JP2013251193A - Spark plug for internal combustion engine - Google Patents

Spark plug for internal combustion engine Download PDF

Info

Publication number
JP2013251193A
JP2013251193A JP2012126286A JP2012126286A JP2013251193A JP 2013251193 A JP2013251193 A JP 2013251193A JP 2012126286 A JP2012126286 A JP 2012126286A JP 2012126286 A JP2012126286 A JP 2012126286A JP 2013251193 A JP2013251193 A JP 2013251193A
Authority
JP
Japan
Prior art keywords
ground electrode
electrode discharge
spark plug
discharge part
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012126286A
Other languages
Japanese (ja)
Inventor
Yuuki Murayama
勇樹 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012126286A priority Critical patent/JP2013251193A/en
Publication of JP2013251193A publication Critical patent/JP2013251193A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a spark plug for internal combustion engine which can achieve high ignitability and erosion resistance, in an internal combustion engine including super charging means and producing a high flow rate environment.SOLUTION: By setting the ratio B/A of the diameter A of a center electrode discharger 11 and the diameter B of a ground electrode discharger 41 to be B/A≥1.4, and setting the diameter B of a ground electrode discharger 41 to be 0.9 (mm)≤B, the re-discharge frequency can be reduced at the time of blow-off, heat dissipation from the ground electrode discharger 41 to the outside can be promoted, and erosion of the discharger can be reduced. Furthermore, by setting the diameter B of a ground electrode discharger 41 to be B≤1.4 (mm), crack initiation probability due to thermal stress of the ground electrode discharger 41 is reduced, and damage, e.g., separation, of the ground electrode discharger 41, can be suppressed.

Description

本発明は、過給手段を備えた内燃機関において高着火性と火花放電による消耗抑制とを両立する内燃機関用スパークプラグに関する。   The present invention relates to a spark plug for an internal combustion engine that achieves both high ignitability and suppression of consumption by spark discharge in an internal combustion engine provided with supercharging means.

従来、中心電極や接地電極に関する種々の要素の寸法を規定し、着火性や耐久性の向上を目的としたスパークプラグが知られている。例えば、特許文献1には、接地電極放電部の径を0.8mm以下、接地電極放電部の径を中心電極放電部の径で割った比率が1.4以上、及び接地電極放電部の接地電極表面からの突出長さを0.5mm以上1.2mm以下とすることにより、より高い着火性と耐久性を得ることを目的としたスパークプラグが示されている。   2. Description of the Related Art Conventionally, spark plugs that define the dimensions of various elements related to a center electrode and a ground electrode and are intended to improve ignitability and durability are known. For example, in Patent Document 1, the ratio of the ground electrode discharge part is 0.8 mm or less, the ratio of the ground electrode discharge part divided by the diameter of the center electrode discharge part is 1.4 or more, and the ground electrode discharge part is grounded. A spark plug intended to obtain higher ignitability and durability by setting the protruding length from the electrode surface to 0.5 mm to 1.2 mm is shown.

また、従来、スパークプラグの接地電極放電部の径は、発生した火花がこの放電部によって熱量を吸収され、その火炎核が消されてしまう消炎作用が発生する可能性があるため、小寸法であることが求められてきた。   Conventionally, the diameter of the discharge part of the ground electrode of the spark plug has a small size because the generated spark may absorb the amount of heat by the discharge part and the flame extinguishing action may be generated. There has been a need to be.

ところで、近年、排ガス規制等によって、車両の燃費向上が望まれていることから、この要望に応えるべく、高過給の内燃機関が用いられている。このような内燃機関において用いられるスパークプラグは、燃焼室内において高流速環境下に置かれる。即ち、内燃機関の吸気管等に設けられた過給手段によって圧縮された空気と燃料とが混合された混合気が、通常の内燃機関よりも高圧状態で内燃機関の燃焼室に流入するとともに、燃焼室内に突出したスパークプラグの接地電極放電部と中心電極放電部の間の空間(放電ギャップ)を通常の内燃機関よりも早い速度で流れる。このような高流速環境下において、スパークプラグの放電ギャップに高電圧を印加することで発生する放電電流の軌跡である放電電流軌跡は高流速の混合気によって吹き流され易い。   By the way, in recent years, there has been a demand for improvement in fuel efficiency of vehicles due to exhaust gas regulations and the like, and a high supercharged internal combustion engine is used to meet this demand. The spark plug used in such an internal combustion engine is placed in a high flow velocity environment in the combustion chamber. That is, an air-fuel mixture in which air compressed by supercharging means provided in an intake pipe of an internal combustion engine and the like is mixed flows into a combustion chamber of the internal combustion engine in a higher pressure state than a normal internal combustion engine, The spark plug protrudes into the combustion chamber and flows in a space (discharge gap) between the ground electrode discharge portion and the center electrode discharge portion at a speed higher than that of a normal internal combustion engine. Under such a high flow velocity environment, the discharge current locus, which is the locus of the discharge current generated by applying a high voltage to the discharge gap of the spark plug, is easily blown by the high flow velocity mixture.

特開2005−123181号公報JP-A-2005-123181

過給手段を備えた内燃機関の高流速環境下にスパークプラグが置かれた場合、接地電極放電部と中心電極放電部との放電ギャップ間に発生する放電電流軌跡が流速の早い混合気によって吹き流され、放電が途切れる現象(以下、吹き消え現象と記す)を生じる可能性がある。特に、接地電極放電部の径が小さく、過給手段を備えた内燃機関ではこの現象が生じ易い。そして、吹き消え現象の発生により、燃焼が不安定になったり、吹き消え現象が生じた後に再度放電することで放電回数が増加し、その分、接地電極放電部の温度が高くなることで接地電極放電部の消耗が加速されるおそれがある。   When a spark plug is placed in a high flow rate environment of an internal combustion engine equipped with a supercharging means, the discharge current locus generated between the discharge gap between the ground electrode discharge part and the center electrode discharge part is blown by the mixture having a high flow rate. There is a possibility that a phenomenon in which discharge is interrupted (hereinafter referred to as blow-off phenomenon) is generated. In particular, this phenomenon is likely to occur in an internal combustion engine having a small diameter of the ground electrode discharge portion and provided with supercharging means. Due to the occurrence of blow-off phenomenon, the combustion becomes unstable, or discharge occurs again after the blow-off phenomenon occurs, so that the number of discharges increases, and the temperature of the ground electrode discharge part increases accordingly. There is a possibility that the consumption of the electrode discharge part is accelerated.

本発明は上記問題点に鑑みてなされたものであって、その目的は、過給手段を備えた高流速環境を生じる内燃機関における、放電の吹き消え頻度を低減するとともに、接地電極放電部が持つ熱量の外部への放散を促進し、また、接地電極放電部の熱応力による接合強度の低下を抑え、高着火性と耐消耗性を得ることができる内燃機関用スパークプラグを提供することである。   The present invention has been made in view of the above-mentioned problems, and its purpose is to reduce the frequency of discharge blow-off in an internal combustion engine that generates a high flow velocity environment equipped with a supercharging means, and the ground electrode discharge portion By providing a spark plug for an internal combustion engine that promotes dissipating the amount of heat to the outside, suppresses a decrease in bonding strength due to the thermal stress of the ground electrode discharge part, and can obtain high ignitability and wear resistance is there.

上記課題を解決するために、本発明における内燃機関用スパークプラグ(1)は、燃焼室(3)に吸入される吸入空気を過給する過給手段(70)を備えた内燃機関において使用され、接地電極放電部(41)の中心電極放電部(11)と対向する部分の直径をB(mm)、中心電極放電部(11)の接地電極放電部(41)と対向する部分の直径をA(mm)としたときに、0.9(mm)≦B≦1.4(mm)、かつ、B/A≧1.4の関係を満たすことを特徴とする。   In order to solve the above problems, the spark plug (1) for an internal combustion engine according to the present invention is used in an internal combustion engine provided with a supercharging means (70) for supercharging intake air sucked into a combustion chamber (3). The diameter of the portion of the ground electrode discharge portion (41) facing the center electrode discharge portion (11) is B (mm), and the diameter of the portion of the center electrode discharge portion (11) facing the ground electrode discharge portion (41) is When A (mm), 0.9 (mm) ≦ B ≦ 1.4 (mm) and B / A ≧ 1.4 are satisfied.

