JP2013252096A - Method for measuring seaweed bed distribution, apparatus for measuring seaweed bed distribution, program for measuring seaweed bed distribution - Google Patents

Method for measuring seaweed bed distribution, apparatus for measuring seaweed bed distribution, program for measuring seaweed bed distribution Download PDF

Info

Publication number
JP2013252096A
JP2013252096A JP2012129528A JP2012129528A JP2013252096A JP 2013252096 A JP2013252096 A JP 2013252096A JP 2012129528 A JP2012129528 A JP 2012129528A JP 2012129528 A JP2012129528 A JP 2012129528A JP 2013252096 A JP2013252096 A JP 2013252096A
Authority
JP
Japan
Prior art keywords
seaweed
area
amount
measuring
seaweed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012129528A
Other languages
Japanese (ja)
Other versions
JP5847652B2 (en
Inventor
Minoru Tatsuta
穣 立田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2012129528A priority Critical patent/JP5847652B2/en
Publication of JP2013252096A publication Critical patent/JP2013252096A/en
Application granted granted Critical
Publication of JP5847652B2 publication Critical patent/JP5847652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Seaweed (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and accurately measure distribution of seaweed bed areas 6 in relation to a method for measuring seaweed bed distribution, an apparatus for measuring seaweed bed distribution, and a program for measuring seaweed bed distribution by combining image processing and echo sounding.SOLUTION: A first candidate area 2 of a seaweed bed is determined based on superiority of the g-component intensity of a pixel in an aerial color image of a measuring objective water aria, as well as a second candidate area 4 of a seaweed bed is determined based on a change in a measured depth z of water by sonic water depth detection carried out in the measuring objective water area, and by comparing the first candidate area 2 with the second candidate area 4, the coincident area of the both is estimated as a seaweed bed area 6. Also, the thick growth amount in the seaweed bed area 6 is estimated by finding an influence amount za by seaweeds based on the change of the measured water depth z, as well as finding correlation between the thick growth amounts of samples measured at a plurality of spots in the measuring objective water area and the influence amount za by the seaweeds.

Description

本発明は藻場分布測定方法、藻場分布測定装置および藻場分布測定用プログラムに関する。さらに詳しくは、本発明は、画像処理と音響測探とを組み合わせた藻場分布測定方法、藻場分布測定装置、および藻場分布測定用プログラムに関するものである。   The present invention relates to an algal field distribution measuring method, an algal field distribution measuring apparatus, and an algal field distribution measuring program. More specifically, the present invention relates to an algal field distribution measuring method, an algal field distribution measuring apparatus, and an algal field distribution measuring program that combine image processing and acoustic sounding.

近年、藻場の減少が環境上の重要な問題となっており、現状把握のために藻場の分布を精確に測定する必要がある。藻場分布の測定手法としては、船底から海底に向けて音波を照射し、その反射波に基づいて藻場を測定する手法がある。この手法は、音波の反射場所の違いによって反射波の到達時間や強度が異なることから反射波に基づいて海底と藻場とを判別するものである。なお、音波を利用して海底と藻場を判別する超音波藻計測装置として、例えば特許文献1がある。   In recent years, the decrease in seaweed beds has become an important environmental problem, and it is necessary to accurately measure the distribution of seaweed beds in order to grasp the current situation. As a method for measuring the distribution of seaweed beds, there is a method of irradiating sound waves from the ship bottom toward the seabed and measuring the seaweed beds based on the reflected waves. This technique discriminates between the seabed and the seaweed bed based on the reflected wave because the arrival time and intensity of the reflected wave differ depending on the reflection location of the sound wave. As an ultrasonic algae measuring device that distinguishes the seabed and algae ground using sound waves, for example, there is Patent Literature 1.

また、別の手法として、水中にカメラを沈めて静止画や動画を撮影し、これらの画像に基づいて藻場の分布を測定する手法もある(例えば、特許文献2)。   As another method, there is also a method in which a camera is submerged in water to shoot a still image or a moving image, and the distribution of seaweed beds is measured based on these images (for example, Patent Document 2).

特開平8−271629号公報JP-A-8-271629 特開2002−58370号公報JP 2002-58370 A

しかしながら、前者の音波を使用した手法では、音波の吸収・散乱が藻場以外によっても生じることがあり、その場合には藻場との判別が困難で測定精度に劣る。また、後者の画像による手法では、人手による長時間の画像・映像観察が必要であり、測定に手間と時間がかかる。   However, in the former method using sound waves, absorption / scattering of sound waves may occur other than in the algae ground. In this case, it is difficult to distinguish from the algae ground, and the measurement accuracy is poor. Further, the latter method using images requires long-time image / video observation by hand, and takes time and labor for measurement.

本発明は、簡便且つ精確に測定することができる藻場分布測定方法、藻場分布測定装置、藻場分布測定用プログラムを提供することを目的とする。   An object of the present invention is to provide an algal field distribution measuring method, an algal field distribution measuring apparatus, and an algal field distribution measuring program that can be measured easily and accurately.

かかる目的を達成するために、請求項1記載の藻場分布測定方法は、測定対象水域の空撮カラー画像中の画素のg成分強度の優位性に基づいて第1の藻場候補領域を決定すると共に、測定対象水域について行った音響水深探査の測定水深zの変化に基づいて第2の藻場候補領域を決定し、第1の藻場候補領域と第2の藻場候補領域とを対比して両者の一致した領域を藻場域と推定するものである。   In order to achieve this object, the method for measuring algae field distribution according to claim 1 determines the first algae field candidate region based on the superiority of the g component intensity of the pixel in the aerial color image of the measurement target water area. In addition, the second seaweed field candidate area is determined based on the change in the measurement water depth z of the acoustic water depth survey performed on the measurement target water area, and the first seaweed field candidate area and the second seaweed field candidate area are compared. Thus, the area where both coincide is estimated as the seaweed bed area.

また、請求項2記載の藻場分布測定方法は、測定水深zの変化に基づき海藻による影響量zaを求めると共に、測定対象水域内の複数地点で測定されたサンプル繁茂量と海藻による影響量zaとの相関関係を求めて藻場域の繁茂量を推定するものである。   In addition, the method for measuring the distribution of seaweed beds according to claim 2 obtains the influence amount za by seaweed based on the change in the measured water depth z, and the amount of sample overgrowth and the influence amount za by seaweed measured at a plurality of points in the measurement target water area. The amount of overgrowth in the seaweed bed area is estimated.

また、請求項3記載の藻場分布測定装置は、測定対象水域の空撮カラー画像中の画素のg成分強度の優位性に基づいて第1の藻場候補領域を決定する第1の藻場候補領域決定手段と、測定対象水域について行った音響水深探査の測定水深zの変化に基づいて第2の藻場候補領域を決定する第2の藻場候補領域決定手段と、第1の藻場候補領域と第2の藻場候補領域とを対比して両者の一致した領域を藻場域とするものである。   The apparatus for measuring algae field distribution according to claim 3 determines the first algae field candidate area based on the superiority of the g component intensity of the pixel in the aerial color image of the measurement target water area. Candidate area determining means, second seaweed field candidate area determining means for determining a second seaweed field candidate area based on a change in the measured water depth z of the acoustic water depth survey performed on the measurement target water area, and the first seaweed field The candidate area and the second seaweed bed candidate area are compared, and the area where both match is defined as the seaweed bed area.

また、請求項4記載の藻場分布測定装置は、測定対象水域内の複数地点で測定されたサンプル繁茂量と測定水深zの変化に基づいて求められた海藻による影響量zaとの相関関係を求めて藻場域の繁茂量を推定する繁茂量推定手段を備えるものである。   Moreover, the seaweed bed distribution measuring apparatus according to claim 4 shows the correlation between the amount of sample overgrowth measured at a plurality of points in the measurement target water area and the influence amount za of seaweed obtained based on the change in the measured water depth z. It is provided with a means for estimating the amount of overgrowth for estimating the amount of overgrowth in the seaweed bed area.

