A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present disclosure relates to a cover member, and more particularly to a cover member for a touch panel of an electronic device.
  • Touch panels are widely used as display devices/input means for electronic devices such as smartphones, portable game devices, and car navigation systems, and cover materials are laminated to prevent damage to touch panels.
  • a glass material is widely used as the cover member, but the cover member needs to have a certain thickness or more in order to have practical strength.
  • space saving is required for the cover member due to the structure of electronic equipment devices.
  • transparent ceramics such as sapphire as the cover member (cover glass) has been proposed (Patent Document 1)
  • it has been proposed to use zirconium oxide with a bending strength of 200 to 400 MPa or aluminum oxide with a bending strength of about 400 MPa as a cover member Patent Document 2.
  • An object of the present disclosure is to provide a cover member that can be made even thinner.
  • the stabilizing element is one or more selected from the group consisting of scandium, yttrium, and lanthanoid rare earth elements.
  • the stabilizing element is yttrium.
  • [4] The cover member according to [3] above, wherein the content of the stabilizing element is 2.0 mol % or more and 6.0 mol % or less.
  • [5] The cover member according to any one of [1] to [4] above, wherein the sintered body contains one or more selected from the group consisting of germanium, aluminum and silicon.
  • [6] The cover member according to any one of [1] to [5] above, which has a thickness of 0.1 mm or more and 1.0 mm or less.
  • a display device comprising the cover member according to any one of [1] to [6] above.
  • An electronic device comprising the display device according to [7] above.
  • SEM observation view of the sintered body obtained in Example 1 (the scale in the figure is 300 nm) 1 is a schematic diagram showing a cross section of an example of a display device; FIG.
  • “Bending strength” is a value of three-point bending strength determined by a three-point bending test according to JIS R 1601. The bending strength was measured using a pillar-shaped sintered body sample with a distance between fulcrums of 30 mm, a width of 4 mm, and a thickness of 3 mm. do it.
  • "Relative density” is the ratio (%) of actual density to theoretical density. The measured density of the sintered body is the ratio (g/cm 3 ) of the volume measured by the Archimedes method to the mass measured by mass measurement.
  • the theoretical density is the density (g/cm 3 ) obtained from the following formulas (1) to (4).
  • A 0.5080+0.06980X/(100+X) (1)
  • C 0.5195 ⁇ 0.06180X/(100+X) (2)
  • ⁇ Z [124.25(100 ⁇ X)+225.81X] /[150.5(100+X)A2C ] (3)
  • ⁇ 0 100/[( YA / 3.987 )+(YG/ 3.637 )+(YS/2.2) +(100-YA- YG - YS ) / ⁇ Z ]
  • ⁇ 0 is the theoretical density
  • ⁇ Z is the theoretical density of zirconia
  • a and C are constants
  • X is the sum of yttrium converted to zirconia (ZrO 2 ) and yttria (Y 2 O 3 ).
  • Yttria-equivalent yttrium molar ratio (mol%), and Y A , Y G and Y S are zirconia, yttrium, aluminum, germanium and silicon of the sintered body, respectively, ZrO 2 , Y 2 O 3 , Al 2 O 3 , GeO 2 and SiO 2 are the mass ratios of aluminum converted to Al 2 O 3 , germanium converted to GeO 2 and silicon converted to SiO 2 (% by mass).
  • the "crystalline phase" can be identified by powder X-ray diffraction (hereinafter also referred to as "XRD”) measurement. Conditions for XRD measurement include the following conditions.
  • XRD peak corresponding to the (11-1) plane of monoclinic zirconia: 2 ⁇ 28 ⁇ 0.5°
  • XRD measurement can be performed using a general X-ray diffractometer (for example, MiniFlex, manufactured by RIGAKU).
  • the “monoclinic ratio” is the ratio of monoclinic zirconia in the crystal phase of zirconia, and is a value obtained from the following formula (5) for the XRD pattern of zirconia.
  • f m [I m (111)+I m (11 ⁇ 1)] ⁇ 100 /[I m (111)+I m (11-1)+I t (111)] (5)
  • f m is the monoclinic fraction (%)
  • I m (111) is the peak height of the XRD peak corresponding to the (111) plane of monoclinic zirconia
  • I m (11-1) is the monoclinic
  • I m (11-1) is the monoclinic
  • I t (111) is the peak height of the XRD peak corresponding to the (111) plane of tetragonal zirconia.
  • Crystallite size is a value obtained by the following formula (6).
  • Dx is the crystallite diameter (nm) of the zirconia crystallite
  • is the following ( 7) is the half width (in radians) obtained from the formula
  • is the black angle (°) of the reflection corresponding to the (111) plane of tetragonal zirconia in XRD measurement.
  • B is the measured value of the half-value width of the (111) plane of tetragonal zirconia
  • b is a constant obtained by XRD measurement of a standard sample of quartz sand with a grain size of 60 ⁇ m after being treated at 800° C. for 6 hours in the air.
  • a sintered body containing a stabilizing element made of zirconia containing at least tetragonal zirconia, having an average crystal grain size of 10 nm or more and 250 nm or less, and having a relative density of 99.85% or more
  • a cover member comprising:
  • the sintered body that constitutes the cover member of the present embodiment is a sintered body that contains a stabilizing element and is made of zirconia containing at least tetragonal zirconia. body.
  • the stabilizing element is an element having a function of stabilizing zirconia, and includes one or more selected from the group of scandium, yttrium and lanthanide rare earth elements, preferably at least one of scandium and yttrium. , and more preferably yttrium.
  • the content of the stabilizing element may be any content that partially stabilizes zirconia.
  • the stabilizing element when the stabilizing element is yttrium, the content of the stabilizing element (hereinafter also referred to as "stabilizing element amount"), and when the stabilizing element is yttrium etc., the stabilizing element amount is also referred to as "yttrium content” etc. ) is 2.0 mol % or more, or 2.5 mol % or more, and is 6.0 mol % or less, 5.0 mol % or less, or 4.0 mol % or less.
  • the amount of stabilizing element is the molar ratio of the amount of the stabilizing element converted to oxide with respect to the sum of the amount of zirconium (Zr) converted to zirconia (ZrO 2 ) and the amount of the stabilizing element converted to oxide in the sintered body,
  • the sintered body contains at least one selected from the group of germanium (Ge), aluminum (Al) and silicon (Si), preferably at least one of germanium and aluminum (hereinafter also referred to as "additive element"). You can stay. When the sintered body contains the additive element, the grain boundary strength between crystal grains tends to increase even when the amount of the stabilizing element is at least, and the thickness of the cover member of the present embodiment can be further reduced.
  • the additive element is at least aluminum, preferably aluminum and germanium.
  • the content of the additive element (hereinafter also referred to as "additional element amount", and when the additive element is germanium or the like, the additive element amount is also referred to as “germanium content” etc.) is arbitrary, but is 0% by mass or more, 0.05% by mass or more, or 0.1% by mass or more, and 1.5% by mass or less, 1.0% by mass or less, or 0.5% by mass or less.
  • the amount of the additive element is the amount of zirconium (Zr) in the sintered body converted to zirconia (ZrO 2 ), the amount of the stabilizing element converted to oxide, and the amount of the additive element converted to oxide.
  • the germanium content in a sintered body containing germanium and the balance being yttrium-containing zirconia is ⁇ GeO 2 /(ZrO 2 +Y 2 O 3 +GeO 2 ) ⁇ 100[ % by mass])
  • the amount of additive elements in the sintered body containing germanium and aluminum and the balance being yttrium-containing zirconia is ⁇ (Al 2 O 3 +GeO 2 )/(ZrO 2 +Y 2 O 3 +GeO 2 +Al 2 O 3 ) ⁇ 100 [mass %]).
  • the sintered body preferably does not contain any impurities other than unavoidable impurities.
  • Hafnia HfO 2
  • hafnia contained in the sintered body may be regarded as zirconia and these values may be calculated.
  • the sintered body is made of zirconia containing at least tetragonal zirconia, preferably made of zirconia containing tetragonal crystals as a main phase, and more preferably made of zirconia made of only tetragonal crystals.
  • the phrase "having a tetragonal crystal as the main phase” means a crystal phase in which the tetragonal crystal accounts for the highest proportion among the monoclinic crystal, cubic crystal, and tetragonal crystal included in the crystal phase of zirconia.
  • the ratio of tetragonal crystals in the crystal phase of zirconia can be calculated by the Rietveld method of the X-ray diffraction (XRD) pattern of the sintered body.
  • XRD X-ray diffraction
  • the sintered body has an average crystal grain size of 10 nm or more and 250 nm or less and a relative density of 99.85% or more. As a result, a translucent sintered body that can be applied as a cover member is obtained.
  • the average crystal grain size of the sintered body is preferably 50 nm or more and 200 nm or less, more preferably 50 nm or more and 175 nm or less.
  • the sintered body of the present embodiment has a relative density of 99.85% or more, preferably 99.88% or more.
  • the relative density should be 100% or less.
  • the sintered body of the present embodiment includes a sintered body obtained by normal pressure sintering (so-called normal pressure sintered body), a sintered body obtained by pressure sintering (so-called A sintered body obtained by a known sintering method such as a pressure sintered body) may be used.
  • the sintered body preferably has a bending strength of 500 MPa or more or 800 MPa or more.
  • the upper limit of the bending strength is arbitrary as long as it has practical workability, but the bending strength of the sintered body is 2000 MPa or less or 1800 MPa or less.
  • the sintered body has a linear transmittance of 45% or more at a thickness of 0.1 mm, it exhibits sufficient transparency when used as a cover member. More preferably, the linear transmittance is 47% or more, or 50% or more. Although the linear transmittance at a thickness of 0.1 mm is preferably as high as possible, it may be 75% or less or 70% or less.
  • the linear transmittance at a thickness of 0.1 mm can be calculated from the following formula by measuring the linear transmittance of a sample with a thickness of 1 mm.
  • both sides of the sample are sintered with a surface roughness (Ra) ⁇ 0.02 ⁇ m, and the measurement is performed with a general spectrophotometer (eg, V- 650, manufactured by JASCO), and irradiating the sample with light having a wavelength of 600 nm.
  • the linear transmittance (t 600 ; %) at a thickness of 1 mm can be calculated by subtracting the diffuse transmittance from the total light transmittance measured by the integrating sphere.
  • the linear transmittance (T) at a thickness of 0.1 mm can be obtained by the following formula.
  • T [%] (1-R) 2 exp (-0.1 ⁇ ) x 100
  • R ⁇ (1 ⁇ n)/(1+n) ⁇ 2
  • T is the in-line transmittance at a thickness of 0.1 mm
  • R is the modulus
  • n is the refractive index of zirconia.
  • n may be 2.14.
  • FIG. 2 shows a cross-sectional view of an example of a display device having a touch panel.
  • the display device (200) of FIG. 2 is constructed by laminating elements of a cover member (201), a touch panel (202) and a display module (203).
  • an adhesive member such as an adhesive sheet may be interposed to fix each element.
  • the cover member (201) may be composed of the sintered body described above, and may have any desired shape suitable for the display device, such as a cubic shape, a rectangular parallelepiped shape, a polygonal shape, or a plate shape. , discoidal, columnar, conical, spherical, substantially spherical and other basic shapes can be exemplified.
  • the thickness of the cover member (201) is preferably 0.1 mm or more or 0.2 mm or more and 1.0 mm or less or 0.5 mm or less.
  • the method of the touch panel (202) includes one or more selected from the group of resistive film method, optical method and capacitance method, preferably the capacitance method.
