JP2006202684A - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
JP2006202684A
JP2006202684A JP2005015534A JP2005015534A JP2006202684A JP 2006202684 A JP2006202684 A JP 2006202684A JP 2005015534 A JP2005015534 A JP 2005015534A JP 2005015534 A JP2005015534 A JP 2005015534A JP 2006202684 A JP2006202684 A JP 2006202684A
Authority
JP
Japan
Prior art keywords
discharge gap
insulator
spark plug
length
spark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005015534A
Other languages
Japanese (ja)
Other versions
JP4457021B2 (en
Inventor
Hiroyuki Kameda
裕之 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2005015534A priority Critical patent/JP4457021B2/en
Publication of JP2006202684A publication Critical patent/JP2006202684A/en
Application granted granted Critical
Publication of JP4457021B2 publication Critical patent/JP4457021B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spark Plugs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spark plug with heat resistance, pollution resistance, and ignitability improved by the regulation of the size of an auxiliary ground electrode and the length of a spark discharge gap. <P>SOLUTION: The auxiliary ground electrode 60 is formed in a bar shape from a precious metal chip with a cross section in a square, and welded to the tip face 57 of a main metal fitting 50 with a direction crossing an axis line O. The opposed part of a tip 61 with an insulator 10 is formed as an in-the-air discharge gap (gap C) which constitutes an auxiliary spark discharge gap together with a creeping discharge gap (gap D) from an insulator-side starting point to a center electrode 20. The sum of the length of the gap C and half the length of the gap D is set at 1.43 times a main spark discharge gap (gap B). Further, a cross section of the tip 61 of the auxiliary ground electrode 60 is to be 1 mm<SP>2</SP>or less with the length of the gap B of 0.3 mm or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、火花放電ギャップ付近の自己清浄を行うことができる内燃機関用のスパークプラグに関するものである。   The present invention relates to a spark plug for an internal combustion engine that can perform self-cleaning in the vicinity of a spark discharge gap.

従来、内燃機関には点火のためのスパークプラグが用いられている。このスパークプラグでは、一般的には、中心電極が挿設された絶縁碍子を保持する主体金具の燃焼室側の先端部に接地電極を溶接して、接地電極の他端部を中心電極の先端部の先端面と対向させて、主火花放電ギャップを形成している。そして、中心電極と接地電極との間で火花放電が行われ、両電極間に曝された混合気に着火することにより、火炎核が形成される。   Conventionally, spark plugs for ignition are used in internal combustion engines. In this spark plug, generally, a ground electrode is welded to the tip of the metal shell that holds the insulator in which the center electrode is inserted, and the other end of the ground electrode is connected to the tip of the center electrode. A main spark discharge gap is formed so as to face the front end surface of the portion. Then, a spark discharge is performed between the center electrode and the ground electrode, and a flame nucleus is formed by igniting the air-fuel mixture exposed between the two electrodes.

ところで、燃焼室内に露出されるスパークプラグの絶縁碍子の表面上に、混合気の燃焼によって発生したカーボンが付着する、いわゆる汚損が発生することがある。この汚損が進行して絶縁碍子表面の絶縁性が低下すると主体金具と絶縁碍子との間で放電してしまい、中心電極と接地電極との間で火花放電が行われなくなり失火の状態となる。そこで、主体金具の先端面の内周側を絶縁碍子に向けて鍔状に突出させ、この突出部分(突出縁)と中心電極との間で補助火花放電ギャップ(補助スパークギャップ)を形成して火花放電が行われるようにした、いわゆる補助ギャップ型のスパークプラグが提案されている(例えば、特許文献1参照。)。   By the way, so-called fouling in which carbon generated by combustion of the air-fuel mixture adheres may occur on the surface of the insulator of the spark plug exposed in the combustion chamber. When the contamination progresses and the insulation on the surface of the insulator is lowered, a discharge occurs between the metal shell and the insulator, and a spark discharge is not performed between the center electrode and the ground electrode, resulting in a misfire condition. Therefore, the inner peripheral side of the front end surface of the metal shell is projected in a bowl shape toward the insulator, and an auxiliary spark discharge gap (auxiliary spark gap) is formed between the protruding portion (projecting edge) and the center electrode. A so-called auxiliary gap type spark plug in which spark discharge is performed has been proposed (see, for example, Patent Document 1).

補助火花放電ギャップは、上記突出縁と絶縁碍子の先端部側面との間の気中放電間隙、および、中心電極と絶縁碍子先端部側面における気中放電間隙の起点との間の沿面放電間隙からなる。通常時には、補助火花放電ギャップよりも間隙の狭い主火花放電ギャップにて火花放電が行われるが、汚損によって絶縁碍子表面の絶縁性が低下すると、主火花放電ギャップよりも狭く形成されている気中放電間隙において火花放電が行われる。すると沿面放電間隙では絶縁碍子の表面上を火花が走り、付着したカーボンが焼き切られる。このような自己清浄作用により絶縁碍子表面の絶縁性が復帰すると、再び主火花放電ギャップにて火花放電が行われるようになる。   The auxiliary spark discharge gap is defined by the air discharge gap between the protruding edge and the side surface of the insulator tip, and the creeping discharge gap between the center electrode and the origin of the air discharge gap on the side surface of the insulator tip. Become. Normally, spark discharge is performed in the main spark discharge gap that is narrower than the auxiliary spark discharge gap. However, if the insulation on the surface of the insulator decreases due to fouling, the air is formed narrower than the main spark discharge gap. Spark discharge is performed in the discharge gap. Then, sparks run on the surface of the insulator in the creeping discharge gap, and the attached carbon is burned out. When the insulating property of the insulator surface is restored by such a self-cleaning action, spark discharge is again performed in the main spark discharge gap.

しかし、このような補助ギャップ型のスパークプラグでは、主体金具の先端面の内周側が絶縁碍子に向けて突出されているので、主体金具の内周面と絶縁碍子の外周面との間には混合気が進入し辛くなる。このため混合気による絶縁碍子の冷却効果が低下し、耐熱性が低下する虞があった。さらに間隙の狭い気中放電間隙が主体金具の先端面の全周に渡って形成されているため、絶縁碍子と主体金具の先端面との間で燃料ブリッジが形成されてしまう虞があった。   However, in such an auxiliary gap type spark plug, since the inner peripheral side of the front end surface of the metal shell protrudes toward the insulator, there is no gap between the inner peripheral surface of the metal shell and the outer peripheral surface of the insulator. The mixture becomes difficult to enter. For this reason, the cooling effect of the insulator by the air-fuel mixture is lowered, and the heat resistance may be lowered. Further, since the air discharge gap with a narrow gap is formed over the entire circumference of the front end surface of the metal shell, there is a risk that a fuel bridge may be formed between the insulator and the front end surface of the metal shell.

そこで、絶縁碍子の先端面に複数個の棒状の補助接地電極を設けることで、絶縁碍子の外周全周にわたって補助接地電極が配置されないようにすることで、主体金具の内周面と絶縁碍子の外周面との間への混合気の進入を阻害しないようにしたスパークプラグを作製することは、燃料ブリッジの形成を防止し、耐熱性を向上する上で効果的である(例えば、特許文献2参照。)。
特開平9−139276号公報 特開昭49−85428号公報
Therefore, by providing a plurality of rod-shaped auxiliary grounding electrodes on the front end surface of the insulator so that the auxiliary grounding electrode is not disposed over the entire outer periphery of the insulator, the inner peripheral surface of the metal shell and the insulator Producing a spark plug that does not hinder the air-fuel mixture from entering the outer peripheral surface is effective in preventing formation of a fuel bridge and improving heat resistance (for example, Patent Document 2). reference.).
JP-A-9-139276 JP-A-49-85428

しかしながら、特許文献2のスパークプラグでは、補助接地電極の大きさや補助火花放電ギャップの長さなど、主火花放電ギャップとの相互の関係を考慮した上での各寸法の規定がなされていない。このため、気中放電間隙が短いと通常時にも補助火花放電ギャップにて火花放電が行われてしまう虞があり、気中放電間隙が長いと主体金具の先端面より後方にて、主体金具の内周面と絶縁碍子の外周面との間で火花放電が行われる、いわゆる横飛火が発生してしまう虞があった。また、補助接地電極が大きいと着火時に成長する火炎核の熱を奪ってしまい、着火性の低下を招く虞があった。   However, in the spark plug of Patent Document 2, the dimensions are not defined in consideration of the mutual relationship with the main spark discharge gap, such as the size of the auxiliary ground electrode and the length of the auxiliary spark discharge gap. For this reason, if the air discharge gap is short, there is a risk that spark discharge will occur in the auxiliary spark discharge gap even during normal times, and if the air discharge gap is long, the main metal There is a risk that a so-called side-fire may occur, in which spark discharge is performed between the inner peripheral surface and the outer peripheral surface of the insulator. In addition, if the auxiliary ground electrode is large, the heat of the flame kernel that grows at the time of ignition is taken away, and the ignitability may be lowered.

本発明は、上記問題点を解決するためになされたものであり、補助接地電極の大きさや火花放電ギャップの長さを規定することで耐熱性、耐汚損性および着火性の向上を図ることができるスパークプラグを提供することを目的とする。   The present invention has been made to solve the above-described problems, and by specifying the size of the auxiliary ground electrode and the length of the spark discharge gap, it is possible to improve heat resistance, fouling resistance and ignitability. An object is to provide a spark plug that can be used.

上記目的を達成するために、請求項1に係る発明のスパークプラグは、中心電極と、軸線方向に延びる軸孔を有し、前記中心電極を前記軸孔で保持する絶縁碍子と、自身の先端面より前記絶縁碍子の先端部を突出させた状態で、前記絶縁碍子の周囲を取り囲んで保持する主体金具と、一端が、前記主体金具の先端面に接合され、他端側の一側面が、前記中心電極の先端部の先端面に対向するように屈曲され、その対向面同士で第1火花放電ギャップを形成する第1接地電極と、一端が、前記主体金具の先端面に接合され、他端が、自身の先端と前記絶縁碍子表面との間で放電する気中放電間隙と、前記絶縁碍子表面上の前記気中放電間隙の起点と前記中心電極の先端部との間で前記絶縁碍子の表面を沿って放電する沿面放電間隙とからなる第2火花放電ギャップを形成する第2接地電極とを備え、前記気中放電間隙の長さよりも、前記第1火花放電ギャップの長さの方が長くなるように構成されたスパークプラグであって、前記第2接地電極は、少なくとも1本以上設けられ、前記一端から前記他端へと向かう方向が前記中心電極の軸線方向と直交し、かつ、前記気中放電間隙の長さと前記沿面放電間隙の0.5倍の長さとの和が、前記第1放電ギャップの1.43倍の長さ以上となるように構成されている。   In order to achieve the above object, a spark plug according to a first aspect of the present invention includes a center electrode, an axial hole extending in the axial direction, an insulator that holds the central electrode in the axial hole, and a tip of the spark plug. In a state where the tip of the insulator is protruded from the surface, the metal shell that surrounds and holds the periphery of the insulator, one end is joined to the tip surface of the metal shell, and one side surface on the other end side is A first ground electrode that is bent so as to face the tip surface of the tip portion of the center electrode and forms a first spark discharge gap between the facing surfaces, and one end are joined to the tip surface of the metal shell, An air discharge gap whose end discharges between its tip and the surface of the insulator, and the insulator between the starting point of the air discharge gap on the surface of the insulator and the tip of the center electrode And a creeping discharge gap that discharges along the surface of the A spark plug configured to have a length of the first spark discharge gap that is longer than a length of the air discharge gap. At least one second ground electrode is provided, the direction from the one end to the other end is orthogonal to the axial direction of the center electrode, and the length of the air discharge gap and the creeping discharge gap are zero. The sum of the length of 5 times and the length of the first discharge gap is 1.43 times or more.