また、請求項5記載の藻場分布測定用プログラムは、少なくとも、測定対象水域の空撮カラー画像中の画素のg成分強度の優位性に基づいて第1の藻場候補領域を決定する手段と、測定対象水域について行った音響水深探査の測定水深zの変化に基づいて第2の藻場候補領域を決定する手段と、第1の藻場候補領域と第2の藻場候補領域とを対比して両者の一致した領域を藻場域とする手段としてコンピュータを機能させるものである。   According to a fifth aspect of the present invention, there is provided a program for measuring a seaweed bed distribution determining means for determining a first seaweed bed candidate area based on at least the g component intensity superiority of a pixel in an aerial color image of a measurement target water area. The means for determining the second seaweed field candidate area based on the change in the measured water depth z of the acoustic water depth survey performed on the measurement target water area is compared with the first seaweed field candidate area and the second seaweed field candidate area. Thus, the computer is caused to function as a means for setting the area where both coincide with each other as a seaweed bed area.

さらに、請求項6記載の藻場分布測定用プログラムは、更に、測定対象水域内の複数地点で測定されたサンプル繁茂量と測定水深zの変化に基づいて求められた海藻による影響量zaとの相関関係を求めて藻場域の繁茂量を推定する手段としてコンピュータを機能させるものである。   Furthermore, the program for measuring the distribution of seaweed beds according to claim 6 further includes the amount of sample overgrowth measured at a plurality of points in the measurement target water area and the influence amount za of seaweed obtained based on the change in the measured water depth z. The computer is made to function as a means for estimating the amount of overgrowth in the seaweed bed area by obtaining the correlation.

本発明では、空撮カラー画像に基づいて決定された第1の藻場候補領域と音響水深探査に基づいて決定された第2の藻場候補領域との両者を合わせて藻場域を推定するので、空撮カラー画像による場合の測定誤差と音響水深探査による場合の測定誤差とを打ち消すことができて、測定精度を向上させることができる。また、水中で撮影した画像・映像を観察する場合のような手間と時間が不要であり、簡便に測定することができる。   In the present invention, the seaweed field area is estimated by combining both the first seaweed field candidate area determined based on the aerial color image and the second seaweed field candidate area determined based on the acoustic water depth survey. Therefore, it is possible to cancel the measurement error in the case of the aerial color image and the measurement error in the case of the acoustic water depth search, and improve the measurement accuracy. Further, the labor and time required for observing images / videos taken underwater are not required, and measurement can be performed easily.

また、本発明は、藻場域の繁茂量を簡易且つ高精度に推定することができる。   Moreover, this invention can estimate the amount of overgrowth of a seaweed bed area simply and with high precision.

本発明の藻場分布測定方法の第1の実施形態を示す概念図である。It is a conceptual diagram which shows 1st Embodiment of the seaweed bed distribution measuring method of this invention. 同藻場分布測定方法のフローチャートである。It is a flowchart of the same algae field distribution measuring method. 本発明の藻場分布測定装置の第1の実施形態を示すブロック図である。It is a block diagram which shows 1st Embodiment of the seaweed bed distribution measuring apparatus of this invention. 本発明の藻場分布測定方法の第2の実施形態を示す概念図である。It is a conceptual diagram which shows 2nd Embodiment of the seaweed bed distribution measuring method of this invention. 同藻場分布測定方法のフローチャートである。It is a flowchart of the same algae field distribution measuring method. 本発明の藻場分布測定装置の第2の実施形態を示すブロック図である。It is a block diagram which shows 2nd Embodiment of the seaweed bed distribution measuring apparatus of this invention.

以下、本発明の構成を図面に示す形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the form shown in the drawings.

図1〜図3に、本発明の第1の実施形態を示す。藻場分布測定装置は、測定対象水域1の空撮カラー画像中の画素のg成分強度の優位性に基づいて第1の藻場候補領域2を決定する第1の藻場候補領域決定手段3と、測定対象水域1について行った音響水深探査の測定水深zの変化に基づいて第2の藻場候補領域4を決定する第2の藻場候補領域決定手段5と、第1の藻場候補領域2と第2の藻場候補領域4とを対比して両者の一致した領域を藻場域6とする藻場域推定手段7を備えるものである。また、藻場分布測定装置は、本発明の藻場分布測定用プログラムをコンピュータ上で実行することによっても実現される。本実施形態では、藻場分布測定用プログラム(以下、単に測定用プログラムという)をコンピュータ上で実行する場合を例に説明する。   1 to 3 show a first embodiment of the present invention. The seaweed field distribution measuring device includes first seaweed field candidate area determining means 3 that determines the first seaweed field candidate area 2 based on the superiority of the g component intensity of the pixels in the aerial color image of the measurement target water area 1. And second seaweed field candidate area determining means 5 for determining the second seaweed field candidate area 4 based on the change in the measured water depth z of the acoustic water depth survey performed for the measurement target water area 1, and the first seaweed field candidate The area 2 and the second seaweed field candidate area 4 are contrasted, and the seam field area estimation means 7 having the area where both coincide with each other as the seam field area 6 is provided. Moreover, the seaweed bed distribution measuring apparatus is also realized by executing the seaweed bed distribution measuring program of the present invention on a computer. In the present embodiment, an example will be described in which an algal plot distribution measurement program (hereinafter simply referred to as a measurement program) is executed on a computer.

測定用プログラムを実行するための本実施形態の藻場分布測定装置の全体構成を図3に示す。藻場分布測定装置は、制御部8、記憶部9、入力部10、表示部11、接続部12を備え、これらは相互にバス等の信号回路13により接続されている。   FIG. 3 shows the overall configuration of the algae field distribution measuring apparatus of the present embodiment for executing the measurement program. The seaweed bed distribution measuring device includes a control unit 8, a storage unit 9, an input unit 10, a display unit 11, and a connection unit 12, which are connected to each other by a signal circuit 13 such as a bus.

制御部8は記憶部9に記憶されている測定用プログラムによって藻場分布測定装置全体の制御や藻場域6の推定等に係る演算を行うものであり、例えばCPU(中央演算処理装置)である。記憶部9は少なくともデータやプログラム等を記憶可能な装置であり、例えばハードディスクである。   The control unit 8 performs calculations related to the control of the entire seaweed field distribution measuring device and the estimation of the seaweed field area 6 by the measurement program stored in the storage unit 9, for example, a CPU (central processing unit). is there. The storage unit 9 is a device that can store at least data, programs, and the like, and is, for example, a hard disk.

入力部10は少なくとも作業者の命令等を制御部8等に与えるためのものであり、例えばキーボード、マウスである。表示部11は制御部8の制御により表示・描画等を行うものであり、例えばディスプレイである。接続部12は外部機器類を接続するためのインターフェースであり、例えばUSBポート、カードスロットである。   The input unit 10 is for giving at least an operator's command or the like to the control unit 8 or the like, and is, for example, a keyboard or a mouse. The display unit 11 performs display / drawing and the like under the control of the control unit 8 and is, for example, a display. The connection unit 12 is an interface for connecting external devices, such as a USB port and a card slot.