本発明によれば、過給手段を備えた内燃機関のスパークプラグ(1)において、吹き消え現象を抑制することができ、また、接地電極放電部(41)が持つ熱量の外部への放散を促進できるとともに、熱応力による接合強度の低下を抑えることができ、その結果、高着火性と耐消耗性を実現することができる。   According to the present invention, in the spark plug (1) of the internal combustion engine provided with the supercharging means, the blow-off phenomenon can be suppressed, and the amount of heat of the ground electrode discharge part (41) can be dissipated to the outside. In addition to being able to promote, it is possible to suppress a decrease in bonding strength due to thermal stress, and as a result, it is possible to achieve high ignitability and wear resistance.

すなわち、本発明者らは、過給手段を備える結果、放電ギャップ(50)における高流速環境下(例えば、流速20m/s以上)においては放電電流軌跡(2)が吹き流されるという現象が発生し、着火が放電部から離れた箇所で発生して、放電部へ熱が伝わりにくいという点に着目した。そして、接地電極放電部(41)の直径Bを、従来の考え方とは異なり、比較的大きく設定するとともに、接地電極放電部(41)の直径Bを中心電極放電部(11)の直径Aよりも所定比率以上大きく設定することによって、吹き流される放電電流軌跡(2)が接地電極放電部端面(42)をその縁端部(43)まで吹き流される方向に移動可能とし、また、中心電極放電部(11)が大きくならず電界集中を維持可能として、吹き消え現象を抑制し、高着火性と耐消耗性を実現することが可能である点を見い出した。   That is, as a result of providing the supercharging means, the inventors have a phenomenon that the discharge current locus (2) is blown in a high flow velocity environment (for example, a flow velocity of 20 m / s or more) in the discharge gap (50). However, attention was paid to the point that ignition occurs at a location away from the discharge part and heat is not easily transmitted to the discharge part. The diameter B of the ground electrode discharge part (41) is set to be relatively large, unlike the conventional way of thinking, and the diameter B of the ground electrode discharge part (41) is set larger than the diameter A of the center electrode discharge part (11). Is set to be larger than a predetermined ratio, so that the discharge current locus (2) to be blown can move in the direction in which the ground electrode discharge part end face (42) is blown to its edge part (43), and the center electrode It has been found that the discharge part (11) can be maintained without increasing the electric field concentration, the blow-off phenomenon can be suppressed, and high ignitability and wear resistance can be realized.

これらの知見を踏まえ、中心電極放電部(11)の直径Aと接地電極放電部(41)の直径Bとの比B/AをB/A≧1.4とするとともに、接地電極放電部(41)の直径Bを0.9(mm)≦Bとすることにより、吹き消え時の再放電頻度を小さくできるとともに、接地電極放電部(41)からの外部への熱の放散を促進でき、放電部の消耗量を低く抑えることが可能となる。また、接地電極放電部(41)の直径Bを、B≦1.4(mm)とすることにより、接地電極放電部(41)の熱応力による亀裂発生確率を小さくし、接地電極放電部(41)の分離等の破損を抑制することが可能となる。   Based on these findings, the ratio B / A of the diameter A of the central electrode discharge part (11) to the diameter B of the ground electrode discharge part (41) is set to B / A ≧ 1.4, and the ground electrode discharge part ( By setting the diameter B of 41) to 0.9 (mm) ≦ B, the frequency of re-discharge at the time of blow-off can be reduced, and the dissipation of heat from the ground electrode discharge part (41) to the outside can be promoted, It is possible to keep the consumption amount of the discharge part low. Further, by setting the diameter B of the ground electrode discharge part (41) to B ≦ 1.4 (mm), the probability of cracking due to thermal stress of the ground electrode discharge part (41) is reduced, and the ground electrode discharge part ( 41) It is possible to suppress breakage such as separation.

なお、特許請求の範囲及び上記手段の項に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。   In addition, the code | symbol in the parenthesis described in the claim and the said means section shows the correspondence with the specific means as described in embodiment mentioned later, and limits the technical scope of this invention. It is not a thing.

本発明の第1の実施形態を示す半断面図。1 is a half sectional view showing a first embodiment of the present invention. 図1のX方向から見た本発明のスパークプラグ放電部の拡大図。The enlarged view of the spark plug discharge part of this invention seen from the X direction of FIG. 第1の実施形態のスパークプラグが使用される過給手段を備えた内燃機関の模式構成図。The schematic block diagram of the internal combustion engine provided with the supercharging means in which the spark plug of 1st Embodiment is used. (A)は低流速環境の内燃機関に配置されたスパークプラグの放電状態の説明図、(B)は高流速環境の同スパークプラグの放電状態の説明図。(A) is explanatory drawing of the discharge state of the spark plug arrange | positioned at the internal combustion engine of a low flow velocity environment, (B) is explanatory drawing of the discharge state of the spark plug of a high flow velocity environment. スパークプラグにおける再放電頻度とB/Aとの関係を評価した可視化火花放電ベンチ試験の結果を示す特性図。The characteristic view which shows the result of the visualization spark discharge bench test which evaluated the relationship between the re-discharge frequency in a spark plug, and B / A. 図5における可視化火花放電ベンチ試験の流速に対する吹き消え抑制効果C/Dの結果を示す特性図。The characteristic view which shows the result of the blowing-out suppression effect C / D with respect to the flow rate of the visualization spark discharge bench test in FIG. スパークプラグにおける流速毎のリーン限界A/Fと接地電極放電部の直径Bとの関係を示す特性図。The characteristic view which shows the relationship between the lean limit A / F for every flow velocity in a spark plug, and the diameter B of a ground electrode discharge part. スパークプラグにおける耐消耗性と接地電極放電部の直径Bとの関係を示す特性図。The characteristic view which shows the relationship between the wear resistance in a spark plug, and the diameter B of the ground electrode discharge part. (A)は自然吸気エンジンにおける耐消耗性評価のための耐久試験の結果を示すグラフ、(B)は過給エンジンにおける同結果を示すグラフ。(A) is a graph which shows the result of the endurance test for wear resistance evaluation in a naturally aspirated engine, (B) is a graph which shows the same result in a supercharged engine. 冷熱サイクル試験におけるスパークプラグの接地電極放電部に生じた発生応力と接地電極放電部の直径Bとの関係を示す特性図。The characteristic view which shows the relationship between the generated stress which arose in the ground electrode discharge part of the spark plug in the thermal cycle test, and the diameter B of the ground electrode discharge part. スパークプラグにおけるギャップ拡大比と接地電極放電部の突出する長さLとの関係についてエンジン耐久試験の結果を示す特性図。The characteristic view which shows the result of an engine durability test about the relationship between the gap expansion ratio in a spark plug, and the length L which the ground electrode discharge part protrudes. スパークプラグにおけるリーン限界A/Fと接地電極放電部の突出する長さLとの関係についてエンジン耐久試験の結果を示す特性図。The characteristic view which shows the result of an engine durability test about the relationship between the lean limit A / F in a spark plug and the length L which the ground electrode discharge part protrudes.

以下に、本発明の第1の実施形態である内燃機関用スパークプラグ1について、図1〜図3を用いて説明する。図1に本発明におけるスパークプラグ1の半断面図を示す。スパークプラグ1は、中心電極放電部11を燃焼室に突出する側(以下、先端側と称する)の先端部に設けた中心電極10と、この中心電極10の外周に配設され中心電極10を保持する絶縁碍子30と、絶縁碍子30の外周に配設され絶縁碍子30を保持するハウジング20と、ハウジング20の先端側の端部22から突出し、中心電極放電部11と対向するように曲折させるとともに対向面に接地電極放電部41を有した接地電極40とからなる。なお、このスパークプラグ1は、後述するように、過給手段を備えた内燃機関の燃焼室3に取り付けられる。   Below, the spark plug 1 for internal combustion engines which is the 1st Embodiment of this invention is demonstrated using FIGS. 1-3. FIG. 1 is a half sectional view of a spark plug 1 according to the present invention. The spark plug 1 includes a center electrode 10 provided at the tip of the center electrode discharge part 11 projecting into the combustion chamber (hereinafter referred to as the tip side), and the center electrode 10 disposed on the outer periphery of the center electrode 10. The insulator 30 to be held, the housing 20 disposed on the outer periphery of the insulator 30 and holding the insulator 30, and protrudes from the end portion 22 on the distal end side of the housing 20, and bent so as to face the center electrode discharge portion 11. And a ground electrode 40 having a ground electrode discharge portion 41 on the opposite surface. As will be described later, the spark plug 1 is attached to a combustion chamber 3 of an internal combustion engine provided with supercharging means.