また、請求項2に係る発明のスパークプラグは、中心電極と、軸線方向に延びる軸孔を有し、前記中心電極を前記軸孔で保持する絶縁碍子と、自身の先端面より前記絶縁碍子の先端部を突出させた状態で、前記絶縁碍子の周囲を取り囲んで保持する主体金具と、一端が、前記主体金具の先端面に接合され、他端側の一側面が、前記中心電極の先端部の先端面に対向するように屈曲され、その対向面同士で第1火花放電ギャップを形成する第1接地電極と、一端が、前記主体金具の先端面に接合され、他端が、自身の先端と前記絶縁碍子表面との間で放電する気中放電間隙と、前記絶縁碍子表面上の前記気中放電間隙の起点と前記中心電極の先端部との間で前記絶縁碍子の表面を沿って放電する沿面放電間隙とからなる第2火花放電ギャップを形成する第2接地電極とを備え、前記気中放電間隙の長さよりも、前記第1火花放電ギャップの長さの方が長くなるように構成されたスパークプラグであって、前記第2接地電極は、少なくとも1本以上設けられ、前記一端から前記他端へと向かう方向が前記中心電極の軸線方向と直交するとともに、その他端の断面積が1mm以下であり、かつ、前記気中放電間隙の長さが0.3mm以上となるように構成されている。 According to a second aspect of the present invention, the spark plug includes a center electrode, an axial hole extending in the axial direction, an insulator that holds the center electrode in the axial hole, and the insulator from the tip end surface of the insulator. A metallic shell that surrounds and holds the periphery of the insulator in a state where the distal end portion is projected, and one end is joined to the distal end surface of the metallic shell, and one side surface of the other end side is the distal end portion of the central electrode. The first ground electrode which is bent so as to face the front end surface of the first ground electrode and forms a first spark discharge gap between the opposing surfaces, one end is joined to the front end surface of the metal shell, and the other end is the front end of itself. And an air discharge gap that discharges between the surface of the insulator and the surface of the insulator between the starting point of the air discharge gap on the surface of the insulator and the tip of the center electrode. A second spark discharge gap consisting of a creeping discharge gap A spark plug configured such that a length of the first spark discharge gap is longer than a length of the air discharge gap, wherein the second ground electrode Is provided with at least one, the direction from the one end to the other end being orthogonal to the axial direction of the center electrode, the cross-sectional area of the other end being 1 mm 2 or less, and the air discharge gap Is configured to have a length of 0.3 mm or more.

また、請求項3に係る発明のスパークプラグは、請求項1または2に記載の発明の構成に加え、前記主体金具は、その外周に、内燃機関のエンジンヘッドの取付孔に螺合するためのねじ部を備え、前記ねじ部の外径は、M12以下であることを特徴とする。   According to a third aspect of the present invention, there is provided a spark plug according to the first or second aspect of the present invention, wherein the metal shell is screwed onto the outer periphery of the spark plug into a mounting hole of the engine head of the internal combustion engine. A screw portion is provided, and the outer diameter of the screw portion is M12 or less.

また、請求項4に係る発明のスパークプラグは、請求項1乃至3のいずれかに記載の発明の構成に加え、前記第2接地電極は、棒状の貴金属チップから形成されている。   In a spark plug according to a fourth aspect of the invention, in addition to the configuration of the invention according to any one of the first to third aspects, the second ground electrode is formed of a rod-shaped noble metal tip.

請求項1に係る発明のスパークプラグでは、第2火花放電ギャップの気中放電間隙の長さと沿面放電間隙の0.5倍の長さとの和が、第1火花放電ギャップの長さの1.43倍以上に構成されている。放電電圧を所定量増加させるのに必要な気中放電間隙の長さの増加分は、沿面放電間隙の長さの増加分の0.5倍に相当するため、これらの和を第1火花放電ギャップの長さの定数倍以上となるように構成すれば、通常の火花放電が行われる際に第2火花放電ギャップにおいて火花放電が行われてしまうことを防止することができる。上記定数は、各間隙の相対的な大きさ関係より横飛火の発生を防止する上で最適な値を導き出せば、横飛火の発生を防止することができる。本発明では評価試験に基づき上記定数を導き、1.43を設定したことで、通常時には第1火花放電ギャップにて、汚損時には第2火花放電ギャップにて確実に火花放電が行われ、また横飛火の発生が防止される。これにより、スパークプラグの自己清浄効果を高め、耐汚損性を向上することができる。   In the spark plug according to the first aspect of the present invention, the sum of the length of the air discharge gap of the second spark discharge gap and the length of 0.5 times the creeping discharge gap is 1 of the length of the first spark discharge gap. It is composed of 43 times or more. Since the increase in the length of the air discharge gap required to increase the discharge voltage by a predetermined amount corresponds to 0.5 times the increase in the length of the creeping discharge gap, these sums are used as the first spark discharge. If it is configured to be equal to or larger than a constant multiple of the length of the gap, it is possible to prevent the spark discharge from being performed in the second spark discharge gap when the normal spark discharge is performed. If the above-mentioned constant is derived from the relative size relationship between the gaps in order to prevent the occurrence of side fire, the occurrence of side fire can be prevented. In the present invention, the above constant is derived based on an evaluation test, and 1.43 is set, so that spark discharge is surely performed in the first spark discharge gap in normal times and in the second spark discharge gap in the case of fouling. The occurrence of flying fire is prevented. Thereby, the self-cleaning effect of a spark plug can be improved and antifouling property can be improved.

また、第2接地電極を主体金具の先端面に接合しており、その先端面より突出した絶縁碍子の側面に沿って配置されるものが第1接地電極のみとなるように構成している。すると燃焼室内において、主体金具と絶縁碍子との間のクリアランスへの混合気の進入を阻害するものが少なくなるため、混合気による絶縁碍子の冷却効果が高められ、スパークプラグの耐熱性が向上する。さらに、低温始動時に燃料ブリッジが形成されにくくなるため、スパークプラグの低温始動性を向上することができる。   Further, the second ground electrode is joined to the front end surface of the metal shell, and only the first ground electrode is arranged along the side surface of the insulator protruding from the front end surface. Then, in the combustion chamber, since there are fewer things that obstruct the mixture from entering the clearance between the metal shell and the insulator, the cooling effect of the insulator by the mixture is enhanced, and the heat resistance of the spark plug is improved. . Furthermore, since it becomes difficult to form a fuel bridge at a low temperature start, the low temperature startability of the spark plug can be improved.

また、請求項2に係る発明のスパークプラグでは、第2接地電極は、一端から他端へと向かう方向を中心電極の軸線方向と直交する方向とし、その他端の断面積を1mm以下とした。このため、着火時に発生した火炎核が第2接地電極に接触して奪われる熱量を少なくでき、スパークプラグの着火性を向上することができる。なお、第2接地電極の他端の断面積が1mmより大きくなると、第2接地電極による火炎核の消炎作用が大きくなり、スパークプラグの着火性が低下する。 In the spark plug of the invention according to claim 2, the second ground electrode has a direction from one end to the other end orthogonal to the axial direction of the center electrode, and a cross-sectional area at the other end of 1 mm 2 or less. . For this reason, it is possible to reduce the amount of heat taken by the flame nuclei generated during ignition in contact with the second ground electrode, and to improve the ignitability of the spark plug. If the cross-sectional area of the other end of the second ground electrode is greater than 1 mm 2 , the flame extinguishing action of the flame core by the second ground electrode increases, and the ignitability of the spark plug decreases.

また、気中放電間隙の長さを小さくすれば、汚損時に確実に気中放電間隙にて火花放電が行われるようにすることができ、横飛火を防止することができる。一方で、気中放電間隙が狭くなるほど、着火時に発生する火炎核がその成長の早い段階で第2接地電極と接触することとなり、上記のように第2接地電極の占める体積を小さくすることによる着火性向上の効果が薄れるが、気中放電間隙の長さを0.3mm以上とすることで、スパークプラグの着火性を高め、さらに横飛火を防止し、汚損時に確実に第2火花放電ギャップにて火花放電が行われるようにすることができる。これにより、スパークプラグの自己清浄効果を高め、耐汚損性を向上することができる。   Further, if the length of the air discharge gap is reduced, it is possible to ensure that spark discharge is performed in the air discharge gap at the time of fouling and to prevent side fire. On the other hand, as the air discharge gap becomes narrower, flame nuclei generated at the time of ignition come into contact with the second ground electrode at an early stage of growth, and the volume occupied by the second ground electrode is reduced as described above. Although the effect of improving the ignitability is diminished, the length of the air discharge gap is set to 0.3 mm or more, thereby improving the ignitability of the spark plug, further preventing side-fire, and ensuring the second spark discharge gap when fouling Spark discharge can be performed at. Thereby, the self-cleaning effect of a spark plug can be improved and antifouling property can be improved.

また、第2接地電極を主体金具の先端面に接合しており、その先端面より突出した絶縁碍子の側面に沿って配置されるものが第1接地電極のみとなるように構成している。すると燃焼室内において、主体金具と絶縁碍子との間のクリアランスへの混合気の進入を阻害するものが少なくなるため、混合気による絶縁碍子の冷却効果が高められ、スパークプラグの耐熱性が向上する。さらに、低温始動時に燃料ブリッジが形成されにくくなるため、スパークプラグの低温始動性を向上することができる。   Further, the second ground electrode is joined to the front end surface of the metal shell, and only the first ground electrode is arranged along the side surface of the insulator protruding from the front end surface. Then, in the combustion chamber, since there are fewer things that obstruct the mixture from entering the clearance between the metal shell and the insulator, the cooling effect of the insulator by the mixture is enhanced, and the heat resistance of the spark plug is improved. . Furthermore, since it becomes difficult to form a fuel bridge at the time of cold start, the cold start property of the spark plug can be improved.

また、請求項3に係る発明のスパークプラグでは、請求項1または2に係る発明の効果に加え、ねじ部の外径がM12以下のスパークプラグでは主体金具と絶縁碍子との間のクリアランスが絶対寸法として狭いため、混合気がクリアランスへ進入することによる絶縁碍子の冷却効果を阻害しないようにする必要がある。そこで、本発明のスパークプラグでは、第2接地電極の一端から他端へと向かう方向を中心電極の軸線方向と直交する方向にした状態で第2接地電極を主体金具の先端面に接合した。これにより、主体金具の先端面より突出した絶縁碍子の側面に沿って配置されるものが第1接地電極のみとなり、上記クリアランスへの混合気の進入が阻害されず、スパークプラグの耐熱性を向上することができる。さらに、低温始動時に燃料ブリッジが形成されにくくなるため、スパークプラグの低温始動性を向上することができる。   Further, in the spark plug of the invention according to claim 3, in addition to the effect of the invention according to claim 1 or 2, in the spark plug having an outer diameter of the screw portion of M12 or less, the clearance between the metal shell and the insulator is absolutely Since the dimensions are narrow, it is necessary not to impede the cooling effect of the insulator due to the air-fuel mixture entering the clearance. Therefore, in the spark plug of the present invention, the second ground electrode is joined to the front end surface of the metal shell in a state where the direction from one end to the other end of the second ground electrode is a direction orthogonal to the axial direction of the center electrode. As a result, only the first ground electrode is disposed along the side surface of the insulator protruding from the front end surface of the metal shell, and the mixture does not interfere with the clearance and the heat resistance of the spark plug is improved. can do. Furthermore, since it becomes difficult to form a fuel bridge at a low temperature start, the low temperature startability of the spark plug can be improved.

また、請求項4に係る発明のスパークプラグでは、請求項1乃至3のいずれかに係る発明の効果に加え、第2接地電極を耐火花消耗性に優れる貴金属チップより形成したことで、第2接地電極をより小さく形成しても火花消耗しにくく、スパークプラグの耐久性を高めることができる。   Further, in the spark plug of the invention according to claim 4, in addition to the effect of the invention according to any of claims 1 to 3, the second ground electrode is formed from a noble metal tip having excellent spark wear resistance. Even if the ground electrode is made smaller, it is difficult for the spark to be consumed, and the durability of the spark plug can be improved.