制御部8には、測定用プログラムを実行することにより、測定対象水域1の空撮カラー画像中の画素のg成分強度の優位性に基づいて第1の藻場候補領域2を決定する手段としての第1の藻場候補領域決定部(第1の藻場候補領域決定手段)3、測定対象水域1について行った音響水深探査の測定水深zの変化に基づいて第2の藻場候補領域4を決定する手段としての第2の藻場候補領域決定部(第2の藻場候補領域決定手段)5、第1の藻場候補領域2と第2の藻場候補領域4とを対比して両者の一致した領域を藻場域6とする手段としての藻場域推定部7(藻場域推定手段7)が構成される。また、本実施形態では、空撮カラー画像と音響水深探査の測定データとの位置合わせを行う位置合わせ処理部14も構成される。   As a means for determining the first seaweed field candidate region 2 based on the superiority of the g component intensity of the pixels in the aerial color image of the measurement target water area 1 by executing the measurement program in the control unit 8. The first seaweed bed candidate area determining unit (first seaweed bed candidate area determining means) 3, the second seaweed bed candidate area 4 based on the change in the measured water depth z of the acoustic water depth survey performed on the measurement target water area 1. The second seaweed field candidate area determining unit (second seaweed field candidate area determining means) 5 as means for determining the first seaweed field candidate area 2 and the second seaweed field candidate area 4 are compared. An algae field area estimation unit 7 (algae field area estimation means 7) is configured as a means for setting the area where both coincide with each other as the algae field area 6. In the present embodiment, an alignment processing unit 14 that aligns the aerial color image and the acoustic water depth measurement data is also configured.

本実施形態では、測定対象水域1の空撮カラー画像を撮影する撮影装置15として、任意の時間間隔で自動的に撮影可能な、あるいは地上の操作者が遠隔操作で撮影可能な、独立電源式のデジタルカメラを使用するが、これに限られない。また、空撮を行うための手段として、例えば、気球あるいはラジコン操作可能な飛行装置(ラジコン飛行機、ラジコンヘリコプター等)を使用する。撮影装置15を搭載した飛行装置を測定対象水域1の上空に飛ばし、撮影を行う。使用する空撮カラー画像は、測定対象水域1を複数枚に分割して撮影したものを1枚の画像に合成して使用しても良いし、測定対象水域1全体を1枚に撮影した画像を使用しても良い。   In this embodiment, the photographing device 15 for photographing an aerial color image of the measurement target water area 1 can be automatically photographed at an arbitrary time interval, or can be photographed by a ground operator remotely. The digital camera is used, but is not limited to this. Further, as a means for performing aerial photography, for example, a balloon or a flying device capable of operating a radio control (a radio control airplane, a radio control helicopter, etc.) is used. The flying device equipped with the photographing device 15 is blown over the measurement target water area 1 and photographing is performed. The aerial color image to be used may be an image obtained by dividing the measurement target water area 1 into a plurality of images and combining them into one image, or an image obtained by photographing the entire measurement target water area 1 into one image. May be used.

空撮カラー画像には位置情報目印が写し込まれている。本実施形態では、測定対象水域1の複数箇所に浮かべたブイを位置情報目印としている。各ブイにはGPS装置等の位置測定装置が設置されており、係留位置の精確な測定が可能である。また、位置情報目印は4箇所以上設けることが好ましい。位置情報目印を4箇所以上設けることで、撮影した画像の傾き補正が容易になる。ただし、傾き補正が不要な場合等には2箇所又は3箇所でも良い。また、ブイ以外のものを位置情報目印として使用しても良い。   An aerial color image includes a location information mark. In the present embodiment, buoys floated at a plurality of locations in the measurement target water area 1 are used as position information marks. Each buoy is provided with a position measuring device such as a GPS device, and the mooring position can be accurately measured. Further, it is preferable to provide four or more position information marks. By providing four or more position information markers, it is easy to correct the inclination of the captured image. However, two or three locations may be used when tilt correction is not required. In addition, a device other than the buoy may be used as the position information mark.

空撮カラー画像は測定対象水域1を真上から撮影したものであることが好ましいが、測定対象水域1の水面に対して撮影装置15のレンズを平行にした状態での撮影を保証できないので、撮影後の画像に写し込まれた位置情報目印を利用して傾き補正が行われる。傾き補正は、例えば市販のソフトウエアを利用して行われる。傾き補正後の空撮カラー画像のデータは接続部12から藻場分布測定装置に供給され、記憶部9に記憶される。   It is preferable that the aerial color image is a photograph of the measurement target water area 1 from directly above, but it is not possible to guarantee photographing in a state where the lens of the photographing device 15 is parallel to the water surface of the measurement target water area 1. Tilt correction is performed using a position information mark imprinted on the image after shooting. The tilt correction is performed using, for example, commercially available software. The data of the aerial color image after tilt correction is supplied from the connection unit 12 to the seaweed bed distribution measuring device and stored in the storage unit 9.

なお、ここでの空撮カラー画像には、衛生画像も含まれる。   Here, the aerial color image includes a sanitary image.

音響水深探査は、音響水深探査機器16と例えばGPS装置等の位置測定装置を搭載した測定船を測定対象水域1に航行させて行われる。音響水深探査機器16としては、例えば魚群探知機が使用可能であるが、これに限られない。測定船は有人のものでも良いし、無人で遠隔操作されるものでも良い。測定船を測定対象水域1に対して縦横に航行させながら測定し、測定対象水域1の測定水深zの2次元分布図を作成する。測定データ(2次元分布図)は接続部12から藻場分布測定装置に供給され、記憶部9に記憶される。   The acoustic water depth exploration is performed by navigating a measurement ship equipped with an acoustic water depth exploration device 16 and a position measuring device such as a GPS device to the measurement target water area 1. As the acoustic water depth exploration device 16, for example, a fish finder can be used, but is not limited thereto. The measurement ship may be manned or unattended and remotely operated. The measurement ship is measured while navigating vertically and horizontally with respect to the measurement target water area 1, and a two-dimensional distribution map of the measurement water depth z of the measurement target water area 1 is created. The measurement data (two-dimensional distribution diagram) is supplied from the connection unit 12 to the seaweed bed distribution measurement device and stored in the storage unit 9.

次に、藻場分布測定方法について説明する。この藻場分布測定方法は、例えば図2に示すように、測定対象水域1の空撮カラー画像中の画素のg成分強度の優位性に基づいて第1の藻場候補領域2を決定する(ステップS32)と共に、測定対象水域1について行った音響水深探査の測定水深zの変化に基づいて第2の藻場候補領域4を決定し(ステップS33)、第1の藻場候補領域2と第2の藻場候補領域4とを対比して両者の一致した領域を藻場域6と推定する(ステップS34)ものである。   Next, a method for measuring the distribution of seaweed beds will be described. For example, as shown in FIG. 2, the seaweed field distribution measuring method determines the first seaweed field candidate region 2 based on the superiority of the g component intensity of the pixels in the aerial color image of the measurement target water region 1 ( Together with step S32), the second seaweed field candidate area 4 is determined based on the change in the measurement water depth z of the acoustic water depth survey performed for the measurement target water area 1 (step S33). The two seam field candidate areas 4 are compared with each other, and the area where both coincide with each other is estimated as the seam field area 6 (step S34).

先ず最初に、空撮カラー画像と音響水深探査の測定データとの位置合わせを行う(ステップS31)。位置合わせは、位置合わせ処理部14が記憶部9に記憶されている空撮カラー画像データと音響水深探査の測定データを読み込んで実行する。   First, alignment between the aerial color image and the measurement data of the acoustic water depth survey is performed (step S31). The alignment is performed by the alignment processing unit 14 reading the aerial color image data and the acoustic water depth measurement data stored in the storage unit 9.