  • the display module (203) is, for example, one or more selected from the group of a liquid crystal module, TFT (Thin Film Transistor), OLED (Organic Light Emitting Diode), inorganic EL (Inorganic Electro-Luminescence), electronic paper, and transmissive display. , preferably OLED and inorganic EL can be exemplified.
  • the method of manufacturing the cover member of the present embodiment is arbitrary, and a sintered body may be manufactured by an arbitrary method so as to have a desired shape and used as the cover member.
  • a molded body made of zirconia powder containing a stabilizing element and having a crystallite diameter of 5 nm or more and 40 nm or less and a monoclinic ratio of 5% or more and 50% or less is sintered. and a step of subjecting the presintered body to a hot isostatic press treatment at 1000°C or higher and lower than 1200°C.
  • the compact to be subjected to the “pre-sintering step” contains a stabilizing element, has a crystallite diameter of 5 nm or more and 40 nm or less, and a monoclinic fraction of 5% or more and 50% or less. It is a molded body made of zirconia.
  • the compact is a so-called green compact in which zirconia powder particles containing a stabilizing element and having a crystallite diameter of 5 nm or more and 40 nm or less and a monoclinic ratio of 5% or more and 50% or less are physically aggregated. is.
  • the stabilizing element contained in zirconia is an element having a function of stabilizing zirconia, and includes one or more selected from the group of scandium, yttrium and lanthanide rare earth elements, and at least one of scandium and yttrium. Yttrium is preferred, and yttrium is more preferred.
  • the content of the stabilizing element contained in zirconia may be any content that partially stabilizes zirconia.
  • the yttrium content is 2.0 mol % or more, or 2.5 mol % or more, and 6.0 mol % or less, 5.0 mol % or less, or 4.0 mol % or less.
  • the crystallite size of zirconia is preferably 10 nm or more, or 15 nm or more, and 35 nm or less, or 32 nm or less.
  • the monoclinic rate of zirconia is preferably 10% or more, or 15% or more, and 45% or less, or 40% or less.
  • the compact may contain at least one selected from the group of germanium, aluminum and silicon, preferably at least one of germanium and aluminum (additional element).
  • the amount of additive element is arbitrary, but it is 0% by mass or more, 0.05% by mass or more, or 0.1% by mass or more, and is 1.5% by mass or less, 1.0% by mass or less, or 0.5% by mass. % by mass or less.
  • the amount of additive element is the amount of zirconium (Zr) in the molded body converted to zirconia (ZrO 2 ), the amount of stabilizing element converted to oxide, and the amount of additive element converted to oxide, with respect to the sum of the amount of additive element converted to oxide. It is the mass ratio of the converted amount.
  • the shape of the molded body should be similar to the shape of the intended cover member, taking into account shrinkage due to sintering. Further, the shape of the molded body can be exemplified by at least one selected from the group of cubic, rectangular parallelepiped, polyhedral, columnar, columnar, disk-like and substantially spherical.
  • the molded body is produced by molding a powder made of zirconia containing a stabilizing element by, for example, at least one molding method selected from the group consisting of uniaxial pressing, cold isostatic pressing, slip casting and injection molding. Just do it.
  • the resin may be removed by heat-treating the resulting molded body (green compact), if necessary.
  • heat treatment conditions 400° C. or more and less than 800° C. can be exemplified in the air.
  • the compact may be sintered so as to have a structure in which pores can be sufficiently eliminated by hot isostatic pressing (hereinafter also referred to as "HIP") which is subsequently performed.
  • Preferred pre-sintering conditions include the following conditions.
  • Pre-sintering method Normal pressure sintering
  • Pre-sintering atmosphere Oxidizing atmosphere, preferably air atmosphere
  • Pre-sintering temperature 1000°C or higher or 1100°C or higher, and 1250° C. or less, 1200° C. or less, or 1150° C.
  • Heating rate 50° C./hour or more or 80° C./hour or more, and 150°C/hour or less or 120°C/hour or less
  • Temperature drop rate 100°C/hour or more or 150°C/hour or more, and 250°C/hour or less or 200°C/hour or less
  • normal pressure sintering is a method of sintering by heating the object to be sintered (such as a compact or calcined body) during sintering without applying an external force.
  • the holding time at the pre-sintering temperature may be appropriately changed according to the pre-sintering temperature, and the higher the pre-sintering temperature, the shorter the holding time.
  • the holding time at the pre-sintering temperature can be exemplified from 1 hour to 3 hours.
  • it is preferable that the rate of temperature decrease is faster than the rate of temperature increase.
  • the pre-sintered body is subjected to a hot isostatic press treatment (hereinafter also referred to as “HIP treatment”) at 1000° C. or more and less than 1200° C. (hereinafter also referred to as “HIP process”). ).
  • HIP treatment hot isostatic press treatment
  • HIP process 1000° C. or more and less than 1200° C.
  • the pre-sintered body is treated at a HIP treatment temperature of 1000°C or more and less than 1200°C.
  • the HIP treatment temperature is preferably 1100° C. or higher or 1130° C. or higher, and preferably 1180° C. or lower.
  • the relationship between the HIP treatment temperature and the pre-sintering temperature may be adjusted according to the sinterability of the compact (pre-sintered compact).
  • the HIP treatment temperature should be higher than the pre-sintering temperature.
  • the HIP treatment temperature is higher than the pre-sintering temperature by 5° C. or more and 15° C. or less.
  • As a holding time at the HIP treatment temperature 0.5 hours or more and 2 hours or less can be exemplified.
  • the HIP treatment atmosphere may be at least one of an inert atmosphere and a reducing atmosphere, preferably an argon atmosphere.
  • the HIP pressure should be 100 MPa or more and 200 MPa or less.
  • the manufacturing method of the present embodiment may include a step of heat-treating the cover member after the HIP treatment in an oxidizing atmosphere. Transparency can be adjusted by subjecting the HIP-treated cover member (HIP-treated body) to such steps.
  • the heat treatment conditions are arbitrary, but it is preferable to treat at a temperature lower than the HIP treatment temperature, and the following conditions can be exemplified.
  • Heat treatment method Normal pressure firing
  • Heat treatment atmosphere Oxidizing atmosphere, preferably air atmosphere
  • Heat treatment time 0.5 hours or more and 5 hours or less
  • Crystallite diameter An XRD pattern was obtained in the same manner as for identifying the crystal phase, and the crystallite size was determined from the above formulas (6) and (7).
  • the actual density of the sintered body sample was measured by the Archimedes method. Prior to the measurement, after measuring the mass of the dried sintered body, the sintered body was placed in water and boiled for 1 hour as a pretreatment. The theoretical density was obtained from formulas (1) to (4), and the relative density (%) was obtained from the value of the actually measured density ( ⁇ ) with respect to the theoretical density ( ⁇ 0 ).
  • the average crystal grain size was obtained by the planimetric method using the SEM observation diagram of the sintered body sample obtained by field emission scanning electron microscope observation. That is, a circle having a known area was drawn on the SEM observation diagram, and the number of crystal grains (Nc) in the circle and the number of crystal grains (Ni) on the circumference of the circle were measured. After setting the total number of crystal grains (Nc+Ni) to 250 ⁇ 50, the average crystal grain size was obtained using the following formula.
  • Nc is the number of crystal grains in the circle
  • Ni is the number of crystal grains on the circumference of the circle
  • A is the area of the circle
  • M is the scanning electron microscope magnification (5000x).
  • Mirror polishing was carried out by scraping the surface of the sintered body with a surface grinder and then polishing it with a mirror polishing apparatus using diamond abrasive grains having an average particle size of 9 ⁇ m, 6 ⁇ m and 1 ⁇ m in that order.
  • the bending strength of the sintered body sample was measured by a three-point bending test according to JIS R1601. The bending strength was measured using a pillar-shaped sintered body sample having a distance between fulcrums of 30 mm, a width of 4 mm and a thickness of 3 mm, and the average value of 10 measurements was taken as the bending strength.
  • Linear transmittance When measuring the in-line transmittance at a sample thickness of 1 mm, both sides of the sample are sintered with a surface roughness (Ra) ⁇ 0.02 ⁇ m, and the measurement is performed with a general spectrophotometer (eg, V- 650, manufactured by JASCO Corporation), the sample was irradiated with light having a wavelength of 600 nm.
  • the linear transmittance (t 600 ; %) at a thickness of 1 mm was calculated by subtracting the diffuse transmittance from the total light transmittance measured with an integrating sphere.
  • the linear transmittance (T) at a thickness of 0.1 mm was determined by the following formula.
  • T is the in-line transmittance at a thickness of 0.1 mm
  • R is the modulus
  • n is the refractive index of zirconia.
  • n was set to 2.14.
  • Example 1 Alumina sol and germania powder were added so that the aluminum content was 0.25% by mass, the germanium content was 0.25% by mass, and the balance was obtained by a hydrolysis method, and 3 mol% yttrium-containing zirconia was obtained. and 3 mol % yttrium-containing zirconia powder having a crystallite size of 31 nm and a monoclinic fraction of 29% were wet pulverized, mixed and dried. The dried mixed powder was uniaxially pressed and then CIP (Cold Isostatic Pressed) processed to form a compact (green compact). Pre-sintered.
  • CIP Cold Isostatic Pressed
  • the temperature was lowered to 200°C at a rate of 200°C/hour to obtain a primary sintered body.
  • the resulting primary sintered body was HIP-treated in an argon atmosphere at 150 MPa and 1150° C. for 1 hour, so that the aluminum content and the germanium content of the additive element amount were 0.25% by mass and 0.25% by mass, respectively. and the balance was 3 mol % yttrium-containing zirconia to obtain a sintered body of this example.
  • the sintered body of this example was visually confirmed to have translucency, and the average crystal grain size was 100 nm.
  • Example 2 Additive elements were added in the same manner as in Example 1 except that the alumina sol and the germania powder were mixed so that the aluminum content as the additive element amount was 0.25% by mass and the germanium content was 0.75% by mass.
  • a sintered body of this example was obtained, which had an aluminum content of 0.25% by mass, a germanium content of 0.75% by mass, and a balance of 3 mol% yttrium-containing zirconia.
  • the sintered body of this example was visually confirmed to have translucency, and the average crystal grain size was 110 nm.
  • Example 3 Additive elements were added in the same manner as in Example 1, except that the alumina sol and the germania powder were mixed so that the aluminum content as the additive element amount was 0.15% by mass and the germanium content was 0.25% by mass.
  • a powder was obtained having an aluminum content of 0.15 wt.
  • the aluminum content as the amount of additive elements was 0.15% by mass and germanium was added.
  • a sintered body of this example was obtained which was composed of zirconia containing 0.25% by mass of yttrium and the balance being 3 mol% yttrium.
  • the sintered body of this example was visually confirmed to have translucency, and the average crystal grain size was 130 nm.
  • Display device 201 Cover member 202: Touch panel 203: Display module