以下、本発明を具体化したスパークプラグの一実施の形態について、図面を参照して説明する。まず、図1〜図3を参照して、本実施の形態のスパークプラグの一例としてのスパークプラグ100の構造について説明する。図1は、スパークプラグ100の部分断面図である。図2は、スパークプラグ100の先端部分を拡大した断面図である。図3は、図2の二点鎖線A−A’においてスパークプラグ100の先端部分を矢視方向から見た図である。なお、図1において、スパークプラグ100の軸線O方向を図面における上下方向とし、下側をスパークプラグ100の先端側、上側を後端側として説明する。   Hereinafter, an embodiment of a spark plug embodying the present invention will be described with reference to the drawings. First, the structure of a spark plug 100 as an example of the spark plug according to the present embodiment will be described with reference to FIGS. FIG. 1 is a partial cross-sectional view of a spark plug 100. FIG. 2 is an enlarged cross-sectional view of the tip portion of the spark plug 100. FIG. 3 is a view of the distal end portion of the spark plug 100 as viewed from the direction of the arrows along the two-dot chain line A-A ′ in FIG. 2. In FIG. 1, the axis O direction of the spark plug 100 is defined as the vertical direction in the drawing, and the lower side is described as the front end side and the upper side as the rear end side.

図1に示すように、スパークプラグ100は、概略、絶縁体を構成する絶縁碍子10と、この絶縁碍子10を保持する主体金具50と、絶縁碍子10内に軸線O方向に保持された中心電極20と、主体金具50の先端面57に基部32を溶接され、先端部31の一側面が中心電極20の先端部22に対向する主接地電極30と、主接地電極30と同様に、基部62側の一側面が主体金具50の先端面57に接合され、先端部61が絶縁碍子10の外周面に対向する補助接地電極60と、絶縁碍子10の後端部に設けられた端子金具40とから構成されている。   As shown in FIG. 1, the spark plug 100 generally includes an insulator 10 that constitutes an insulator, a metal shell 50 that holds the insulator 10, and a center electrode that is held in the direction of the axis O within the insulator 10. 20, the base 32 is welded to the front end surface 57 of the metal shell 50, and the main ground electrode 30 whose one side faces the front end 22 of the center electrode 20, and the base 62, similar to the main ground electrode 30. One side surface is joined to the front end surface 57 of the metal shell 50, the front end portion 61 is opposed to the outer peripheral surface of the insulator 10, and the terminal metal fitting 40 provided at the rear end portion of the insulator 10. It is composed of

まず、このスパークプラグ100の絶縁碍子10について説明する。絶縁碍子10は、周知のようにアルミナ等を焼成して形成され、軸線O方向に軸孔12を有する筒状の絶縁部材である。軸線O方向の略中央には外径が最も大きな鍔部19が形成されており、これより後端側には後端側胴部18が形成されている。また、鍔部19より先端側には後端側胴部18より外径が小さな先端側胴部17と、その先端側胴部17よりも先端側で先端側胴部17よりもさらに外径の小さな脚長部13とが形成されている。脚長部13は先端側ほど縮径されており、スパークプラグ100が図示外の内燃機関に組み付けられた際には、その燃焼室に曝される。また、脚長部13と先端側胴部17との間は段部15として形成されている。   First, the insulator 10 of the spark plug 100 will be described. The insulator 10 is a cylindrical insulating member that is formed by firing alumina or the like and has an axial hole 12 in the direction of the axis O as is well known. A flange portion 19 having the largest outer diameter is formed substantially at the center in the direction of the axis O, and a rear end side body portion 18 is formed on the rear end side. Further, a front end side body portion 17 having an outer diameter smaller than that of the rear end side body portion 18 on the front end side from the flange portion 19, and a further outer diameter than the front end side body portion 17 on the front end side of the front end side body portion 17. A small leg length 13 is formed. The long leg portion 13 is reduced in diameter toward the distal end side, and is exposed to the combustion chamber when the spark plug 100 is assembled to an internal combustion engine (not shown). Further, a step portion 15 is formed between the leg length portion 13 and the distal end side trunk portion 17.

次に、中心電極20は、インコネル(商標名)600または601等のNi系合金等で形成され、内部に熱伝導性に優れる銅等からなる金属芯23を有している。中心電極20の先端部22は絶縁碍子10の先端面から突出しており、先端側に向かって径小となるように形成されている。図2に示すように、この先端部22の外径は絶縁碍子10の軸孔12の内径よりも小さく構成され、軸孔12の内周と先端部22の外周との間に耐汚損性向上のための微少な間隙25が形成されている。その先端部22の先端面には柱状の貴金属チップ90が、柱軸を中心電極20の軸線にあわせるようにして溶接されている。また、中心電極20は、軸孔12の内部に設けられたシール体4およびセラミック抵抗3を経由して、後端側の端子金具40に電気的に接続されている。その端子金具40には高圧ケーブル(図示外)がプラグキャップ(図示外)を介して接続され、高電圧が印加されるようになっている。   Next, the center electrode 20 is formed of a Ni-based alloy such as Inconel (trade name) 600 or 601, and has a metal core 23 made of copper or the like having excellent thermal conductivity. The distal end portion 22 of the center electrode 20 protrudes from the distal end surface of the insulator 10 and is formed so as to become smaller in diameter toward the distal end side. As shown in FIG. 2, the outer diameter of the tip portion 22 is smaller than the inner diameter of the shaft hole 12 of the insulator 10, and the antifouling property is improved between the inner periphery of the shaft hole 12 and the outer periphery of the tip portion 22. A minute gap 25 is formed for the purpose. A columnar noble metal tip 90 is welded to the distal end surface of the distal end portion 22 so that the column axis is aligned with the axis of the center electrode 20. The center electrode 20 is electrically connected to the terminal fitting 40 on the rear end side via the seal body 4 and the ceramic resistor 3 provided in the shaft hole 12. A high voltage cable (not shown) is connected to the terminal fitting 40 via a plug cap (not shown) so that a high voltage is applied.

次いで、主接地電極30について説明する。主接地電極30は耐腐食性の高い金属から構成され、一例として、インコネル(商標名)600または601等のNi系合金が用いられる。この主接地電極30は自身の長手方向の横断面が略長方形を有しており、一端(基部32)が主体金具50の先端面57に溶接により接合されている。また、主接地電極30の他端(先端部31)は、内面33側が中心電極20の先端部22に対向するように屈曲されている。この先端部31の内面33には中心電極20の軸線にあわせて貴金属チップ91が接合されており、対向する貴金属チップ90との間で火花放電を行う主火花放電ギャップ(図2における間隙Bで示す部分)が形成される。なお、主火花放電ギャップが、本発明における「第1火花放電ギャップ」に相当し、主接地電極30が、本発明における「第1接地電極」に相当する。   Next, the main ground electrode 30 will be described. The main ground electrode 30 is made of a metal having high corrosion resistance, and an Ni-based alloy such as Inconel (trade name) 600 or 601 is used as an example. The main ground electrode 30 has a substantially rectangular cross section in the longitudinal direction, and one end (base portion 32) is joined to the front end surface 57 of the metal shell 50 by welding. The other end (tip portion 31) of the main ground electrode 30 is bent so that the inner surface 33 side faces the tip portion 22 of the center electrode 20. A noble metal tip 91 is joined to the inner surface 33 of the tip 31 in accordance with the axis of the center electrode 20, and a main spark discharge gap (gap B in FIG. 2) that performs a spark discharge with the facing noble metal tip 90. Part shown) is formed. The main spark discharge gap corresponds to the “first spark discharge gap” in the present invention, and the main ground electrode 30 corresponds to the “first ground electrode” in the present invention.

次に、補助接地電極60について説明する。補助接地電極60は断面が矩形で棒状のIr合金からなる貴金属チップである。図2に示すように、補助接地電極60は中心電極20の軸線Oと直交する方向を軸線方向とし、その他端(先端部61)の先端面が絶縁碍子10の脚長部13の側面に対向した状態で、一端(基部62)の一側面が主体金具50の先端面57に溶接されている。本実施の形態では、図3に示すように補助接地電極60は3つ設けられ、軸線Oを交点として互いに直交し、かつそれぞれが軸線Oにも直交する2直線が主体金具50の先端面57と交差する各位置に、主接地電極30および3つの補助接地電極60がそれぞれ配置されている。なお、補助接地電極60が、本発明における「第2接地電極」に相当する。   Next, the auxiliary ground electrode 60 will be described. The auxiliary ground electrode 60 is a noble metal tip made of a bar-shaped Ir alloy having a rectangular cross section. As shown in FIG. 2, the auxiliary ground electrode 60 has an axial direction that is orthogonal to the axis O of the center electrode 20, and the tip surface of the other end (tip portion 61) faces the side surface of the leg long portion 13 of the insulator 10. In this state, one side surface of the one end (base portion 62) is welded to the front end surface 57 of the metal shell 50. In the present embodiment, as shown in FIG. 3, three auxiliary ground electrodes 60 are provided, and two straight lines that are orthogonal to each other with the axis O as an intersection, and each orthogonal to the axis O are the front end surface 57 of the metal shell 50. The main ground electrode 30 and the three auxiliary ground electrodes 60 are respectively arranged at the positions intersecting with. The auxiliary ground electrode 60 corresponds to the “second ground electrode” in the present invention.

ここで、スパークプラグ100の汚損時には、主火花放電ギャップで火花放電が行われず、中心電極20と補助接地電極60との間からなる補助火花放電ギャップにおいて火花放電が行われる。図2に示すように、補助接地電極60の先端部61の先端面と絶縁碍子10の脚長部13の外周面との間は、気中放電間隙(図中間隙Cで示す部分)として構成され、主火花放電ギャップの間隙Bの長さよりも短く構成されている。また、絶縁碍子10側の気中放電間隙の起点(補助接地電極60の先端部61に対して絶縁碍子10の脚長部13の外周面から火花放電が行われる位置)から、絶縁碍子10の表面に沿って中心電極20に至るまで部分(図中間隙Dで示す部分)は、沿面放電間隙として構成されている。すなわち補助火花放電ギャップは、気中放電間隙と沿面放電間隙とから構成される。なお、補助火花放電ギャップが、本発明における「第2火花放電ギャップ」に相当する。   Here, when the spark plug 100 is soiled, spark discharge is not performed in the main spark discharge gap, but spark discharge is performed in the auxiliary spark discharge gap formed between the center electrode 20 and the auxiliary ground electrode 60. As shown in FIG. 2, the space between the tip surface of the tip portion 61 of the auxiliary ground electrode 60 and the outer peripheral surface of the leg long portion 13 of the insulator 10 is configured as an air discharge gap (portion indicated by a gap C in the figure). The main spark discharge gap is configured to be shorter than the length of the gap B. Further, from the starting point of the air discharge gap on the insulator 10 side (position where spark discharge is performed from the outer peripheral surface of the leg long portion 13 of the insulator 10 with respect to the tip portion 61 of the auxiliary ground electrode 60), the surface of the insulator 10 A portion (a portion indicated by a gap D in the figure) extending to the center electrode 20 is configured as a creeping discharge gap. That is, the auxiliary spark discharge gap is composed of an air discharge gap and a creeping discharge gap. The auxiliary spark discharge gap corresponds to the “second spark discharge gap” in the present invention.

次に、主体金具50について説明する。図1に示すように主体金具50は、図示外の内燃機関のエンジンヘッドにスパークプラグ100を固定するための円筒状の金具であり、絶縁碍子10を取り囲むようにして保持している。このとき、絶縁碍子10の脚長部13の先端部分は主体金具50の先端面57よりも前方側(図1における下側)に突出されている。主体金具50は鉄系の材料より形成され、図示外のスパークプラグレンチが嵌合する工具係合部51と、図示外の内燃機関上部に設けられたエンジンヘッドに螺合するねじ部52とを備えている。このねじ部52の規格の一例としては、M12が用いられる。   Next, the metal shell 50 will be described. As shown in FIG. 1, the metal shell 50 is a cylindrical metal fitting for fixing the spark plug 100 to an engine head of an internal combustion engine (not shown), and is held so as to surround the insulator 10. At this time, the distal end portion of the leg long portion 13 of the insulator 10 protrudes forward (lower side in FIG. 1) from the distal end surface 57 of the metal shell 50. The metal shell 50 is made of an iron-based material, and includes a tool engaging portion 51 to which a spark plug wrench (not shown) is fitted, and a screw portion 52 to be screwed into an engine head provided on an internal combustion engine (not shown). I have. As an example of the standard of the threaded portion 52, M12 is used.

