JP2013249763A - Axial flow blower - Google Patents

Axial flow blower Download PDF

Info

Publication number
JP2013249763A
JP2013249763A JP2012124252A JP2012124252A JP2013249763A JP 2013249763 A JP2013249763 A JP 2013249763A JP 2012124252 A JP2012124252 A JP 2012124252A JP 2012124252 A JP2012124252 A JP 2012124252A JP 2013249763 A JP2013249763 A JP 2013249763A
Authority
JP
Japan
Prior art keywords
blade
blower
axial
pressure surface
leading edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012124252A
Other languages
Japanese (ja)
Other versions
JP5929522B2 (en
Inventor
Hideki Oya
英樹 大矢
Masaru Kamiya
勝 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012124252A priority Critical patent/JP5929522B2/en
Priority to US13/906,401 priority patent/US20130323098A1/en
Publication of JP2013249763A publication Critical patent/JP2013249763A/en
Application granted granted Critical
Publication of JP5929522B2 publication Critical patent/JP5929522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • F04D29/326Rotors specially for elastic fluids for axial flow pumps for axial flow fans comprising a rotating shroud
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a blower that strikes a balance between a noise reduction effect and an inherent blowing performance of a vane.SOLUTION: An axial flow blower (10) includes an electric motor (300), and a blower fan (1) having a hub (4) attached to the electric motor (300) and a plurality of blades (3) provided at the hub (4) in a radial manner, wherein a negative pressure surface of a vane leading edge (6) of the blade (3), comprised of the negative pressure surface and a positive pressure surface, is provided with a plurality of triangle shape projections which have vertexes along the vane leading edge (6), and the positive pressure surface of the vane leading edge (6) of the blade (3) is not provided with the triangle shape projections but is a smooth continuous surface.

Description

本発明は、軸流送風機に関し、詳しくは、騒音低減と送風性能を両立させたファンブレードの構造に関する。   The present invention relates to an axial blower, and more particularly, to a fan blade structure that achieves both noise reduction and blowing performance.

軸流送風機には送風性能と低騒音性が求められてきている。特許文献1には、翼(ブレード3)の前縁部分全体の翼弦方向に、鋸状に複数の三角形状の突起(以下、セレーションという)を設け、送風ファン1による回転騒音の低騒音化を行うようにしたものが開示されている。軸流送風機のブレードの正圧面と負圧面は、図1A〜Cに示すようになっており、特許文献1の従来技術のセレーションは、負圧面から正圧面に抜けるようにして形成されている。このため、セレーションが生み出す低騒音効果は大きいものの、正圧面側にセレーションがあるため、揚力の維持にはマイナス面となり、セレーションがない場合の本来の送風性能が得られないことがあった。   Axial fans have been required to have air blowing performance and low noise. In Patent Document 1, a plurality of triangular protrusions (hereinafter referred to as serrations) are provided in a saw-like shape in the chord direction of the entire leading edge portion of the blade (blade 3), and the rotational noise by the blower fan 1 is reduced. What is made to perform is disclosed. The pressure surface and the suction surface of the blade of the axial blower are as shown in FIGS. 1A to 1C, and the serration of the prior art of Patent Document 1 is formed so as to come out from the suction surface to the pressure surface. For this reason, although the low noise effect produced by the serration is large, there is a serration on the positive pressure surface side, so that it becomes a negative surface for maintaining lift, and the original air blowing performance without the serration may not be obtained.

特開2000−087898号公報JP 2000-087898 A

本発明は、上記問題に鑑み、翼の前縁部分全体の翼弦方向に設けた複数の三角形の突起を負圧面のみに設けることで、低騒音効果と翼本来の送風性能の両方を狙った送風機を提供するものである。   In view of the above problems, the present invention aims at both the low noise effect and the original air blowing performance of the blade by providing a plurality of triangular protrusions provided only on the suction surface in the chord direction of the entire leading edge portion of the blade. A blower is provided.