中心電極10は、先端側と反対の側(以下、基端側と称する)に絶縁碍子30から露出したターミナル部14と、燃焼室側の端部に基端側から先端側に向けて径をすぼめた略円錐台状に形成された中心電極先端部13と、中心電極先端部13の先端側に導体によって略円柱状に形成された中心電極放電部11とを備えている。中心電極10の外周には略円筒状の絶縁碍子30が配設されており、この絶縁碍子30の一部を覆うように金属導体によって形成されたハウジング20が絶縁碍子30の外周に配設される。ハウジング20には螺子部21が設けられており、螺子部21が内燃機関に締結されることでスパークプラグ1が内燃機関に固定される。   The center electrode 10 has a terminal portion 14 exposed from the insulator 30 on the side opposite to the distal end side (hereinafter referred to as a proximal end side), and a diameter from the proximal end side toward the distal end side at the end portion on the combustion chamber side. A center electrode tip portion 13 formed in a substantially truncated cone shape and a center electrode discharge portion 11 formed in a substantially cylindrical shape by a conductor on the tip side of the center electrode tip portion 13 are provided. A substantially cylindrical insulator 30 is disposed on the outer periphery of the center electrode 10, and a housing 20 formed of a metal conductor so as to cover a part of the insulator 30 is disposed on the outer periphery of the insulator 30. The The housing 20 is provided with a screw portion 21, and the spark plug 1 is fixed to the internal combustion engine by the screw portion 21 being fastened to the internal combustion engine.

ハウジング先端側端部22には金属導体によって形成された接地電極40が接合されている。接地電極40はハウジング先端側端部22から突出した腕部を持ち、腕部の一部を中心電極放電部11と対向するように曲折させ、この曲折部から接地電極放電部41が中心電極放電部11と対向するように突出している。   A ground electrode 40 formed of a metal conductor is joined to the housing front end 22. The ground electrode 40 has an arm portion protruding from the end 22 on the front end side of the housing, and a part of the arm portion is bent so as to face the center electrode discharge portion 11, and the ground electrode discharge portion 41 is discharged from the bent portion to the center electrode discharge. It protrudes so as to face the part 11.

図2に中心電極先端部13、中心電極放電部11、接地電極放電部41及び接地電極40によって構成されたスパークプラグ放電部の概略拡大図を示す。中心電極先端部13に配された中心電極放電部11は例えばロジウムなどを添加したイリジウム合金からなり、接地電極40から中心電極10に向けて突出した接地電極放電部41は、例えばロジウムなどを添加した白金合金からなっており、ともに略円柱状に形成されている。   FIG. 2 shows a schematic enlarged view of a spark plug discharge portion constituted by the center electrode tip portion 13, the center electrode discharge portion 11, the ground electrode discharge portion 41, and the ground electrode 40. The center electrode discharge part 11 arranged at the center electrode tip 13 is made of, for example, an iridium alloy to which rhodium or the like is added, and the ground electrode discharge part 41 protruding from the ground electrode 40 toward the center electrode 10 is added with, for example, rhodium or the like. Both are formed in a substantially cylindrical shape.

中心電極放電部11と接地電極放電部41は、互いに対向した中心電極放電部端面12と接地電極放電部端面42を有しており、後述するように接地電極放電部41の直径Bは、0.9mm以上1.4mm以下に形成され、中心電極放電部11の直径Aは、接地電極放電部41の直径Bとの関係B/Aが1.4以上の範囲となるように形成されている。   The center electrode discharge part 11 and the ground electrode discharge part 41 have a center electrode discharge part end face 12 and a ground electrode discharge part end face 42 facing each other, and the diameter B of the ground electrode discharge part 41 is 0 as described later. The diameter A of the center electrode discharge portion 11 is formed such that the relationship B / A with the diameter B of the ground electrode discharge portion 41 is in the range of 1.4 or more. .

また、接地電極放電部41は接地電極40に溶接されており、接地電極40から中心電極10の軸方向に長さLだけ突き出しており、長さLは後述するように0.5mm以上1.2mm以下の範囲が好ましい。溶接は例えばアーク溶接等によって行われ、略円柱状である接地電極放電部41の接地電極側の外周に行われる。   The ground electrode discharge portion 41 is welded to the ground electrode 40 and protrudes from the ground electrode 40 in the axial direction of the center electrode 10 by a length L. The length L is 0.5 mm or more and 1. The range of 2 mm or less is preferable. The welding is performed by, for example, arc welding or the like, and is performed on the outer periphery of the ground electrode discharge portion 41 having a substantially cylindrical shape on the ground electrode side.

図3に過給手段として排気タービン式過給機70を備えた内燃機関を示す。排気タービン式過給機70は排気側と吸気側にそれぞれタービンを有し、両タービンが構造的に連結している。以下、排気タービン式過給機70による過給の方法を説明する。   FIG. 3 shows an internal combustion engine provided with an exhaust turbine supercharger 70 as supercharging means. The exhaust turbine supercharger 70 has turbines on the exhaust side and the intake side, respectively, and both turbines are structurally connected. Hereinafter, a method of supercharging by the exhaust turbine supercharger 70 will be described.

排気タービン式過給機70は排気側に動力を受け取る排気側タービン71と、動力を受けて吸気を圧縮する遠心式圧縮機の機能を持つ吸気側タービン72とからなる。内燃機関によって燃焼した混合気63は燃焼室3から排気62として放出される。排気側タービン71は排気62から運動エネルギーと熱エネルギーを一部受け取り、該エネルギーを用いて高速回転する。排気側タービン71に連結された吸気側タービン72は、排気側タービン71の高速回転に伴って回転し、この回転力によって、吸気側タービン72が吸気60を過給し、圧縮された過給後吸気61は燃焼室3へ吸入される。   The exhaust turbine supercharger 70 includes an exhaust side turbine 71 that receives power on the exhaust side, and an intake side turbine 72 that functions as a centrifugal compressor that receives power and compresses intake air. The air-fuel mixture 63 combusted by the internal combustion engine is discharged from the combustion chamber 3 as exhaust 62. The exhaust side turbine 71 receives a part of kinetic energy and heat energy from the exhaust 62, and rotates at high speed using the energy. The intake-side turbine 72 connected to the exhaust-side turbine 71 rotates as the exhaust-side turbine 71 rotates at a high speed. With this rotational force, the intake-side turbine 72 supercharges the intake air 60 and is compressed after being supercharged. The intake air 61 is sucked into the combustion chamber 3.

上記方法で過給された過給後吸気61は、燃料と混合することで混合気63となる。この混合気63は燃焼室3内に自然吸気(NA)を用いた内燃機関における混合気63の圧力より高圧で流入され、燃焼室3内に突出したスパークプラグ1の中心電極放電部11と接地電極放電部41との間の放電ギャップ50間を流動する。過給手段を有しない内燃機関における放電ギャップ50を流れる混合気63の流速は平均流速10m/s(メートル/秒)より小さくなるのに対して、過給手段を備えた内燃機関の混合気63の流速は平均流速20m/sから40m/sの範囲となる。なお、本発明において高流速環境とは、例えば上述した過給手段を用いることにより、過給手段を用いない自然吸気エンジンなどの内燃機関における混合気63の流速以上の流速を生じる環境をさす。   The supercharged intake air 61 supercharged by the above method becomes an air-fuel mixture 63 by mixing with fuel. The air-fuel mixture 63 flows into the combustion chamber 3 at a pressure higher than the pressure of the air-fuel mixture 63 in the internal combustion engine using natural intake air (NA), and is grounded to the center electrode discharge portion 11 of the spark plug 1 protruding into the combustion chamber 3. It flows between the discharge gaps 50 between the electrode discharge portions 41. The flow rate of the air-fuel mixture 63 flowing through the discharge gap 50 in an internal combustion engine having no supercharging means is smaller than an average flow velocity of 10 m / s (meter / second), whereas the air-fuel mixture 63 of the internal combustion engine provided with supercharging means. The average flow velocity is in the range of 20 m / s to 40 m / s. In the present invention, the high flow velocity environment refers to an environment in which, for example, the above-described supercharging means is used, and a flow velocity higher than that of the air-fuel mixture 63 in an internal combustion engine such as a naturally aspirated engine that does not use the supercharging means is generated.