また、工具係合部51より後端側には加締め部53が設けられている。そしてその加締め部53を加締めることにより、主体金具50内に形成された段部56に環状のパッキン80を介し絶縁碍子10の段部15が支持されて、主体金具50と絶縁碍子10とが一体にされる。段部15と段部56との間の気密を保持し燃焼ガスの流出を防ぐことができるように加締めによる密閉を完全なものとするため、工具係合部51から加締め部53にかけての主体金具50と絶縁碍子10の後端側胴部18との間に円環状のリング部材6,7が介在され、さらに両リング部材6,7の間にタルク(滑石)9の粉末が充填される。また、工具係合部51とねじ部52との間には鍔部54が形成されており、ねじ部52の後端側近傍、すなわち鍔部54の座面55にはガスケット5が嵌挿されている。   Further, a caulking portion 53 is provided on the rear end side from the tool engaging portion 51. Then, by crimping the caulking portion 53, the step portion 15 of the insulator 10 is supported by the step portion 56 formed in the metal shell 50 via the annular packing 80, and the metal shell 50, the insulator 10, Is united. In order to maintain the airtightness between the step portion 15 and the step portion 56 and to prevent the outflow of combustion gas, and complete sealing by caulking, the tool engagement portion 51 and the caulking portion 53 are covered. Annular ring members 6, 7 are interposed between the metal shell 50 and the rear end body 18 of the insulator 10, and talc (talc) 9 powder is filled between the ring members 6, 7. The Further, a flange 54 is formed between the tool engaging portion 51 and the screw portion 52, and the gasket 5 is inserted into the vicinity of the rear end side of the screw portion 52, that is, the seat surface 55 of the flange 54. ing.

このような構成のスパークプラグ100において、主火花放電ギャップおよび補助火花放電ギャップの長さ関係に着目して規定することは、耐熱性、耐汚損性および着火性のさらなる向上を図る上で有効である。そこで、本実施の形態のスパークプラグ100では、着火性を向上することができるように、主火花放電ギャップと、補助火花放電ギャップを形成する気中放電間隙および沿面放電間隙との相対的な長さ関係を設定し、これを実現するため各部品の大きさや配置位置を規定した。   In the spark plug 100 having such a configuration, it is effective to further define heat resistance, fouling resistance, and ignitability to define by paying attention to the length relationship between the main spark discharge gap and the auxiliary spark discharge gap. is there. Therefore, in the spark plug 100 of the present embodiment, the relative lengths of the main spark discharge gap and the air discharge gap and the creeping discharge gap forming the auxiliary spark discharge gap can be improved. In order to achieve this, the size and arrangement position of each part were specified.

まず、図2に示す、主火花放電ギャップ(間隙B)、気中放電間隙(間隙C)および沿面放電間隙(間隙D)のそれぞれの長さ関係を、後述する評価試験の結果に基づき以下に規定した。
(間隙Cの長さ)+(間隙Dの長さ)×0.5≧(間隙Bの長さ)×1.43
すなわち、本実施の形態のスパークプラグ100では、気中放電間隙の長さと沿面放電間隙の0.5倍の長さとの和が、主火花放電ギャップの1.43倍の長さ以上となるように構成されている。このように主火花放電ギャップと補助火花放電ギャップとの長さ関係を設定すれば、汚損時に積極的に補助火花放電ギャップにおいて火花放電が行われるようにし、自己清浄効果を高めることで、耐汚損性の向上を図ることができる。一方、各間隙B,C,Dの関係が上記式を満たせない場合、通常時に補助火花放電ギャップにて火花放電が行われたり、横飛火が発生したりする虞がある。
First, the length relationships of the main spark discharge gap (gap B), the air discharge gap (gap C), and the creeping discharge gap (gap D) shown in FIG. Stipulated.
(Length of gap C) + (length of gap D) × 0.5 ≧ (length of gap B) × 1.43
That is, in the spark plug 100 of the present embodiment, the sum of the length of the air discharge gap and the length of 0.5 times the creeping discharge gap is not less than 1.43 times the length of the main spark discharge gap. It is configured. By setting the length relationship between the main spark discharge gap and the auxiliary spark discharge gap in this way, spark discharge is actively performed in the auxiliary spark discharge gap at the time of fouling, and by increasing the self-cleaning effect, It is possible to improve the performance. On the other hand, if the relationship between the gaps B, C, and D does not satisfy the above formula, there is a risk that spark discharge will be performed in the auxiliary spark discharge gap during normal times, or side fire may occur.

また、本実施の形態では、棒状の補助接地電極60の先端部61において、軸線方向と直交する断面の面積を1mm以下とし、かつ気中放電間隙(間隙C)の長さを0.3mm以上としている。間隙Cの長さが0.3mm未満であると、補助接地電極60と絶縁碍子10との間で燃料ブリッジが形成されてしまう虞がある。さらに、主体金具50の内周と絶縁碍子10の脚長部13の外周との間に混合気が入り込みにくくなり、冷却効果を得られず耐熱性が低下する虞がある。また、補助接地電極60の先端部61の断面積が1mmより大きいと、補助接地電極60の体積が大きくなってしまい、着火時に成長する火炎核の熱を奪うため着火性が低下する虞がある。 In the present embodiment, at the tip 61 of the rod-shaped auxiliary ground electrode 60, the cross-sectional area perpendicular to the axial direction is 1 mm 2 or less, and the length of the air discharge gap (gap C) is 0.3 mm. That's it. If the length of the gap C is less than 0.3 mm, a fuel bridge may be formed between the auxiliary ground electrode 60 and the insulator 10. Furthermore, it becomes difficult for the air-fuel mixture to enter between the inner periphery of the metal shell 50 and the outer periphery of the leg long portion 13 of the insulator 10, and there is a possibility that the cooling effect cannot be obtained and the heat resistance is lowered. Further, if the cross-sectional area of the tip portion 61 of the auxiliary ground electrode 60 is larger than 1 mm 2 , the volume of the auxiliary ground electrode 60 becomes large, and the ignitability may be deteriorated because the heat of flame nuclei that grow during ignition is taken away. is there.

このように構成したスパークプラグについて本発明の効果を確認するため、以下に示す各評価試験を行った。   In order to confirm the effect of this invention about the spark plug comprised in this way, each evaluation test shown below was done.

[実施例1]
まず、沿面放電間隙および気中放電間隙における放電電圧と大気圧との関係において評価試験を行った。この評価試験では、沿面放電間隙(図2における間隙D)が1.0mmとなるように主体金具の先端面に補助接地電極を接合したスパークプラグをチャンバー内に配置し、「0.2」,「0.4」,「0.6」,「0.8」,「1」(MPa)の各気圧下で放電電圧を測定した。各気圧下における放電電圧は順に、「7」,「10」,「13」,「15.5」,「17.5」(kV)であった。さらに、沿面放電間隙を1.1mmとしたスパークプラグについても同様に上記各気圧下での放電電圧を測定したところ、上記各気圧下における放電電圧は順に、「7.51」,「10.52」,「13.49」,「15.98」,「18.01」(kV)となった。これをグラフ化したものを図4に示す
[Example 1]
First, an evaluation test was performed on the relationship between the discharge voltage and the atmospheric pressure in the creeping discharge gap and the air discharge gap. In this evaluation test, a spark plug in which an auxiliary ground electrode is joined to the front end surface of the metal shell so that the creeping discharge gap (gap D in FIG. 2) is 1.0 mm is disposed in the chamber. The discharge voltage was measured under each atmospheric pressure of “0.4”, “0.6”, “0.8”, and “1” (MPa). The discharge voltages under each atmospheric pressure were “7”, “10”, “13”, “15.5”, and “17.5” (kV) in this order. Further, the discharge voltage at each atmospheric pressure was also measured for the spark plug having a creeping discharge gap of 1.1 mm. The discharge voltages at each atmospheric pressure were “7.51” and “10.52 in order. ], "13.49", "15.98", "18.01" (kV). A graph of this is shown in FIG.

次いで、気中放電間隙についても同様の評価試験を行った。気中放電間隙(図2における間隙C)が0.5mmとなるように主体金具の先端面に補助接地電極を接合したスパークプラグをチャンバー内に配置し、上記同様「0.2」,「0.4」,「0.6」,「0.8」,「1」(MPa)の各気圧下で放電電圧を測定した。各気圧下における放電電圧は順に、「9」,「14」,「19.02」,「23.9」,「26.5」(kV)であった。さらに、気中放電間隙を0.6mmとしたスパークプラグについても同様に上記各気圧下での放電電圧を測定したところ、順に、「10.01」,「15.1」,「20.04」,「25.04」,「27.49」(kV)となった。これをグラフ化したものを図5に示す。   Next, a similar evaluation test was performed on the air discharge gap. A spark plug in which an auxiliary ground electrode is joined to the front end surface of the metal shell is arranged in the chamber so that the air discharge gap (gap C in FIG. 2) is 0.5 mm. .4 "," 0.6 "," 0.8 "," 1 "(MPa), and the discharge voltage was measured under each atmospheric pressure. The discharge voltages under each atmospheric pressure were “9”, “14”, “19.02”, “23.9”, and “26.5” (kV) in this order. Further, when the discharge voltage at each atmospheric pressure was measured in the same manner for the spark plug with an air discharge gap of 0.6 mm, “10.01”, “15.1”, “20.04” were sequentially measured. , “25.04”, “27.49” (kV). A graph of this is shown in FIG.

この評価試験の結果、どの気圧下においても一様に、沿面放電間隙が0.1mm広くなると放電電圧が約0.5kV高くなることがわかった。同様に、気中放電間隙が0.1mm広くなると放電電圧が約1.0kV高くなることがわかった。従って、放電電圧を1kV高くするには、沿面放電間隙であれば、その長さを0.2mm広げるとよいが、気中放電間隙であれば、その長さを沿面放電間隙の0.5倍の0.1mm広げればよいことがわかった。   As a result of this evaluation test, it was found that the discharge voltage was increased by about 0.5 kV uniformly when the creeping discharge gap was increased by 0.1 mm under any atmospheric pressure. Similarly, it was found that the discharge voltage increases by about 1.0 kV when the air discharge gap is increased by 0.1 mm. Therefore, in order to increase the discharge voltage by 1 kV, the length of the creeping discharge gap may be increased by 0.2 mm. However, in the case of an air discharge gap, the length is 0.5 times the creeping discharge gap. It was found that it was sufficient to widen 0.1 mm.

[実施例2]
次に、スパークプラグの耐熱性について評価試験を行った。この評価試験では、図6に示すように、本実施の形態のスパークプラグ100と、その比較対象としての4種のスパークプラグを用い、同条件にて試験を行った。平行電極型のスパークプラグとは、自己清浄作用を有しない一般的なスパークプラグである。4極セミ沿面型のスパークプラグとは、主体金具の先端面に4つの接地電極を設け、それぞれの先端部を中心電極に向けて折り曲げた形状とすることで、常時、自己清浄が行われるようにしたスパークプラグである。3極ハイブリッド型のスパークプラグとは、平行電極型のスパークプラグの主体金具の先端面に2つの補助接地電極を接合し、各補助接地電極の先端部を、4極セミ沿面型と同様に中心電極に向けて折り曲げた形状とすることで、汚損時に補助接地電極による自己清浄作用をもたせたスパークプラグである。補助ギャップ型のスパークプラグとは、平行電極型のスパークプラグの主体金具の先端面を内側に延長し、絶縁碍子との距離を近づけることで、汚損時に自己清浄が行われやすくしたスパークプラグである。
[Example 2]
Next, an evaluation test was conducted on the heat resistance of the spark plug. In this evaluation test, as shown in FIG. 6, the test was performed under the same conditions using the spark plug 100 of the present embodiment and four types of spark plugs as comparison targets. The parallel electrode type spark plug is a general spark plug having no self-cleaning action. A four-pole semi-creeping spark plug is such that four ground electrodes are provided on the tip surface of the metal shell and each tip is bent toward the center electrode so that self-cleaning is always performed. This is a spark plug. A three-pole hybrid type spark plug is a parallel electrode type spark plug with two auxiliary grounding electrodes joined to the tip of the metal shell, and the tip of each auxiliary grounding electrode is centered in the same way as the four-pole semi-surface type It is a spark plug that has a self-cleaning action by the auxiliary ground electrode when fouled by being bent toward the electrode. Auxiliary gap type spark plug is a spark plug that facilitates self-cleaning at the time of fouling by extending the end face of the metal shell of the parallel electrode type spark plug inward and reducing the distance from the insulator. .