Abstract

A cover member configured from a sintered body containing a stabilizing element, composed of zirconia which includes at least tetragonal zirconia, having an average crystal particle size from 10-250 nm, inclusive, and having a relative density of at least 99.85%.

Description

カバー部材cover material
 本開示は、カバー部材に関し、特に電子機器のタッチパネルのカバー部材に関する。 The present disclosure relates to a cover member, and more particularly to a cover member for a touch panel of an electronic device.
 タッチパネルはスマートフォン、携帯用ゲーム機器、カーナビゲーションシステムをはじめとする電子機器の表示デバイス/入力手段として広く利用されており、タッチパネルはその損傷を防ぐことを目的にカバー部材が積層されている。現在、カバー部材としてガラス製の材料が広く採用されているが、実用的な強度を備えさせるためにカバー部材は一定以上の厚みが必要である。しかしながら、電子機器デバイスの構成の下のため、カバー部材には省スペース化が求められており、例えば、カバー部材(カバーガラス)としてサファイア等の透明セラミックスを使用することが提案されて(特許文献1)、また、このような透明セラミックスとして、曲げ強度が200~400MPaの酸化ジルコニウムや、曲げ強度が約400MPaの酸化アルミニウムをカバー部材として使用することが提案されている(特許文献2)。 Touch panels are widely used as display devices/input means for electronic devices such as smartphones, portable game devices, and car navigation systems, and cover materials are laminated to prevent damage to touch panels. At present, a glass material is widely used as the cover member, but the cover member needs to have a certain thickness or more in order to have practical strength. However, space saving is required for the cover member due to the structure of electronic equipment devices. For example, the use of transparent ceramics such as sapphire as the cover member (cover glass) has been proposed (Patent Document 1) As such transparent ceramics, it has been proposed to use zirconium oxide with a bending strength of 200 to 400 MPa or aluminum oxide with a bending strength of about 400 MPa as a cover member (Patent Document 2).
特表2016-540257号公報Japanese Patent Publication No. 2016-540257 特開2012-174053号公報JP 2012-174053 A
 近年のタッチパネルの高性能化に伴い、カバー部材にはより一層の薄肉化の要望がある。しかしながら、サファイアは難加工性であるため、薄肉加工はコスト的に実用的ではない。一方、特許文献2で提案された酸化ジルコニウムや酸化アルミニウムは強度が十分ではなかった。 With the recent high performance of touch panels, there is a demand for even thinner cover materials. However, since sapphire is difficult to process, thinning is not practical in terms of cost. On the other hand, zirconium oxide and aluminum oxide proposed in Patent Document 2 do not have sufficient strength.
 本開示では、より一層の薄肉化し得るカバー部材を提供することを目的とする。 An object of the present disclosure is to provide a cover member that can be made even thinner.
 本発明は特許請求の範囲の記載のとおりであり、また、本開示の要旨は以下のとおりである。
[1] 安定化元素を含有し、少なくとも正方晶ジルコニアを含むジルコニアからなり、平均結晶粒径が10nm以上250nm以下であり、なおかつ、相対密度が99.85%以上である焼結体から構成されるカバー部材。
[2] 前記安定化元素が、スカンジウム、イットリウム及びランタノイド系希土元素の群から選ばれる1種以上である、上記[1]に記載のカバー部材。
[3] 前記安定化元素が、イットリウムである、上記[1]又は[2]に記載のカバー部材。
[4] 前記安定化元素の含有量が、2.0mol%以上6.0mol%以下である上記[3]に記載のカバー部材。
[5] 前記焼結体が、ゲルマニウム、アルミニウム及びケイ素の群から選ばれる1種以上を含む、上記[1]乃至[4]のいずれかに記載のカバー部材。
[6] 厚みが0.1mm以上1.0mm以下である、上記[1]乃至[5]のいずれかに記載のカバー部材。
[7] 上記[1]乃至[6]のいずれかに記載のカバー部材を備えた表示デバイス。
[8] 上記[7]に記載の表示デバイスを備えた電子機器。
The present invention is as described in the claims, and the gist of the present disclosure is as follows.
[1] A sintered body made of zirconia containing a stabilizing element and containing at least tetragonal zirconia, having an average crystal grain size of 10 nm or more and 250 nm or less, and having a relative density of 99.85% or more. cover member.
[2] The cover member according to [1] above, wherein the stabilizing element is one or more selected from the group consisting of scandium, yttrium, and lanthanoid rare earth elements.
[3] The cover member according to [1] or [2] above, wherein the stabilizing element is yttrium.
[4] The cover member according to [3] above, wherein the content of the stabilizing element is 2.0 mol % or more and 6.0 mol % or less.
[5] The cover member according to any one of [1] to [4] above, wherein the sintered body contains one or more selected from the group consisting of germanium, aluminum and silicon.
[6] The cover member according to any one of [1] to [5] above, which has a thickness of 0.1 mm or more and 1.0 mm or less.
[7] A display device comprising the cover member according to any one of [1] to [6] above.
[8] An electronic device comprising the display device according to [7] above.
 本開示により、従来のカバー部材に対し、より一層の薄肉化し得るカバー部材を提供することができる。 According to the present disclosure, it is possible to provide a cover member that can be made even thinner than conventional cover members.
実施例1で得られた焼結体のSEM観察図(図中スケールは300nm)SEM observation view of the sintered body obtained in Example 1 (the scale in the figure is 300 nm) 表示デバイスの一例の断面を示す模式図。1 is a schematic diagram showing a cross section of an example of a display device; FIG.
 以下、本開示について、実施形態の一例を示して説明する。
 本実施形態における各用語は以下の通りである。
 「曲げ強度」とは、JIS R 1601に準じた三点曲げ試験により求められる三点曲げ強度の値である。曲げ強度の測定は、支点間距離30mmで、幅4mm、厚さ3mmの柱形状の焼結体試料を使用して行い、10回測定した平均値をもって本実施形態の焼結体の曲げ強度とすればよい。
 「相対密度」とは、理論密度に対する実測密度の割合(%)である。焼結体の実測密度は質量測定で測定される質量に対する、アルキメデス法で測定される体積の割合(g/cm)である。安定化元素がイットリウムである場合、理論密度は以下の式(1)~(4)から求められる密度(g/cm)である。
  A=0.5080+0.06980X/(100+X)    (1)
  C=0.5195-0.06180X/(100+X)    (2)
  ρ=[124.25(100-X)+225.81X]
         /[150.5(100+X)AC]     (3)
  ρ=100/[(Y/3.987)+(Y/3.637)+(Y/2.2)
+(100-Y-Y-Y)/ρ]  (4)
 式(1)~(4)において、ρは理論密度、ρはジルコニアの理論密度、A及びCは定数、Xはジルコニア(ZrO)及びイットリア(Y)換算したイットリウムの合計に対するイットリア換算したイットリウムのモル割合(mol%)、並びに、Y、Y及びYは焼結体のジルコニア、イットリウム、アルミニウム、ゲルマニウム及びケイ素を、それぞれ、ZrO、Y、Al、GeO及びSiO換算した合計に対するAl換算したアルミニウム、GeO換算したゲルマニウム及びSiO換算したケイ素の質量割合(質量%)である。
 「結晶相」は粉末X線回折(以下、「XRD」ともいう。)測定により同定することができる。XRD測定の条件として、以下の条件を挙げることができる。
      線源       : CuKα線(λ=0.15418nm)
      測定モード    : 連続スキャン
      スキャンスピード : 4°/分
      ステップ幅    : 0.02°
      測定範囲     : 2θ=26°~33°
 上述のXRD測定において、ジルコニアの各結晶面に相当するXRDピークは、以下の2θにピークトップを有するピークとして測定される。
 単斜晶ジルコニアの(111)面に相当するXRDピーク : 2θ=31±0.5°
 単斜晶ジルコニアの(11-1)面に相当するXRDピーク: 2θ=28±0.5°
 正方晶ジルコニア及び立方晶ジルコニアの(111)面に相当するXRDピークは重複して測定され、そのピークトップの2θは、2θ=30±0.5°である。
 XRD測定は、一般的なX線回折装置(例えば、MiniFlex、RIGAKU社製)を使用して行うことができる。
 「単斜晶率」は、ジルコニアの結晶相に占める単斜晶ジルコニアの割合であり、ジルコニアのXRDパターンについて、以下の(5)式で求められる値である。
    f=[I(111)+I(11-1)]×100
        /[I(111)+I(11-1)+I(111)]  (5)
 上記式において、fは単斜晶率(%)、I(111)は単斜晶ジルコニアの(111)面に相当するXRDピークのピーク高さ、I(11-1)は単斜晶ジルコニアの(11-1)面に相当するXRDピークのピーク高さ、及び、I(111)は正方晶ジルコニアの(111)面に相当するXRDピークのピーク高さである。
 「結晶子径」は、以下の(6)式で求められる値である。
           Dx=κλ/(βcosθ)    (6)
 ここで、Dxはジルコニア結晶子の結晶子径(nm)、κはシェラー定数(=1)、λは粉末X線回折測定の線源の波長(λ=0.15418nm)、βは以下の(7)式から求められる半値幅である(ラジアン)、及び、θはXRD測定における正方晶ジルコニアの(111)面に相当する反射のブラック角(°)である。
     β=(B-b1/2×(π/180)      (7)
 Bは正方晶ジルコニアの(111)面の半値幅の実測値、bは、標準試料として、大気中、800℃で6時間処理後の粒径60μmの石英砂をXRD測定して得られる定数であり、当該測定により得られる、正方晶ジルコニアの(111)面に相当するXRDピークの2θに対応する石英砂の2θの半値幅である。
Hereinafter, the present disclosure will be described by showing an example of an embodiment.
Each term in this embodiment is as follows.
“Bending strength” is a value of three-point bending strength determined by a three-point bending test according to JIS R 1601. The bending strength was measured using a pillar-shaped sintered body sample with a distance between fulcrums of 30 mm, a width of 4 mm, and a thickness of 3 mm. do it.
"Relative density" is the ratio (%) of actual density to theoretical density. The measured density of the sintered body is the ratio (g/cm 3 ) of the volume measured by the Archimedes method to the mass measured by mass measurement. When the stabilizing element is yttrium, the theoretical density is the density (g/cm 3 ) obtained from the following formulas (1) to (4).
A=0.5080+0.06980X/(100+X) (1)
C=0.5195−0.06180X/(100+X) (2)
ρ Z =[124.25(100−X)+225.81X]
/[150.5(100+X)A2C ] (3)
ρ 0 =100/[( YA / 3.987 )+(YG/ 3.637 )+(YS/2.2)
+(100-YA- YG - YS ) / ρZ ] (4)
In formulas (1) to (4), ρ 0 is the theoretical density, ρ Z is the theoretical density of zirconia, A and C are constants, and X is the sum of yttrium converted to zirconia (ZrO 2 ) and yttria (Y 2 O 3 ). Yttria-equivalent yttrium molar ratio (mol%), and Y A , Y G and Y S are zirconia, yttrium, aluminum, germanium and silicon of the sintered body, respectively, ZrO 2 , Y 2 O 3 , Al 2 O 3 , GeO 2 and SiO 2 are the mass ratios of aluminum converted to Al 2 O 3 , germanium converted to GeO 2 and silicon converted to SiO 2 (% by mass).
The "crystalline phase" can be identified by powder X-ray diffraction (hereinafter also referred to as "XRD") measurement. Conditions for XRD measurement include the following conditions.
Radiation source: CuKα ray (λ = 0.15418 nm)
Measurement mode: Continuous scan Scan speed: 4°/min Step width: 0.02°
Measurement range: 2θ = 26° to 33°
In the XRD measurement described above, the XRD peak corresponding to each crystal plane of zirconia is measured as a peak having a peak top at 2θ below.
XRD peak corresponding to the (111) plane of monoclinic zirconia: 2θ=31±0.5°
XRD peak corresponding to the (11-1) plane of monoclinic zirconia: 2θ=28±0.5°
XRD peaks corresponding to the (111) plane of tetragonal zirconia and cubic zirconia are measured in duplicate, and the peak top 2θ is 2θ=30±0.5°.
XRD measurement can be performed using a general X-ray diffractometer (for example, MiniFlex, manufactured by RIGAKU).