また、過給手段は上述した排気タービン式過給機70に限定されるものではなく、例えば機械式過給機などの内燃機関の動力や電動機を利用して燃焼室に強制的に空気を送り込む機構、もしくは吸気管の形状、構造等によって走行により得る空気の圧力を利用して過給する方法などによる過給手段でもよい。   Further, the supercharging means is not limited to the above-described exhaust turbine supercharger 70. For example, air is forcibly sent into the combustion chamber using the power of an internal combustion engine such as a mechanical supercharger or an electric motor. Supercharging means such as a mechanism or a method of supercharging using the pressure of air obtained by running depending on the shape or structure of the intake pipe may be used.

高流速環境と、該環境より混合気が低い速度で流動する低流速環境におけるスパークプラグ放電部の様子を、図4を用いて説明する。図4の(A)は低流速環境の放電部の放電の様子を示し、同図(B)は高流速環境の放電部における放電の様子を示しており、この(B)は吹き流され現象が発生したときの様子を示している。   The state of the spark plug discharge part in the high flow velocity environment and the low flow velocity environment in which the air-fuel mixture flows at a lower speed than the environment will be described with reference to FIG. 4A shows the state of discharge in the discharge part in the low flow velocity environment, and FIG. 4B shows the state of discharge in the discharge part in the high flow rate environment, and this (B) is blown away. It shows the situation when the occurrence of.

中心電極放電部11と接地電極放電部41との間の放電は対向する中心電極放電部端面12と接地電極放電部端面42において発生する。すなわち、スパークプラグ1に印加された高電圧が放電ギャップ50において絶縁破壊を引き起こし、該状態において電流が流れることによって放電が開始され、その経路が放電電流軌跡2として現出する。この放電によって混合気が引火し、火炎核が生成される。そして、生成された火炎核が拡大するにつれて接地電極放電部41にまで達し、該放電部は火炎核によって生成された熱量を吸収する。すなわち、接地電極放電部41による冷却効果が発生する。その結果、火炎核が放電ギャップ50内で熱量を奪われて消える現象、すなわち消炎作用が発生することがある。   Discharge between the center electrode discharge portion 11 and the ground electrode discharge portion 41 occurs at the opposed center electrode discharge portion end face 12 and ground electrode discharge portion end face 42. That is, the high voltage applied to the spark plug 1 causes a dielectric breakdown in the discharge gap 50, and a discharge starts when a current flows in this state, and the path appears as a discharge current locus 2. This discharge ignites the air-fuel mixture and generates flame nuclei. As the generated flame kernel expands, it reaches the ground electrode discharge portion 41, and the discharge portion absorbs the heat generated by the flame kernel. That is, the cooling effect by the ground electrode discharge part 41 occurs. As a result, a phenomenon in which the flame kernel loses its heat amount in the discharge gap 50, that is, a flame extinguishing action may occur.

図4(A)のような、混合気63の流速が低流速環境下にある放電では放電ギャップ50において火炎核が形成されるため、接地電極放電部41の直径を大きくすることにより電極による冷却効果が増し、消炎作用が働くことで着火が不安定になるおそれがある。そのため、一般に接地電極放電部41は径を小さくとることで消炎作用を抑制しようとする傾向があった。   In the discharge in which the flow rate of the air-fuel mixture 63 is in a low flow rate environment as shown in FIG. 4A, flame nuclei are formed in the discharge gap 50, so that the diameter of the ground electrode discharge portion 41 is increased to cool by the electrodes. There is a possibility that the ignition will become unstable due to the increased effect and the extinguishing action. Therefore, in general, the ground electrode discharge part 41 tends to suppress the extinguishing action by reducing the diameter.

上述した内容と比較し、図4(B)に示すように高流速環境下の放電では、放電ギャップ50を流動する混合気63の流れによって対向面において生成された放電電流軌跡2が混合気の流動方向80に流される。このとき、接地電極放電部41における放電電流軌跡2の末端は接地電極放電部端面42を移動し、縁端部43にまで達するとともに放電電流軌跡2が略円弧を描くように放電ギャップ50より外側にまで到達する。すなわち、放電電流軌跡2が混合気63の速い流動によって吹き流される。吹き流された放電によって混合気63が引火し、放電ギャップ50内よりも放電部径方向外側において火炎核が形成される。   Compared with the contents described above, in the discharge under a high flow velocity environment as shown in FIG. 4B, the discharge current locus 2 generated on the opposite surface by the flow of the air-fuel mixture 63 flowing through the discharge gap 50 is Flowed in the flow direction 80. At this time, the end of the discharge current locus 2 in the ground electrode discharge portion 41 moves on the end surface 42 of the ground electrode discharge portion, reaches the edge portion 43 and is outside the discharge gap 50 so that the discharge current locus 2 draws a substantially arc. Reach up to. That is, the discharge current locus 2 is blown by the rapid flow of the air-fuel mixture 63. The air-fuel mixture 63 is ignited by the blown-out discharge, and a flame nucleus is formed outside the discharge gap 50 in the discharge portion radial direction.

また、放電電流軌跡2が吹き流され放電が途切れた場合、吹き消え現象が発生し、このとき、放電ギャップ間においてスパークプラグ1に印加された高電圧の吹き消えによって損なわれたエネルギーの残余分によって再放電が開始される。従って、火炎核が吹き流される場合、または吹き消え現象が発生した場合、放電ギャップ外において火炎核が形成されることから冷却効果の影響が少なくなり、接地電極放電部41は径を大きくとっても着火性への影響が少なくなる。   Further, when the discharge current locus 2 is blown and the discharge is interrupted, a blow-off phenomenon occurs. At this time, the remaining energy lost by the high-voltage blow-off applied to the spark plug 1 between the discharge gaps. The re-discharge is started. Therefore, when flame nuclei are blown off or when a blow-off phenomenon occurs, the flame nuclei are formed outside the discharge gap, so the influence of the cooling effect is reduced, and the ground electrode discharge part 41 is ignited even if the diameter is large. The effect on sex is reduced.

以下、本発明の構成を着想し、その作用効果を確認するために行った実験及びその結果について説明する。   Hereinafter, an experiment conducted in order to conceive the configuration of the present invention and confirm the effects thereof and the result thereof will be described.

図5は、スパークプラグにおける吹き消え時の再放電頻度と、中心電極放電部11の直径A及び接地電極放電部41の直径Bの比B/Aとの関係を、放電ギャップにおける混合気63の流速をパラメータとして評価した可視化火花放電ベンチ試験の結果を示す。すなわち、スパークプラグ1の放電ギャップ50における混合気63の流速及び接地電極放電部41の直径Bを変化させたときの1スパーク当たりの再放電回数と比B/Aとの関係性についての試験を行ったものである。   FIG. 5 shows the relationship between the re-discharge frequency at the time of blow-off in the spark plug and the ratio B / A of the diameter A of the center electrode discharge portion 11 and the diameter B of the ground electrode discharge portion 41 of the air-fuel mixture 63 in the discharge gap. The result of the visualization spark discharge bench test which evaluated flow velocity as a parameter is shown. That is, a test on the relationship between the ratio B / A and the number of redischarges per spark when the flow rate of the air-fuel mixture 63 in the discharge gap 50 of the spark plug 1 and the diameter B of the ground electrode discharge part 41 is changed. It is what I did.

使用したスパークプラグにおける中心電極放電部11は、中心電極先端部13からの突出長さが0.8mm、中心電極放電部11の直径Aが0.55mm、0.7mm、1.0mmであるもの各種を用意し、接地電極放電部41は、接地電極40からの突き出し長さLが0.8mm、接地電極放電部41の直径Bが0.55mm、0.8mm、1.0mm、1.2mm、1.4mmであるもの各種を用意した。   The center electrode discharge part 11 in the used spark plug has a length protruding from the center electrode tip 13 of 0.8 mm, and the diameter A of the center electrode discharge part 11 is 0.55 mm, 0.7 mm, and 1.0 mm. Various types are prepared, and the ground electrode discharge part 41 has a protruding length L from the ground electrode 40 of 0.8 mm, and the diameter B of the ground electrode discharge part 41 is 0.55 mm, 0.8 mm, 1.0 mm, 1.2 mm. Various types having a thickness of 1.4 mm were prepared.