耐熱性の評価試験では、上記各種のスパークプラグをそれぞれ排気量1600ccの4気筒ガソリンエンジンに組み付け、5500rpmWOT(Wide Open Throttleの略称で、スロットル全開を意味する。)で駆動した。そして、スパークプラグの点火時期を進めていったときに、プレイグニッション(過早着火)が発生した進角(点火時期)を測定した。その結果、本実施の形態のスパークプラグでは、プレイグニッション発生進角が45°BTDCであった。また、比較例としての平行電極型,4極セミ沿面型,3極ハイブリッド型,補助ギャップ型の各スパークプラグのプレイグニッション発生進角はそれぞれ、「45」,「35」,「38」,「35」(°BTDC)であった。これをグラフ化したものを図7に示す。   In the heat resistance evaluation test, each of the various spark plugs described above was assembled in a 4-cylinder gasoline engine with a displacement of 1600 cc and driven at 5500 rpm WOT (abbreviation for Wide Open Throttle, meaning throttle fully open). Then, when the ignition timing of the spark plug was advanced, the advance angle (ignition timing) at which preignition (premature ignition) occurred was measured. As a result, in the spark plug of the present embodiment, the pre-ignition generation advance angle was 45 ° BTDC. Further, the pre-ignition generation advance angles of the parallel electrode type, the 4-pole semi-surface type, the 3-pole hybrid type, and the auxiliary gap type spark plugs as comparative examples are “45”, “35”, “38”, “ 35 "(° BTDC). A graph of this is shown in FIG.

この評価試験の結果、本実施の形態のスパークプラグは、平行電極型のスパークプラグと同様に、他のスパークプラグと比べプレイグニッションの発生温度が高く、プレイグニッションが発生しにくいことが確認された。4極セミ沿面型および3極ハイブリッド型のスパークプラグでは、補助接地電極が大きく、絶縁碍子の先端部を囲うように配置され、その先端部が中心電極側に曲折している。このため燃焼室内において、混合気が主体金具と絶縁碍子との間のクリアランスに入り込みにくい。また、補助ギャップ型のスパークプラグも同様に、主体金具の先端面が中心電極側に突出されていることから上記クリアランスに混合気が入り込みにくい。このため、これらのスパークプラグでは混合気による冷却効果を十分に得られず、クリアランス内に熱が籠もりやすくなり平行接地電極型のスパークプラグと比べ耐熱性が低くなる。しかし、本実施の形態のスパークプラグでは、補助接地電極の大きさ、および気中放電間隙の長さを規定したことにより、絶縁碍子の先端部に沿って配置されるのが主接地電極のみであり、上記クリアランスへの混合気の進入を阻害しにくい構成となっている。これにより、本実施の形態のスパークプラグでは、平行電極型のスパークプラグと同等の耐熱性を得られたことが確認できた。   As a result of this evaluation test, it was confirmed that the spark plug of the present embodiment has a higher preignition generation temperature and is less likely to cause preignition, as with the parallel electrode type spark plug. . In the 4-pole semi-creeping type and 3-pole hybrid type spark plug, the auxiliary ground electrode is large and is disposed so as to surround the tip of the insulator, and the tip is bent toward the center electrode. For this reason, the air-fuel mixture hardly enters the clearance between the metal shell and the insulator in the combustion chamber. Similarly, in the auxiliary gap type spark plug, the air-fuel mixture hardly enters the clearance because the front end surface of the metal shell protrudes toward the center electrode. For this reason, these spark plugs cannot sufficiently obtain the cooling effect by the air-fuel mixture, and heat is easily trapped in the clearance, so that the heat resistance is lower than that of the parallel ground electrode type spark plug. However, in the spark plug of the present embodiment, the size of the auxiliary ground electrode and the length of the air discharge gap are defined, so that only the main ground electrode is disposed along the tip of the insulator. There is a configuration in which it is difficult to prevent the mixture from entering the clearance. Thus, it was confirmed that the spark plug of the present embodiment was able to obtain the same heat resistance as the parallel electrode type spark plug.

[実施例3]
次に、スパークプラグの耐汚損性について評価試験を行った。この評価試験では、耐熱性の評価試験(実施例2)で説明した図6に示す4種のスパークプラグを本実施の形態のスパークプラグ100との比較例として用い、同条件にて試験を行った。
[Example 3]
Next, an evaluation test was conducted on the antifouling property of the spark plug. In this evaluation test, the four types of spark plugs shown in FIG. 6 described in the heat resistance evaluation test (Example 2) were used as comparative examples with the spark plug 100 of the present embodiment, and the test was performed under the same conditions. It was.

耐汚損性の評価試験では、排気量1800ccの4気筒直噴式ガソリンエンジンに各スパークプラグを組み付け、室温−10℃の試験室においてJIS規格D1606で規定されているプレデリバリ汚損試験を行った。具体的にはエンジンを始動させ、空ぶかしを数回行った後に3速35km/hで40秒駆動し、アイドリングを90秒行ってから再度3速35km/hで40秒駆動してエンジンを停止する。そして冷却水の温度が室温となるまで完全冷却を行い、再度エンジンを始動させて空ぶかしし、1速15km/hで15秒駆動とエンジン停止30秒を2回、再び1速15km/hで再度15秒駆動してエンジンを停止する。この一連のテストパターンを1サイクルとして、複数サイクル繰り返し試験を行った。そして各サイクルが終了する度にスパークプラグの主体金具と接続端子との間の絶縁抵抗値を測定し、その値が10MΩを下回ったときのサイクル数を確認した。   In the anti-fouling evaluation test, each spark plug was assembled in a 4-cylinder direct-injection gasoline engine with a displacement of 1800 cc, and a pre-delivery fouling test defined in JIS standard D1606 was performed in a test room at a room temperature of −10 ° C. Specifically, after starting the engine several times, the engine is driven for 3 seconds at 35 km / h for 40 seconds, idling is performed for 90 seconds, and then driven again for 3 seconds at 35 km / h for 40 seconds. To stop. Then, complete cooling is performed until the temperature of the cooling water reaches room temperature, the engine is started again, and the engine is blown, and the 15-second drive at the first speed of 15 km / h and the engine stop for 30 seconds are performed twice. Drive again for 15 seconds at h to stop the engine. This series of test patterns was taken as one cycle, and a plurality of cycles were repeatedly tested. Then, at the end of each cycle, the insulation resistance value between the metal shell of the spark plug and the connection terminal was measured, and the number of cycles when the value was less than 10 MΩ was confirmed.

その結果、本実施の形態のスパークプラグでは、10サイクル以上絶縁性が失われなかった。また、平行電極型,4極セミ沿面型,3極ハイブリッド型のスパークプラグでは、それぞれ「4」,「9」,「8」サイクル目に絶縁性が失われた。そして、補助ギャップ型のスパークプラグでは、10サイクル以上絶縁性が失われなかった。これをグラフ化したものを図8に示す。   As a result, in the spark plug of the present embodiment, the insulating property was not lost for 10 cycles or more. Further, in the parallel electrode type, the 4-pole semi-creeping type, and the 3-pole hybrid type spark plug, the insulation was lost at the “4”, “9”, and “8” cycles, respectively. Further, in the auxiliary gap type spark plug, the insulating property was not lost for 10 cycles or more. A graph of this is shown in FIG.

この耐汚損性の評価試験の結果より、4極セミ沿面型および3極ハイブリッド型のスパークプラグでは、自己清浄を行えない平行電極型のスパークプラグと比べ始動可能なサイクル数が大きく耐汚損性の面において良好であるが、補助ギャップ型および本実施の形態のスパークプラグでは、さらに耐汚損性の面において有利であることがわかる。図6に示すように、4極セミ沿面型および3極ハイブリッド型のスパークプラグでは、補助接地電極の先端部の対向する絶縁碍子の先端部において気中放電間隙および沿面放電間隙が形成されるが、本実施の形態のスパークプラグでは、それらのスパークプラグより沿面放電間隙が長く形成されている。つまり気中放電間隙の形成位置は、4極セミ沿面型および3極ハイブリッド型のスパークプラグと比べ中心電極から離れており、非汚損時に補助接地電極と中心電極との間で飛火しにくくなるため、気中放電間隙の長さをより小さくすることができる。これにより、主体金具内で絶縁碍子に火花放電が発生する、いわゆる横飛火を抑制することができ、スパークプラグの汚損時に、確実に、補助火花放電ギャップにて火花放電を発生させて自己清浄することができる。   As a result of this antifouling resistance evaluation test, the 4-pole semi-creeping type and 3-pole hybrid type spark plugs have a larger number of startable cycles than the parallel electrode type spark plugs that cannot perform self-cleaning. Although it is favorable in terms of surface, it can be seen that the auxiliary gap type and the spark plug of the present embodiment are further advantageous in terms of antifouling properties. As shown in FIG. 6, in the four-pole semi-creeping type and three-pole hybrid type spark plug, an air discharge gap and a creeping discharge gap are formed at the tip of the insulator opposite to the tip of the auxiliary ground electrode. In the spark plug according to the present embodiment, the creeping discharge gap is formed longer than those spark plugs. In other words, the formation position of the air discharge gap is far from the center electrode compared to the 4-pole semi-creeping type and 3-pole hybrid type spark plugs, and it is difficult to fly between the auxiliary ground electrode and the center electrode at the time of non-staining. In addition, the length of the air discharge gap can be further reduced. As a result, spark discharge is generated in the insulator in the metal shell, so-called side fire can be suppressed, and when the spark plug is soiled, the spark discharge is surely generated in the auxiliary spark discharge gap and self-cleaned. be able to.

[実施例4]
次いで、スパークプラグの着火性について評価試験を行った。この評価試験では、本実施の形態のスパークプラグの補助接地電極として、その軸線方向と直交する断面の面積が「0.64」,「1.00」,「1.44」,「3.50」,「4.50」(mm)の5種類のものを用意した。そして、各種ごとに気中放電間隙の長さが「0.1」〜「0.7」(mm)となるようにスパークプラグの主体金具の先端面に補助接地電極を接合し、それぞれ7つのサンプルを作製した。これら各サンプルを、排気量2000ccの6気筒ガソリンエンジンに組み付けて始動し、吸気圧−550mmHg、750rpmでアイドリング走行を行った。そしてスパークプラグの点火時期を進めていき、失火等が生じない安定燃焼限界を測定した。
[Example 4]
Next, an evaluation test was performed on the ignitability of the spark plug. In this evaluation test, as the auxiliary ground electrode of the spark plug of the present embodiment, the cross-sectional areas orthogonal to the axial direction are “0.64”, “1.00”, “1.44”, “3.50”. ”,“ 4.50 ”(mm 2 ). Then, an auxiliary ground electrode is joined to the front end surface of the spark plug main metal fitting so that the length of the air discharge gap becomes “0.1” to “0.7” (mm) for each of the various types. A sample was made. Each of these samples was started by assembling a 6-cylinder gasoline engine with a displacement of 2000 cc, and idling was performed at an intake pressure of −550 mmHg and 750 rpm. Then, the ignition timing of the spark plug was advanced, and the stable combustion limit at which misfire did not occur was measured.