The “monoclinic ratio” is the ratio of monoclinic zirconia in the crystal phase of zirconia, and is a value obtained from the following formula (5) for the XRD pattern of zirconia.
f m =[I m (111)+I m (11−1)]×100
/[I m (111)+I m (11-1)+I t (111)] (5)
In the above formula, f m is the monoclinic fraction (%), I m (111) is the peak height of the XRD peak corresponding to the (111) plane of monoclinic zirconia, and I m (11-1) is the monoclinic The peak height of the XRD peak corresponding to the (11-1) plane of crystalline zirconia, and I t (111) is the peak height of the XRD peak corresponding to the (111) plane of tetragonal zirconia.
"Crystallite size" is a value obtained by the following formula (6).
Dx=κλ/(β cos θ) (6)
Here, Dx is the crystallite diameter (nm) of the zirconia crystallite, κ is the Scherrer constant (= 1), λ is the wavelength of the radiation source for powder X-ray diffraction measurement (λ = 0.15418 nm), and β is the following ( 7) is the half width (in radians) obtained from the formula, and θ is the black angle (°) of the reflection corresponding to the (111) plane of tetragonal zirconia in XRD measurement.
β=(B 2 −b 2 ) 1/2 ×(π/180) (7)
B is the measured value of the half-value width of the (111) plane of tetragonal zirconia, and b is a constant obtained by XRD measurement of a standard sample of quartz sand with a grain size of 60 μm after being treated at 800° C. for 6 hours in the air. is the half width of 2θ of quartz sand corresponding to 2θ of the XRD peak corresponding to the (111) plane of tetragonal zirconia obtained by the measurement.
 以下、本実施形態のカバー部材について説明する。
 本実施形態は、安定化元素を含有し、少なくとも正方晶ジルコニアを含むジルコニアからなり、平均結晶粒径が10nm以上250nm以下であり、なおかつ、相対密度が99.85%以上である焼結体から構成されるカバー部材、である。
The cover member of this embodiment will be described below.
In the present embodiment, a sintered body containing a stabilizing element, made of zirconia containing at least tetragonal zirconia, having an average crystal grain size of 10 nm or more and 250 nm or less, and having a relative density of 99.85% or more A cover member comprising:
(焼結体)
 本実施形態のカバー部材を構成する焼結体は、安定化元素を含有し、少なくとも正方晶ジルコニアを含むジルコニアからなる焼結体であり、いわゆるジルコニア焼結体、更には部分安定化ジルコニア焼結体、である。
(sintered body)
The sintered body that constitutes the cover member of the present embodiment is a sintered body that contains a stabilizing element and is made of zirconia containing at least tetragonal zirconia. body.
 安定化元素は、ジルコニアを安定化する機能を有する元素であり、スカンジウム、イットリウム及びランタノイド系希土元素の群から選ばれる1種以上が挙げられ、スカンジウム及びイットリウムの少なくともいずれかであることが好ましく、イットリウムであることがより好ましい。本実施形態において、安定化元素の含有量はジルコニアが部分安定化される含有量であればよい。例えば、安定化元素がイットリウムの場合、安定化元素の含有量(以下、「安定化元素量」ともいい、安定化元素がイットリウム等である場合の安定化元素量を「イットリウム含有量」等ともいう。)は、2.0mol%以上又は2.5mol%以上であり、かつ、6.0mol以下、5.0mol%以下又は4.0mol%以下が挙げられる。 The stabilizing element is an element having a function of stabilizing zirconia, and includes one or more selected from the group of scandium, yttrium and lanthanide rare earth elements, preferably at least one of scandium and yttrium. , and more preferably yttrium. In the present embodiment, the content of the stabilizing element may be any content that partially stabilizes zirconia. For example, when the stabilizing element is yttrium, the content of the stabilizing element (hereinafter also referred to as "stabilizing element amount"), and when the stabilizing element is yttrium etc., the stabilizing element amount is also referred to as "yttrium content" etc. ) is 2.0 mol % or more, or 2.5 mol % or more, and is 6.0 mol % or less, 5.0 mol % or less, or 4.0 mol % or less.
 安定化元素量は、焼結体中のジルコニウム(Zr)のジルコニア(ZrO)換算量及び安定化元素の酸化物換算量の合計に対する、安定化元素の酸化物換算量のモル割合であり、例えば、イットリウム含有量は、焼結体中のジルコニウム(Zr)をジルコニア(ZrO)換算した量及びイットリウム(Y)をイットリア(Y)換算した量の合計に対する、イットリウムをイットリア換算した量のモル割合(={Y/(ZrO+Y)}×100[mol%])により求めることができる。 The amount of stabilizing element is the molar ratio of the amount of the stabilizing element converted to oxide with respect to the sum of the amount of zirconium (Zr) converted to zirconia (ZrO 2 ) and the amount of the stabilizing element converted to oxide in the sintered body, For example, the yttrium content is the sum of the amount of zirconium (Zr) converted to zirconia (ZrO 2 ) and the amount of yttrium (Y) converted to yttria (Y 2 O 3 ) in the sintered body, and the amount of yttrium converted to yttria It can be obtained from the molar ratio of the amount (={Y 2 O 3 /(ZrO 2 +Y 2 O 3 )}×100 [mol %]).
 焼結体は、ゲルマニウム(Ge)、アルミニウム(Al)及びケイ素(Si)の群から選ばれる1種以上、好ましくはゲルマニウム及びアルミニウムの少なくともいずれか(以下、「添加元素」ともいう。)を含んでいてもよい。焼結体が添加元素を含むことで、安定化元素量が少なくとも、結晶粒間の粒界強度が高くなる傾向があり、本実施形態のカバー部材のより一層の薄肉化が可能となる。添加元素は少なくともアルミニウムであり、アルミニウム及びゲルマニウムであることが好ましい。添加元素の含有量(以下、「添加元素量」ともいい、添加元素がゲルマニウム等である場合の添加元素量を「ゲルマニウム含有量」等ともいう。)は任意であるが、0質量%以上、0.05質量%以上又は0.1質量%以上であり、なおかつ、1.5質量%以下、1.0質量%以下又は0.5質量%以下であることが挙げられる。添加元素量は、焼結体中のジルコニウム(Zr)をジルコニア(ZrO)換算した量、安定化元素を酸化物換算した量及び添加元素を酸化物換算した量の合計に対する、添加元素を酸化物換算した量の質量割合であり、例えば、ゲルマニウムを含有し、残部がイットリウム含有ジルコニアからなる焼結体におけるゲルマニウム含有量は{GeO/(ZrO+Y+GeO)}×100[質量%])として求められ、また、ゲルマニウム及びアルミニウムを含有し、残部がイットリウム含有ジルコニアからなる焼結体における添加元素量は{(Al+GeO)/(ZrO+Y+GeO+Al)}×100[質量%])として求められる。 The sintered body contains at least one selected from the group of germanium (Ge), aluminum (Al) and silicon (Si), preferably at least one of germanium and aluminum (hereinafter also referred to as "additive element"). You can stay. When the sintered body contains the additive element, the grain boundary strength between crystal grains tends to increase even when the amount of the stabilizing element is at least, and the thickness of the cover member of the present embodiment can be further reduced. The additive element is at least aluminum, preferably aluminum and germanium. The content of the additive element (hereinafter also referred to as "additional element amount", and when the additive element is germanium or the like, the additive element amount is also referred to as "germanium content" etc.) is arbitrary, but is 0% by mass or more, 0.05% by mass or more, or 0.1% by mass or more, and 1.5% by mass or less, 1.0% by mass or less, or 0.5% by mass or less. The amount of the additive element is the amount of zirconium (Zr) in the sintered body converted to zirconia (ZrO 2 ), the amount of the stabilizing element converted to oxide, and the amount of the additive element converted to oxide. For example, the germanium content in a sintered body containing germanium and the balance being yttrium-containing zirconia is {GeO 2 /(ZrO 2 +Y 2 O 3 +GeO 2 )}×100[ % by mass]), and the amount of additive elements in the sintered body containing germanium and aluminum and the balance being yttrium-containing zirconia is {(Al 2 O 3 +GeO 2 )/(ZrO 2 +Y 2 O 3 +GeO 2 +Al 2 O 3 )}×100 [mass %]).
 焼結体は、不可避不純物以外は含まないことが好ましい。ジルコニアの不可避不純物としてハフニア(HfO)が例示できる。なお、本実施形態における組成や相対密度などの組成に関係する値の算出において、焼結体に含有されるハフニアはジルコニアとみなしてこれらの値を計算すればよい。 The sintered body preferably does not contain any impurities other than unavoidable impurities. Hafnia (HfO 2 ) can be exemplified as an unavoidable impurity of zirconia. In addition, in calculating values related to composition such as composition and relative density in the present embodiment, hafnia contained in the sintered body may be regarded as zirconia and these values may be calculated.
 焼結体は、少なくとも正方晶ジルコニアを含むジルコニアからなり、正方晶を主相とするジルコニアからなることが好ましく、正方晶のみからなるジルコニアからなることがより好ましい。これにより、薄肉化したカバー部材する場合であっても、その加工時に破損しにくくなる。
 「正方晶を主相とする」とは、ジルコニアの結晶相に含まれる単斜晶、立方晶及び正方晶の中で、正方晶が占める割合が最も高い結晶相の状態である。ジルコニアの結晶相に占める正方晶の比率は、焼結体のX線回折(XRD)パターンの、リートベルト法により算出することができる。正方晶を主相とするジルコニアにおいては、上記で算出される正方晶の比率が50質量%以上であることが挙げられる。
The sintered body is made of zirconia containing at least tetragonal zirconia, preferably made of zirconia containing tetragonal crystals as a main phase, and more preferably made of zirconia made of only tetragonal crystals. As a result, even when a thin cover member is used, it is less likely to be damaged during processing.
The phrase "having a tetragonal crystal as the main phase" means a crystal phase in which the tetragonal crystal accounts for the highest proportion among the monoclinic crystal, cubic crystal, and tetragonal crystal included in the crystal phase of zirconia. The ratio of tetragonal crystals in the crystal phase of zirconia can be calculated by the Rietveld method of the X-ray diffraction (XRD) pattern of the sintered body. In zirconia having a tetragonal crystal as a main phase, the ratio of the tetragonal crystal calculated above is 50% by mass or more.
 焼結体は、平均結晶粒径が10nm以上250nm以下であり、なおかつ相対密度が99.85%以上である。これにより、カバー部材として適用し得る透光性を有する焼結体となる。焼結体の平均結晶粒径は、50nm以上200nm以下であることが好ましく、50nm以上175nm以下であることがより好ましい。 The sintered body has an average crystal grain size of 10 nm or more and 250 nm or less and a relative density of 99.85% or more. As a result, a translucent sintered body that can be applied as a cover member is obtained. The average crystal grain size of the sintered body is preferably 50 nm or more and 200 nm or less, more preferably 50 nm or more and 175 nm or less.