上記スパークプラグを、混合気63の流動速度を変化させることが可能であり火花放電の様子を可視化することができる可視化高流動火花放電ベンチにて、流速毎に比B/Aの組み合わせを変えることで再放電回数を調査した。   In the above-described spark plug, the flow rate of the air-fuel mixture 63 can be changed, and the combination of the ratio B / A is changed for each flow rate in a visualized high-flow spark discharge bench that can visualize the state of the spark discharge. The number of re-discharges was investigated.

図5によると、流速が5m/sの環境では再放電をすることなく、安定して放電していることがわかる。しかし、流速が10m/s以上になると再放電を起こす現象が見受けられ、この現象は流速が高流速になるほど顕著化するとともに再放電頻度は上昇している。   According to FIG. 5, it can be seen that the discharge is stably performed without re-discharge in an environment where the flow velocity is 5 m / s. However, when the flow rate is 10 m / s or more, a phenomenon that causes re-discharge is observed. This phenomenon becomes more noticeable and the re-discharge frequency increases as the flow rate becomes higher.

また、B/Aが小さい場合、再放電頻度が高いことに対して、B/Aを大きくとることによって再放電頻度が減少し、再放電が抑制されていることも分かる。中でも、B/Aが1.4より大きい場合に同じ流速における実験値の近似線の傾きが小さくなり、再放電頻度が抑制されている。   It can also be seen that when B / A is small, the re-discharge frequency is high, whereas when B / A is large, the re-discharge frequency is reduced and re-discharge is suppressed. In particular, when B / A is larger than 1.4, the slope of the approximate line of the experimental value at the same flow rate becomes small, and the re-discharge frequency is suppressed.

ここで、B/Aが1.4より小さい範囲における再放電頻度の近似的な減少傾きをC、1.4より大きい範囲における再放電頻度の近似的な減少傾きをDとしたときの、放電ギャップ50の流速と、その流速における吹き消え抑制の程度を示す吹き消え抑制効果C/Dとの関係について図6に示す。   Here, the discharge when the approximate decrease slope of the redischarge frequency in the range where B / A is less than 1.4 is C, and the approximate decrease slope of the redischarge frequency in the range where 1.4 is greater than 1.4 is D. FIG. 6 shows the relationship between the flow rate of the gap 50 and the blowout suppression effect C / D indicating the level of blowout suppression at the flow rate.

この図6から、流速が大きくなるほどその流速における吹き消え抑制効果C/Dは増し、流速15m/s以上でC/Dが大きく増大している。すなわち、流速が15m/s以上においては顕著な吹き消え抑制効果があり、20m/s以上においてはさらに大きな抑制効果が得られることを示している。   From FIG. 6, as the flow velocity increases, the blowout suppression effect C / D at the flow velocity increases, and the C / D increases greatly at a flow velocity of 15 m / s or more. That is, when the flow velocity is 15 m / s or more, there is a remarkable blow-off suppressing effect, and when the flow velocity is 20 m / s or more, it shows that a larger suppressing effect is obtained.

これは、B/Aが1.4以上であるように中心電極放電部11の直径Aよりも接地電極放電部41の直径Bを大きくすることで、中心電極放電部11に印加された高電圧の電界集中が比較的大きく維持され、加えて接地電極放電部41において放電を受ける表面積が比較的大きくなるため、混合気63の流動によって放電が流されても吹き消え現象が起こりにくくなるからである。吹き消え現象が抑えられることで、再放電による接地電極放電部41の温度上昇が抑制され、これに起因した接地電極放電部41の消耗を抑えることが可能になる。   This is because the diameter B of the ground electrode discharge part 41 is made larger than the diameter A of the center electrode discharge part 11 so that B / A is 1.4 or more, so that the high voltage applied to the center electrode discharge part 11 is increased. The electric field concentration is kept relatively large, and in addition, the surface area that receives the discharge in the ground electrode discharge portion 41 is relatively large, so that even if a discharge is caused by the flow of the air-fuel mixture 63, the blowout phenomenon is less likely to occur. is there. By suppressing the blow-off phenomenon, the temperature rise of the ground electrode discharge part 41 due to re-discharge is suppressed, and it becomes possible to suppress the consumption of the ground electrode discharge part 41 due to this.

次に、放電ギャップ50の流速を変化させた状態での接地電極放電部41の直径Bについて有効な範囲を検証するべく、中心電極先端部13からの突き出し長さが0.8mm、直径が0.7mmの中心電極放電部11と、腕部からの突き出し長さLが0.8mm、直径が0.7mmから1.6mmの範囲内において用意した接地電極放電部41とを備えた各種スパークプラグを、6気筒、排気量2000ccのガソリンエンジンに取り付け、エンジン回転数600rpmのアイドリング状態においてエンジン耐久試験を行ない、リーン限界A/Fを調べた。   Next, in order to verify an effective range for the diameter B of the ground electrode discharge part 41 in a state where the flow velocity of the discharge gap 50 is changed, the protrusion length from the center electrode tip part 13 is 0.8 mm and the diameter is 0. Various spark plugs including a center electrode discharge portion 11 having a length of 0.7 mm and a ground electrode discharge portion 41 having a protruding length L from the arm portion of 0.8 mm and a diameter of 0.7 mm to 1.6 mm. Was installed in a 6-cylinder gasoline engine with a displacement of 2000 cc, and an engine durability test was performed in an idling state at an engine speed of 600 rpm, and the lean limit A / F was examined.

図7は、流速毎におけるリーン限界A/Fと接地電極放電部41の直径Bとの関係を示す特性図である。リーン限界A/Fとは、失火せずに燃焼が成立するような燃焼変動率PmiCOV(平均有効圧の分散/平均値。本実験では15%としている。)を満足するための最も燃料が薄いA/F(空気と燃料の混合比)のことである。   FIG. 7 is a characteristic diagram showing the relationship between the lean limit A / F and the diameter B of the ground electrode discharge portion 41 for each flow velocity. The lean limit A / F is the thinnest fuel for satisfying the combustion fluctuation rate PmiCOV (dispersion / average value of average effective pressure, which is set to 15% in this experiment) such that combustion is established without misfiring. It is A / F (mixing ratio of air and fuel).

すなわち、このリーン限界A/Fが大きいほど少ない燃料で燃焼を可能とする。この図7から、流速が0m/sである場合、接地電極放電部41の直径Bを大きくとるほどリーン限界A/Fの値が下がっており、流速が大きい場合、特に流速が20m/sである場合は接地電極放電部41の直径Bを大きくとってもリーン限界の値が緩やかに減少するにとどまっており、変動が少ないことがわかる。すなわち、高流速環境下においては、接地電極放電部41の直径Bは比較的大きくとってもリーン限界A/Fは減衰しにくいことがわかる。これは高流速環境下においては吹き流されることによって火炎核が放電ギャップ50間の外側において生成されやすく、接地電極放電部41によって火炎核の熱量が吸収されにくいことから接地電極放電部41の直径Bを大きくとることによる消炎作用の影響は小さく、着火性の悪化がないからである。   That is, as the lean limit A / F is larger, combustion is possible with less fuel. From FIG. 7, when the flow velocity is 0 m / s, the value of the lean limit A / F decreases as the diameter B of the ground electrode discharge portion 41 is increased. When the flow velocity is large, the flow velocity is particularly 20 m / s. In some cases, even if the diameter B of the ground electrode discharge portion 41 is increased, the lean limit value is only gradually decreased, and it can be seen that there is little fluctuation. That is, it can be seen that, under a high flow velocity environment, the lean limit A / F is not easily attenuated even if the diameter B of the ground electrode discharge portion 41 is relatively large. This is because the flame nuclei are likely to be generated outside the discharge gap 50 by being blown in a high flow velocity environment, and the amount of heat of the flame nuclei is not easily absorbed by the ground electrode discharge part 41. This is because the effect of the flame extinguishing effect by taking B is small and there is no deterioration in ignitability.

また、高流速環境下において着火性の観点から接地電極放電部41の直径Bを比較的大きくとることが可能である一方で、接地電極放電部41の直径Bは、接地電極放電部41の消耗体積及び接合強度の観点から最適な範囲があることを見い出した。次にその消耗体積及び接合強度の観点から接地電極放電部41の評価をした試験結果を図8〜図10に示す。   In addition, the diameter B of the ground electrode discharge portion 41 can be made relatively large from the viewpoint of ignitability in a high flow velocity environment, while the diameter B of the ground electrode discharge portion 41 is depleted of the ground electrode discharge portion 41. It has been found that there is an optimum range in terms of volume and bonding strength. Next, FIG. 8 to FIG. 10 show test results of evaluating the ground electrode discharge portion 41 from the viewpoint of the consumed volume and the bonding strength.