位置合わせには、例えば空撮カラー画像中に写し込まれた位置情報目印を利用する。音響水深探査で作成した2次元分布図について、空撮カラー画像中の位置情報目印に対応する位置(座標x、y)を決定し、決定した位置の座標と空撮カラー画像中の位置情報目印の位置座標を合わせることで、空撮カラー画像と音響水深探査の2次元分布図とを位置合わせする。そして、音響水深探査で信号波の送受信を行った位置の座標(測定座標(x、y))における空撮カラー画像の画素のRGB信号(r、g、b)と音響水深探査の2次元分布図の測定水深zを求める。   For the alignment, for example, a position information mark imaged in an aerial color image is used. The position (coordinate x, y) corresponding to the position information mark in the aerial color image is determined for the two-dimensional distribution map created by the acoustic water depth survey, and the coordinates of the determined position and the position information mark in the aerial color image are determined. By aligning the position coordinates, the aerial color image and the two-dimensional distribution map of the acoustic water depth survey are aligned. Then, the RGB signals (r, g, b) of the pixels of the aerial color image at the coordinates (measurement coordinates (x, y)) at which the signal wave was transmitted and received in the acoustic water depth survey and the two-dimensional distribution of the acoustic water depth survey Obtain the measured water depth z in the figure.

なお、ここでは説明の理解を容易にするために、音響水深探査では格子状に測定船を航行させており且つ一定間隔で信号波の送受信を行ったものとして、即ち測定座標(x、y)のx座標が1,2,3,…、y座標が1,2,3,…として説明する。測定座標(x、y)で示される位置の実際の間隔は、測定船の速度や測定波の送信間隔等にもよるが、例えば0.5m〜1.0m程度になる。   Here, in order to facilitate understanding of the explanation, it is assumed that in the acoustic depth survey, the measurement ship is navigating in a lattice pattern, and signal waves are transmitted and received at regular intervals, that is, measurement coordinates (x, y). The x coordinate is 1, 2, 3,... And the y coordinate is 1, 2, 3,. The actual distance between the positions indicated by the measurement coordinates (x, y) is, for example, about 0.5 m to 1.0 m, although it depends on the speed of the measurement ship, the transmission interval of the measurement wave, and the like.

次に、測定対象水域1の空撮カラー画像に基づいて第1の藻場候補領域2を決定する(ステップS32)。第1の藻場候補領域2の決定は第1の藻場候補領域決定部3が行う。空撮カラー画像では藻場は緑系の色で写るため、その領域の画素のRGB信号はg(緑)成分強度がb(青)成分強度やr(赤)成分強度よりも優位(大きく)になる。各測定座標(x、y)の画素についてRGB信号のg成分強度がb成分強度及びr成分強度よりも優位の測定座標(x、y)を候補座標とし、その集まりを第1の藻場候補領域2とする。これにより、空撮カラー画像中に緑系色で写されている領域を第1の藻場候補領域2として抽出することができる。   Next, the first seaweed bed candidate area 2 is determined based on the aerial color image of the measurement target water area 1 (step S32). The determination of the first seaweed bed candidate area 2 is performed by the first seaweed bed candidate area determination unit 3. In the aerial color image, the seaweed field appears in a greenish color, so the RGB signal of the pixels in that area has a superior (larger) g (green) component intensity than the b (blue) component intensity and r (red) component intensity. become. For each pixel of measurement coordinates (x, y), the measurement coordinates (x, y) in which the g component intensity of the RGB signal is superior to the b component intensity and the r component intensity are set as candidate coordinates, and the set is a first seaweed bed candidate. Region 2 is assumed. As a result, a region captured in a green color in the aerial color image can be extracted as the first seaweed bed candidate region 2.

本実施形態では、g成分強度が優位であるか否かの判断として、b成分強度との比較を行い、g成分強度>b成分強度の場合にg成分強度が優位であると判断する。即ち、gb=(g成分強度)÷(b成分強度)を計算し、gb>1.0の場合にg成分強度が優位であると判断する。ただし、gbの閾値は1.0に限られない。   In this embodiment, as a determination of whether or not the g component strength is superior, a comparison is made with the b component strength, and when the g component strength is greater than the b component strength, it is determined that the g component strength is superior. That is, gb = (g component strength) ÷ (b component strength) is calculated, and it is determined that the g component strength is superior when gb> 1.0. However, the threshold value of gb is not limited to 1.0.

ただし、g成分強度の優位性の判断はこれに限られない。例えば、r成分強度との比較(g成分強度>r成分強度)や、b成分強度及びr成分強度との比較(g成分強度>b成分強度且つg成分強度>r成分強度)で判断しても良い。また、このとき、単純な大小関係(例えば、g成分強度>b成分強度、gb>1.0、等)で判断しても良いし、所定値以上の大小関係であるか否か(例えば、gr(=g成分強度÷r成分強度)が所定の閾値S1(例えば、3.65等)以上であるか否か等)で判断しても良いし、一定範囲内の大小関係であるか否か(例えば、bg(=b成分強度÷g成分強度)が所定の閾値S2〜閾値S3(例えば、S2=0.635、S3=0.665等)の範囲等)で判断しても良い。   However, the determination of the superiority of the g component strength is not limited to this. For example, the comparison with the r component strength (g component strength> r component strength) and the comparison between the b component strength and the r component strength (g component strength> b component strength and g component strength> r component strength) Also good. At this time, it may be determined based on a simple magnitude relationship (for example, g component strength> b component strength, gb> 1.0, etc.), or whether the magnitude relationship is greater than or equal to a predetermined value (for example, whether gr (= g component intensity / r component intensity) is equal to or greater than a predetermined threshold S1 (eg, 3.65, etc.), or whether the magnitude relationship is within a certain range. (For example, bg (= b component intensity ÷ g component intensity) may be determined based on a predetermined threshold S2 to a threshold S3 (for example, a range of S2 = 0.635, S3 = 0.665, etc.)).

次に、音響水深探査による測定水深zの変化に基づいて第2の藻場候補領域4を決定する(ステップS33)。第2の藻場候補領域4の決定は第2の藻場候補領域決定部5が行う。藻場が無く海底が続く領域は殆ど傾斜が無く、測定水深zは大きく変化しない。一方、藻場では音響水深探査機器16からの信号波が海底に比べて大きく散乱・吸収されると共に海藻の高さのため水深が浅くなるので、藻場の測定水深zは海底の測定水深zと大きく異なる。そのため、測定水深zの変化に基づいて海底と藻場とを判別することができる。   Next, the second seaweed bed candidate region 4 is determined based on the change in the measured water depth z by the acoustic water depth exploration (step S33). The second seaweed bed candidate area determining unit 5 determines the second seaweed bed candidate area 4. The area where the seabed does not exist and the sea bottom continues has almost no inclination, and the measured water depth z does not change greatly. On the other hand, in the seaweed bed, the signal wave from the acoustic water depth exploration device 16 is greatly scattered and absorbed compared to the seabed, and the water depth becomes shallow due to the height of the seaweed. And very different. Therefore, the seabed and the seaweed bed can be discriminated based on the change in the measured water depth z.

まず、x座標=1の測定座標(1,1),(1,2),(1,3),…について、測定水深zの数列を求める。いま、測定座標(1,1)の測定水深zをz11,測定座標(1,2)の測定水深zをz12,測定座標(1,3)の測定水深zをz13,…とすると、x座標=1の各測定座標の測定水深zの数列Z1は(z11,z12,z13,…)となる。   First, for the measurement coordinates (1, 1), (1, 2), (1, 3),. If the measurement water depth z of the measurement coordinates (1, 1) is z11, the measurement water depth z of the measurement coordinates (1, 2) is z12, the measurement water depth z of the measurement coordinates (1, 3) is z13,. The sequence Z1 of the measurement water depth z of each measurement coordinate of = 1 is (z11, z12, z13,...).