その結果、補助接地電極の断面積が0.64mmである場合の安定燃焼限界は、気中放電間隙の長さが「0.1」,「0.2」,「0.3」,「0.4」,「0.5」,「0.6」,「0.7」(mm)のそれぞれにおいて、「23」,「25」,「42」,「45」,「48」,「50」,「52」(°BTDC)であった。同様に、補助接地電極の断面積が1.00mmである場合、上記各気中放電間隙の長さに対する安定燃焼限界はそれぞれ、「22」,「24」,「40」,「44」,「47.5」,「50」,「52」(°BTDC)となった。補助接地電極の断面積が1.44mmである場合、上記各気中放電間隙の長さに対する安定燃焼限界はそれぞれ、「22」,「23」,「28.3」,「40.1」,「45」,「49」,「52」(°BTDC)となった。補助接地電極の断面積が3.50mmである場合、上記各気中放電間隙の長さに対する安定燃焼限界はそれぞれ、「22」,「22.5」,「25」,「27」,「30」,「35」,「40」(°BTDC)となった。補助接地電極の断面積が4.50mmである場合、上記各気中放電間隙の長さに対する安定燃焼限界はそれぞれ、「22」,「22.5」,「24」,「26」,「28.5」,「32.5」,「36」(°BTDC)となった。これをグラフ化したものを図9に示す。なお、図9において、安定燃焼限界をAdv.Limitと表記した。 As a result, the stable combustion limit when the cross-sectional area of the auxiliary ground electrode is 0.64 mm 2 is that the length of the air discharge gap is “0.1”, “0.2”, “0.3”, “ In each of 0.4, “0.5”, “0.6”, “0.7” (mm), “23”, “25”, “42”, “45”, “48”, “ 50 ”and“ 52 ”(° BTDC). Similarly, when the cross-sectional area of the auxiliary ground electrode is 1.00 mm 2 , the stable combustion limits with respect to the length of each air discharge gap are “22”, “24”, “40”, “44”, “47.5”, “50”, and “52” (° BTDC). When the cross-sectional area of the auxiliary ground electrode is 1.44 mm 2 , the stable combustion limits with respect to the length of each air discharge gap are “22”, “23”, “28.3”, “40.1”, respectively. , “45”, “49”, “52” (° BTDC). When the cross-sectional area of the auxiliary ground electrode is 3.50 mm 2 , the stable combustion limits with respect to the length of each air discharge gap are “22”, “22.5”, “25”, “27”, “ 30 ”,“ 35 ”, and“ 40 ”(° BTDC). When the cross-sectional area of the auxiliary ground electrode is 4.50 mm 2 , the stable combustion limits with respect to the length of each air discharge gap are “22”, “22.5”, “24”, “26”, “ 28.5 ”,“ 32.5 ”,“ 36 ”(° BTDC). A graph of this is shown in FIG. In FIG. 9, the stable combustion limit is indicated as Adv.Limit.

この着火性の評価試験の結果より、補助接地電極の断面積(軸線と直交する断面の面積)が小さいほど着火性が向上することがわかる。これは、混合気に点火することにより発生した火炎核が補助接地電極に接触して熱が奪われる消炎作用が、接触する補助接地電極の体積が小さいほど低減することによる。また、気中放電間隙の長さが大きいほど着火性が向上することがわかる。これは、火炎核の成長過程において、気中放電間隙の長さが大きいほど補助接地電極に接触するまでに火炎核が成長することができることによる。実施例3において、気中放電間隙の長さが小さいほどスパークプラグの耐汚損性が向上すると説明したが、本評価試験の結果に基づくと、補助接地電極の断面積が1mm以下であり、かつ、気中放電間隙の長さが0.3mm以上となるようにすれば、着火性において良好であることがわかった。 From the results of this ignitability evaluation test, it is understood that the ignitability improves as the cross-sectional area of the auxiliary ground electrode (area of the cross section perpendicular to the axis) decreases. This is because the flame extinguishing action in which the flame nucleus generated by igniting the air-fuel mixture comes into contact with the auxiliary ground electrode and heat is taken away decreases as the volume of the auxiliary ground electrode in contact decreases. It can also be seen that the ignitability improves as the length of the air discharge gap increases. This is because in the growth process of the flame kernel, the longer the gap in the air, the more the flame kernel can grow before it comes into contact with the auxiliary ground electrode. In Example 3, it has been described that the smaller the length of the air discharge gap is, the better the anti-fouling property of the spark plug is. However, based on the result of this evaluation test, the cross-sectional area of the auxiliary ground electrode is 1 mm 2 or less, In addition, it was found that if the length of the air discharge gap is 0.3 mm or more, the ignitability is good.

[実施例5]
次に、スパークプラグの低温始動性について評価試験を行った。この評価試験では、耐熱性の評価試験(実施例2)で説明した図6に示す4種のスパークプラグを本実施の形態のスパークプラグ100との比較例として用い、同条件にて試験を行った。
[Example 5]
Next, an evaluation test was performed on the low temperature startability of the spark plug. In this evaluation test, the four types of spark plugs shown in FIG. 6 described in the heat resistance evaluation test (Example 2) were used as comparative examples with the spark plug 100 of the present embodiment, and the test was performed under the same conditions. It was.

低温始動性の評価試験では、上記各種のスパークプラグをそれぞれ排気量1800ccの4気筒直噴式ガソリンエンジンに組み付け、室温−30℃の試験室において、エンジン始動後ギアをNに入れた状態で15秒維持し、ギアをDに入れ15秒駆動した後にエンジンを停止し、冷却水の温度が室温となるまで完全冷却を行った。これを1サイクルとして複数サイクル繰り返し試験を行い、エンジンが始動できなくなるまでのサイクル数を確認した。   In the low temperature startability evaluation test, the above various spark plugs were assembled in a 4-cylinder direct injection gasoline engine with a displacement of 1800 cc, respectively, and the engine was started for 15 seconds with the gear set to N after starting the engine in a test room at room temperature -30 ° C. The engine was stopped after the gear was put in D and driven for 15 seconds, and complete cooling was performed until the temperature of the cooling water reached room temperature. The test was repeated for a plurality of cycles with this as one cycle, and the number of cycles until the engine could not be started was confirmed.

その結果、本実施の形態のスパークプラグでは、11サイクルまでエンジンを始動させることができた。また、平行電極型,4極セミ沿面型,3極ハイブリッド型,補助ギャップ型のスパークプラグでは、それぞれ「12」,「6」,「7」,「3」サイクルまでエンジンを始動させることができた。これをグラフ化したものを図10に示す。   As a result, with the spark plug of the present embodiment, the engine could be started up to 11 cycles. The parallel electrode type, 4-pole semi-creeping type, 3-pole hybrid type, and auxiliary gap type spark plugs can start the engine up to "12", "6", "7", and "3" cycles, respectively. It was. A graph of this is shown in FIG.

この低温始動性の評価試験の結果より、補助ギャップ型のスパークプラグでは、主体金具の先端面全体が絶縁碍子に向かって突出されているので、その先端面と絶縁碍子との間の距離が短く、エンジンの始動時に未気化の混合気が付着すると燃料ブリッジが形成されやすく、始動不能に陥りやすいことがわかる。4極セミ沿面型や3極ハイブリッド型のスパークプラグでは、補助接地電極が主体金具の先端面より露出した絶縁碍子の先端部を取り囲むように配置されており、補助ギャップ型のスパークプラグに次いで燃料ブリッジが形成されやすい。しかし、補助接地電極のない平行電極型のスパークプラグでは燃料ブリッジが形成されにくく、上記各スパークプラグと比べ低温始動性の面において良好である。本実施の形態のスパークプラグでは、補助接地電極が小さく絶縁碍子に対して対向する部位が少ないため、低温始動性の面において平行電極型のスパークプラグとほぼ同等の性能を示すことがわかった。   From the results of this low temperature startability evaluation test, in the auxiliary gap type spark plug, the entire front end surface of the metal shell protrudes toward the insulator, so the distance between the front end surface and the insulator is short. It can be seen that a fuel bridge is easily formed when an unvaporized air-fuel mixture adheres at the time of starting the engine, and the engine cannot easily be started. In the 4-pole semi creepage type and 3-pole hybrid type spark plug, the auxiliary grounding electrode is arranged so as to surround the tip of the insulator exposed from the tip of the metal shell, followed by the auxiliary gap type spark plug. A bridge is easily formed. However, a parallel electrode type spark plug without an auxiliary ground electrode hardly forms a fuel bridge, which is better in terms of low temperature startability than the above spark plugs. In the spark plug of the present embodiment, since the auxiliary ground electrode is small and there are few portions facing the insulator, it has been found that the performance is almost the same as that of the parallel electrode type spark plug in terms of low temperature startability.

[実施例6]
次に、横飛火の発生についての評価試験を行った。まず、主火花放電ギャップ,気中放電間隙,沿面放電間隙の長さをそれぞれ「1.1」,「0.3」,「1.5」(mm)となるように調整した本実施の形態のスパークプラグを作製した。そしてこのスパークプラグをチャンバー内に配置し、「0.2」,「0.4」,「0.6」,「0.8」,「1」(MPa)の各気圧下で横飛火の発生を測定し、その発生回数から発生率を求めた。各気圧下における横飛火の発生率は、それぞれ「14」,「31.7」,「48」,「59.5」,「60」(%)であった。これをグラフ化したものを図11に示す。これより、チャンバー内の気圧が上がれば横飛火の発生率が上がり、0.8MPa以上であれば横飛火の発生を評価するうえで十分な環境が得られるとして以下の試験を行った。
[Example 6]
Next, an evaluation test was conducted on the occurrence of side fire. First, this embodiment in which the lengths of the main spark discharge gap, the air discharge gap, and the creeping discharge gap are adjusted to be “1.1”, “0.3”, and “1.5” (mm), respectively. A spark plug was prepared. This spark plug is placed in the chamber, and a side fire is generated under each pressure of “0.2”, “0.4”, “0.6”, “0.8”, “1” (MPa). Was measured, and the occurrence rate was determined from the number of occurrences. The occurrence rates of side fire under each atmospheric pressure were “14”, “31.7”, “48”, “59.5”, and “60” (%), respectively. A graph of this is shown in FIG. From this, when the atmospheric pressure in the chamber increased, the rate of occurrence of side fire increased, and when it was 0.8 MPa or more, the following test was conducted assuming that a sufficient environment could be obtained for evaluating the occurrence of side fire.

そこで、チャンバー内の気圧を0.8MPaに設定して、主火花放電ギャップの長さを1.1mmとしたスパークプラグにおいて、気中放電間隙の長さおよび沿面放電間隙の長さと横飛火の発生率との関係について試験を行った。この試験では、本実施の形態のスパークプラグの主体金具の先端面に補助接地電極を接合する際に、両者間に中間部材を配置させ、沿面放電間隙の長さが「1.0」,「1.5」,「2.0」,「2.5」(mm)、気中放電間隙の長さが「0.1」〜「0.9」(mm)の各組合せとなるように調整し、スパークプラグのサンプルを作製した。なお、この中間部材とは主接地電極と同材質からなる金属部材であり、主体金具の先端面に溶接し、この中間部材を介して補助接地電極が主体金具と導通状態となるように接合したものであり、この中間部材の軸線O方向長さを調整することによって上記各沿面放電間隙の長さを調整している。   Therefore, in the spark plug in which the atmospheric pressure in the chamber was set to 0.8 MPa and the length of the main spark discharge gap was 1.1 mm, the length of the air discharge gap, the length of the creeping discharge gap, and the occurrence of a side fire A test was conducted for the relationship with the rate. In this test, when joining the auxiliary ground electrode to the front end surface of the metal shell of the spark plug of the present embodiment, an intermediate member is disposed between the two, and the length of the creeping discharge gap is “1.0”, “ 1.5 ”,“ 2.0 ”,“ 2.5 ”(mm), and adjustment so that the length of the air discharge gap is“ 0.1 ”to“ 0.9 ”(mm) Thus, a spark plug sample was produced. The intermediate member is a metal member made of the same material as the main ground electrode, welded to the front end surface of the metal shell, and joined so that the auxiliary ground electrode is in conduction with the metal shell via the intermediate member. The length of each creeping discharge gap is adjusted by adjusting the length of the intermediate member in the direction of the axis O.