上記課題を解決するために、請求項1の発明は、電動モータ(300)、並びに、該電動モータ(300)に取り付けられるハブ(4)、及び、該ハブ(4)に放射状に設けられた複数のブレード(3)を有する送風ファン(1)、を具備する軸流送風機(10)であって、負圧面と正圧面からなる前記ブレード(3)の翼前縁部(6)の前記負圧面には、翼前縁部(6)に沿って頂点を有する複数の三角形状突部を設けるとともに、前記ブレード(3)の翼前縁部(6)の前記正圧面は前記三角形状突起が設けられていない滑らかな連続面である軸流送風機である。   In order to solve the above-mentioned problems, the invention of claim 1 is provided with an electric motor (300), a hub (4) attached to the electric motor (300), and a radial shape on the hub (4). An axial flow fan (10) having a blower fan (1) having a plurality of blades (3), wherein the negative edge of the blade leading edge (6) of the blade (3) comprising a suction surface and a pressure surface The pressure surface is provided with a plurality of triangular protrusions having apexes along the blade leading edge (6), and the pressure protrusion of the blade leading edge (6) of the blade (3) is formed by the triangular protrusion. It is an axial blower that is a smooth continuous surface that is not provided.

上記課題を解決するために、請求項7の発明は、電動モータ(300)、並びに、該電動モータ(300)に取り付けられるハブ(4)、及び、該ハブ(4)に放射状に設けられた複数のブレード(3)を有する送風ファン(1)、を具備する軸流送風機(10)であって、正圧面と負圧面からなる前記ブレード(3)の翼前縁部(6)の負圧面から正圧面に亘って形成された、翼前縁部(6)に沿って頂点を有する複数の三角形状突部を設け、前記正圧面における前記複数の三角形状突部の谷部(3−2)のなす角度(φ2)が、いずれも前記負圧面における谷部のなす角度(φ1)より大きい軸流送風機である。   In order to solve the above-mentioned problems, the invention of claim 7 is provided with an electric motor (300), a hub (4) attached to the electric motor (300), and a radial configuration on the hub (4). An axial blower (10) comprising a blower fan (1) having a plurality of blades (3), the suction surface of the blade leading edge (6) of the blade (3) comprising a pressure surface and a suction surface A plurality of triangular protrusions having apexes along the blade leading edge (6) formed from the pressure surface to the pressure surface are provided, and valley portions (3-2 of the plurality of triangular protrusions on the pressure surface are provided. ) Is an axial blower that is larger than the angle (φ1) formed by the valleys on the suction surface.

なお、上記に付した符号は、後述する実施形態に記載の具体的実施態様との対応関係を示す一例である。   In addition, the code | symbol attached | subjected above is an example which shows a corresponding relationship with the specific embodiment as described in embodiment mentioned later.

一般的な軸流送風機の説明のための説明図である。It is explanatory drawing for description of a general axial-flow fan. 図1AのA−A線に沿って展開した断面図である。It is sectional drawing developed along the AA line of FIG. 1A. 図1Bのブレードの正圧面と負圧面などを説明する説明図である。It is explanatory drawing explaining the positive pressure surface, negative pressure surface, etc. of the braid | blade of FIG. 1B. 本発明の第1実施形態の正面概略図である。It is a front schematic diagram of a 1st embodiment of the present invention. 前縁セレーションまわりの流れの構造を解析したシミュレーション結果の一例である。It is an example of the simulation result which analyzed the structure of the flow around a leading edge serration. 図3のシミュレーション結果の説明図である。It is explanatory drawing of the simulation result of FIG. 図3のシミュレーションの翼断面図である。FIG. 4 is a cross-sectional view of the blade of the simulation of FIG. 本発明の第1実施形態の斜視図である。1 is a perspective view of a first embodiment of the present invention. 本発明の第1実施形態の説明図である。It is explanatory drawing of 1st Embodiment of this invention. 本発明の第2実施形態の斜視図である。It is a perspective view of 2nd Embodiment of this invention. 本発明の第6実施形態の説明図である。It is explanatory drawing of 6th Embodiment of this invention.