 本実施形態の焼結体は、相対密度が99.85%以上であり、更には99.88%以上であることが好ましい。相対密度は100%以下であればよい。 The sintered body of the present embodiment has a relative density of 99.85% or more, preferably 99.88% or more. The relative density should be 100% or less.
 さらに、本実施形態の焼結体は、常圧焼結で得られた状態の焼結体(いわゆる、常圧焼結体)、加圧焼結で得られた状態の焼結体(いわゆる、加圧焼結体)等、公知の焼結方法で得られた状態の焼結体であればよい。 Furthermore, the sintered body of the present embodiment includes a sintered body obtained by normal pressure sintering (so-called normal pressure sintered body), a sintered body obtained by pressure sintering (so-called A sintered body obtained by a known sintering method such as a pressure sintered body) may be used.
 焼結体は、曲げ強度が500MPa以上又は800MPa以上であることが好ましい。実用的な加工性を有していれば曲げ強度の上限は任意であるが、焼結体の曲げ強度は2000MPa以下又は1800MPa以下であることが挙げられる。 The sintered body preferably has a bending strength of 500 MPa or more or 800 MPa or more. The upper limit of the bending strength is arbitrary as long as it has practical workability, but the bending strength of the sintered body is 2000 MPa or less or 1800 MPa or less.
 焼結体は、厚さ0.1mmでの直線透過率が45%以上であれば、カバー部材とした際に十分な透明性を示す。直線透過率は47%以上又は50%以上であることがより好ましい。厚さ0.1mmでの直線透過率は高い方が好ましいが、75%以下又は70%以下であることが挙げられる。
 厚さ0.1mmでの直線透過率は、試料の厚さ1mmの直線透過率を測定し下記式から算出することができる。
 試料の厚さ1mmでの直線透過率を測定するにあたっては、試料の両面が表面粗さ(Ra)≦0.02μmである焼結体とし、測定は一般的な分光光度計(例えば、V-650、日本分光社製)を使用して、波長600nmの光を当該試料に照射して行えばよい。積分球により測定された全光線透過光率から拡散透過光率を差し引くことで厚さ1mmでの直線透過率(t600;%)を算出すればよい。
If the sintered body has a linear transmittance of 45% or more at a thickness of 0.1 mm, it exhibits sufficient transparency when used as a cover member. More preferably, the linear transmittance is 47% or more, or 50% or more. Although the linear transmittance at a thickness of 0.1 mm is preferably as high as possible, it may be 75% or less or 70% or less.
The linear transmittance at a thickness of 0.1 mm can be calculated from the following formula by measuring the linear transmittance of a sample with a thickness of 1 mm.
When measuring the in-line transmittance at a sample thickness of 1 mm, both sides of the sample are sintered with a surface roughness (Ra) ≤ 0.02 μm, and the measurement is performed with a general spectrophotometer (eg, V- 650, manufactured by JASCO), and irradiating the sample with light having a wavelength of 600 nm. The linear transmittance (t 600 ; %) at a thickness of 1 mm can be calculated by subtracting the diffuse transmittance from the total light transmittance measured by the integrating sphere.
 さらに、得られた直線透過率から、下式により、厚さ0.1mmにおける直線透過率(T)を求めることができる。
    T[%] = (1-R)exp(-0.1μ)×100
    R={(1-n)/(1+n)}
 上記式において、Tは厚さ0.1mmにおける直線透過率、Rは係数、及びnはジルコニアの屈折率である。本実施形態において、nは2.14とすればよい。μは吸収係数であり、以下の式から求めることができる。
    μ=-In{(t600/100)×(1/0.753)}
Further, from the obtained linear transmittance, the linear transmittance (T) at a thickness of 0.1 mm can be obtained by the following formula.
T [%] = (1-R) 2 exp (-0.1μ) x 100
R = {(1−n)/(1+n)} 2
In the above equation, T is the in-line transmittance at a thickness of 0.1 mm, R is the modulus, and n is the refractive index of zirconia. In this embodiment, n may be 2.14. μ is an absorption coefficient, which can be obtained from the following formula.
μ=−In{(t 600 /100)×(1/0.753)}
(カバー部材及び表示デバイス)
 表示デバイスは、タッチパネルを備えた表示デバイス、更には静電容量式のタッチパネルを備えた表示デバイスが例示できる。図2に、タッチパネルを備えた表示デバイスの一例の断面図を示す。図2の表示デバイス(200)は、カバー部材(201)、タッチパネル(202)及び表示モジュール(203)の要素が積層して構成されている。なお、図2には図示していないが粘着シート等、各要素間を固定する接着部材を介していてもよい。
(Cover member and display device)
Examples of the display device include a display device with a touch panel and a display device with a capacitive touch panel. FIG. 2 shows a cross-sectional view of an example of a display device having a touch panel. The display device (200) of FIG. 2 is constructed by laminating elements of a cover member (201), a touch panel (202) and a display module (203). In addition, although not shown in FIG. 2, an adhesive member such as an adhesive sheet may be interposed to fix each element.
 カバー部材(201)は、上述の焼結体から構成されていればよく、形状は表示デバイスに適した所期の形状であればよく、例えば、立方体状、直方体状、多角体状、板状、円板状、柱状、錐体状、球状、略球状その他の基本的形状が例示できる。 The cover member (201) may be composed of the sintered body described above, and may have any desired shape suitable for the display device, such as a cubic shape, a rectangular parallelepiped shape, a polygonal shape, or a plate shape. , discoidal, columnar, conical, spherical, substantially spherical and other basic shapes can be exemplified.
 カバー部材(201)の厚みは0.1mm以上又は0.2mm以上であり、かつ、1.0mm以下又は0.5mm以下であることが好ましい。 The thickness of the cover member (201) is preferably 0.1 mm or more or 0.2 mm or more and 1.0 mm or less or 0.5 mm or less.
 タッチパネル(202)の方式は、抵抗膜方式、光学方式及び静電容量方式の群から選ばれる1種以上が挙げられ、静電容量方式であることが好ましい。 The method of the touch panel (202) includes one or more selected from the group of resistive film method, optical method and capacitance method, preferably the capacitance method.
 表示モジュール(203)は、例えば、液晶モジュール、TFT(Thin Film Transistor)、OLED(Organic Light Emitting Diode)、無機EL(Inorganic Electro-Luminescence)、電子ペーパー及び透過型ディスプレイの群から選ばれる1種以上、好ましくはOLED及び無機ELが例示できる。 The display module (203) is, for example, one or more selected from the group of a liquid crystal module, TFT (Thin Film Transistor), OLED (Organic Light Emitting Diode), inorganic EL (Inorganic Electro-Luminescence), electronic paper, and transmissive display. , preferably OLED and inorganic EL can be exemplified.
<製造方法>
 本実施形態のカバー部材の製造方法は任意であり、所期の形状となるように、任意の方法で焼結体を製造し、これをカバー部材とすればよい。
<Manufacturing method>
The method of manufacturing the cover member of the present embodiment is arbitrary, and a sintered body may be manufactured by an arbitrary method so as to have a desired shape and used as the cover member.
 焼結体の製造方法として、安定化元素を含有し、結晶子径が5nm以上40nm以下、かつ、単斜晶率が5%以上50%以下であるジルコニアの粉末からなる成形体を焼結して予備焼結体とする工程、及び、予備焼結体を1000℃以上1200℃未満で熱間静水圧ブレス処理をする工程、を有する製造方法、が挙げられる。 As a method for producing a sintered body, a molded body made of zirconia powder containing a stabilizing element and having a crystallite diameter of 5 nm or more and 40 nm or less and a monoclinic ratio of 5% or more and 50% or less is sintered. and a step of subjecting the presintered body to a hot isostatic press treatment at 1000°C or higher and lower than 1200°C.
 安定化元素を含有し、結晶子径が5nm以上40nm以下、かつ、単斜晶率が5%以上50%以下であるジルコニアの粉末からなる成形体を焼結して予備焼結体とする工程(以下、「予備焼結工程」ともいう。)に供する成形体は、安定化元素を含有し、結晶子径が5nm以上40nm以下、かつ、単斜晶率が5%以上50%以下であるジルコニアからなる成形体である。この様な成形体を予備焼結及び熱間静水圧プレスすることで、カバー部材として適した機械的特性及び光学的特性を有する焼結体が得られる。 A step of sintering a molded body made of zirconia powder containing a stabilizing element, having a crystallite diameter of 5 nm or more and 40 nm or less and a monoclinic fraction of 5% or more and 50% or less, to obtain a pre-sintered body. (Hereinafter, also referred to as a “pre-sintering step”.) The compact to be subjected to the “pre-sintering step” contains a stabilizing element, has a crystallite diameter of 5 nm or more and 40 nm or less, and a monoclinic fraction of 5% or more and 50% or less. It is a molded body made of zirconia. By pre-sintering and hot isostatic pressing such a molded body, a sintered body having mechanical properties and optical properties suitable for a cover member can be obtained.
 成形体は、安定化元素を含有し、結晶子径が5nm以上40nm以下、かつ、単斜晶率が5%以上50%以下であるジルコニアの粉末粒子が物理的に凝集した、いわゆる圧粉体である。 The compact is a so-called green compact in which zirconia powder particles containing a stabilizing element and having a crystallite diameter of 5 nm or more and 40 nm or less and a monoclinic ratio of 5% or more and 50% or less are physically aggregated. is.
 ジルコニアが含有する安定化元素は、ジルコニアを安定化する機能を有する元素であり、スカンジウム、イットリウム及びランタノイド系希土元素の群から選ばれる1種以上が挙げられ、スカンジウム及びイットリウムの少なくともいずれかであることが好ましく、イットリウムであることがより好ましい。ジルコニアが含有する安定化元素の含有量はジルコニアが部分安定化される含有量であればよい。例えば、イットリウム含有量として、2.0mol%以上又は2.5mol%以上であり、かつ、6.0mol%以下、5.0mol%以下又は4.0mol%以下が挙げられる。 The stabilizing element contained in zirconia is an element having a function of stabilizing zirconia, and includes one or more selected from the group of scandium, yttrium and lanthanide rare earth elements, and at least one of scandium and yttrium. Yttrium is preferred, and yttrium is more preferred. The content of the stabilizing element contained in zirconia may be any content that partially stabilizes zirconia. For example, the yttrium content is 2.0 mol % or more, or 2.5 mol % or more, and 6.0 mol % or less, 5.0 mol % or less, or 4.0 mol % or less.
 比較的低いHIP処理温度で緻密化しやすくなる傾向があるため、ジルコニアの結晶子径は10nm以上又は15nm以上であり、また、35nm以下又は32nm以下であることが好ましい。 Since zirconia tends to be easily densified at a relatively low HIP temperature, the crystallite size of zirconia is preferably 10 nm or more, or 15 nm or more, and 35 nm or less, or 32 nm or less.
 ジルコニアの単斜晶率は10%以上又は15%以上であり、また、45%以下又は40%以下であることが好ましい。 The monoclinic rate of zirconia is preferably 10% or more, or 15% or more, and 45% or less, or 40% or less.