沿面放電間隙の長さが1.0mmである場合、気中放電間隙の長さを「0.1」,「0.2」,「0.3」,「0.4」,「0.5」,「0.6」,「0.7」,「0.8」,「0.9」(mm)としたスパークプラグの横飛火の発生率はそれぞれ、「99」,「98」,「95」,「87.3」,「60」,「40」,「20」,「8」,「0」(%)となった。同様に、沿面放電間隙の長さが1.5mmである場合、気中放電間隙の長さを「0.1」,「0.2」,「0.3」,「0.4」,「0.5」,「0.6」,「0.7」(mm)としたスパークプラグの横飛火の発生率はそれぞれ、「98」,「80」,「59」,「35」,「18」,「3」,「0」(%)となった。沿面放電間隙の長さが2.0mmである場合、気中放電間隙の長さを「0.1」,「0.2」,「0.3」,「0.4」(mm)としたスパークプラグの横飛火の発生率はそれぞれ、「45」,「22.4」,「9」,「0」(%)となった。そして沿面放電間隙の長さが2.5mmである場合、気中放電間隙の長さを「0.1」,「0.2」(mm)としたスパークプラグの横飛火の発生率はそれぞれ、「4」,「0」(%)となった。これをグラフ化したものを図12に示す。   When the length of the creeping discharge gap is 1.0 mm, the length of the air discharge gap is set to “0.1”, “0.2”, “0.3”, “0.4”, “0.5”. ”,“ 0.6 ”,“ 0.7 ”,“ 0.8 ”,“ 0.9 ”(mm), the occurrence rates of side fire of the spark plug are“ 99 ”,“ 98 ”,“ 95 ”,“ 87.3 ”,“ 60 ”,“ 40 ”,“ 20 ”,“ 8 ”,“ 0 ”(%). Similarly, when the length of the creeping discharge gap is 1.5 mm, the length of the air discharge gap is set to “0.1”, “0.2”, “0.3”, “0.4”, “ The occurrence rates of side fire of the spark plugs set to 0.5, 0.6, and 0.7 (mm) are “98”, “80”, “59”, “35”, and “18”, respectively. ”,“ 3 ”,“ 0 ”(%). When the length of the creeping discharge gap is 2.0 mm, the length of the air discharge gap is set to “0.1”, “0.2”, “0.3”, “0.4” (mm). The occurrence rates of sparks from the spark plug were “45”, “22.4”, “9”, and “0” (%), respectively. And when the length of the creeping discharge gap is 2.5 mm, the rate of occurrence of side fire of the spark plug with the length of the air discharge gap being “0.1”, “0.2” (mm), respectively, “4” and “0” (%). A graph of this is shown in FIG.

これより、沿面放電間隙の長さがそれぞれ「1.0」,「1.5」,「2.0」,「2.5」(mm)である場合に、横飛火が発生しなくなる気中放電間隙の長さはそれぞれ「0.9」,「0.7」,「0.4」,「0.2」(mm)であることがわかった。なお、図示しないが、主火花放電ギャップの長さを「1.3」,「0.9」,「0.7」(mm)とした場合についてもそれぞれ同様の評価試験を行い、横飛火が発生しなくなる場合の沿面放電間隙の長さと気中放電間隙の長さとの関係について確認した(表1)。   As a result, when the creeping discharge gap lengths are “1.0”, “1.5”, “2.0”, and “2.5” (mm), respectively, the air in which side fire does not occur The lengths of the discharge gaps were found to be “0.9”, “0.7”, “0.4”, and “0.2” (mm), respectively. Although not shown in the drawing, the same evaluation test was conducted for each case where the length of the main spark discharge gap was set to “1.3”, “0.9”, “0.7” (mm). The relationship between the length of the creeping discharge gap and the length of the air discharge gap when no longer occurred was confirmed (Table 1).

一方で、沿面放電間隙の長さを1.5mmとしたスパークプラグにおいて、主火花放電ギャップの長さおよび気中放電間隙の長さと横飛火の発生率との関係について試験を行った。この試験では、上記同様、主火花放電ギャップの長さが「0.7」,「0.9」,「1.1」,「1.3」(mm)、気中放電間隙の長さが「0.1」〜「1」(mm)の各組合せとなるように調整したスパークプラグのサンプルを作製した。   On the other hand, in a spark plug in which the length of the creeping discharge gap was 1.5 mm, the length of the main spark discharge gap and the relationship between the length of the air discharge gap and the occurrence rate of side-fire were tested. In this test, the length of the main spark discharge gap is “0.7”, “0.9”, “1.1”, “1.3” (mm), and the length of the air discharge gap is the same as above. Samples of spark plugs adjusted to be each combination of “0.1” to “1” (mm) were produced.

主火花放電ギャップの長さが1.3mmである場合、気中放電間隙の長さを「0.1」,「0.2」,「0.3」,「0.4」,「0.5」,「0.6」,「0.7」,「0.8」,「0.9」,「1」(mm)としたスパークプラグの横飛火の発生率はそれぞれ、「100」,「99」,「98」,「84」,「63.6」,「48」,「31.1」,「19」,「9」,「0」(%)となった。同様に、主火花放電ギャップの長さが1.1mmである場合、気中放電間隙の長さを「0.1」,「0.2」,「0.3」,「0.4」,「0.5」,「0.6」,「0.7」(mm)としたスパークプラグの横飛火の発生率はそれぞれ、「98」,「80」,「59」,「35」,「18」,「3」,「0」(%)となった。主火花放電ギャップの長さが0.9mmである場合、気中放電間隙の長さを「0.1」,「0.2」,「0.3」,「0.4」,「0.5」(mm)としたスパークプラグの横飛火の発生率はそれぞれ、「51」,「30」,「12」,「2」,「0」(%)であった。そして主火花放電ギャップの長さが0.7mmである場合、気中放電間隙の長さを「0.1」,「0.2」(mm)としたスパークプラグの横飛火の発生率はそれぞれ、「11」,「0」(%)であった。これをグラフ化したものを図13に示す。   When the length of the main spark discharge gap is 1.3 mm, the length of the air discharge gap is set to “0.1”, “0.2”, “0.3”, “0.4”, “0. The occurrence rates of side fires of the spark plugs “5”, “0.6”, “0.7”, “0.8”, “0.9”, “1” (mm) are “100”, “99”, “98”, “84”, “63.6”, “48”, “31.1”, “19”, “9”, “0” (%). Similarly, when the length of the main spark discharge gap is 1.1 mm, the length of the air discharge gap is set to “0.1”, “0.2”, “0.3”, “0.4”, The occurrence rates of side fire of spark plugs set to “0.5”, “0.6”, and “0.7” (mm) are “98”, “80”, “59”, “35”, “ 18 ”,“ 3 ”,“ 0 ”(%). When the length of the main spark discharge gap is 0.9 mm, the length of the air discharge gap is set to “0.1”, “0.2”, “0.3”, “0.4”, “0. The occurrence rates of side fires of the spark plug with 5 ”(mm) were“ 51 ”,“ 30 ”,“ 12 ”,“ 2 ”, and“ 0 ”(%), respectively. And when the length of the main spark discharge gap is 0.7 mm, the occurrence rate of the horizontal spark of the spark plug with the length of the air discharge gap being “0.1” and “0.2” (mm) is respectively , “11”, “0” (%). A graph of this is shown in FIG.

これより、主火花放電ギャップの長さがそれぞれ「1.3」,「1.1」,「0.9」,「0.7」(mm)である場合に、横飛火が発生しなくなる気中放電間隙の長さはそれぞれ「1」,「0.7」,「0.5」,「0.2」(mm)であることがわかった。なお、図示しないが、沿面放電間隙の長さを「1.0」,「2.0」,「2.5」(mm)とした場合についてもそれぞれ同様の評価試験を行い、横飛火が発生しなくなる場合の主火花放電ギャップの長さと気中放電間隙の長さとの関係について確認した(表1)。   As a result, when the length of the main spark discharge gap is “1.3”, “1.1”, “0.9”, “0.7” (mm), respectively, there is no tendency for side sparks to occur. It was found that the lengths of the middle discharge gap were “1”, “0.7”, “0.5”, and “0.2” (mm), respectively. Although not shown in the drawing, the same evaluation test was conducted when the creeping discharge gap lengths were set to “1.0”, “2.0”, “2.5” (mm), respectively, and a side fire occurred. The relationship between the length of the main spark discharge gap and the length of the air discharge gap when the failure occurred was confirmed (Table 1).

そして、上記評価試験の結果をもとに、横飛火が発生しなくなる場合の主火花放電ギャップ、沿面放電間隙、および気中放電間隙のそれぞれの長さの関係をまとめたところ、以下に示す表が得られた。   Based on the results of the evaluation test, the relationship between the lengths of the main spark discharge gap, the creeping discharge gap, and the air discharge gap when no side fire occurs is summarized as shown in the table below. was gotten.

Figure 2006202684
Figure 2006202684

次に、実施例1および実施例6の評価試験の結果に基づき、上記した以下の関係式を導いた。
(気中放電間隙の長さ)+(沿面放電間隙の長さ)×0.5≧(主火花放電ギャップの長さ)×K (ただしKは定数とする。)
実施例1より、放電電圧を所定量増加させる場合、沿面放電間隙の長さの増加分の0.5倍と、気中放電間隙の長さの増加分とがほぼ同じ放電電圧の増加分に相当することを確認している。よってこれらの和が、主火花放電ギャップの長さのK倍以上となれば、横飛火は発生しないといえる。そこで、表1の各値を上記式に代入し定数Kの値を求めたところ、主火花放電ギャップが0.7mm、沿面放電間隙が1.0mm、気中放電間隙が0.5mmであるときに最も大きい値、1.43をとることがわかった。
Next, based on the results of the evaluation tests of Example 1 and Example 6, the following relational expression was derived.
(Length of air discharge gap) + (length of creeping discharge gap) × 0.5 ≧ (length of main spark discharge gap) × K (where K is a constant)
From Example 1, when the discharge voltage is increased by a predetermined amount, 0.5 times the increase in the length of the creeping discharge gap and the increase in the length of the air discharge gap are approximately the same increase in the discharge voltage. It is confirmed that it corresponds. Therefore, if the sum of these is equal to or greater than K times the length of the main spark discharge gap, it can be said that no side fire occurs. Therefore, when the values of Table 1 were substituted into the above equation to determine the value of the constant K, the main spark discharge gap was 0.7 mm, the creeping discharge gap was 1.0 mm, and the air discharge gap was 0.5 mm. It was found that the largest value was 1.43.

なお、本発明は各種の変形が可能なことはいうまでもない。例えば、本実施の形態では補助接地電極60は3本設けたが、1本であっても、4本であってもよく、少なくとも1本以上設けられていればよい。例えば図14に示すスパークプラグ200のように、軸線Oを交点として互いに直交し、かつそれぞれが軸線Oにも直交する2直線が主体金具50の先端面57と交差する各位置に4つの補助接地電極260を配置させ、そのうちの2本の中間位置に、主接地電極30を配置させてもよいし、またこの場合であっても、補助接地電極260は4本に限られるものでもない。なお、補助接地電極は主接地電極と軸線O方向に重なる位置にあってはならないわけでもない。   Needless to say, the present invention can be modified in various ways. For example, although three auxiliary ground electrodes 60 are provided in the present embodiment, the number of auxiliary earth electrodes 60 may be one or four, and at least one or more may be provided. For example, as in the spark plug 200 shown in FIG. 14, four auxiliary groundings are provided at each position where two straight lines perpendicular to each other with the axis O as an intersection and also perpendicular to the axis O intersect the tip surface 57 of the metal shell 50. The electrode 260 may be disposed, and the main ground electrode 30 may be disposed at an intermediate position between the two. In this case, the number of the auxiliary ground electrodes 260 is not limited to four. Note that the auxiliary ground electrode does not necessarily have to overlap with the main ground electrode in the direction of the axis O.

また、補助接地電極60はIr合金から形成したが、Pt合金から形成してもよいし、Rh合金から形成してもよい。また、補助接地電極60は断面が矩形の棒状であるとしたが、断面の形状は長方形であっても円形であってもよく、あるいは多角形であってもよい。また、補助接地電極60の先端部61の断面積を1mm以下としたが、これは、基部62の断面積が必ずしも1mm以下でないことを意味する。すなわち、基部62から先端部61にかけての形状をテーパー状に形成してもよいし、段状に形成してもよい。 Further, although the auxiliary ground electrode 60 is formed from an Ir alloy, it may be formed from a Pt alloy or an Rh alloy. In addition, although the auxiliary ground electrode 60 has a bar shape with a rectangular cross section, the cross sectional shape may be a rectangle, a circle, or a polygon. Moreover, although the cross-sectional area of the front-end | tip part 61 of the auxiliary | assistant ground electrode 60 was 1 mm < 2 > or less, this means that the cross-sectional area of the base 62 is not necessarily 1 mm < 2 > or less. That is, the shape from the base portion 62 to the distal end portion 61 may be formed in a taper shape or may be formed in a step shape.