そして、数列Z1について、n番目の測定水深[zn]と、(n−1)番目の測定水深[z(n−1)]とを比較し、[zn]−[z(n−1)]<A1となるn番目の測定水深[zn]を海底による反射信号の測定水深zsと判断する。ここで、A1は判別のための閾値であり、例えば0.1(m)であるが、これに限られない。海底が続く領域では水深が殆ど変化しないため、[zn]と[z(n−1)]とがほぼ同じ値の場合、即ち[zn]−[z(n−1)]<A1の場合には測定座標(1,n)は海底であり、その測定座標(1,n)の測定水深zは海底による反射信号の測定水深zsであると判断することができる。一方、上記以外の場合([zn]−[z(n−1)]≧A1)には、その測定座標(1,n)は藻場であると判断することができる。例えば、z13−z12<A1である場合には、測定座標(1,3)は海底であると判断する。   Then, for the sequence Z1, the nth measured water depth [zn] is compared with the (n-1) th measured water depth [z (n-1)], and [zn]-[z (n-1)]. <The nth measured water depth [zn] which becomes A1 is determined as the measured water depth zs of the reflected signal from the seabed. Here, A1 is a threshold value for discrimination, for example, 0.1 (m), but is not limited thereto. Since the water depth hardly changes in the region where the seabed continues, when [zn] and [z (n-1)] are substantially the same value, that is, when [zn]-[z (n-1)] <A1. It can be determined that the measurement coordinate (1, n) is the seabed, and the measurement water depth z of the measurement coordinate (1, n) is the measurement water depth zs of the reflected signal from the sea floor. On the other hand, in cases other than the above ([zn] − [z (n−1)] ≧ A1), it can be determined that the measurement coordinates (1, n) are seaweed beds. For example, when z13−z12 <A1, it is determined that the measurement coordinates (1, 3) are the seabed.

このような判断をx座標=1の測定座標(1,1),(1,2),(1,3),…について行い、海底であると判断した測定座標(1,y)のy座標と測定水深zsとの相関関係式(例えばzs=ay+bであらわされる)を求める。この相関関係式を第1の相関関係式という。第1の相関関係式はx座標=1の測定座標(1,1),(1,2),(1,3),…を通る海底の水深zsを示しており、海底部分については海底の水深を示し、藻場については海藻が生えている海底の水深を示している。   Such determination is made for the measurement coordinates (1, 1), (1, 2), (1, 3),... With x coordinate = 1, and the y coordinate of the measurement coordinates (1, y) determined to be the seabed. And a measured water depth zs (for example, expressed as zs = ay + b). This correlation formula is referred to as a first correlation formula. The first correlation formula indicates the depth of water zs passing through the measurement coordinates (1,1), (1,2), (1,3),... With x coordinate = 1. The depth of water is shown, and the seaweed bed is the depth of the seabed where seaweed grows.

次に、x座標=1の測定座標(1,1),(1,2),(1,3),…の各々について、y座標を第1の相関関係式に代入し、当該測定座標における海底の水深zsを求める。そして、x座標=1の測定座標(1,1),(1,2),(1,3),…の各々について、求めた海底の水深zsと当該測定座標の測定水深z(見かけ上の水深)との差za(藻場の海底よりも藻の上端の方が高いので、za=z−zs)を求める。このzaは、藻場については、海藻に影響された測定水深zと海藻が生えている海底の水深zsとの差であり、海藻による影響量zaと呼ぶ。なお、海藻による影響量zaは、第1の相関関係式の誤差等により藻場ではない海底部分についても0以外の値になることもある。このように海底と判断された測定座標も含めてx座標=1の測定座標(1,1),(1,2),(1,3),…の各々について海藻による影響量zaが求められる。   Next, for each of the measurement coordinates (1, 1), (1, 2), (1, 3),... With x coordinate = 1, the y coordinate is substituted into the first correlation formula, Obtain the depth of the seabed zs. Then, for each of the measurement coordinates (1, 1), (1, 2), (1, 3),... With x coordinate = 1, the obtained water depth zs of the seabed and the measurement water depth z (apparent) of the measurement coordinates. The difference za from the water depth) (since the top of the algae is higher than the seabed of the algae ground, za = z−zs) is obtained. This za is the difference between the measured water depth z affected by the seaweed and the water depth zs of the seabed where the seaweed grows, and is referred to as an influence amount za by the seaweed. The influence amount za due to seaweed may be a value other than 0 for the seabed portion that is not a seaweed bed due to an error in the first correlation equation or the like. Thus, the influence amount za by seaweed is obtained for each of the measurement coordinates (1, 1), (1, 2), (1, 3),. .

上記のx座標=1の測定座標について行った処理をx座標=2,3,…についても行い、全ての測定座標(x,y)について海藻による影響量zaを求める。そして、海藻による影響量za>A2となる測定座標(x,y)を候補座標とし、その集まりを第2の藻場候補領域4とする。ここで、A2は判別のための閾値であり、例えば0.1(m)であるが、これに限られない。海藻による影響を受けたzaであれば、その値はある程度の大きさになり、海藻による影響を受けていないzaのであれば、その値は小さい値(第1の相関関係式の誤差程度)になると考えられる。したがって、za>A2であれば海藻による影響を受けており、その測定座標(x,y)は藻場であると判断できる。   The processing performed for the measurement coordinate of x coordinate = 1 is also performed for x coordinate = 2, 3,..., And the influence amount za by seaweed is obtained for all measurement coordinates (x, y). Then, the measurement coordinates (x, y) satisfying the influence amount za> A2 by seaweed are set as candidate coordinates, and the set is set as a second seaweed bed candidate region 4. Here, A2 is a threshold value for discrimination, for example, 0.1 (m), but is not limited thereto. If za is affected by seaweed, the value becomes a certain size, and if za is not affected by seaweed, the value is small (about the error of the first correlation equation). It is considered to be. Therefore, if za> A2, it is affected by seaweed, and it can be determined that the measurement coordinates (x, y) are seaweed beds.

次に、第1の藻場候補領域2と第2の藻場候補領域4とを対比して両者の一致した領域を藻場域6と推定する(ステップS34)。藻場域6の推定は、藻場域推定部7が行う。ステップS32ではgb>1.0の測定座標(x、y)を第1の藻場候補領域2としており、ステップS33ではza>A2の測定座標(x、y)を第2の藻場候補領域4としている。したがって、(gb>1.0)且つ(za>A2)となる測定座標(x、y)が両者の一致した座標であり、その集まり藻場域6とする。これにより、藻場域6の分布を求めることができる。求められた藻場域6の分布は記憶部9に記憶されると共に、表示部11に表示される。   Next, the first seaweed field candidate area 2 and the second seaweed field candidate area 4 are compared to estimate the area where both coincide with each other as the seaweed field area 6 (step S34). The seaweed area 6 is estimated by the seaweed area estimation unit 7. In step S32, the measurement coordinates (x, y) of gb> 1.0 are set as the first seaweed field candidate area 2, and in step S33, the measurement coordinates (x, y) of za> A2 are set as the second seaweed field candidate area. Four. Therefore, the measurement coordinates (x, y) satisfying (gb> 1.0) and (za> A2) are the coordinates where both coincide with each other, and the collected seaweed bed area 6 is defined. Thereby, distribution of the seaweed bed area 6 can be calculated | required. The obtained distribution of the seaweed bed area 6 is stored in the storage unit 9 and displayed on the display unit 11.

ステップS32の、例えばgb>1.0の判別式では、空撮カラー画像中に緑系色で写されている領域を判別することはできるが、藻場と同系色である対象、例えば藻場を構成するアマモと同じような葉緑体を有するアオサ等を区別することができない(第1の誤差)。一方、軟質海底、凸凹したゴロタ石、ごみ等は空撮カラー画像中には緑系色以外の色で写るので、これらを藻場と区別することができる。   In the discriminant of gb> 1.0 in step S32, for example, an area captured in a green color in an aerial color image can be discriminated, but an object having the same color as the algae field, for example, an algae field Can not be distinguished (first error). On the other hand, soft seabeds, bumpy stones, garbage, etc. appear in aerial color images in colors other than green, so they can be distinguished from seaweed beds.

また、ステップS33で求めた海藻による影響量zaはその全てが海藻に起因しているとは限らず、海藻以外の測定波の散乱・吸収を引き起こすもの、例えば軟質海底、凸凹したゴロタ石、ごみ等によっての測定水深zが影響を受けて増減(第2の誤差)している可能性もある。したがって、ステップS33のza>A2の判別式では、第2の誤差を排除できない。一方、アオサ等の海底に根付いていない海藻については、測定水深zが藻場と明確に異なるので、音響水深探査では区別することができる。   In addition, the influence amount za of seaweed obtained in step S33 is not necessarily all caused by seaweed, but causes scattering / absorption of measurement waves other than seaweed, such as soft seabed, uneven goro stone, garbage There is also a possibility that the measured water depth z is increased or decreased (second error) due to the influence. Therefore, the second error cannot be excluded from the discriminant of za> A2 in step S33. On the other hand, seaweed that is not rooted in the seafloor such as Aosa can be distinguished by acoustic water depth exploration because the measured water depth z is clearly different from the seaweed bed.

本発明では、ステップS32で求めた第1の藻場候補領域2と、ステップS33で求めた第2の藻場候補領域4との両者を合わせて藻場域6を推定するので、空撮カラー画像による場合の第1の誤差と音響水深探査による場合の第2の誤差とを打ち消すことができ、藻場域6を精確に測定することができる。   In the present invention, the algae field region 6 is estimated by combining both the first algae field candidate area 2 obtained in step S32 and the second algae field candidate area 4 obtained in step S33. The first error in the case of using the image and the second error in the case of the acoustic water depth exploration can be canceled, and the seaweed bed area 6 can be accurately measured.

また、水中で撮影した画像・映像を観察する場合のような手間と時間が不要であり、簡便に測定することができる。   Further, the labor and time required for observing images / videos taken underwater are not required, and measurement can be performed easily.

本発明は、特に気泡が無い海藻(例えば、アマモ、アラメ、カジメ、ワカメ、コンブ等)で構成された藻場等の測定に適しており、気泡を有する海藻(例えば、ホンダワラ類)で構成された藻場等の測定にはあまり適していない。即ち、気泡を有する海草は音響水深探査の信号波の反射が強すぎることから、音響水深探査による測定にあまり適していないが、気泡が無い海藻は音響水深探査の信号波を適度に散乱・吸収するので海底と区別し易く音響水深探査による測定に適しており、本発明の適用に特に適している。   The present invention is particularly suitable for the measurement of seaweed beds composed of seaweeds without bubbles (for example, sea bream, arame, seaweed, seaweed, kombu, etc.), and are composed of seaweeds with bubbles (for example, Honda Walla). It is not very suitable for measuring seaweed beds. In other words, seagrass with bubbles are not very suitable for measurement by acoustic depth exploration because the reflection of acoustic waves at acoustic depth is too strong, but seaweed without bubbles appropriately scatters and absorbs acoustic waves at acoustic depth. Therefore, it is easy to distinguish from the seabed and is suitable for measurement by acoustic depth survey, and is particularly suitable for application of the present invention.

次に、図4〜図6を参照して本発明を適用した第2の実施形態について説明する。なお、第1の実施形態の構成要素と同一の構成要素については同一の符号を付してそれらの詳細な説明を省略する。   Next, a second embodiment to which the present invention is applied will be described with reference to FIGS. In addition, about the component same as the component of 1st Embodiment, the same code | symbol is attached | subjected and those detailed description is abbreviate | omitted.

第1の実施形態では、単に藻場域6を求めるだけであったが、本実施形態では更に藻場域6の繁茂量を推定する。ここで、繁茂量としては、例えば単位面積当たりの平均本数n、海藻の平均高さh、海藻の単位面積当たりの総重量twであるが、これらには限られない。   In the first embodiment, the seaweed basin area 6 is simply obtained, but in this embodiment, the amount of overgrowth of the algae basin area 6 is further estimated. Here, examples of the amount of overgrowth include the average number n per unit area, the average height h of seaweed, and the total weight tw per unit area of seaweed, but are not limited thereto.

本実施形態の藻場分布測定装置は、更に、測定対象水域1内の複数地点で測定されたサンプル繁茂量と測定水深zの変化に基づいて求められた海藻による影響量zaとの相関関係を求めて藻場域6の繁茂量を推定する繁茂量推定手段17を備えている。即ち、測定用プログラムをコンピュータ上で実行することで、制御部8に、測定対象水域1内の複数地点で測定されたサンプル繁茂量と測定水深zの変化に基づいて求められた海藻による影響量zaとの相関関係を求めて藻場域6の繁茂量を推定する繁茂量推定部(繁茂量推定手段)17が構成される。   The algae field distribution measuring device of this embodiment further shows the correlation between the amount of sample overgrowth measured at a plurality of points in the measurement target water area 1 and the influence amount za of seaweed obtained based on the change in the measured water depth z. The amount of overgrowth estimation means 17 which estimates the amount of overgrowth of the seaweed bed area 6 is provided. That is, by executing the measurement program on the computer, the control unit 8 causes the influence amount of the seaweed obtained based on the sample overgrowth amount measured at a plurality of points in the measurement target water area 1 and the change in the measured water depth z. An overgrowth amount estimation unit (overgrowth amount estimation means) 17 for estimating the overgrowth amount of the seaweed bed area 6 by obtaining a correlation with za is configured.

本実施形態では、第2の藻場候補領域決定部5によって各測定座標(x、y)についての海藻による影響量zaが既に求められているので、これを利用する。   In this embodiment, since the influence amount za by seaweed about each measurement coordinate (x, y) is already calculated | required by the 2nd seaweed bed candidate area | region determination part 5, this is utilized.

サンプル繁茂量は、現場調査により予め求められており、記憶部9に予め記憶されている。現場調査は、例えば次のようにして行われるが、これに限られない。調査員が現場水域に潜り、藻場内の音響水深探査の測定座標(x、y)に対応する位置に広さが単位面積のサンプリング領域を設定し、サンプリング領域内の海藻の本数n、平均高さhを測定すると共に、サンプリング領域内の海藻の総重量twを測定する。総重量twの測定は、例えば重量測定用試料として所定本数の海藻を採取して重量を測定し、その重量をサンプリング領域内の本数の重量に換算して総重量twとする。例えば、アマモの藻場に50cm×50cm方形枠を設置し、枠内のアマモの本数n、高さを測定すると共に、高さの平均hを算出し、さらに重量測定用試料として例えば10本のアマモを採取して重量を測定し、この重量を枠内の本数nの重量に換算して総重量twを求める。   The amount of sample overgrowth is obtained in advance by a field survey and is stored in the storage unit 9 in advance. The field survey is performed as follows, for example, but is not limited thereto. The investigator dive into the site water area, set a sampling area with a unit area at the position corresponding to the measurement coordinates (x, y) of the acoustic water depth survey in the seaweed bed, the number n of seaweed in the sampling area, the average height While measuring h, the total weight tw of the seaweed in the sampling area is measured. The total weight tw is measured by, for example, collecting a predetermined number of seaweeds as a sample for weight measurement, measuring the weight, and converting the weight to the number of weights in the sampling region to obtain the total weight tw. For example, a 50 cm × 50 cm square frame is installed in the sea cucumber ground, and the number n and height of sea eels in the frame are measured, and the average height h is calculated. The eel is collected and weighed, and this weight is converted into the weight of the number n in the frame to obtain the total weight tw.

そして、このようなサンプリング調査を複数のサンプリング領域で行い、各サンプリング領域毎に海藻の本数n、海藻の平均高さh、海藻の総重量twを算出する。これらのサンプル繁茂量は対応する測定座標(x、y)と関連付けて記憶部9に予め記憶されている。   Then, such a sampling survey is performed in a plurality of sampling areas, and the number n of seaweeds, the average height h of seaweeds, and the total weight tw of seaweeds are calculated for each sampling area. These sample overgrowth amounts are stored in advance in the storage unit 9 in association with the corresponding measurement coordinates (x, y).