以下、図面を参照して、本発明の一実施形態を説明する。各実施態様について、同一構成の部分には、同一の符号を付してその説明を省略する。
図2を参照すると、送風機10は、送風ファン1がシュラウド200内に配設されて、電動モータ300によって回転駆動されるいわゆる電動送風機である。送風機10は、シュラウド200の四隅近傍に設けられた取付部250によって、自動車用ラジエータのエンジン側に固定され、ラジエータのコア部に冷却用の空気を送風するものである。シュラウド200の外形形状は、ラジエータのコア部に対応する矩形状をなしており、その略中央には送風ファン1を内包する環状のシュラウドリング部210が形成されている。このシュラウドリング部210は、送風ファン1のリング2の径方向外側に位置するようになっている。送風ファン1のリング2がない場合であっても良い。本発明の送風機10及び後述するブレード3は、自動車用ラジエータ用に限定されるものではなく、一般的な産業用に適用しても良い。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. About each embodiment, the same code | symbol is attached | subjected to the part of the same structure, and the description is abbreviate | omitted.
Referring to FIG. 2, the blower 10 is a so-called electric blower in which the blower fan 1 is disposed in the shroud 200 and is rotationally driven by the electric motor 300. The blower 10 is fixed to the engine side of the automotive radiator by attachment portions 250 provided in the vicinity of the four corners of the shroud 200, and blows cooling air to the core portion of the radiator. The outer shape of the shroud 200 has a rectangular shape corresponding to the core portion of the radiator, and an annular shroud ring portion 210 containing the blower fan 1 is formed at the approximate center thereof. The shroud ring portion 210 is positioned on the radially outer side of the ring 2 of the blower fan 1. The case where there is no ring 2 of the ventilation fan 1 may be sufficient. The blower 10 and the blade 3 to be described later are not limited to automobile radiators, and may be applied to general industrial use.

シュラウドリング部210とシュラウド200の矩形状外周部との間には、送風ファン1の風上側に向けて拡がる導風部220が形成されている。シュラウドリング部210の中心には円形のモータ保持部230が形成されており、このモータ保持部230は、放射状に径方向外側へ延びてシュラウドリング部210に接続される複数のモータステー部240によって支持されている。モータ保持部230には、電動モータ300が固定され、電動モータ300のシャフトと送風ファン1のハブ4(図7参照)とが固定されている。送風機10は、これらの送風ファン1や電動モータ300などから構成される。送風ファン1のハブ4は、円筒形状であり放射状に複数のブレード3が設けられている。ブレード3の翼弦C、正圧面、負圧面、迎え角α、揚力などは、図1A〜Cに示されるように一般的な定義と同じである。   Between the shroud ring part 210 and the rectangular outer peripheral part of the shroud 200, an air guide part 220 that extends toward the windward side of the blower fan 1 is formed. A circular motor holding portion 230 is formed at the center of the shroud ring portion 210, and the motor holding portion 230 is radially extended radially outward by a plurality of motor stay portions 240 connected to the shroud ring portion 210. It is supported. The electric motor 300 is fixed to the motor holding unit 230, and the shaft of the electric motor 300 and the hub 4 (see FIG. 7) of the blower fan 1 are fixed. The blower 10 includes the blower fan 1 and the electric motor 300. The hub 4 of the blower fan 1 has a cylindrical shape, and a plurality of blades 3 are provided radially. The chord C, pressure surface, suction surface, angle of attack α, lift force and the like of the blade 3 are the same as the general definitions as shown in FIGS.

まず、最初に本発明の基礎になるセレーションの効果について述べる。図3のシミュレーションは、図5の翼断面(本発明の翼断面については後述)の場合である。図3は、ブレード前縁を上方位置から眺めている図である。図3に表示された矢印は、Y−Z平面に垂直な投影面(図4のS面)に、セレーション回りの流れの速度ベクトルを投影したもの(Tangential Velocity)である。両側の谷部から山部上面に向って回り込む流れが、発生していることが見て取れる。セレーションにおいて、最初は、山の先端部において、小さな巻き込みが発生して、それが谷に向うにつれ大きな巻き込みに成長する。そして、山の後方には、下向きの流れが発生することにより、流速の大きい負圧面に特に発生しやすい剥離を下方に押さえつけて、流れの剥離を低減させているものと考えられる。これにより、翼面近傍の乱れを緩和し、翼面の圧力変動を抑える事で、低騒音化につながる効果を生み出すことが可能となっている。   First, the effect of serration which is the basis of the present invention will be described. The simulation of FIG. 3 is the case of the blade cross section of FIG. 5 (the blade cross section of the present invention will be described later). FIG. 3 is a view of the blade leading edge as viewed from above. The arrow displayed in FIG. 3 is obtained by projecting the velocity vector of the flow around the serration (Tangential Velocity) onto a projection plane (S plane in FIG. 4) perpendicular to the YZ plane. It can be seen that a flow is generated from the valleys on both sides toward the upper surface of the mountain. In serration, at the beginning of the peak, a small engulfment occurs and grows into a larger engulfment as it goes to the valley. Then, it is considered that the downward flow is generated at the rear of the mountain, so that the separation that is particularly likely to occur on the suction surface having a large flow velocity is pressed downward to reduce the separation of the flow. As a result, it is possible to reduce the noise in the vicinity of the blade surface and reduce the pressure fluctuation on the blade surface, thereby producing an effect that leads to noise reduction.

(第1実施形態)
本実施形態では、上述のセレーションの効果を利用しつつ、送風ファンによる回転騒音の低騒音化を行うとともに、送風ファン本来の目的である送風性能を阻害しないようにして、騒音低減と送風性能(揚力)の確保を両立させたものである。図6、7に示すように、本実施形態では、翼前縁部分に設けた三角形(セレーション)を、負圧面のみに設けている。正圧面は、本来の送風性能(揚力)を維持できるように、図7のB−B線断面図に示すように、通常の翼下面となっている。すなわち、負圧面と正圧面からなるブレード3の翼前縁部6の負圧面には、翼前縁部6に沿って頂点を有する複数の三角形状突部を設けるとともに、ブレード3の翼前縁部6の正圧面は三角形状突起が設けられていない滑らかな連続面となっている。
(First embodiment)
In the present embodiment, while reducing the rotational noise by the blower fan while utilizing the effect of the above-mentioned serration, the noise reduction and the blower performance ( The balance of securing lift is achieved. As shown in FIGS. 6 and 7, in this embodiment, a triangle (serration) provided at the blade leading edge portion is provided only on the suction surface. The positive pressure surface is a normal blade lower surface as shown in the cross-sectional view along the line BB in FIG. 7 so that the original air blowing performance (lift) can be maintained. That is, a plurality of triangular protrusions having apexes along the blade leading edge 6 are provided on the suction surface of the blade leading edge 6 of the blade 3 composed of the suction surface and the pressure surface, and the blade leading edge of the blade 3 is provided. The pressure surface of the portion 6 is a smooth continuous surface not provided with a triangular protrusion.

セレーションが生み出す効果としては、負圧面の翼面近傍に流れの剥離を低減させ、翼面近傍の乱れを緩和させる。そして、翼面の圧力変動を抑える事で、低騒音化を実現させている。本実施形態では、騒音低減と送風性能(揚力)の確保を両立させることができるばかりでなく、更に、従来の送風ファンよりも、効率良く送風仕事ができるため、低トルクを実現して、使用する電力が小となるため、省電力化につながるものである。   As an effect produced by serrations, the separation of the flow near the blade surface of the suction surface is reduced, and the disturbance near the blade surface is alleviated. And the noise reduction is realized by suppressing the pressure fluctuation of the blade surface. In this embodiment, not only can both noise reduction and airflow performance (lift) be ensured, but also the air blow work can be performed more efficiently than conventional air blow fans, so low torque is realized and used. This reduces power consumption, leading to power savings.

(第2実施形態)
第2実施形態は、三角形状突起の山部3−1の側面3−3が、山の斜面のように傾斜していることを特徴とするものである。山部3−1の側面3−3は、図8に示すように、山部3−1と山部3−1の谷間の底面3−4において、谷部のなす角度φ2’が、負圧面における谷部のなす角度φ1より、大きくなるように傾斜している。傾斜面は平面であっても曲面から構成されていても良く、山部3−1の側面3−3の両側に設けても、片側だけでも良い。谷部のなす角度φ1、φ2’は、送風ファンの軸心と垂直面における角度とする(後述のφ2も同様)。本実施形態では、セレーションにおいて、滑らかに巻き込みを発生させて、それが谷に向うにつれ、より大きな巻き込みに成長する。そして、山の後方には、下向きの流れが発生して、剥離を下方に押さえつけて、流れの剥離を低減させることができる。
(Second Embodiment)
The second embodiment is characterized in that the side surface 3-3 of the mountain portion 3-1 of the triangular protrusion is inclined like a mountain slope. As shown in FIG. 8, the side surface 3-3 of the peak 3-1 has an angle φ 2 ′ formed by the valley at the bottom surface 3-4 between the peak 3-1 and the valley of the peak 3-1. Is inclined so as to be larger than the angle φ1 formed by the trough. The inclined surface may be a flat surface or a curved surface, and may be provided on both sides of the side surface 3-3 of the peak portion 3-1, or only one side. Angles φ1 and φ2 ′ formed by the troughs are angles in a plane perpendicular to the axis of the blower fan (the same applies to φ2 described later). In the present embodiment, in serration, a smooth entrainment is generated and grows into a greater entrainment as it goes to the valley. Then, a downward flow is generated behind the mountain, and the separation can be pressed downward to reduce the separation of the flow.

(第3実施形態)
三角形状突起の各山部3−1の底辺の大きさa、頂点の角度ψ、中心方向O(図8参照)が、送風ファン1の外周又はリング2に近づくにつれ変化させたものである。送風ファン1において、半径方向において、気流の流れに特異な流れが発生することがあるので、その流れに対応させるように、各山部3−1の底辺の大きさa、頂点の角度ψ、中心方向Oを適切に対応させると、流れの剥離を一層低減させることができる。この特異な流れとは、斜流であったり、送風ファン1の外周又はリング2からの逆流などが挙げられる。本実施形態では、このような流れに、三角形状突起の各山部3−1を対応させる(気流の方向に中心方向を向けるなど)。これにより、気流の乱れによって発生する騒音を最小にするように制御することができる。
(Third embodiment)
The size a of the base of each peak portion 3-1 of the triangular protrusion, the apex angle ψ, and the center direction O (see FIG. 8) are changed as the outer periphery of the blower fan 1 or the ring 2 is approached. In the blower fan 1, a flow peculiar to the flow of the air flow may occur in the radial direction. Therefore, in order to correspond to the flow, the size a of the bottom side of each mountain portion 3-1, the angle ψ of the apex, Appropriate correspondence of the central direction O can further reduce flow separation. Examples of this unique flow include a diagonal flow, a backflow from the outer periphery of the blower fan 1 or the ring 2, and the like. In the present embodiment, each peak portion 3-1 of the triangular protrusion is caused to correspond to such a flow (for example, the central direction is directed to the direction of the airflow). Thereby, it is possible to control so as to minimize the noise generated by the turbulence of the airflow.

また、軸流送風機の場合、送風ファン1の外周側ほど流速が高く、翼外径側ほど、底辺の大きさaを大きくしたり、頂点の角度ψを小さくしたりすると効果的な場合がある。剥離が起きやすい流速の高い流れを、三角形状突起の各山部3−1の形状を位置に応じた変更により制御することができる。   In the case of an axial blower, it may be effective to increase the flow velocity toward the outer peripheral side of the blower fan 1 and increase the bottom size a or decrease the apex angle ψ toward the blade outer diameter side. . A flow having a high flow rate at which separation is likely to occur can be controlled by changing the shape of each peak portion 3-1 of the triangular protrusion according to the position.