また、本実施の形態では、ねじ部52の規格の一例としてその外径をM12としたが、本発明の効果はM12以下の小径のスパークプラグにおいて奏功することができる。このような小径のスパークプラグでは、主体金具の内周と絶縁碍子の外周との間のクリアランスが必然的に小さくなるが、本実施の形態のスパークプラグ100であれば、補助接地電極が絶縁碍子を取り囲むような配置となっていないので、燃焼室内にて混合気がクリアランスに入り込むのを阻害しにくくなり、混合気による冷却効果を低下させず、スパークプラグの耐熱性を向上させることができる。   In the present embodiment, the outer diameter is M12 as an example of the standard of the screw portion 52, but the effect of the present invention can be achieved in a small-diameter spark plug of M12 or less. In such a small-diameter spark plug, the clearance between the inner periphery of the metal shell and the outer periphery of the insulator is inevitably reduced. However, in the spark plug 100 of the present embodiment, the auxiliary ground electrode is the insulator. Therefore, it is difficult to inhibit the air-fuel mixture from entering the clearance in the combustion chamber, and the heat resistance of the spark plug can be improved without reducing the cooling effect of the air-fuel mixture.

本発明は内燃機関用のスパークプラグに適用することができる。   The present invention can be applied to a spark plug for an internal combustion engine.

スパークプラグ100の部分断面図である。1 is a partial cross-sectional view of a spark plug 100. FIG. スパークプラグ100の先端部分を拡大した断面図である。FIG. 3 is an enlarged cross-sectional view of the tip portion of the spark plug 100. 図2の二点鎖線A−A’においてスパークプラグ100の先端部分を矢視方向から見た図である。It is the figure which looked at the front-end | tip part of the spark plug 100 from the arrow direction in the dashed-two dotted line A-A 'of FIG. 沿面放電間隙における放電電圧と大気圧との関係を示すグラフである。It is a graph which shows the relationship between the discharge voltage in a creeping discharge gap, and atmospheric pressure. 気中放電間隙における放電電圧と大気圧との関係を示すグラフである。It is a graph which shows the relationship between the discharge voltage in an air discharge gap, and atmospheric pressure. 本実施の形態のスパークプラグと、評価試験の比較例としてのスパークプラグとの違いを示す図である。It is a figure which shows the difference between the spark plug of this Embodiment, and the spark plug as a comparative example of an evaluation test. 耐熱性についての評価試験の結果を示すグラフである。It is a graph which shows the result of the evaluation test about heat resistance. 耐汚損性についての評価試験の結果を示すグラフである。It is a graph which shows the result of the evaluation test about stain resistance. 着火性についての評価試験の結果を示すグラフである。It is a graph which shows the result of the evaluation test about ignitability. 低温始動性についての評価試験の結果を示すグラフである。It is a graph which shows the result of the evaluation test about low temperature startability. 横飛火の発生についての評価試験の結果を示すグラフである。It is a graph which shows the result of the evaluation test about generation | occurrence | production of side fire. 横飛火の発生についての評価試験の結果を示すグラフである。It is a graph which shows the result of the evaluation test about generation | occurrence | production of side fire. 横飛火の発生についての評価試験の結果を示すグラフである。It is a graph which shows the result of the evaluation test about generation | occurrence | production of side fire. 変形例としてのスパークプラグ200の先端部分を軸線方向先端側より見た図である。It is the figure which looked at the front-end | tip part of the spark plug 200 as a modification from the axial direction front end side.

符号の説明Explanation of symbols

10 絶縁碍子
12 軸孔
20 中心電極
22 先端部
30 主接地電極
31 先端部
32 基部
33 内面
50 主体金具
52 ねじ部
57 先端面
60 補助接地電極
61 先端部
62 基部
100 スパークプラグ
DESCRIPTION OF SYMBOLS 10 Insulator 12 Shaft hole 20 Center electrode 22 Tip part 30 Main ground electrode 31 Tip part 32 Base part 33 Inner surface 50 Metal fitting 52 Screw part 57 Tip surface 60 Auxiliary ground electrode 61 Tip part 62 Base part 100 Spark plug

Claims (4)

中心電極と、
軸線方向に延びる軸孔を有し、前記中心電極を前記軸孔で保持する絶縁碍子と、
自身の先端面より前記絶縁碍子の先端部を突出させた状態で、前記絶縁碍子の周囲を取り囲んで保持する主体金具と、
一端が、前記主体金具の先端面に接合され、他端側の一側面が、前記中心電極の先端部の先端面に対向するように屈曲され、その対向面同士で第1火花放電ギャップを形成する第1接地電極と、
一端が、前記主体金具の先端面に接合され、他端が、自身の先端と前記絶縁碍子表面との間で放電する気中放電間隙と、前記絶縁碍子表面上の前記気中放電間隙の起点と前記中心電極の先端部との間で前記絶縁碍子の表面を沿って放電する沿面放電間隙とからなる第2火花放電ギャップを形成する第2接地電極と
を備え、
前記気中放電間隙の長さよりも、前記第1火花放電ギャップの長さの方が長くなるように構成されたスパークプラグであって、
前記第2接地電極は、
少なくとも1本以上設けられ、前記一端から前記他端へと向かう方向が前記中心電極の軸線方向と直交し、
かつ、前記気中放電間隙の長さと前記沿面放電間隙の0.5倍の長さとの和が、前記第1放電ギャップの1.43倍の長さ以上となるように構成されたことを特徴とするスパークプラグ。
A center electrode;
An insulator having an axial hole extending in the axial direction and holding the center electrode in the axial hole;
A metal shell that surrounds and holds the periphery of the insulator in a state where the tip of the insulator protrudes from the tip surface of itself,
One end is joined to the front end surface of the metal shell, and one side surface on the other end side is bent so as to oppose the front end surface of the front end portion of the center electrode, and a first spark discharge gap is formed between the opposing surfaces. A first ground electrode that
One end is joined to the front end surface of the metal shell, and the other end is an air discharge gap that discharges between its front end and the insulator surface, and an origin of the air discharge gap on the insulator surface And a second ground electrode that forms a second spark discharge gap comprising a creeping discharge gap that discharges along the surface of the insulator between the tip of the central electrode and the center electrode,
A spark plug configured such that the length of the first spark discharge gap is longer than the length of the air discharge gap,
The second ground electrode is
At least one is provided, and the direction from the one end to the other end is orthogonal to the axial direction of the center electrode,
In addition, the sum of the length of the air discharge gap and the length of 0.5 times the creeping discharge gap is configured to be not less than 1.43 times the length of the first discharge gap. And spark plug.
中心電極と、
軸線方向に延びる軸孔を有し、前記中心電極を前記軸孔で保持する絶縁碍子と、
自身の先端面より前記絶縁碍子の先端部を突出させた状態で、前記絶縁碍子の周囲を取り囲んで保持する主体金具と、
一端が、前記主体金具の先端面に接合され、他端側の一側面が、前記中心電極の先端部の先端面に対向するように屈曲され、その対向面同士で第1火花放電ギャップを形成する第1接地電極と、
一端が、前記主体金具の先端面に接合され、他端が、自身の先端と前記絶縁碍子表面との間で放電する気中放電間隙と、前記絶縁碍子表面上の前記気中放電間隙の起点と前記中心電極の先端部との間で前記絶縁碍子の表面を沿って放電する沿面放電間隙とからなる第2火花放電ギャップを形成する第2接地電極と
を備え、
前記気中放電間隙の長さよりも、前記第1火花放電ギャップの長さの方が長くなるように構成されたスパークプラグであって、
前記第2接地電極は、
少なくとも1本以上設けられ、前記一端から前記他端へと向かう方向が前記中心電極の軸線方向と直交するとともに、その他端の断面積が1mm以下であり、
かつ、前記気中放電間隙の長さが0.3mm以上となるように構成されたことを特徴とするスパークプラグ。
A center electrode;
An insulator having an axial hole extending in the axial direction and holding the center electrode in the axial hole;
A metal shell that surrounds and holds the periphery of the insulator in a state where the tip of the insulator protrudes from the tip surface of itself,
One end is joined to the front end surface of the metal shell, and one side surface on the other end side is bent so as to oppose the front end surface of the front end portion of the center electrode, and a first spark discharge gap is formed between the opposing surfaces. A first ground electrode that
One end is joined to the front end surface of the metal shell, and the other end is an air discharge gap that discharges between its front end and the insulator surface, and an origin of the air discharge gap on the insulator surface And a second ground electrode that forms a second spark discharge gap comprising a creeping discharge gap that discharges along the surface of the insulator between the tip of the central electrode and the center electrode,
A spark plug configured such that the length of the first spark discharge gap is longer than the length of the air discharge gap,
The second ground electrode is
At least one or more are provided, the direction from the one end to the other end is orthogonal to the axial direction of the center electrode, and the cross-sectional area of the other end is 1 mm 2 or less,
And the spark plug characterized by the length of the said air discharge gap being set to 0.3 mm or more.
前記主体金具は、その外周に、内燃機関のエンジンヘッドの取付孔に螺合するためのねじ部を備え、
前記ねじ部の外径は、M12以下であることを特徴とする請求項1または2に記載のスパークプラグ。
The metal shell is provided with a threaded portion on its outer periphery for screwing into a mounting hole of an engine head of an internal combustion engine,
The spark plug according to claim 1 or 2, wherein an outer diameter of the thread portion is M12 or less.
前記第2接地電極は、棒状の貴金属チップから形成されたことを特徴とする請求項1乃至3のいずれかに記載のスパークプラグ。
The spark plug according to any one of claims 1 to 3, wherein the second ground electrode is formed of a rod-shaped noble metal tip.
JP2005015534A 2005-01-24 2005-01-24 Spark plug Expired - Fee Related JP4457021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005015534A JP4457021B2 (en) 2005-01-24 2005-01-24 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005015534A JP4457021B2 (en) 2005-01-24 2005-01-24 Spark plug

Publications (2)

Publication Number Publication Date
JP2006202684A true JP2006202684A (en) 2006-08-03
JP4457021B2 JP4457021B2 (en) 2010-04-28

Family

ID=36960485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005015534A Expired - Fee Related JP4457021B2 (en) 2005-01-24 2005-01-24 Spark plug

Country Status (1)

Country Link
JP (1) JP4457021B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062160A (en) * 2007-09-13 2010-03-18 Ngk Spark Plug Co Ltd Spark plug
JP2011502238A (en) * 2007-10-24 2011-01-20 パウエル,ジュード Air conditioner
JP2014084783A (en) * 2012-10-23 2014-05-12 Denso Corp Exhaust gas treatment device of internal combustion engine
JP2014118850A (en) * 2012-12-14 2014-06-30 Denso Corp Exhaust gas treatment device of internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062160A (en) * 2007-09-13 2010-03-18 Ngk Spark Plug Co Ltd Spark plug
JP2011502238A (en) * 2007-10-24 2011-01-20 パウエル,ジュード Air conditioner
JP2014084783A (en) * 2012-10-23 2014-05-12 Denso Corp Exhaust gas treatment device of internal combustion engine
JP2014118850A (en) * 2012-12-14 2014-06-30 Denso Corp Exhaust gas treatment device of internal combustion engine

Also Published As

Publication number Publication date
JP4457021B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
US7975665B2 (en) Spark plug and internal combustion engine provided with the same
US8115371B2 (en) Spark plug
US7408294B2 (en) Spark plug with high capability to ignite air-fuel mixture
JP2005183177A (en) Sparking plug
JP5476123B2 (en) Spark plug for internal combustion engine
JPWO2009116541A1 (en) Spark plug
JP4270784B2 (en) Spark plug
US10734791B2 (en) Pre-chamber spark plug with surface discharge spark gap
US9325156B2 (en) Spark plug
JP4457021B2 (en) Spark plug
WO2014097708A1 (en) Ignition plug
KR101348019B1 (en) Plasma-jet ignition plug
JP2009087925A (en) Spark plug
KR101522057B1 (en) Spark plug
JP5032556B2 (en) Spark plug
JP2015122196A (en) Spark plug
JP4532009B2 (en) Spark plug
JP7183933B2 (en) Spark plug
JP2006073205A (en) Spark plug
JP7220167B2 (en) Spark plug
JP2013222676A (en) Spark plug
JP2007184299A (en) Spark plug
JP5421473B2 (en) Spark plug
JP2006260988A (en) Spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4457021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees