JP2013252473A - Wastewater treatment apparatus - Google Patents

Wastewater treatment apparatus Download PDF

Info

Publication number
JP2013252473A
JP2013252473A JP2012128214A JP2012128214A JP2013252473A JP 2013252473 A JP2013252473 A JP 2013252473A JP 2012128214 A JP2012128214 A JP 2012128214A JP 2012128214 A JP2012128214 A JP 2012128214A JP 2013252473 A JP2013252473 A JP 2013252473A
Authority
JP
Japan
Prior art keywords
wastewater
superheated steam
electric field
treatment apparatus
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012128214A
Other languages
Japanese (ja)
Inventor
Shinichi Nakamura
信一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omega Inc
Original Assignee
Omega Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omega Inc filed Critical Omega Inc
Priority to JP2012128214A priority Critical patent/JP2013252473A/en
Publication of JP2013252473A publication Critical patent/JP2013252473A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wastewater treatment apparatus capable of avoiding or suppressing adverse influences of salt.SOLUTION: A wastewater treatment apparatus includes: a field desalting mechanism 2 which performs desalting treatment on wastewater 1; and an overheat steam supply mechanism 3 which applies overheat steam to the wastewater 1 on which the desalting treatment has been performed. The wastewater treatment apparatus includes the field desalting mechanism which performs desalting treatment on wastewater, such that a salt concentration in wastewater can be reduced in advance before supplying overheat steam. The wastewater treatment apparatus further includes the overheat steam supply mechanism which applies overheat steam to wastewater on which desalting treatment has been performed, such that wastewater can then be purified by thermally decomposing a dirt component (generally an organic component) in the wastewater of which the salt concentration has been reduced beforehand.

Description

この発明は、特に高濃度有機排液の浄化に有効であり好適である工場廃水・排液その他の排水処理装置に関するものである。   The present invention relates to a factory wastewater / drainage and other wastewater treatment apparatus which is particularly effective and suitable for purification of high concentration organic wastewater.

従来、下水汚泥などを焼却させるための焼却システムに関する提案があった(特許文献1)。
すなわち、従来技術の焼却システムは流動焼却炉と空気予熱器と排ガス処理塔とを含んでいる。下水汚泥を脱水することにより形成された脱水ケーキは乾燥機により乾燥され、乾燥ケーキとして流動焼却炉内に投入されるか、または乾燥ケーキと共に脱水ケーキのまま流動焼却炉内に投入される。次いで乾燥ケーキは流動焼却炉内で焼却され、空気予熱器および熱交換器を介して排ガス処理塔に進入する。排ガス処理塔内においては排ガス内の酸性分を水に吸収させた後に排ガスを排出する。酸性分を含んだ水はアルカリ性物質により中和された後、別途排水される。熱交換器は熱媒体を介して乾燥機に接続されており、排ガスの熱を利用して乾燥機を加熱している。
また、流動焼却炉内の燃焼用空気は通常は排ガスを利用した空気予熱器により予め加熱された後に流動焼却炉内に供給されている。例えば流動焼却炉内の温度が大幅に高くなる場合には、空気予熱器により加熱された燃焼用空気を空気冷却器により冷却し、これにより流動焼却炉内の温度を調整している。
しかしながら、排ガスを利用する熱交換器のみにより脱水ケーキを乾燥させる場合には、乾燥が不十分となり自燃可能な含水率を有する乾燥ケーキを形成するのは困難である。このような場合には乾燥ケーキのみを流動焼却炉内に投入しても焼却させられないので、化石燃料系補助燃料、例えば重油を焼却炉内に別途投入して乾燥ケーキを焼却させる必要がある。化石燃料系補助燃料は比較的高価であるので、従来技術の焼却システムにおいては運転費用が高まることとなる。
また、空気予熱器により加熱した燃焼用空気を空気冷却器により冷却した後に流動焼却炉内に供給する場合には、流動焼却炉内の温度を調整するためにタイムラグが生じるので、流動焼却炉内の温度を迅速かつ正確に制御するのが極めて困難となり、結果的に焼却システムの自燃作用を制御するのが困難となる。また燃焼用空気を空気予熱器により加熱した後に空気冷却器により冷却すること自体、熱的に無駄であるといえる。さらに、補助燃料なしに燃焼可能な含水率になるまで脱水ケーキ全体を加熱する場合には、形成された乾燥ケーキの粘性が高くなるので、乾燥ケーキの搬送および投入時にこれら乾燥ケーキが詰まる場合がある。
この提案はこのような事情に鑑みてなされたものであり、化石燃料系補助燃料を利用することなしに自燃可能で、焼却炉内の温度を迅速かつ正確に制御可能でかつ低費用で運転可能な焼却システムを提供することを目的とする。
前述した目的を達成するためにこの提案によれば、焼却炉と、脱水ケーキを乾燥させることにより乾燥ケーキを形成する乾燥機と、該乾燥機により形成された乾燥ケーキを前記焼却炉内に供給する乾燥ケーキ供給部と、前記焼却炉からの排ガスの熱を前記乾燥機に伝える熱交換器と、前記排ガス内の酸性分を除去するための排ガス処理塔と、前記排ガス処理塔からの排水の熱を前記乾燥機に伝えるヒートポンプとを具備し、前記熱交換器と前記ヒートポンプとにより前記乾燥機を加熱するようにした焼却システムが提供される。
すなわちこの提案によって、焼却炉からの排ガスと排ガス処理塔からの排水との熱により自燃可能な乾燥ケーキを形成できるので、化石燃料系補助燃料を利用することなしに低費用で運転可能な焼却システムを提供できる、というものである。
しかし、下水汚泥に含まれる食塩が焼却炉に悪影響を及ぼすことがあるという問題があった。
特開2004−93018号公報
Conventionally, there has been a proposal regarding an incineration system for incinerating sewage sludge and the like (Patent Document 1).
That is, the prior art incineration system includes a fluidized incinerator, an air preheater, and an exhaust gas treatment tower. The dewatered cake formed by dewatering the sewage sludge is dried by a drier and is put into the fluidized incinerator as a dried cake, or is put into the fluidized incinerator as a dehydrated cake together with the dried cake. The dried cake is then incinerated in a fluidized incinerator and enters the exhaust gas treatment tower via an air preheater and heat exchanger. In the exhaust gas treatment tower, the acid content in the exhaust gas is absorbed by water and then exhausted. Water containing an acidic component is neutralized with an alkaline substance and then drained separately. The heat exchanger is connected to the dryer via a heat medium, and heats the dryer using the heat of the exhaust gas.
Further, the combustion air in the fluidized incinerator is usually heated in advance by an air preheater using exhaust gas and then supplied into the fluidized incinerator. For example, when the temperature in the fluidized incinerator is significantly increased, the combustion air heated by the air preheater is cooled by the air cooler, thereby adjusting the temperature in the fluidized incinerator.
However, when the dehydrated cake is dried only by a heat exchanger that uses exhaust gas, it is difficult to form a dried cake having a moisture content that can be self-combusted due to insufficient drying. In such a case, even if only the dry cake is put into the fluidized incinerator, it cannot be incinerated. Therefore, it is necessary to separately inject the fossil fuel auxiliary fuel, for example, heavy oil, into the incinerator to incinerate the dry cake. . Since fossil fuel-based supplementary fuels are relatively expensive, operating costs are increased in prior art incineration systems.
In addition, when the combustion air heated by the air preheater is cooled by the air cooler and then supplied to the fluidized incinerator, a time lag occurs to adjust the temperature in the fluidized incinerator. It is extremely difficult to control the temperature of the furnace quickly and accurately, and as a result, it is difficult to control the self-combustion function of the incineration system. In addition, it can be said that the combustion air itself is wasted thermally after being heated by the air preheater and then cooled by the air cooler. In addition, when the entire dehydrated cake is heated to a moisture content that can be combusted without auxiliary fuel, the viscosity of the formed dried cake increases, so that the dried cake may become clogged when the dried cake is transported and charged. is there.
This proposal was made in view of such circumstances, and can be self-combusted without using fossil fuel-based auxiliary fuel, and the temperature in the incinerator can be controlled quickly and accurately and can be operated at low cost. Aims to provide a safe incineration system.
According to this proposal to achieve the above-described object, an incinerator, a dryer for forming a dried cake by drying a dehydrated cake, and a dried cake formed by the dryer are supplied into the incinerator. A dry cake supply section, a heat exchanger for transferring heat of exhaust gas from the incinerator to the dryer, an exhaust gas treatment tower for removing acidic components in the exhaust gas, and waste water from the exhaust gas treatment tower There is provided an incineration system comprising a heat pump for transferring heat to the dryer and heating the dryer by the heat exchanger and the heat pump.
In other words, with this proposal, a dry cake that can be self-combusted can be formed by the heat of the exhaust gas from the incinerator and the waste water from the exhaust gas treatment tower. Can be provided.
However, there is a problem that salt contained in sewage sludge may adversely affect the incinerator.
JP 2004-93018 A

そこでこの発明は、食塩の悪影響を回避乃至抑制することが出来る排水処理装置を提供しようとするものである。   Accordingly, the present invention is intended to provide a wastewater treatment apparatus that can avoid or suppress the adverse effects of salt.