(第4実施形態)
第4実施形態は、図示していないが、ブレード3の翼後縁部7に、翼厚を突き抜けたセレーションを設けたものである。すなわち、以上述べた各実施形態に、さらに、ブレード3の翼後縁部7の負圧面から正圧面に亘って形成された、翼後縁部7に沿って頂点を有する複数の三角形状突部を設けた実施形態である。これまで述べた各実施形態の効果に加えて、翼後流の乱れを低減できるので、騒音低減、風量低下、駆動トルク増加防止効果を得ることができる。
(Fourth embodiment)
In the fourth embodiment, although not shown, the blade trailing edge 7 of the blade 3 is provided with a serration that penetrates the blade thickness. That is, in each of the embodiments described above, a plurality of triangular protrusions having apexes along the blade trailing edge 7 formed from the suction surface to the pressure surface of the blade trailing edge 7 of the blade 3. It is embodiment which provided. In addition to the effects of the embodiments described so far, the turbulence of the blade wake can be reduced, so that the effects of noise reduction, air volume reduction, and drive torque increase prevention can be obtained.

(第5実施形態)
第5実施形態は、これまで述べた各実施形態を、図7に見られるような翼型であって、回転方向に対して、外周側の翼端部が後方に反っている翼型、すなわち、後退翼に適用した場合の実施形態である。もちろん、回転方向に対して、外周側の翼端部が前方に反っている翼型、すなわち、前進翼に適用しても良い。
(Fifth embodiment)
In the fifth embodiment, each of the embodiments described so far is an airfoil as shown in FIG. 7, and the airfoil whose outer peripheral blade tip warps backward with respect to the rotation direction, that is, This is an embodiment when applied to a swept wing. Of course, the present invention may be applied to an airfoil in which the outer wing tip warps forward with respect to the rotation direction, that is, a forward wing.

(第6実施形態)
第6実施形態は、正圧面と負圧面からなるブレード3の翼前縁部6の負圧面から正圧面に亘って形成された、翼前縁部6に沿って頂点を有する複数の三角形状突部を設け、正圧面における複数の三角形状突部の谷部3−2のなす角度φ2が、いずれも負圧面における谷部のなす角度φ1より大きい場合の実施形態である。この場合も、正圧面は、負圧面より、本来の送風性能(揚力)を維持することができる。角度φ2=180度の場合は、第2実施形態に含まれることになる。また、角度φ2が、180度に近い場合は、第2実施形態とほぼ同様な効果を得ることができる。もちろん、角度φ2が、角度φ1より大きい場合ならば、正圧面は、負圧面より送風性能(揚力)を良好に維持することができる。
(Sixth embodiment)
In the sixth embodiment, a plurality of triangular protrusions having apexes along the blade leading edge 6 formed from the suction surface to the pressure surface of the blade leading edge 6 of the blade 3 including the pressure surface and the suction surface. This is an embodiment in which the angle φ2 formed by the valleys 3-2 of the plurality of triangular protrusions on the pressure surface is larger than the angle φ1 formed by the valleys on the suction surface. Also in this case, the positive pressure surface can maintain the original blowing performance (lift) than the negative pressure surface. The case where the angle φ2 = 180 degrees is included in the second embodiment. Further, when the angle φ2 is close to 180 degrees, substantially the same effect as that of the second embodiment can be obtained. Of course, if the angle φ2 is larger than the angle φ1, the pressure surface can maintain the blowing performance (lift) better than the suction surface.

1 送風ファン
3 ブレード
4 ハブ
300 電動モータ
1 Blower 3 Blade 4 Hub 300 Electric motor

Claims (8)

電動モータ(300)、並びに、
該電動モータ(300)に取り付けられるハブ(4)、及び、該ハブ(4)に放射状に設けられた複数のブレード(3)を有する送風ファン(1)、
を具備する軸流送風機(10)であって、
負圧面と正圧面からなる前記ブレード(3)の翼前縁部(6)の前記負圧面には、翼前縁部(6)に沿って頂点を有する複数の三角形状突部を設けるとともに、前記ブレード(3)の翼前縁部(6)の前記正圧面は前記三角形状突起が設けられていない滑らかな連続面である軸流送風機。
Electric motor (300), and
A fan (1) having a hub (4) attached to the electric motor (300) and a plurality of blades (3) provided radially on the hub (4);
An axial blower (10) comprising:
A plurality of triangular protrusions having apexes along the blade leading edge (6) are provided on the suction surface of the blade leading edge (6) of the blade (3) composed of a suction surface and a pressure surface, The axial flow fan, wherein the pressure surface of the blade leading edge (6) of the blade (3) is a smooth continuous surface not provided with the triangular protrusions.
前記三角形状突起の山部(3−1)の側面(3−3)が、傾斜していることを特徴とする請求項1に記載の軸流送風機。   The axial flow blower according to claim 1, wherein a side surface (3-3) of the peak portion (3-1) of the triangular protrusion is inclined. 前記三角形状突起の各山部(3−1)底辺の大きさ(a)が、前記送風ファン(1)の外周に近づくにつれ変化したことを特徴とする請求項1又は2に記載の軸流送風機。   The axial flow according to claim 1 or 2, wherein the size (a) of the base of each peak (3-1) of the triangular protrusion changes as it approaches the outer periphery of the blower fan (1). Blower. 前記三角形状突起の各山部(3−1)頂点の角度(ψ)が、前記送風ファン(1)の外周に近づくにつれ変化したことを特徴とする請求項1から3のいずれか1項に記載の軸流送風機。   The angle (ψ) of each peak part (3-1) of the triangular protrusion changes as the outer periphery of the blower fan (1) is approached. The axial-flow blower described. 前記三角形状突起の各山部(3−1)の中心方向(O)が、前記送風ファン(1)の外周に近づくにつれ変化したことを特徴とする請求項1から4のいずれか1項に記載の軸流送風機。   The center direction (O) of each peak part (3-1) of the triangular protrusion changes as the outer periphery of the blower fan (1) is approached. The axial-flow blower described. 前記ブレード(3)の翼後縁部(7)の負圧面から正圧面に亘って形成された、翼後縁部(7)に沿って頂点を有する複数の三角形状突部を設けたことを特徴とする請求項1から5のいずれか1項に記載の軸流送風機。   A plurality of triangular protrusions having apexes along the blade trailing edge (7) formed from the suction surface to the pressure surface of the blade trailing edge (7) of the blade (3) are provided. The axial-flow fan according to any one of claims 1 to 5, wherein the blower is an axial-flow fan. 電動モータ(300)、並びに、
該電動モータ(300)に取り付けられるハブ(4)、及び、該ハブ(4)に放射状に設けられた複数のブレード(3)を有する送風ファン(1)、
を具備する軸流送風機(10)であって、
正圧面と負圧面からなる前記ブレード(3)の翼前縁部(6)の負圧面から正圧面に亘って形成された、翼前縁部(6)に沿って頂点を有する複数の三角形状突部を設け、
前記正圧面における前記複数の三角形状突部の谷部(3−2)のなす角度(φ2)が、いずれも前記負圧面における谷部のなす角度(φ1)より大きい軸流送風機。
Electric motor (300), and
A fan (1) having a hub (4) attached to the electric motor (300) and a plurality of blades (3) provided radially on the hub (4);
An axial blower (10) comprising:
A plurality of triangular shapes having apexes along the blade leading edge (6) formed from the suction surface to the pressure surface of the blade leading edge (6) of the blade (3) comprising the pressure surface and the suction surface. Providing a protrusion,
An axial blower in which an angle (φ2) formed by valleys (3-2) of the plurality of triangular protrusions on the pressure surface is larger than an angle (φ1) formed by valleys on the suction surface.
前記送風ファン(1)が、後退翼、又は、前進翼であることを特徴とする請求項1から7のいずれか1項に記載の軸流送風機。   The axial-flow fan according to any one of claims 1 to 7, wherein the blower fan (1) is a reverse blade or a forward blade.
JP2012124252A 2012-05-31 2012-05-31 Axial blower Active JP5929522B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012124252A JP5929522B2 (en) 2012-05-31 2012-05-31 Axial blower
US13/906,401 US20130323098A1 (en) 2012-05-31 2013-05-31 Axial flow blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012124252A JP5929522B2 (en) 2012-05-31 2012-05-31 Axial blower