 成形体は、ゲルマニウム、アルミニウム及びケイ素の群から選ばれる1種以上、好ましくはゲルマニウム及びアルミニウムの少なくともいずれか(添加元素)を含んでいてもよい。添加元素量は任意であるが、0質量%以上、0.05質量%以上、又は0.1質量%以上であり、なおかつ、1.5質量%以下、1.0質量%以下又は0.5質量%以下であることが挙げられる。添加元素量は、成形体中のジルコニウム(Zr)をジルコニア(ZrO)換算した量、安定化元素を酸化物換算した量及び添加元素を酸化物換算した量の合計に対する、添加元素を酸化物換算した量の質量割合である。 The compact may contain at least one selected from the group of germanium, aluminum and silicon, preferably at least one of germanium and aluminum (additional element). The amount of additive element is arbitrary, but it is 0% by mass or more, 0.05% by mass or more, or 0.1% by mass or more, and is 1.5% by mass or less, 1.0% by mass or less, or 0.5% by mass. % by mass or less. The amount of additive element is the amount of zirconium (Zr) in the molded body converted to zirconia (ZrO 2 ), the amount of stabilizing element converted to oxide, and the amount of additive element converted to oxide, with respect to the sum of the amount of additive element converted to oxide. It is the mass ratio of the converted amount.
 成形体の形状は、焼結による収縮を考慮した上で、目的とするカバー部材の形状と同様な形状であればよい。また、成形体の形状として、立方体状、直方体状、多面体状、柱状、円柱状、円板状及び略球状の群から選ばれる少なくとも1つが例示できる。 The shape of the molded body should be similar to the shape of the intended cover member, taking into account shrinkage due to sintering. Further, the shape of the molded body can be exemplified by at least one selected from the group of cubic, rectangular parallelepiped, polyhedral, columnar, columnar, disk-like and substantially spherical.
 成形体は、安定化元素を含有するジルコニアからなる粉末を、例えば、一軸プレス、冷間静水圧プレス、スリップキャスティング及び射出成形の群から選ばれる少なくとも1種、の成形方法に成形して作製すればよい。コンパウンドなど、樹脂を使用して成形を作製した場合は、必要に応じ、得られる成形体(圧粉体)を熱処理して樹脂を除去してもよい。熱処理条件として、大気中、400℃以上800℃未満が例示できる。 The molded body is produced by molding a powder made of zirconia containing a stabilizing element by, for example, at least one molding method selected from the group consisting of uniaxial pressing, cold isostatic pressing, slip casting and injection molding. Just do it. When molding is made using a resin such as a compound, the resin may be removed by heat-treating the resulting molded body (green compact), if necessary. As heat treatment conditions, 400° C. or more and less than 800° C. can be exemplified in the air.
 予備焼結工程では、成形体が、次いで行われる熱間静水圧プレス(以下、「HIP」ともいう。)で気孔が十分に排除できるような構造になるように、これを焼結すればよい。好ましい予備焼結の条件として、以下の条件が挙げられる。
  予備焼結方法   :常圧焼結
  予備焼結雰囲気  :酸化雰囲気、好ましくは大気雰囲気
  予備焼結温度   :1000℃以上又は1100℃以上、かつ、
            1250℃以下、1200℃以下又は1150℃以下
  昇温速度     : 50℃/時間以上又は80℃/時間以上、かつ、
            150℃/時間以下又は120℃/時間以下
  降温速度     :100℃/時間以上又は150℃/時間以上、かつ、
            250℃/時間以下又は200℃/時間以下
In the pre-sintering step, the compact may be sintered so as to have a structure in which pores can be sufficiently eliminated by hot isostatic pressing (hereinafter also referred to as "HIP") which is subsequently performed. . Preferred pre-sintering conditions include the following conditions.
Pre-sintering method: Normal pressure sintering Pre-sintering atmosphere: Oxidizing atmosphere, preferably air atmosphere Pre-sintering temperature: 1000°C or higher or 1100°C or higher, and
1250° C. or less, 1200° C. or less, or 1150° C. or less Heating rate: 50° C./hour or more or 80° C./hour or more, and
150°C/hour or less or 120°C/hour or less Temperature drop rate: 100°C/hour or more or 150°C/hour or more, and
250°C/hour or less or 200°C/hour or less
 本実施形態において「常圧焼結」とは、焼結時に被焼結物(成形体や仮焼体など)に対して外的な力を加えずに加熱することにより焼結する方法である。なお、予備焼結温度での保持時間は、予備焼結温度に応じて適宜変更すればよく、予備焼結温度が高くなるほど保持時間は短くてよい。予備焼結温度での保持時間として1時間以上3時間以下が例示できる。また、降温速度は昇温速度より速いことが好ましい。 In this embodiment, "normal pressure sintering" is a method of sintering by heating the object to be sintered (such as a compact or calcined body) during sintering without applying an external force. . The holding time at the pre-sintering temperature may be appropriately changed according to the pre-sintering temperature, and the higher the pre-sintering temperature, the shorter the holding time. The holding time at the pre-sintering temperature can be exemplified from 1 hour to 3 hours. Moreover, it is preferable that the rate of temperature decrease is faster than the rate of temperature increase.
 本実施形態の製造方法は、予備焼結体を1000℃以上1200℃未満で熱間静水圧ブレス処理(以下、「HIP処理」ともいう。)をする工程(以下、「HIP工程」ともいう。)を有する。HIP工程により、本実施形態のカバー部材が得られる。 In the manufacturing method of the present embodiment, the pre-sintered body is subjected to a hot isostatic press treatment (hereinafter also referred to as “HIP treatment”) at 1000° C. or more and less than 1200° C. (hereinafter also referred to as “HIP process”). ). The cover member of this embodiment is obtained by the HIP process.
 HIP処理では、予備焼結体をHIP処理温度1000℃以上1200℃未満で処理する。HIP処理温度は1100℃以上又は1130℃以上であることが好ましく、また、1180℃以下であることが好ましい。さらに、成形体(予備焼結体)の焼結性に応じてHIP処理温度と予備焼結温度の関係を調整すればよく、例えば、HIP処理温度は、予備焼結温度より高いこと、更にはHIP処理温度が予備焼結温度より5℃以上15℃以下高いことが挙げられる。HIP処理温度での保持時間として0.5時間以上2時間以下が例示できる。 In the HIP treatment, the pre-sintered body is treated at a HIP treatment temperature of 1000°C or more and less than 1200°C. The HIP treatment temperature is preferably 1100° C. or higher or 1130° C. or higher, and preferably 1180° C. or lower. Furthermore, the relationship between the HIP treatment temperature and the pre-sintering temperature may be adjusted according to the sinterability of the compact (pre-sintered compact). For example, the HIP treatment temperature should be higher than the pre-sintering temperature. The HIP treatment temperature is higher than the pre-sintering temperature by 5° C. or more and 15° C. or less. As a holding time at the HIP treatment temperature, 0.5 hours or more and 2 hours or less can be exemplified.
 HIP処理の雰囲気は不活性雰囲気及び還元雰囲気の少なくともいずれかであればよく、アルゴン雰囲気であることが好ましい。HIP圧力は100MPa以上200MPa以下であればよい。 The HIP treatment atmosphere may be at least one of an inert atmosphere and a reducing atmosphere, preferably an argon atmosphere. The HIP pressure should be 100 MPa or more and 200 MPa or less.
 本実施形態の製造方法は、HIP処理後のカバー部材を、酸化雰囲気で熱処理する工程を有していてもよい。HIP処理後のカバー部材(HIP処理体)をこのような工程に供することで、透明性の調整ができる。熱処理条件は任意であるが、HIP処理温度より低い温度で処理することが好ましく、以下の条件が例示できる。
   熱処理方法 :常圧焼成
   熱処理雰囲気:酸化雰囲気、好ましくは大気雰囲気
   熱処理温度 :900℃以上1100℃以下
   熱処理時間 :0.5時間以上5時間以下
The manufacturing method of the present embodiment may include a step of heat-treating the cover member after the HIP treatment in an oxidizing atmosphere. Transparency can be adjusted by subjecting the HIP-treated cover member (HIP-treated body) to such steps. The heat treatment conditions are arbitrary, but it is preferable to treat at a temperature lower than the HIP treatment temperature, and the following conditions can be exemplified.
Heat treatment method: Normal pressure firing Heat treatment atmosphere: Oxidizing atmosphere, preferably air atmosphere Heat treatment temperature: 900°C or more and 1100°C or less Heat treatment time: 0.5 hours or more and 5 hours or less
 以下、実施例を使用して本開示について説明する。しかしながら、本開示はこれらの実施例に限定されるものではない。 The present disclosure will be described below using examples. However, the disclosure is not limited to these examples.
(結晶相の同定)
 一般的なX線回折装置(商品名:UltimaIIV、リガク社製)を使用し、粉末試料のXRDパターンを得た。XRD測定の条件は以下のとおりである。
      線源       : CuKα線(λ=0.15418nm)
      測定モード    : 連続スキャン
      スキャンスピード : 4°/分
      ステップ幅    : 0.02°
      測定範囲     : 2θ=26°~33°
(Identification of crystal phase)
A general X-ray diffractometer (trade name: Ultima IIV, manufactured by Rigaku) was used to obtain an XRD pattern of the powder sample. Conditions for the XRD measurement are as follows.
Radiation source: CuKα ray (λ = 0.15418 nm)
Measurement mode: Continuous scan Scan speed: 4°/min Step width: 0.02°
Measurement range: 2θ = 26° to 33°
(単斜晶相率)
 結晶相の同定と同様な方法で得られたXRDパターンを得、上述の(5)式から単斜晶率を求めた。
(Monoclinic phase rate)
An XRD pattern was obtained in the same manner as for identifying the crystal phase, and the monoclinic crystal fraction was determined from the above equation (5).
(結晶子径)
 結晶相の同定と同様な方法で得られたXRDパターンを得、上述の(6)式及び(7)式から結晶子径を求めた。
(Crystallite diameter)
An XRD pattern was obtained in the same manner as for identifying the crystal phase, and the crystallite size was determined from the above formulas (6) and (7).
(相対密度)
 焼結体試料の実測密度をアルキメデス法により測定した。測定に先立ち、乾燥後の焼結体の質量を測定した後,焼結体を水中に配置し、これを1時間煮沸し、前処理とした。理論密度は、式(1)~(4)から求め、理論密度(ρ)に対する実測密度(ρ)の値から相対密度(%)を求めた。
(relative density)
The actual density of the sintered body sample was measured by the Archimedes method. Prior to the measurement, after measuring the mass of the dried sintered body, the sintered body was placed in water and boiled for 1 hour as a pretreatment. The theoretical density was obtained from formulas (1) to (4), and the relative density (%) was obtained from the value of the actually measured density (ρ) with respect to the theoretical density (ρ 0 ).
(平均結晶粒径)
 電界放出型走査型電子顕微鏡観察により得られた焼結体試料のSEM観察図を使用したプラニメトリック法により平均結晶粒径を求めた。すなわち、SEM観察図に面積が既知の円を描き、当該円内の結晶粒子数(Nc)及び当該円の円周上の結晶粒子数(Ni)を計測した。
 合計の結晶粒子数が(Nc+Ni)が250±50個とした上で、以下の式を使用して平均結晶粒径を求めた。
   平均結晶粒径=(Nc+(1/2)×Ni)/(A/M
 上式において、Ncは円内の結晶粒子数、Niは円の円周上の結晶粒子数、Aは円の面積、及び、Mは走査型電子顕微鏡観察の倍率(5000倍)である。なお、ひとつのSEM観察図における結晶粒子数(Nc+Ni)が200個未満である場合、複数のSEM観察図を用いて(Nc+Ni)を250±50個とした。
 測定に先立ち、焼結体試料は鏡面研磨した後、熱エッチング処理を施すことで前処理とした。鏡面研磨は、平面研削盤で焼結体表面を削ったあとに、鏡面研磨装置で平均粒径9μm、6μm及び1μmのダイヤモンド砥粒を順番に用いて研磨した。
(Average grain size)