図8は、接地電極放電部41の耐消耗性について評価をすべく、排気量2000ccの6気筒ガソリンエンジンにおいて、過給手段を備えたエンジンと、過給手段を搭載しない自然吸気(N/A)エンジンを用意し、中心電極放電部11の直径Aと接地電極放電部41の直径Bとの比率B/Aが1.5となるような各種スパークプラグを取り付けて、5600rpm−WOT(ワイドオープンスロットル)にて200時間連続稼動させるエンジン耐久試験を行い、接地電極放電部41の消耗体積を測定したものである。なお、rpm−WOTとは、スロットル全開状態での回転数を示す単位である。   FIG. 8 shows an evaluation of the wear resistance of the ground electrode discharge part 41 in a 6-cylinder gasoline engine with a displacement of 2000 cc. ) Prepare an engine and attach various spark plugs such that the ratio B / A of the diameter A of the center electrode discharge part 11 to the diameter B of the ground electrode discharge part 41 is 1.5, and 5600 rpm-WOT (wide open) The engine endurance test was performed continuously for 200 hours at the throttle), and the consumption volume of the ground electrode discharge part 41 was measured. In addition, rpm-WOT is a unit which shows the rotation speed in a throttle fully open state.

また、各種スパークプラグの具体的な寸法は、中心電極放電部11と接地電極放電部41の直径A、Bがそれぞれ、0.4mmと0.6mm、0.6mmと0.9mm、0.8mmと1.2mmであり、B/Aは各々1.5である。   The specific dimensions of the various spark plugs are such that the diameters A and B of the center electrode discharge portion 11 and the ground electrode discharge portion 41 are 0.4 mm and 0.6 mm, 0.6 mm and 0.9 mm, and 0.8 mm, respectively. And 1.2 mm, and B / A is 1.5 respectively.

図8において、自然吸気エンジンでは接地電極放電部41の直径Bに依存することなく接地電極放電部41の消耗体積にほとんど変化はないが、過給手段を備えたエンジンでは接地電極放電部41の直径Bが小さくなるにつれて消耗体積が増加しており、0.9mm以下において急増していることが分かる。言い換えれば、接地電極放電部41の直径Bが0.9mm以上において消耗体積が小さく安定していることが分かる。   In FIG. 8, in the naturally aspirated engine, the consumption volume of the ground electrode discharge part 41 is hardly changed without depending on the diameter B of the ground electrode discharge part 41. However, in the engine equipped with the supercharging means, the ground electrode discharge part 41 It can be seen that as the diameter B decreases, the consumption volume increases and increases rapidly at 0.9 mm or less. In other words, it can be seen that the consumption volume is small and stable when the diameter B of the ground electrode discharge portion 41 is 0.9 mm or more.

これは、接地電極放電部41が火炎核または燃焼から吸収して得た熱量を混合気63に放散するために一定以上の表面積を持つことが有効であることを示している。自然吸気エンジンにおける放電ギャップ50内で火炎核が形成されて接地電極放電部41が熱量吸収及びその放散を行うこととは異なり、放電ギャップ50外で火炎核が形成される過給エンジンである場合において、放散を行い易いように接地電極放電部41を大きくとることは、着火性を犠牲にせずに消耗体積の減少を図ることができるという有用性がある。   This indicates that it is effective to have a certain surface area or more in order for the ground electrode discharge part 41 to dissipate the amount of heat obtained by absorbing from the flame kernel or combustion to the air-fuel mixture 63. Unlike a naturally aspirated engine in which a flame kernel is formed in the discharge gap 50 and the ground electrode discharge part 41 absorbs and dissipates heat, the supercharged engine in which a flame kernel is formed outside the discharge gap 50 In this case, it is useful to make the ground electrode discharge part 41 large so that it is easy to dissipate, and to reduce the consumption volume without sacrificing the ignitability.

また、図9(A)、(B)に示すように、自然吸気エンジンと過給手段を備えたエンジンにおいて、比較例として用いた従来のスパークプラグと本発明のスパークプラグとの電極消耗を比較評価するべく、図8の試験と同条件のエンジン耐久試験(排気量2000ccの6気筒ガソリンエンジン、5600rpm−WOT、200時間)を行なった。すなわち、従来のスパークプラグと本発明のスパークプラグ1とを自然吸気エンジンと過給手段を備えたエンジンにそれぞれ取り付けて消耗体積を測定した。自然吸気エンジンの試験結果を図9(A)に、過給手段を備えたエンジンの試験結果を図9(B)に示す。なお、図9において、斜線部分が接地電極放電部41の消耗体積、また、斜線のない部分が中心電極放電部11の消耗体積である。   Further, as shown in FIGS. 9A and 9B, in a naturally aspirated engine and an engine equipped with a supercharging means, the electrode consumption of the conventional spark plug used as a comparative example and the spark plug of the present invention are compared. In order to evaluate, an engine durability test (a 6-cylinder gasoline engine with a displacement of 2000 cc, 5600 rpm-WOT, 200 hours) under the same conditions as the test of FIG. 8 was performed. That is, the conventional spark plug and the spark plug 1 of the present invention were attached to a naturally aspirated engine and an engine equipped with a supercharging means, respectively, and the consumption volume was measured. FIG. 9A shows the test result of the naturally aspirated engine, and FIG. 9B shows the test result of the engine equipped with the supercharging means. In FIG. 9, the shaded portion is the consumed volume of the ground electrode discharge portion 41, and the portion without the shaded portion is the consumed volume of the center electrode discharge portion 11.

図9において、比較例として用いたスパークプラグは、中心電極放電部11の直径Aが0.55mm、突き出し長さが0.8mmのイリジウムを主成分とした合金からなる中心電極放電部11と、接地電極放電部41の直径Bが0.7mm、突き出し長さLが0.8mmの白金を主成分とした合金からなる接地電極放電部41を備えたスパークプラグであり、本実施例として用いたスパークプラグは中心電極放電部11の直径Aが0.7mm、突き出し長さが0.8mmのイリジウムを主成分とした合金からなる中心電極放電部11と、接地電極放電部41の直径Bが1.0mm、突き出し長さLが0.8mmの白金を主成分とした合金からなる接地電極放電部41を備えたスパークプラグである。   In FIG. 9, the spark plug used as a comparative example has a center electrode discharge portion 11 made of an iridium-based alloy whose diameter A of the center electrode discharge portion 11 is 0.55 mm and the protruding length is 0.8 mm; A spark plug including a ground electrode discharge portion 41 made of an alloy mainly composed of platinum having a diameter B of 0.7 mm and a protruding length L of 0.8 mm of the ground electrode discharge portion 41 is used in this embodiment. In the spark plug, the diameter B of the center electrode discharge part 11 made of an alloy mainly composed of iridium having a diameter A of 0.7 mm and a protruding length of 0.8 mm, and the ground electrode discharge part 41 is 1. A spark plug including a ground electrode discharge portion 41 made of an alloy mainly composed of platinum having a length of 0.0 mm and a protrusion length L of 0.8 mm.

図9(A)のように、自然吸気エンジンにおいて接地電極放電部41及び中心電極放電部11は、比較例と本実施例の間で消耗体積にほとんど差異は見受けられないものの、図9(B)のように、過給エンジンにおいては接地電極放電部41の消耗体積は、比較例より本実施例においてかなり抑制されていることが分かる。これは上述したとおり、火炎核から熱を吸収しにくく、接地電極放電部41が持つ熱の放散を行い易いように接地電極放電部41を大きくとることが有効であるとともに、過給手段を備えたエンジンに取り付けられた比較例のスパークプラグにおいては吹き消え現象の発生によって再放電が行われ易く、接地電極放電部41が高温となることで接地電極放電部41の体積消耗が促進される一方、実施例のスパークプラグでは再放電が抑制され、温度が上昇しにくいからである。   As shown in FIG. 9A, in the naturally aspirated engine, the ground electrode discharge part 41 and the center electrode discharge part 11 have almost no difference in consumption volume between the comparative example and the present example. As can be seen, in the supercharged engine, the consumption volume of the ground electrode discharge part 41 is considerably suppressed in the present embodiment from the comparative example. As described above, it is effective to make the ground electrode discharge part 41 large so that it is difficult to absorb heat from the flame kernel and to easily dissipate the heat possessed by the ground electrode discharge part 41, and a supercharging means is provided. In the spark plug of the comparative example attached to the engine, re-discharge is easily performed due to the occurrence of the blow-off phenomenon, and the ground electrode discharge part 41 becomes hot and the volume consumption of the ground electrode discharge part 41 is promoted. This is because, in the spark plug of the example, re-discharge is suppressed and the temperature does not rise easily.