次に、藻場分布測定方法について説明する。本実施形態では、ステップS34で藻場域6が求められた後、測定対象水域1内の複数地点で測定されたサンプル繁茂量と測定水深zの変化に基づいて求められた海藻による影響量zaとの相関関係を求めて藻場域6の繁茂量を推定する(ステップS35)。この藻場域6の繁茂量の推定は繁茂量推定部17が記憶部9からサンプル繁茂量及び海藻による影響量zaを読み込んで実行する。   Next, a method for measuring the distribution of seaweed beds will be described. In the present embodiment, after the seaweed bed area 6 is obtained in step S34, the influence amount za of seaweed obtained based on the sample overgrowth amount measured at a plurality of points in the measurement target water area 1 and the change in the measured water depth z. And the amount of overgrowth in the seaweed bed area 6 is estimated (step S35). The overgrowth amount estimation of the seaweed bed area 6 is executed by the overgrowth amount estimation unit 17 reading the sample overgrowth amount and the influence amount za of seaweed from the storage unit 9.

海藻による影響量zaは、海藻による信号波の散乱・吸収によって生じた値であり、海藻の繁茂が多いほど大きくなる。この海藻による影響量zaと実際の海藻の繁茂量との相関関係式を求める。繁茂量のサンプル調査は複数箇所で行われているので、海藻による影響量zaとサンプル繁茂量との相関関係式を求めることができる。即ち、相関関係式を求めることができる数の測定座標(x、y)についてサンプリング調査が行われる。本実施形態では繁茂量として、海藻の本数n、海藻の平均高さh、海藻の総重量twの3項目が設定されているので、各項目毎に相関関係式が求められる。相関関係式は、例えばn=c・za+d(海藻の本数nについての相関関係式、以下、第2の相関関係式という)、h=e・za+f(海藻の平均高さhについての相関関係式、以下、第3の相関関係式という)、tw=g・za+i(海藻の総重量twについての相関関係式、以下、第4の相関関係式という)であらわされる。   The influence amount za by seaweed is a value generated by scattering and absorption of signal waves by seaweed, and becomes larger as the seaweed grows more. A correlation equation between the influence amount za of the seaweed and the actual overgrowth of the seaweed is obtained. Since the sample survey of the amount of overgrowth is performed at a plurality of locations, a correlation formula between the amount of influence za caused by seaweed and the amount of overgrowth of the sample can be obtained. That is, a sampling survey is performed on the number of measurement coordinates (x, y) that can obtain the correlation equation. In the present embodiment, three items are set as the amount of overgrowth, the number n of seaweeds, the average height h of seaweeds, and the total weight tw of seaweeds. Therefore, a correlation equation is obtained for each item. For example, n = c · za + d (correlation equation for the number n of seaweeds, hereinafter referred to as a second correlation equation), h = e · za + f (correlation equation for the average height h of seaweeds) , Hereinafter referred to as a third correlation formula), tw = g · za + i (correlation formula for the total weight tw of seaweeds, hereinafter referred to as a fourth correlation formula).

そして、これらの第2〜第4の相関関係式にそれぞれ影響量zaを代入することで、当該影響量zaの測定座標(x、y)における繁茂量がそれぞれ求められる。そして、藻場域6内の各測定座標(x、y)について繁茂量がそれぞれ求められる。これにより、繁茂量の分布を求めることができる。求められた繁茂量は記憶部9に記憶されると共に、表示部11に表示される。   Then, by substituting the influence amount za into each of the second to fourth correlation expressions, the amount of overgrowth at the measurement coordinates (x, y) of the influence amount za is obtained. And the amount of overgrowth is calculated | required about each measurement coordinate (x, y) in the seaweed bed area 6, respectively. Thereby, the distribution of the amount of overgrowth can be calculated | required. The obtained amount of overgrowth is stored in the storage unit 9 and displayed on the display unit 11.

なお、上述の説明では、繁茂量として、海藻の本数n、海藻の平均高さh、海藻の総重量twの全てを求めていたが、必ずしも全てを求める必要はなく、いずれか1つ又は2つを求めるようにしても良い。   In the above description, the number of seaweeds n, the average height h of seaweeds, and the total weight tw of seaweeds are all obtained as the amount of overgrowth, but it is not always necessary to obtain all of them, either one or two You may ask for one.

また、第2〜第4の相関関係式のうち、相関関係Rが低いものについての繁茂量を不採用にしても良い。相関関係Rが低いものを不採用とすることで、測定の信頼性をより高めることができる。例えば、相関関係Rが閾値0.9よりも大きいものを採用する。ただし、採用の閾値としては0.9に限られず、要求される信頼性の程度等に応じて適宜決定される。   Moreover, you may make it not employ | adopt the amount of overgrowth about a thing with low correlation R among the 2nd-4th correlation formula. By not adopting those having a low correlation R, the measurement reliability can be further increased. For example, the correlation R is larger than the threshold value 0.9. However, the adoption threshold value is not limited to 0.9, and is appropriately determined according to the required degree of reliability.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention.

例えば、上述の説明では、空撮カラー画像の解像度が高く又は撮影高度が低く、音響水深探査で信号波の送受信を行った位置(測定ポイント)毎に別の画素が対応しているので、音響水深探査の各測定ポイントの座標を測定座標(x、y)として処理を行っているが、空撮カラー画像の解像度が低く又は撮影高度が高く、同一の画素に複数の測定ポイントが重なっている場合等には、測定ポイントを間引きして処理を行うようにしても良い。   For example, in the above description, since the resolution of the aerial color image is high or the shooting altitude is low, and another pixel corresponds to each position (measurement point) where signal waves are transmitted and received in the acoustic water depth survey, Processing is performed using the coordinates of each measurement point in water depth exploration as measurement coordinates (x, y), but the resolution of the aerial color image is low or the imaging altitude is high, and multiple measurement points overlap the same pixel. In some cases, the processing may be performed by thinning out the measurement points.

1 測定対象水域
2 第1の藻場候補領域
3 第1の藻場候補領域決定手段
4 第2の藻場候補領域
5 第2の藻場候補領域決定手段
6 藻場域
7 藻場域推定手段
17 繁茂量推定手段
DESCRIPTION OF SYMBOLS 1 Measurement target water area 2 1st seaweed field candidate area 3 1st seaweed field candidate area determination means 4 2nd seaweed field candidate area 5 2nd seaweed field candidate area determination means 6 Seaweed field area 7 Seaweed field area estimation means 17 Overgrowth estimation means

Claims (6)