The average crystal grain size was obtained by the planimetric method using the SEM observation diagram of the sintered body sample obtained by field emission scanning electron microscope observation. That is, a circle having a known area was drawn on the SEM observation diagram, and the number of crystal grains (Nc) in the circle and the number of crystal grains (Ni) on the circumference of the circle were measured.
After setting the total number of crystal grains (Nc+Ni) to 250±50, the average crystal grain size was obtained using the following formula.
Average grain size = (Nc + (1/2) x Ni)/(A/M 2 )
In the above formula, Nc is the number of crystal grains in the circle, Ni is the number of crystal grains on the circumference of the circle, A is the area of the circle, and M is the scanning electron microscope magnification (5000x). When the number of crystal grains (Nc+Ni) in one SEM observation diagram is less than 200, (Nc+Ni) was set to 250±50 using a plurality of SEM observation diagrams.
Prior to the measurement, the sintered sample was mirror-polished and then thermally etched for pretreatment. Mirror polishing was carried out by scraping the surface of the sintered body with a surface grinder and then polishing it with a mirror polishing apparatus using diamond abrasive grains having an average particle size of 9 μm, 6 μm and 1 μm in that order.
(曲げ強度)
 焼結体試料の曲げ強度は、JIS R1601に準じた三点曲げ試験で測定した。曲げ強度の測定は、支点間距離30mmで、幅4mm、厚さ3mmの柱形状の焼結体試料を使用して行い、10回測定した平均値をもって曲げ強度とした。
(bending strength)
The bending strength of the sintered body sample was measured by a three-point bending test according to JIS R1601. The bending strength was measured using a pillar-shaped sintered body sample having a distance between fulcrums of 30 mm, a width of 4 mm and a thickness of 3 mm, and the average value of 10 measurements was taken as the bending strength.
(直線透過率)
 試料の厚さ1mmでの直線透過率を測定するにあたっては、試料の両面が表面粗さ(Ra)≦0.02μmである焼結体とし、測定は一般的な分光光度計(例えば、V-650、日本分光社製)を使用して、波長600nmの光を当該試料に照射して行った。積分球により測定された全光線透過光率から拡散透過光率を差し引くことで厚さ1mmでの直線透過率(t600;%)を算出した。
 下式により、厚さ0.1mmにおける直線透過率(T)を求めた。
    T[%] = (1-R)exp(-0.1μ)×100
    R={(1-n)/(1+n)}
 上記式において、Tは厚さ0.1mmにおける直線透過率、Rは係数、及びnはジルコニアの屈折率である。本実施例において、nは2.14とした。μは吸収係数であり、以下の式から求めることができる。
    μ=-In{(t600/100)×(1/0.753)}
(Linear transmittance)
When measuring the in-line transmittance at a sample thickness of 1 mm, both sides of the sample are sintered with a surface roughness (Ra) ≤ 0.02 μm, and the measurement is performed with a general spectrophotometer (eg, V- 650, manufactured by JASCO Corporation), the sample was irradiated with light having a wavelength of 600 nm. The linear transmittance (t 600 ; %) at a thickness of 1 mm was calculated by subtracting the diffuse transmittance from the total light transmittance measured with an integrating sphere.
The linear transmittance (T) at a thickness of 0.1 mm was determined by the following formula.
T [%] = (1-R) 2 exp (-0.1μ) x 100
R = {(1−n)/(1+n)} 2
In the above equation, T is the in-line transmittance at a thickness of 0.1 mm, R is the modulus, and n is the refractive index of zirconia. In this example, n was set to 2.14. μ is an absorption coefficient, which can be obtained from the following formula.
μ=−In{(t 600 /100)×(1/0.753)}
 実施例1
 添加元素量としてのアルミニウム含有量が0.25質量%、ゲルマニウム含有量が0.25質量%であり、残部が加水分解法で得られ、3mol%イットリウム含有ジルコニアとなるように、アルミナゾル、ゲルマニア粉末及び結晶子径が31nmであり、かつ、単斜晶率が29%である3mol%イットリウム含有ジルコニア粉末を湿式で粉砕混合及び乾燥した。
 乾燥後の混合粉末を一軸加圧した後CIP(Cold Isostatic Pressing)処理して成形体(圧粉体)とした後、昇温速度100℃/時間で1142℃まで昇温し、2時間保持し予備焼結した。予備焼結後200℃/時間で200℃まで降温し一次焼結体を得た。
 得られた一次焼結体をアルゴン雰囲気中、150MPa、1150℃、1時間でHIP処理することで、添加元素量としてのアルミニウム含有量が0.25質量%及びゲルマニウム含有量が0.25質量%であり、残部が3mol%イットリウム含有ジルコニアからなる本実施例の焼結体を得た。本実施例の焼結体は、目視により透光性を有することが確認でき、また、平均結晶粒径は100nmであった。
 本実施形態の焼結体は、相対密度が99.91%(実測密度:6.074g/cm)、曲げ強度が1710MPa、及び、試料厚さ1mmにおける波長600nmに対する直線透過率が1.4%であった。また、μ=4.0mm-1であり、厚さ0.1mmにおける直線透過率(T)が50%であることがわかる。これより、本実施例の焼結体は、カバー部材として使用し得る強度及び透光性を有することが確認できる。
Example 1
Alumina sol and germania powder were added so that the aluminum content was 0.25% by mass, the germanium content was 0.25% by mass, and the balance was obtained by a hydrolysis method, and 3 mol% yttrium-containing zirconia was obtained. and 3 mol % yttrium-containing zirconia powder having a crystallite size of 31 nm and a monoclinic fraction of 29% were wet pulverized, mixed and dried.
The dried mixed powder was uniaxially pressed and then CIP (Cold Isostatic Pressed) processed to form a compact (green compact). Pre-sintered. After the preliminary sintering, the temperature was lowered to 200°C at a rate of 200°C/hour to obtain a primary sintered body.
The resulting primary sintered body was HIP-treated in an argon atmosphere at 150 MPa and 1150° C. for 1 hour, so that the aluminum content and the germanium content of the additive element amount were 0.25% by mass and 0.25% by mass, respectively. and the balance was 3 mol % yttrium-containing zirconia to obtain a sintered body of this example. The sintered body of this example was visually confirmed to have translucency, and the average crystal grain size was 100 nm.
The sintered body of this embodiment has a relative density of 99.91% (measured density: 6.074 g/cm 3 ), a bending strength of 1710 MPa, and a linear transmittance of 1.4 at a wavelength of 600 nm at a sample thickness of 1 mm. %Met. Also, it can be seen that μ=4.0 mm −1 and the in-line transmittance (T) at a thickness of 0.1 mm is 50%. From this, it can be confirmed that the sintered body of this example has sufficient strength and translucency to be used as a cover member.
 実施例2
 添加元素量としてのアルミニウム含有量が0.25質量%及びゲルマニウム含有量が0.75質量%となるようにアルミナゾル及びゲルマニア粉末を混合したこと以外は、実施例1と同様な方法で、添加元素量としてのアルミニウム含有量が0.25質量%及びゲルマニウム含有量が0.75質量%であり、残部が3mol%イットリウム含有ジルコニアからなる本実施例の焼結体を得た。本実施例の焼結体は、目視により透光性を有することが確認でき、また、平均結晶粒径は110nmであった。
 本実施形態の焼結体は、相対密度が99.90%(実測密度:6.053g/cm)、曲げ強度が1630MPa、及び、試料厚さ1mmにおける波長600nmに対する直線透過率が1.5%であった。また、μ=3.9mm-1であり、厚さ0.1mmにおける直線透過率(T)が51%であることがわかる。これより、本実施例の焼結体は、カバー部材として使用し得る強度及び透光性を有することが確認できる。
Example 2
Additive elements were added in the same manner as in Example 1 except that the alumina sol and the germania powder were mixed so that the aluminum content as the additive element amount was 0.25% by mass and the germanium content was 0.75% by mass. A sintered body of this example was obtained, which had an aluminum content of 0.25% by mass, a germanium content of 0.75% by mass, and a balance of 3 mol% yttrium-containing zirconia. The sintered body of this example was visually confirmed to have translucency, and the average crystal grain size was 110 nm.
The sintered body of the present embodiment has a relative density of 99.90% (measured density: 6.053 g/cm 3 ), a bending strength of 1630 MPa, and a linear transmittance of 1.5 at a wavelength of 600 nm at a sample thickness of 1 mm. %Met. Also, it can be seen that μ=3.9 mm −1 and the in-line transmittance (T) at a thickness of 0.1 mm is 51%. From this, it can be confirmed that the sintered body of this example has sufficient strength and translucency to be used as a cover member.
 実施例3
 添加元素量としてのアルミニウム含有量が0.15質量%及びゲルマニウム含有量が0.25質量%となるようにアルミナゾル及びゲルマニア粉末を混合したこと以外は、実施例1と同様な方法で、添加元素量としてのアルミニウム含有量が0.15質量%及びゲルマニウム含有量が0.25質量%であり、残部が3mol%イットリウム含有ジルコニアからなる粉末を得た。
 得られた粉末を使用したこと、及び、予備焼結の温度を1200℃としたこと以外は実施例1と同様な方法で、添加元素量としてのアルミニウム含有量を0.15質量%及びゲルマニウム含有量が0.25質量%であり、残部が3mol%イットリウム含有ジルコニアからなる本実施例の焼結体を得た。本実施例の焼結体は、目視により透光性を有することが確認でき、また、平均結晶粒径は130nmであった。
 本実施形態の焼結体は、相対密度が99.90%(実測密度:6.087g/cm)、曲げ強度が1700MPa、及び、試料厚さ1mmにおける波長600nmに対する直線透過率が2.2%であった。また、μ=3.5mm-1であり、厚さ0.1mmにおける直線透過率(T)が53%であることがわかる。これより、本実施例の焼結体は、カバー部材として使用し得る強度及び透光性を有することが確認できる。
Example 3
Additive elements were added in the same manner as in Example 1, except that the alumina sol and the germania powder were mixed so that the aluminum content as the additive element amount was 0.15% by mass and the germanium content was 0.25% by mass. A powder was obtained having an aluminum content of 0.15 wt.
In the same manner as in Example 1 except that the obtained powder was used and the pre-sintering temperature was set to 1200 ° C., the aluminum content as the amount of additive elements was 0.15% by mass and germanium was added. A sintered body of this example was obtained which was composed of zirconia containing 0.25% by mass of yttrium and the balance being 3 mol% yttrium. The sintered body of this example was visually confirmed to have translucency, and the average crystal grain size was 130 nm.
The sintered body of this embodiment has a relative density of 99.90% (measured density: 6.087 g/cm 3 ), a bending strength of 1700 MPa, and a linear transmittance of 2.2 at a wavelength of 600 nm at a sample thickness of 1 mm. %Met. Also, it can be seen that μ=3.5 mm −1 and the in-line transmittance (T) at a thickness of 0.1 mm is 53%. From this, it can be confirmed that the sintered body of this example has sufficient strength and translucency to be used as a cover member.
200:表示デバイス
201:カバー部材
202:タッチパネル
203:表示モジュール

 
200: Display device 201: Cover member 202: Touch panel 203: Display module

Claims (8)

  1.  安定化元素を含有し、少なくとも正方晶ジルコニアを含むジルコニアからなり、平均結晶粒径が10nm以上250nm以下であり、なおかつ、相対密度が99.85%以上である焼結体から構成されるカバー部材。 A cover member composed of a sintered body containing a stabilizing element, made of zirconia containing at least tetragonal zirconia, having an average crystal grain size of 10 nm or more and 250 nm or less, and having a relative density of 99.85% or more. .
  2.  前記安定化元素が、スカンジウム、イットリウム及びランタノイド系希土元素の群から選ばれる1種以上である、請求項1に記載のカバー部材。 The cover member according to claim 1, wherein the stabilizing element is one or more selected from the group consisting of scandium, yttrium and lanthanide rare earth elements.
  3.  前記安定化元素が、イットリウムである、請求項1又は2に記載のカバー部材。 The cover member according to claim 1 or 2, wherein the stabilizing element is yttrium.
  4.  前記安定化元素の含有量が、2.0mol%以上6.0mol%以下である請求項3に記載のカバー部材。 The cover member according to claim 3, wherein the content of the stabilizing element is 2.0 mol% or more and 6.0 mol% or less.
  5.  前記焼結体が、ゲルマニウム、アルミニウム及びケイ素の群から選ばれる1種以上を含む、請求項1乃至4のいずれかに記載のカバー部材。 The cover member according to any one of claims 1 to 4, wherein the sintered body contains one or more selected from the group of germanium, aluminum and silicon.
  6.  厚みが0.1mm以上1.0mm以下である、請求項1乃至5のいずれかに記載のカバー部材。 The cover member according to any one of claims 1 to 5, having a thickness of 0.1 mm or more and 1.0 mm or less.
  7.  請求項1乃至6のいずれかに記載のカバー部材を備えた表示デバイス。 A display device comprising the cover member according to any one of claims 1 to 6.
  8.  請求項7に記載の表示デバイスを備えた電子機器。

     
    An electronic device comprising the display device according to claim 7 .

PCT/JP2022/003151 2021-02-03 2022-01-27 Cover member WO2022168734A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022579499A JPWO2022168734A1 (en) 2021-02-03 2022-01-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-015664 2021-02-03
JP2021015664 2021-02-03

Publications (1)

Publication Number Publication Date
WO2022168734A1 true WO2022168734A1 (en) 2022-08-11

Family

ID=82741510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003151 WO2022168734A1 (en) 2021-02-03 2022-01-27 Cover member

Country Status (2)

Country Link
JP (1) JPWO2022168734A1 (en)
WO (1) WO2022168734A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255570A (en) * 1989-03-30 1990-10-16 Nippon Tungsten Co Ltd Zirconia ceramics material and production thereof
JP2004075425A (en) * 2002-08-12 2004-03-11 Nitsukatoo:Kk Partially stabilized zirconia sintered compact
JP2004137128A (en) * 2002-10-18 2004-05-13 Nitsukatoo:Kk Partially stabilized sintered zirconia
WO2008013099A1 (en) * 2006-07-25 2008-01-31 Tosoh Corporation Sintered zirconia having high light transmission and high strength, use of the same and process for production thereof
JP2011073907A (en) * 2009-09-29 2011-04-14 World Lab:Kk Sintered body of zirconia and method for manufacturing the same
JP2015516351A (en) * 2012-03-01 2015-06-11 フラウンホーファー ゲゼルシャフト ツア フェルデルング デア アンゲヴァンテン フォルシュング エー ファウ Ceramic sintered compact composed of Y2O3 stabilized zirconium oxide and method for producing ceramic sintered compact composed of Y2O3 stabilized zirconium oxide
WO2015098765A1 (en) * 2013-12-24 2015-07-02 東ソー株式会社 Translucent zirconia sintered body and zirconia powder, and use therefor
WO2020217942A1 (en) * 2019-04-25 2020-10-29 東ソー株式会社 Sintered body, powder, and method for producing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255570A (en) * 1989-03-30 1990-10-16 Nippon Tungsten Co Ltd Zirconia ceramics material and production thereof
JP2004075425A (en) * 2002-08-12 2004-03-11 Nitsukatoo:Kk Partially stabilized zirconia sintered compact
JP2004137128A (en) * 2002-10-18 2004-05-13 Nitsukatoo:Kk Partially stabilized sintered zirconia
WO2008013099A1 (en) * 2006-07-25 2008-01-31 Tosoh Corporation Sintered zirconia having high light transmission and high strength, use of the same and process for production thereof
JP2011073907A (en) * 2009-09-29 2011-04-14 World Lab:Kk Sintered body of zirconia and method for manufacturing the same
JP2015516351A (en) * 2012-03-01 2015-06-11 フラウンホーファー ゲゼルシャフト ツア フェルデルング デア アンゲヴァンテン フォルシュング エー ファウ Ceramic sintered compact composed of Y2O3 stabilized zirconium oxide and method for producing ceramic sintered compact composed of Y2O3 stabilized zirconium oxide
WO2015098765A1 (en) * 2013-12-24 2015-07-02 東ソー株式会社 Translucent zirconia sintered body and zirconia powder, and use therefor
WO2020217942A1 (en) * 2019-04-25 2020-10-29 東ソー株式会社 Sintered body, powder, and method for producing same

Also Published As

Publication number Publication date
JPWO2022168734A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
CN107108374B (en) Light-transmitting zirconia sintered body, method for producing same, and use thereof
Wang et al. Transparent ceramics: Processing, materials and applications
JP5427368B2 (en) Optoceramics, optical elements produced from them, applications thereof and imaging optical elements
JP5351147B2 (en) Sintered product with cubic structure
JP5125065B2 (en) Transparent zirconia sintered body
CN103025679B (en) Cordierite sintered body
US20190062219A1 (en) Ceramic housing with texture
US7751123B2 (en) Optical elements made from ceramics comprising one or more oxides of Y, Sc, in and/or lanthanide elements and mapping optics including the optical elements
Petit et al. Sintering of α-alumina for highly transparent ceramic applications
US20070127140A1 (en) Optical elements and imaging optics comprising them
US9771303B2 (en) Cordierite sintered body, method for manufacturing the same, composite substrate, and electronic device
JP5390454B2 (en) Passive optical ceramics having a cubic structure, method for producing the same, and use thereof
CN109790075B (en) Transparent spinel sintered body, optical member, and method for producing transparent spinel sintered body
KR20150112997A (en) Light transmitting metal oxide sintered body manufacturing method and light transmitting metal oxide sintered body
WO2022168734A1 (en) Cover member
JP6747121B2 (en) Translucent zirconia sintered body, method for producing the same, and use thereof
JP7135501B2 (en) Zirconia sintered body and manufacturing method thereof
JP3000685B2 (en) Translucent yttria sintered body and method for producing the same
RU2735350C2 (en) Transparent ceramic material as a component of unbreakable optical glasses
Chu et al. Ferroelectric phase transition and optical performance of PLZnNZT transparent ceramics
Oparina et al. Production of optically transparent shock-resisting ceramics by the methods of powder metallurgy
Shi et al. Introduction of Sr (In0. 5Ta0. 5) O3 to modulate phase structure and optoelectronic properties of (K0. 5Na0. 5) NbO3 ceramics
WO2022168731A1 (en) Sintered body and method for producing same
WO2023140082A1 (en) Sintered body and method for producing same
JP7279545B2 (en) dark gray sintered body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749608

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022579499

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749608

Country of ref document: EP

Kind code of ref document: A1