前記課題を解決するためこの発明では次のような技術的手段を講じている。
(1)この発明の排水処理装置は、排水を脱塩処理する電界脱塩機構と、脱塩処理した排水に過熱蒸気を及ぼす過熱蒸気供給機構とを有することを特徴とする。
前記排水として、液晶製造工場、化学工場その他の工場廃水、一般排水などを例示することが出来る。前記電界脱塩機構として、陽極と陰極との電極間に直流電圧を印加して電界(電場)を形成させ、電気的吸引力によりナトリウムイオンや塩化物イオンを分離する機構を例示することが出来る。前記過熱蒸気供給機構として、水の沸点を越える高温の蒸気を供給する機構を例示することが出来る。
この排水処理装置によると、排水を脱塩処理する電界脱塩機構を有するので、過熱蒸気を供給する前に排水中の食塩濃度を予め低減しておくことが出来る。そして、脱塩処理した排水に過熱蒸気を及ぼす過熱蒸気供給機構を有するので、食塩濃度を予め低減した排水中の汚れ成分(一般的には有機成分)を熱分解して浄化することが出来る。
In order to solve the above problems, the present invention takes the following technical means.
(1) The wastewater treatment apparatus of the present invention is characterized by having an electric field desalination mechanism for desalinating wastewater and a superheated steam supply mechanism for applying superheated steam to the desalted wastewater.
Examples of the waste water include liquid crystal manufacturing factories, chemical factories and other factory waste water, and general waste water. Examples of the electric field desalination mechanism include a mechanism in which an electric field (electric field) is formed by applying a DC voltage between the anode and the cathode, and sodium ions and chloride ions are separated by an electric attractive force. . Examples of the superheated steam supply mechanism include a mechanism for supplying high-temperature steam exceeding the boiling point of water.
According to this waste water treatment apparatus, since it has an electric field desalination mechanism for desalinating the waste water, the salt concentration in the waste water can be reduced in advance before supplying superheated steam. And since it has the superheated steam supply mechanism which exerts superheated steam on the desalted waste water, the soil component (generally organic component) in the waste water whose salt concentration has been reduced in advance can be thermally decomposed and purified.

(2) 前記過熱蒸気供給機構は、水蒸気を過熱蒸気に昇温するようにしてもよい。
この過熱蒸気供給機構は、水蒸気(例えば100〜120℃)を、過熱蒸気(例えば900〜1200℃)に昇温するようにすると、2段階で高温の過熱蒸気を好適に得ることが出来る。
例えば、過熱蒸気は次のようにして、マイクロ波を利用することにより発生させることが出来る。すなわち、マイクロ波(高周波より波長が短い)をマイクロ波吸収発熱体(炭化ケイ素SiC:セラミックスなど)に照射してこれを600℃以上に昇温せしめ、この高温のマイクロ波吸収発熱体により水蒸気を接触的に昇温して過熱蒸気を発生させる。
また、過熱蒸気は次のようにして、うず電流を利用することにより発生させることが出来る。すなわち、高周波交流電源によりコイルに磁力線を発生させ、この交流磁力線によって発生するうず電流が水蒸気にジュール熱を生じさせ、このジュール熱により水蒸気を過熱蒸気に昇温させる。
(2) The superheated steam supply mechanism may raise the temperature of the steam to superheated steam.
This superheated steam supply mechanism can suitably obtain high-temperature superheated steam in two stages by increasing the temperature of water vapor (for example, 100 to 120 ° C.) to superheated steam (for example 900 to 1200 ° C.).
For example, superheated steam can be generated by utilizing microwaves as follows. That is, microwaves (wavelength shorter than high frequency) are irradiated to a microwave absorption heating element (silicon carbide SiC: ceramics, etc.) to raise the temperature to 600 ° C. or higher, and water vapor is generated by this high temperature microwave absorption heating element. The temperature is raised catalytically to generate superheated steam.
Further, superheated steam can be generated by utilizing eddy current as follows. That is, a magnetic field line is generated in the coil by a high-frequency AC power source, and an eddy current generated by the AC magnetic field line generates Joule heat in the steam, and the Joule heat raises the steam to superheated steam.

(3) 前記電界脱塩機構で発生した水素ガスを水素燃料発電機に供給して発電を行ない、この電気を電界脱塩機構の電力源として利用するようにしてもよい。
このように構成すると、電界脱塩機構で発生した水素ガスを無駄に拡散させることなく有効利用することが出来る。
(3) Hydrogen gas generated by the electric field desalination mechanism may be supplied to a hydrogen fuel generator for power generation, and this electricity may be used as a power source for the electric field desalination mechanism.
With this configuration, the hydrogen gas generated by the electric field desalination mechanism can be effectively used without being diffused wastefully.

この発明は上述のような構成であり、次の効果を有する。
食塩を予め低減した排水中の汚れ成分(一般的には有機成分)を熱分解して浄化することが出来るので、食塩の悪影響を回避乃至抑制することが出来る排水処理装置を提供することが出来る。
The present invention is configured as described above and has the following effects.
Since the soil components (generally organic components) in the wastewater in which the salt has been reduced can be thermally decomposed and purified, a wastewater treatment apparatus that can avoid or suppress the adverse effects of the salt can be provided. .

以下、この発明の実施の形態を説明する。
図1〜図3に示すように、この実施形態の排水処理装置は、排水1を脱塩処理する電界脱塩機構2と、脱塩処理した排水1に過熱蒸気を及ぼす過熱蒸気供給機構3とを有する。
前記排水1として、液晶製造工場、化学工場その他の工場廃水、一般排水などを例示することが出来る。前記電界脱塩機構2として、陽極と陰極との電極間に直流電圧を印加して電界(電場)を形成させ、電気的吸引力によりナトリウムイオンや塩化物イオンを分離する機構を例示することが出来る。前記過熱蒸気供給機構3として、水の沸点を越える高温の蒸気を供給する機構(蒸気ボイラ5や蒸気発生装置13と過熱蒸気生成装置6など)を例示することが出来る。
Embodiments of the present invention will be described below.
As shown in FIGS. 1 to 3, the wastewater treatment apparatus of this embodiment includes an electric field desalination mechanism 2 for desalinating the wastewater 1, and a superheated steam supply mechanism 3 that exerts superheated steam on the desalted wastewater 1. Have
Examples of the waste water 1 include liquid crystal manufacturing factories, chemical factories and other factory waste water, and general waste water. Examples of the electric field desalination mechanism 2 include a mechanism in which an electric field (electric field) is formed by applying a DC voltage between the anode and the cathode, and sodium ions and chloride ions are separated by an electric attractive force. I can do it. Examples of the superheated steam supply mechanism 3 include a mechanism for supplying high-temperature steam exceeding the boiling point of water (such as the steam boiler 5, the steam generator 13, and the superheated steam generator 6).

前記過熱蒸気供給機構3は、水蒸気を過熱蒸気に昇温するようにした。
例えば、過熱蒸気は次のようにして、マイクロ波を利用することにより発生させることが出来る。すなわち、マイクロ波(高周波より波長が短い)をマイクロ波吸収発熱体(炭化ケイ素SiC:セラミックスなど)に照射してこれを600℃以上に昇温せしめ、この高温のマイクロ波吸収発熱体により水蒸気を接触的に昇温して過熱蒸気を発生させる。
また、過熱蒸気は次のようにして、うず電流を利用することにより発生させることが出来る。すなわち、高周波交流電源によりコイルに磁力線を発生させ、この交流磁力線によって発生するうず電流が水蒸気にジュール熱を生じさせ、このジュール熱により水蒸気を過熱蒸気に昇温させる。
電界脱塩機構2や過熱蒸気供給機構3のエネルギー源として、ソーラーパネル、水素燃料電池、コージェネなどを利用することが出来る。
The superheated steam supply mechanism 3 is configured to raise the temperature of water vapor to superheated steam.
For example, superheated steam can be generated by utilizing microwaves as follows. That is, microwaves (wavelength shorter than high frequency) are irradiated to a microwave absorption heating element (silicon carbide SiC: ceramics, etc.) to raise the temperature to 600 ° C. or higher, and water vapor is generated by this high temperature microwave absorption heating element. The temperature is raised catalytically to generate superheated steam.
Further, superheated steam can be generated by utilizing eddy current as follows. That is, a magnetic field line is generated in the coil by a high-frequency AC power source, and an eddy current generated by the AC magnetic field line generates Joule heat in the steam, and the Joule heat raises the steam to superheated steam.
As an energy source of the electric field desalination mechanism 2 and the superheated steam supply mechanism 3, a solar panel, a hydrogen fuel cell, a cogeneration, etc. can be used.

次に、この実施形態の排水処理装置の使用状態を説明する。
この排水処理装置によると、排水1を脱塩処理する電界脱塩機構2を有するので、過熱蒸気を供給する前に排水1中の食塩濃度を予め低減しておくことが出来る。そして、脱塩処理した排水1に過熱蒸気を及ぼす過熱蒸気供給機構3を有するので、食塩濃度を予め低減した排水1中の汚れ成分(一般的には有機成分)を熱分解して浄化することが出来、食塩の悪影響を回避乃至抑制することが出来るという利点がある。
また、前記過熱蒸気供給機構3は、水蒸気を過熱蒸気に昇温するようにしており、水蒸気(例えば100〜120℃)を、過熱蒸気(例えば900〜1200℃)に昇温するようにすると、2段階で高温の過熱蒸気を好適に得ることが出来るという利点がある。
Next, the use state of the waste water treatment apparatus of this embodiment will be described.
According to this waste water treatment apparatus, since it has the electric field desalination mechanism 2 which desalinates the waste water 1, the salt concentration in the waste water 1 can be reduced beforehand before superheated steam is supplied. And since it has the superheated steam supply mechanism 3 which exerts superheated steam on the desalted waste water 1, the dirt component (generally organic component) in the waste water 1 whose salt concentration has been reduced in advance is thermally decomposed and purified. There is an advantage that adverse effects of salt can be avoided or suppressed.
In addition, the superheated steam supply mechanism 3 is configured to increase the temperature of water vapor to superheated steam. When the temperature of water vapor (for example, 100 to 120 ° C.) is increased to superheated steam (for example, 900 to 1200 ° C.), There is an advantage that high-temperature superheated steam can be suitably obtained in two stages.

この排水処理装置によると、排水を電界分離により脱塩をするようにしているので、装置の疲労や腐食を抑制することが出来る。そして、電界分離により脱塩する際に得られる塩濃縮水は、電解質として再利用することが出来る。   According to this waste water treatment apparatus, since waste water is desalted by electric field separation, fatigue and corrosion of the apparatus can be suppressed. And the salt concentration water obtained when desalting by electric field separation can be reused as an electrolyte.

以下、実施例としてさらに詳細に説明する。
〔実施例1〕
図1に示すように、この排水処理装置は、排水1(300000ppm/CODの高濃度有機廃液)を脱塩処理する電界脱塩機構2と、脱塩処理した排水1に過熱蒸気を及ぼす過熱蒸気供給機構3とを有する。前記過熱蒸気供給機構3は、淡水4を100〜120℃の水蒸気に変換する蒸気ボイラ5と、この水蒸気を900〜1200℃に昇温する過熱蒸気生成装置6とから構成している。
前記淡水4は、水道水7を電界脱塩機構2に供給して、塩濃縮水8と分離することにより得るようにしている。電界脱塩機構2で得られた塩濃縮水8は、廃棄するか又は電解質として再利用9するようにしている。
前記排水1を電界脱塩機構2に送った後、前記過熱蒸気と共に熱分解装置10へと供給する。そして、熱分解装置10で炭化パウダー11が得られたら、燃料として使用12するようにしている。
Hereinafter, it demonstrates still in detail as an Example.
[Example 1]
As shown in FIG. 1, this wastewater treatment apparatus includes an electric field desalination mechanism 2 for desalinating wastewater 1 (300000 ppm / COD high concentration organic waste liquid) and superheated steam that exerts superheated steam on the desalted wastewater 1. And a supply mechanism 3. The superheated steam supply mechanism 3 includes a steam boiler 5 that converts fresh water 4 into water vapor at 100 to 120 ° C., and a superheated steam generator 6 that raises the water vapor to 900 to 1200 ° C.
The fresh water 4 is obtained by supplying the tap water 7 to the electric field desalting mechanism 2 and separating it from the salt concentrated water 8. The salt concentrate 8 obtained by the electric field desalting mechanism 2 is discarded or reused 9 as an electrolyte.
After the waste water 1 is sent to the electric field desalination mechanism 2, it is supplied to the thermal decomposition apparatus 10 together with the superheated steam. When the carbonized powder 11 is obtained by the thermal decomposition apparatus 10, it is used 12 as fuel.

〔実施例2〕
図2に示すように、この排水処理装置は、排水1(300000ppm/CODの高濃度有機廃液)を脱塩処理する電界脱塩機構2と、脱塩処理した排水1に過熱蒸気を及ぼす過熱蒸気供給機構3とを有する。前記過熱蒸気供給機構3は、淡水4を100〜120℃の水蒸気に変換する燃料の燃焼式の蒸気発生成装置13と、この水蒸気を900〜1200℃に昇温する過熱蒸気生成装置6とから構成している。
前記淡水4は、水道水7を電界脱塩機構2に供給して、塩濃縮水8と分離することにより得るようにしている。電界脱塩機構2で得られた塩濃縮水8は、廃棄するか又は電解質として再利用9するようにしている。
前記排水1を電界脱塩機構2に送った後、前記過熱蒸気と共に熱分解装置10へと供給する。そして、熱分解装置10で炭化パウダー11が得られたら、過熱蒸気発生装置13の燃料として使用するようにしている。
[Example 2]
As shown in FIG. 2, this waste water treatment apparatus is composed of an electric field desalination mechanism 2 for desalinating waste water 1 (300000 ppm / COD high concentration organic waste liquid) and superheated steam that exerts superheated steam on the desalted waste water 1. And a supply mechanism 3. The superheated steam supply mechanism 3 includes a fuel combustion-type steam generating device 13 that converts fresh water 4 into water vapor at 100 to 120 ° C., and a superheated steam generator 6 that raises the water vapor to 900 to 1200 ° C. It is composed.
The fresh water 4 is obtained by supplying the tap water 7 to the electric field desalting mechanism 2 and separating it from the salt concentrated water 8. The salt concentrate 8 obtained by the electric field desalting mechanism 2 is discarded or reused 9 as an electrolyte.
After the waste water 1 is sent to the electric field desalination mechanism 2, it is supplied to the thermal decomposition apparatus 10 together with the superheated steam. When the carbonized powder 11 is obtained by the thermal decomposition apparatus 10, it is used as a fuel for the superheated steam generator 13.

〔実施例3〕
図3に示すように、この排水処理装置は、排水1(300000ppm/CODの高濃度有機廃液)を脱塩処理する電界脱塩機構2と、脱塩処理した排水1に過熱蒸気を及ぼす過熱蒸気供給機構3とを有する。前記過熱蒸気供給機構3は、淡水4を100〜120℃の水蒸気に変換する蒸気発生装置13と、この水蒸気を900〜1200℃に昇温する過熱蒸気生成装置6とから構成している。
前記淡水4は、水道水7を電界脱塩機構2に供給して、塩濃縮水8と分離することにより得るようにしている。電界脱塩機構2で得られた塩濃縮水8や次亜塩素酸(HClO)16は、廃棄するか又は電解質として再利用9するようにしている。
前記排水1を電界脱塩機構2に送った後、前記過熱蒸気と共に熱分解装置10へと供給する。そして、熱分解装置10で炭化パウダー11が得られたら、蒸気発生装置13の燃料として使用するようにしている。
Example 3
As shown in FIG. 3, this wastewater treatment apparatus includes an electric field desalination mechanism 2 for desalinating wastewater 1 (300000 ppm / COD high concentration organic waste liquid) and superheated steam that exerts superheated steam on the desalted wastewater 1. And a supply mechanism 3. The superheated steam supply mechanism 3 includes a steam generator 13 that converts fresh water 4 into water vapor at 100 to 120 ° C., and a superheated steam generator 6 that raises the water vapor to 900 to 1200 ° C.
The fresh water 4 is obtained by supplying the tap water 7 to the electric field desalting mechanism 2 and separating it from the salt concentrated water 8. The salt concentrated water 8 and hypochlorous acid (HCI) 16 obtained by the electric field desalting mechanism 2 are discarded or reused 9 as an electrolyte.
After the waste water 1 is sent to the electric field desalination mechanism 2, it is supplied to the thermal decomposition apparatus 10 together with the superheated steam. When the carbonized powder 11 is obtained by the thermal decomposition apparatus 10, it is used as fuel for the steam generator 13.

また、電界脱塩機構2で発生した水素ガス(H2)を水素燃料発電機14に供給して発電を行ない、この電気を過熱蒸気生成装置6と電界脱塩機構2の電力源として利用するようにしている。したがって、電界脱塩機構2で発生した水素ガスを無駄に拡散させることなく有効利用することが出来る。
水素燃料発電機14には、電解水素発生装置15からも水素ガスを供給するようにしている。さらに、水素燃料発電機14の廃熱を、加熱蒸気生成装置6で利用するようにしている。
Further, the hydrogen gas (H 2 ) generated in the electric field desalination mechanism 2 is supplied to the hydrogen fuel generator 14 to generate electricity, and this electricity is used as a power source for the superheated steam generator 6 and the electric field desalination mechanism 2. I am doing so. Therefore, the hydrogen gas generated by the electric field desalination mechanism 2 can be effectively used without being diffused wastefully.
The hydrogen fuel generator 14 is also supplied with hydrogen gas from the electrolytic hydrogen generator 15. Furthermore, the waste heat of the hydrogen fuel generator 14 is used in the heating steam generator 6.

食塩の悪影響を回避乃至抑制することが出来ることによって、種々の排水処理装置の用途に適用することができる。   By avoiding or suppressing the adverse effect of salt, it can be applied to various uses of waste water treatment equipment.

この発明の排水処理装置の実施形態の実施例1を説明するシステム・フロー図。The system flow figure explaining Example 1 of embodiment of the waste water treatment equipment of this invention. この発明の排水処理装置の実施形態の実施例2を説明するシステム・フロー図。The system flow figure explaining Example 2 of embodiment of the waste water treatment equipment of this invention. この発明の排水処理装置の実施形態の実施例3を説明するシステム・フロー図。The system flow figure explaining Example 3 of embodiment of the waste water treatment equipment of this invention.

1 排水
2 電界脱塩機構
3 過熱蒸気供給機構
14 水素燃料発電機
1 Drainage 2 Electric field desalination mechanism 3 Superheated steam supply mechanism
14 Hydrogen fuel generator

Claims (3)

排水(1)を脱塩処理する電界脱塩機構(2)と、脱塩処理した排水(1)に過熱蒸気を及ぼす過熱蒸気供給機構(3)とを有することを特徴とする排水処理装置。   A wastewater treatment apparatus comprising an electric field desalination mechanism (2) for desalinating the wastewater (1) and a superheated steam supply mechanism (3) for applying superheated steam to the desalted wastewater (1). 前記過熱蒸気供給機構(3)は、水蒸気を過熱蒸気に昇温するようにした請求項1記載の排水処理装置。   The waste water treatment apparatus according to claim 1, wherein the superheated steam supply mechanism (3) raises the temperature of the steam to superheated steam. 前記電界脱塩機構(2)で発生した水素ガスを水素燃料発電機(14)に供給して発電を行ない、この電気を電界脱塩機構(2)の電力源として利用するようにした請求項1又は2記載の排水処理装置。   The hydrogen gas generated by the electric field desalination mechanism (2) is supplied to a hydrogen fuel generator (14) to generate electricity, and this electricity is used as a power source of the electric field desalination mechanism (2). The waste water treatment apparatus according to 1 or 2.
JP2012128214A 2012-06-05 2012-06-05 Wastewater treatment apparatus Pending JP2013252473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012128214A JP2013252473A (en) 2012-06-05 2012-06-05 Wastewater treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012128214A JP2013252473A (en) 2012-06-05 2012-06-05 Wastewater treatment apparatus

Publications (1)

Publication Number Publication Date
JP2013252473A true JP2013252473A (en) 2013-12-19

Family

ID=49950455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012128214A Pending JP2013252473A (en) 2012-06-05 2012-06-05 Wastewater treatment apparatus

Country Status (1)

Country Link
JP (1) JP2013252473A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018001061A (en) * 2016-06-28 2018-01-11 合同会社トレスバイオ技研 Method for decomposing or carbonizing organic material and device used in the method
US10858267B2 (en) 2014-05-28 2020-12-08 Katz Water Tech, Llc Apparatus, method and system to remove contaminates from contaminated fluids
US10864482B2 (en) 2017-08-24 2020-12-15 Katz Water Tech, Llc Apparatus system and method to separate brine from water
US11034605B2 (en) 2018-03-29 2021-06-15 Katz Water Tech, Llc Apparatus system and method to extract minerals and metals from water
US11713258B2 (en) 2017-08-24 2023-08-01 Katz Water Tech, Llc Apparatus system and method to extract minerals and metals from water

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071399A (en) * 1996-06-28 1998-03-17 Mie Pref Gov Treatment of sludge
JPH10288829A (en) * 1997-04-16 1998-10-27 Konica Corp Method for regenerating processing agent for silver halide photographic sensitive material
JP2000204629A (en) * 1999-01-07 2000-07-25 Mitsui Bussan Plant Kk Self-contained flush toilet
JP2001205250A (en) * 2000-01-26 2001-07-31 Masateru Yamazaki Waste water treatment method and waste water treatment device
JP2002194362A (en) * 2000-12-27 2002-07-10 Kogi Corp Method for carbonizing with overheated steam
JP2002307065A (en) * 2001-04-16 2002-10-22 Inax Corp Domestic wastewater reutilization equipment
JP2003010854A (en) * 2001-07-02 2003-01-14 Asahi Glass Co Ltd Electrodializer and electric regeneration type desalting apparatus
JP2008086982A (en) * 2006-10-02 2008-04-17 Nobuaki Debari Superheated steam continuously-recycling treatment apparatus
JP2009226315A (en) * 2008-03-24 2009-10-08 Japan Organo Co Ltd Electric deionized water manufacturing device and manufacturing method of deionized water
JP2009245769A (en) * 2008-03-31 2009-10-22 Fuji Electric Holdings Co Ltd Fuel cell power generating apparatus
JP2011036796A (en) * 2009-08-11 2011-02-24 Taiheiyo Cement Corp Drying treatment system for organic sludge and drying treatment method therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071399A (en) * 1996-06-28 1998-03-17 Mie Pref Gov Treatment of sludge
JPH10288829A (en) * 1997-04-16 1998-10-27 Konica Corp Method for regenerating processing agent for silver halide photographic sensitive material
JP2000204629A (en) * 1999-01-07 2000-07-25 Mitsui Bussan Plant Kk Self-contained flush toilet
JP2001205250A (en) * 2000-01-26 2001-07-31 Masateru Yamazaki Waste water treatment method and waste water treatment device
JP2002194362A (en) * 2000-12-27 2002-07-10 Kogi Corp Method for carbonizing with overheated steam
JP2002307065A (en) * 2001-04-16 2002-10-22 Inax Corp Domestic wastewater reutilization equipment
JP2003010854A (en) * 2001-07-02 2003-01-14 Asahi Glass Co Ltd Electrodializer and electric regeneration type desalting apparatus
JP2008086982A (en) * 2006-10-02 2008-04-17 Nobuaki Debari Superheated steam continuously-recycling treatment apparatus
JP2009226315A (en) * 2008-03-24 2009-10-08 Japan Organo Co Ltd Electric deionized water manufacturing device and manufacturing method of deionized water
JP2009245769A (en) * 2008-03-31 2009-10-22 Fuji Electric Holdings Co Ltd Fuel cell power generating apparatus
JP2011036796A (en) * 2009-08-11 2011-02-24 Taiheiyo Cement Corp Drying treatment system for organic sludge and drying treatment method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10858267B2 (en) 2014-05-28 2020-12-08 Katz Water Tech, Llc Apparatus, method and system to remove contaminates from contaminated fluids
US10882761B2 (en) 2014-05-28 2021-01-05 Katz Water Tech, Llc Apparatus and method to remove contaminates from a fluid
US11420881B2 (en) 2014-05-28 2022-08-23 Katz Water Tech, Llc Apparatus, method and system to remove contaminates from contaminated fluids using solar energy
US11459246B2 (en) 2014-05-28 2022-10-04 Katz Water Tech, Llc Apparatus, system, and method to remove contaminates from a fluid with minimized scaling
JP2018001061A (en) * 2016-06-28 2018-01-11 合同会社トレスバイオ技研 Method for decomposing or carbonizing organic material and device used in the method
US10864482B2 (en) 2017-08-24 2020-12-15 Katz Water Tech, Llc Apparatus system and method to separate brine from water
US11439954B2 (en) 2017-08-24 2022-09-13 Katz Water Tech, Llc Apparatus system and method to seperate brine from water using heat energy recovery
US11713258B2 (en) 2017-08-24 2023-08-01 Katz Water Tech, Llc Apparatus system and method to extract minerals and metals from water
US11034605B2 (en) 2018-03-29 2021-06-15 Katz Water Tech, Llc Apparatus system and method to extract minerals and metals from water
US11718548B2 (en) 2018-03-29 2023-08-08 Katz Law Group Llc Apparatus system and method to extract minerals and metals from water

Similar Documents

Publication Publication Date Title
JP2013252473A (en) Wastewater treatment apparatus
EP2933030B1 (en) Waste and sewage treatment system
JP5271100B2 (en) Waste heat power generation method using exhaust gas from incinerator
RU2529767C2 (en) Method for generation of steam with high efficiency factor
WO2007033443A1 (en) Installation for the treatment of liquid
JP2010505620A5 (en)
JP2006218383A (en) High water content organic waste treatment system
JP5881751B2 (en) Boiler unit extraction steam sludge drying system with heat compensation
CN103420549B (en) Harmless waste treatment method in coal chemical industry
JP5148809B2 (en) Method and apparatus for converting sludge into fuel
WO2011153626A2 (en) A liquid contaminant concentrator apparatus and method of use
JP5791669B2 (en) Incineration plant
JP6974140B2 (en) Ammonia treatment method and equipment
JP2008173612A (en) Waste treatment apparatus and method
JP2011036781A (en) Sludge digestion system
JP5444439B2 (en) Incineration plant
JP2016539000A (en) Wastewater purification system
JP2007265728A (en) Effective utilization method of waste heat in incineration of waste material
KR20020022752A (en) A Wastewater Evaporator Equipment for uni-process using Vapor Compressor with Low Teperature Vaporizing
JP5027697B2 (en) Sewage sludge treatment method
KR20150020387A (en) Apparatus for power generation using waste incineration-solid oxide fuel cell integration
JP2010247111A (en) Sludge drying system
JP6454556B2 (en) Binary power generation apparatus and binary power generation method
KR100779609B1 (en) Thermal power plant having pure oxygen combustor and using waste steam
JP7102163B2 (en) Plant, biomass fuel production system and biomass power generation equipment, plant operation method and biomass fuel production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151216