次に、接地電極放電部41と接地電極40との接合強度についての評価を行うべく、接地電極放電部41の直径Bが1.0mmから1.8mmまでの接地電極放電部41が溶接された接地電極40を用意し、エンジン内の熱ストレスを模擬的に再現した冷熱サイクル試験を実施した。評価条件として150℃と900℃の温度条件において接地電極40を各6分間ずつさらし、これを200サイクル繰り返すものであり、各サンプル数は10とした。図10に接地電極放電部41の直径Bと発生した熱応力の関係を示し、以下に評価の結果である表1を示す。   Next, in order to evaluate the bonding strength between the ground electrode discharge part 41 and the ground electrode 40, the ground electrode discharge part 41 having a diameter B of 1.0 to 1.8 mm was welded. A grounding electrode 40 was prepared, and a thermal cycle test was performed in which the thermal stress in the engine was simulated. As the evaluation conditions, the ground electrode 40 was exposed for 6 minutes each at 150 ° C. and 900 ° C., and this was repeated 200 cycles. The number of samples was 10. FIG. 10 shows the relationship between the diameter B of the ground electrode discharge part 41 and the generated thermal stress, and Table 1 as the evaluation result is shown below.

Figure 2013251193
上記表1において示す発生応力とは熱応力を指し、判定は接地電極放電部41が接地電極40から分離しなかったものを合格(○)、分離したものを不合格(×)として表現している。この表1から、接地電極放電部41の直径Bが1.4mm以下においては接地電極放電部41の分離を回避することが可能であることが分かる。
Figure 2013251193
The generated stress shown in Table 1 above refers to thermal stress, and the judgment is expressed as a pass (◯) when the ground electrode discharge part 41 is not separated from the ground electrode 40, and a separated one as a reject (x). Yes. From Table 1, it can be seen that separation of the ground electrode discharge part 41 can be avoided when the diameter B of the ground electrode discharge part 41 is 1.4 mm or less.

接地電極放電部41が接地電極40から分離して破損する理由として、熱応力の影響が考えられる。すなわち、低温状態と高温状態に繰り返し置かれることで接地電極放電部41と接地電極40との溶融部界面に熱応力が発生し、この熱応力が溶融部界面の亀裂発生応力を上回るために亀裂が発生する。一旦発生した亀裂は、酸素が進入し一気に亀裂が進展するため接合強度が大幅に低下すると考えられ、この接合強度の低下により接地電極放電部41が接地電極40から分離する可能性がある。本発明のスパークプラグ1ではこれを回避することで、信頼性が向上している。   As a reason why the ground electrode discharge part 41 is separated from the ground electrode 40 and is damaged, the influence of thermal stress can be considered. That is, the thermal stress is generated at the melted portion interface between the ground electrode discharge portion 41 and the ground electrode 40 by being repeatedly placed in the low temperature state and the high temperature state, and this thermal stress exceeds the crack initiation stress at the melted portion interface, so that cracks occur. Will occur. Once the crack has occurred, it is considered that the bonding strength is significantly reduced because oxygen enters and the crack progresses at once. This reduction in the bonding strength may cause the ground electrode discharge portion 41 to separate from the ground electrode 40. By avoiding this in the spark plug 1 of the present invention, the reliability is improved.

次に接地電極放電部41の最適な突き出し長さを調査すべく、接地電極放電部41の突出長さL(mm)と各要素についての試験を行った。その結果を図11及び図12に示す。   Next, in order to investigate the optimal protrusion length of the ground electrode discharge part 41, the protrusion length L (mm) of the ground electrode discharge part 41 and each element were tested. The results are shown in FIGS.

図11は中心電極放電部11の直径Aが0.7mm、突き出し長さが0.8mmであるスパークプラグにおいて、接地電極放電部41の直径Bを1.0mmとし、突き出し長さLを0.5mm、1.0mm、1.2mm、1.5mmと変化させたものを用意し、図8の試験と同じ条件のエンジン耐久試験(排気量2000ccの6気筒ガソリンエンジン、5600rpm−WOT、200時間)によってギャップ拡大比を調べたものである。なお、ギャップ拡大比とは試験後の放電ギャップ50間距離を当初の放電ギャップ間距離で割った比率である。   FIG. 11 shows a spark plug in which the diameter A of the central electrode discharge portion 11 is 0.7 mm and the protrusion length is 0.8 mm. The diameter B of the ground electrode discharge portion 41 is 1.0 mm and the protrusion length L is 0. Engine endurance test under the same conditions as the test of FIG. 8 (5 cc, 6-cylinder gasoline engine, 5600 rpm-WOT, 200 hours) The gap enlargement ratio was examined. The gap expansion ratio is a ratio obtained by dividing the distance between the discharge gaps 50 after the test by the initial distance between the discharge gaps.

図11に示されるように、突き出し長さLが大きくなるにつれてギャップが拡大しているのが分かる。さらに、突出長さLが1.2mm以上においてはギャップ拡大比が大幅に上昇している。これは突き出し長さLを大きくとることで燃焼によって接地電極放電部41の温度が上昇し、体積消耗が大きくなるからである。ギャップが拡大することで必要な放電電圧が上昇し、正常な距離において必要な放電電圧では正常に放電できず、着火性に問題が生じるおそれがある。従って、温度上昇を抑え耐消耗性を確保するとともに着火性の悪化を防止するために突出長さは1.2mm以下が望ましい。   As shown in FIG. 11, it can be seen that the gap increases as the protrusion length L increases. Furthermore, when the protrusion length L is 1.2 mm or more, the gap expansion ratio is significantly increased. This is because by increasing the protrusion length L, the temperature of the ground electrode discharge part 41 rises due to combustion and the volume consumption increases. The required discharge voltage rises due to the widening of the gap, and the discharge cannot be normally performed at the required discharge voltage at a normal distance, which may cause a problem in ignitability. Accordingly, it is desirable that the protruding length is 1.2 mm or less in order to suppress temperature rise and ensure wear resistance and prevent deterioration of ignitability.

図12は中心電極放電部11の直径Aが0.7mm、突き出し長さが0.8mmであるスパークプラグにおいて、接地電極放電部41の直径Bを1.0mmとし、突き出し長さLを0.3mm、0.5mm、0.8mm、1.2mmと変化させたものを用意し、図8の試験と同じ条件のエンジン耐久試験(排気量2000ccの6気筒ガソリンエンジン、5600rpm−WOT、200時間)によってリーン限界A/Fを調べたものである。   FIG. 12 shows a spark plug in which the diameter A of the central electrode discharge portion 11 is 0.7 mm and the protrusion length is 0.8 mm. The diameter B of the ground electrode discharge portion 41 is 1.0 mm and the protrusion length L is 0. Engine endurance test under the same conditions as the test in FIG. 8 (6 cc engine with a displacement of 2000 cc, 5600 rpm-WOT, 200 hours) prepared with 3mm, 0.5mm, 0.8mm and 1.2mm. The lean limit A / F was examined by

図12によれば、接地電極放電部41の突き出し長さLを大きくすることでリーン限界A/Fが上昇するが、0.5mm以下においては顕著に下降している。これは接地電極放電部41の突き出し長さLを小さくとることで接地電極放電部41に加えて接地電極40による消炎作用も働くからであり、リーン限界が大幅に低下することで着火性の悪化が生じるおそれがある。   According to FIG. 12, the lean limit A / F increases by increasing the protruding length L of the ground electrode discharge part 41, but significantly decreases below 0.5 mm. This is because the extinguishing length L of the ground electrode discharge portion 41 is made small so that the flame extinguishing action by the ground electrode 40 also acts in addition to the ground electrode discharge portion 41, and the ignitability is deteriorated because the lean limit is greatly lowered. May occur.

従って、突出長さLは0.5mm以上が望ましく、図11の結果から併せると0.5mm以上1.2mm以下が望ましいことが分かる。この場合、着火性の悪化を抑えながらも耐消耗性も良好な接地電極放電部41が提供できる。   Therefore, the protrusion length L is preferably 0.5 mm or more, and it is understood from the results of FIG. 11 that 0.5 mm or more and 1.2 mm or less is desirable. In this case, it is possible to provide the ground electrode discharge part 41 with good wear resistance while suppressing deterioration in ignitability.