測定対象水域の空撮カラー画像中の画素のg成分強度の優位性に基づいて第1の藻場候補領域を決定すると共に、前記測定対象水域について行った音響水深探査の測定水深zの変化に基づいて第2の藻場候補領域を決定し、前記第1の藻場候補領域と前記第2の藻場候補領域とを対比して両者の一致した領域を藻場域と推定することを特徴とする藻場分布測定方法。   The first seaweed bed candidate region is determined based on the superiority of the g component intensity of the pixel in the aerial color image of the measurement target water area, and the change in the measurement water depth z of the acoustic water depth exploration performed on the measurement target water area. A second seaweed field candidate area is determined based on the first seam field candidate area and the second seaweed field candidate area, and a region where both coincide with each other is estimated as a seaweed field area. A method for measuring the distribution of seaweed beds. 前記測定水深zの変化に基づき海藻による影響量zaを求めると共に、前記測定対象水域内の複数地点で測定されたサンプル繁茂量と前記海藻による影響量zaとの相関関係を求めて前記藻場域の繁茂量を推定することを特徴とする請求項1記載の藻場分布測定方法。   The amount of influence za by seaweed is obtained based on the change in the measured water depth z, and the correlation between the amount of sample overgrowth measured at a plurality of points in the measurement target water area and the amount of influence za by the seaweed is obtained to obtain the seaweed area. 2. The method for measuring the distribution of seaweed beds according to claim 1, wherein the amount of overgrowth is estimated. 測定対象水域の空撮カラー画像中の画素のg成分強度の優位性に基づいて第1の藻場候補領域を決定する第1の藻場候補領域決定手段と、前記測定対象水域について行った音響水深探査の測定水深zの変化に基づいて第2の藻場候補領域を決定する第2の藻場候補領域決定手段と、前記第1の藻場候補領域と前記第2の藻場候補領域とを対比して両者の一致した領域を藻場域とする藻場域推定手段を備えることを特徴とする藻場分布測定装置。   First seaweed field candidate area determining means for determining the first seaweed field candidate area based on the superiority of the g component intensity of the pixel in the aerial color image of the measurement target water area, and the sound performed on the measurement target water area Second seaweed field candidate area determining means for determining a second seaweed field candidate area based on a change in the measured water depth z of the water depth exploration, the first seaweed field candidate area and the second seaweed field candidate area, A seaweed bed distribution measuring apparatus comprising a seaweed bed area estimating means that compares the two and sets a region where both coincide with each other as a seaweed bed area. 前記測定対象水域内の複数地点で測定されたサンプル繁茂量と前記測定水深zの変化に基づいて求められた海藻による影響量zaとの相関関係を求めて前記藻場域の繁茂量を推定する繁茂量推定手段を備えることを特徴とする請求項3記載の藻場分布測定装置。   The amount of sample overgrowth measured at a plurality of points in the measurement target water area and the influence amount za of seaweed obtained based on the change in the measured water depth z is obtained to estimate the overgrowth quantity in the seaweed bed area. 4. The seaweed bed distribution measuring device according to claim 3, further comprising an overgrowth amount estimating means. 少なくとも、測定対象水域の空撮カラー画像中の画素のg成分強度の優位性に基づいて第1の藻場候補領域を決定する手段と、前記測定対象水域について行った音響水深探査の測定水深zの変化に基づいて第2の藻場候補領域を決定する手段と、前記第1の藻場候補領域と前記第2の藻場候補領域とを対比して両者の一致した領域を藻場域とする手段としてコンピュータを機能させるための藻場分布測定用プログラム。   Means for determining a first seaweed bed candidate region based on at least the g component intensity superiority of the pixels in the aerial color image of the measurement target water area, and the measurement water depth z of the acoustic water depth exploration performed on the measurement target water area A means for determining a second seaweed field candidate area based on the change of the first seam field candidate area and the second seaweed field candidate area, and comparing the two areas as a seaweed field area A program for measuring the distribution of seaweed beds for causing a computer to function as a means to perform. 更に、前記測定対象水域内の複数地点で測定されたサンプル繁茂量と前記測定水深zの変化に基づいて求められた海藻による影響量zaとの相関関係を求めて前記藻場域の繁茂量を推定する手段としてコンピュータを機能させるための請求項5記載の藻場分布測定用プログラム。   Further, the amount of overgrowth in the seaweed bed area is obtained by obtaining the correlation between the amount of sample overgrowth measured at a plurality of points in the measurement target water area and the influence amount za of seaweed obtained based on the change in the measured water depth z. The program for measuring algae distribution according to claim 5 for causing a computer to function as the estimating means.
JP2012129528A 2012-06-07 2012-06-07 Algae field distribution measuring method, alga field distribution measuring device, alga field distribution measuring program Active JP5847652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012129528A JP5847652B2 (en) 2012-06-07 2012-06-07 Algae field distribution measuring method, alga field distribution measuring device, alga field distribution measuring program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012129528A JP5847652B2 (en) 2012-06-07 2012-06-07 Algae field distribution measuring method, alga field distribution measuring device, alga field distribution measuring program

Publications (2)

Publication Number Publication Date
JP2013252096A true JP2013252096A (en) 2013-12-19
JP5847652B2 JP5847652B2 (en) 2016-01-27

Family

ID=49950168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012129528A Active JP5847652B2 (en) 2012-06-07 2012-06-07 Algae field distribution measuring method, alga field distribution measuring device, alga field distribution measuring program

Country Status (1)

Country Link
JP (1) JP5847652B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118552871A (en) * 2024-07-30 2024-08-27 广东海洋大学 Seaweed bed distribution extraction method based on unmanned aerial vehicle image

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749376A (en) * 1993-08-03 1995-02-21 Japan Radio Co Ltd Ultrasonic alga measuring system
JP2003143959A (en) * 2001-11-08 2003-05-20 Hitachi Eng Co Ltd System for providing growth information of farm product in field
JP2004151278A (en) * 2002-10-30 2004-05-27 National Institute Of Advanced Industrial & Technology Aerial photographic map creating apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749376A (en) * 1993-08-03 1995-02-21 Japan Radio Co Ltd Ultrasonic alga measuring system
JP2003143959A (en) * 2001-11-08 2003-05-20 Hitachi Eng Co Ltd System for providing growth information of farm product in field
JP2004151278A (en) * 2002-10-30 2004-05-27 National Institute Of Advanced Industrial & Technology Aerial photographic map creating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118552871A (en) * 2024-07-30 2024-08-27 广东海洋大学 Seaweed bed distribution extraction method based on unmanned aerial vehicle image

Also Published As

Publication number Publication date
JP5847652B2 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
Morris et al. A new method for ecological surveying of the abyss using autonomous underwater vehicle photography
Bergsma et al. On the operational use of UAVs for video-derived bathymetry
Buscombe Shallow water benthic imaging and substrate characterization using recreational-grade sidescan-sonar
JP6014382B2 (en) Underwater detection device, underwater display system, program, and underwater display method
Shortis Camera calibration techniques for accurate measurement underwater
KR100795497B1 (en) Wave measure method and system using radar
CN104535066B (en) The stacking method and system of naval target and electronic chart in a kind of boat-carrying Infrared video image
Lefebvre et al. Use of a high-resolution profiling sonar and a towed video camera to map a Zostera marina bed, Solent, UK
Dunlop et al. An evaluation of deep-sea benthic megafauna length measurements obtained with laser and stereo camera methods
Maki et al. Volumetric mapping of tubeworm colonies in Kagoshima Bay through autonomous robotic surveys
Shortis et al. Using stereo-video for deep water benthic habitat surveys
Negaharipour On 3-D scene interpretation from FS sonar imagery
US10359508B2 (en) System and method for calibration of echo sounding systems and improved seafloor imaging using such systems
JP5152913B2 (en) Offshore monitoring system and method
KR101339678B1 (en) Calculation method of rock and non-rock area for surveying
Lesser et al. Mesophotic coral reef community structure: the constraints of imagery collected by unmanned vehicles
JPWO2017163904A1 (en) Underwater detection device, underwater detection method, and underwater detection program
JP5847652B2 (en) Algae field distribution measuring method, alga field distribution measuring device, alga field distribution measuring program
Shortis et al. A towed body stereo-video system for deep water benthic habitat surveys
Du Preez et al. A new video survey method of microtopographic laser scanning (MiLS) to measure small‐scale seafloor bottom roughness
Šiljeg et al. Mapping of marine litter on the seafloor using WASSP S3 multibeam echo sounder and chasing M2 ROV
Fillinger et al. A new 3-D modelling method to extract subtransect dimensions from underwater videos
Meadows A review of low cost underwater acoustic remote sensing for large freshwater systems
KR20210099817A (en) Shellfish Resource Estimation Using Side Scan Sonar.
Pinkard et al. Use of a video and laser system to quantify transect area for remotely operated vehicle (ROV) rockfish and abalone surveys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151125

R150 Certificate of patent or registration of utility model

Ref document number: 5847652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250