1 スパークプラグ、2 放電電流軌跡、3 燃焼室、10 中心電極、11 中心電極放電部、12 中心電極放電部端面、13 中心電極先端部、14 ターミナル部、20 ハウジング、21 螺子部、22 ハウジング先端側の端部、30 絶縁碍子、40 接地電極、41 接地電極放電部、42 接地電極放電部端面、43 縁端部、50 放電ギャップ、60 吸気、61 過給後吸気、62 排気、63 混合気、70 排気タービン式過給機、80 混合気の流動方向、A 中心電極放電部の直径、B 接地電極放電部の直径、L 接地電極放電部の突き出し長さ DESCRIPTION OF SYMBOLS 1 Spark plug, 2 Discharge current locus, 3 Combustion chamber, 10 Center electrode, 11 Center electrode discharge part, 12 Center electrode discharge part end surface, 13 Center electrode tip part, 14 Terminal part, 20 Housing, 21 Screw part, 22 Housing tip Side end, 30 insulator, 40 ground electrode, 41 ground electrode discharge part, 42 end face of ground electrode discharge part, 43 edge end part, 50 discharge gap, 60 intake air, 61 intake air after supercharging, 62 exhaust gas, 63 mixture , 70 Exhaust turbine type supercharger, 80 Flow direction of mixture, A Diameter of central electrode discharge part, B Diameter of ground electrode discharge part, L Projection length of ground electrode discharge part

Claims (3)

先端に中心電極放電部(11)を有する中心電極(10)と、
前記中心電極(10)の外周に配設され、前記中心電極(10)を保持する絶縁碍子(30)と、
前記絶縁碍子(30)の外周に配設され、前記絶縁碍子(30)を保持するハウジング(20)と、
前記中心電極放電部(11)と放電ギャップ(50)を介して対向する接地電極放電部(41)を有する接地電極(40)とを備え、
燃焼室(3)に吸入される吸入空気を過給する過給手段(70)を備えた内燃機関において使用される内燃機関用スパークプラグであって、
前記接地電極放電部(41)の前記中心電極放電部(11)と対向する部分の直径をB(mm)、前記中心電極放電部(11)の前記接地電極放電部(41)と対向する部分の直径をA(mm)としたときに、
0.9≦B≦1.4(mm)、かつ、
B/A≧1.4、
の関係を満たすことを特徴とする内燃機関用スパークプラグ。
A central electrode (10) having a central electrode discharge section (11) at the tip;
An insulator (30) disposed on an outer periphery of the center electrode (10) and holding the center electrode (10);
A housing (20) disposed on an outer periphery of the insulator (30) and holding the insulator (30);
A ground electrode (40) having a ground electrode discharge part (41) opposed to the central electrode discharge part (11) via a discharge gap (50);
A spark plug for an internal combustion engine used in an internal combustion engine provided with a supercharging means (70) for supercharging intake air sucked into a combustion chamber (3),
The diameter of the portion of the ground electrode discharge portion (41) facing the center electrode discharge portion (11) is B (mm), and the portion of the center electrode discharge portion (11) facing the ground electrode discharge portion (41) When the diameter of A is A (mm),
0.9 ≦ B ≦ 1.4 (mm), and
B / A ≧ 1.4,
A spark plug for an internal combustion engine characterized by satisfying the relationship:
請求項1に記載の内燃機関用スパークプラグにおいて、
前記接地電極放電部(41)が、前記中心電極放電部(11)へ向けて前記接地電極(40)から突出する長さをL(mm)としたときに、
0.5(mm)≦L≦1.2(mm)、
の関係を満たすことを特徴とする内燃機関用スパークプラグ。
The spark plug for an internal combustion engine according to claim 1,
When the length of the ground electrode discharge part (41) protruding from the ground electrode (40) toward the center electrode discharge part (11) is L (mm),
0.5 (mm) ≦ L ≦ 1.2 (mm),
A spark plug for an internal combustion engine characterized by satisfying the relationship:
請求項1または2に記載の内燃機関用スパークプラグにおいて、
前記過給手段(70)により過給されることによって前記中心電極放電部(11)と前記接地電極放電部(41)との間の前記放電ギャップ(50)を流れる燃料と空気との混合気の流速が20m/s以上となることを特徴とする内燃機関用スパークプラグ。
The spark plug for an internal combustion engine according to claim 1 or 2,
A mixture of fuel and air flowing in the discharge gap (50) between the center electrode discharge part (11) and the ground electrode discharge part (41) by being supercharged by the supercharging means (70). The spark plug for an internal combustion engine is characterized by having a flow velocity of 20 m / s or more.
JP2012126286A 2012-06-01 2012-06-01 Spark plug for internal combustion engine Pending JP2013251193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012126286A JP2013251193A (en) 2012-06-01 2012-06-01 Spark plug for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012126286A JP2013251193A (en) 2012-06-01 2012-06-01 Spark plug for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2013251193A true JP2013251193A (en) 2013-12-12

Family

ID=49849665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012126286A Pending JP2013251193A (en) 2012-06-01 2012-06-01 Spark plug for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2013251193A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165476A (en) * 2017-03-28 2018-10-25 株式会社Subaru Flow rate inspector
JP2020205220A (en) * 2019-06-19 2020-12-24 株式会社デンソー Spark plug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260815A (en) * 2001-02-27 2002-09-13 Ngk Spark Plug Co Ltd Spark plug
JP2005123181A (en) * 2003-09-27 2005-05-12 Ngk Spark Plug Co Ltd Sparking plug
JP2005339864A (en) * 2004-05-25 2005-12-08 Denso Corp Spark plug
JP2008077838A (en) * 2006-09-18 2008-04-03 Denso Corp Spark plug for internal combustion engine, and manufacturing method therefor
JP2008270189A (en) * 2007-03-29 2008-11-06 Ngk Spark Plug Co Ltd Manufacturing method of spark plug, and spark plug

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260815A (en) * 2001-02-27 2002-09-13 Ngk Spark Plug Co Ltd Spark plug
JP2005123181A (en) * 2003-09-27 2005-05-12 Ngk Spark Plug Co Ltd Sparking plug
JP2005339864A (en) * 2004-05-25 2005-12-08 Denso Corp Spark plug
JP2008077838A (en) * 2006-09-18 2008-04-03 Denso Corp Spark plug for internal combustion engine, and manufacturing method therefor
JP2008270189A (en) * 2007-03-29 2008-11-06 Ngk Spark Plug Co Ltd Manufacturing method of spark plug, and spark plug

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165476A (en) * 2017-03-28 2018-10-25 株式会社Subaru Flow rate inspector
JP2020205220A (en) * 2019-06-19 2020-12-24 株式会社デンソー Spark plug
JP7275891B2 (en) 2019-06-19 2023-05-18 株式会社デンソー Spark plug

Similar Documents

Publication Publication Date Title
US7382085B2 (en) Spark plug having precious metal tip of specified geometry
JP2017103179A (en) Ignition plug
JPWO2009063914A1 (en) Spark plug
JP2006100250A (en) Spark plug for internal combustion engine, and igniter using this
JP5476360B2 (en) Spark plug
JP2006114476A (en) Spark plug for internal combustion engine
US7122948B2 (en) Spark plug having enhanced capability to ignite air-fuel mixture
JP2013251193A (en) Spark plug for internal combustion engine
US9343875B2 (en) Spark plug for internal combustion engines and mounting structure for the spark plug
JP2006085941A (en) Spark plug for internal combustion engine
US20040080252A1 (en) Spark plug for use in internal combustion engine
JP2007213927A (en) Sparkplug for internal combustion engine
US20150380907A1 (en) Spark plug
JP2005339864A (en) Spark plug
JP4100725B2 (en) Spark plug for internal combustion engine
JP2006049207A (en) Spark plug for internal combustion engine
JP5870629B2 (en) Spark plug for internal combustion engine and mounting structure thereof
JP5451510B2 (en) Spark plug for internal combustion engine
JP2008171646A (en) Spark plug for internal combustion engine
JP5386098B2 (en) Spark plug
JP5291789B2 (en) Spark plug
JP4414457B2 (en) Spark plug
JP2014238999A (en) Spark plug for internal combustion engine
US9742157B2 (en) Spark plug
JP2006202684A (en) Spark plug

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151020