Publications (2)

Publication Number Publication Date
JP2013249763A true JP2013249763A (en) 2013-12-12
JP5929522B2 JP5929522B2 (en) 2016-06-08

Family

ID=49670496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012124252A Active JP5929522B2 (en) 2012-05-31 2012-05-31 Axial blower

Country Status (2)

Country Link
US (1) US20130323098A1 (en)
JP (1) JP5929522B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031944A (en) * 2015-08-05 2017-02-09 株式会社日本自動車部品総合研究所 Axial flow blower
WO2017026150A1 (en) * 2015-08-10 2017-02-16 三菱電機株式会社 Air blower and air conditioning device equipped with air blower
US20170261000A1 (en) * 2014-09-18 2017-09-14 Denso Corporation Blower
WO2018092262A1 (en) 2016-11-18 2018-05-24 三菱電機株式会社 Propeller fan and refrigeration cycle device
KR20210147610A (en) * 2020-05-29 2021-12-07 엘지전자 주식회사 Fan for Air conditoner
US11959488B2 (en) 2019-12-09 2024-04-16 Lg Electronics Inc. Blower

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD289525S (en) * 1984-10-01 1987-04-28 Industrial Tools, Inc. Slicing machine for magnetic tape or the like
WO2017106376A1 (en) * 2015-12-18 2017-06-22 Amazon Technologies, Inc. Propeller blade treatments for sound control
DE102016202741A1 (en) * 2016-02-23 2017-08-24 Siemens Aktiengesellschaft Rotor and electric machine
CN105736425B (en) * 2016-04-26 2017-12-12 浙江理工大学 A kind of blade has the axial flow blower of bionical trailing edge with aerofoil profile deflector and stator
CN105756975B (en) * 2016-04-26 2018-02-27 浙江理工大学 The axial flow blower that a kind of blade inlet edge is blown with groove structure and blade root
CN105736426A (en) * 2016-04-26 2016-07-06 浙江理工大学 Axial flow fan comprising blade pressure surfaces with winglets and blade tops with blowing structures
CN105756996B (en) * 2016-04-26 2017-12-12 浙江理工大学 A kind of blade suction surface has the axial flow blower of turbo-charger set structure and leaf top fluting
AU2017206193B2 (en) * 2016-09-02 2023-07-27 Fujitsu General Limited Axial fan and outdoor unit
CN106762816A (en) * 2016-12-16 2017-05-31 珠海格力电器股份有限公司 Centrifugation blade and centrifugal blower
USD901669S1 (en) 2017-09-29 2020-11-10 Carrier Corporation Contoured fan blade
CN207795681U (en) * 2018-01-13 2018-08-31 广东美的环境电器制造有限公司 Axial flow fan leaf, axial flow fan blade component, axial flow blower ducting assembly
CN109281866B (en) * 2018-12-07 2023-09-15 泰州市罡阳喷灌机有限公司 Bionic blade of water ring type self-priming pump
CN111618056B (en) * 2020-06-01 2021-09-21 安徽名士达新材料有限公司 Paint body hard skin eliminating device for wood lacquer production and implementation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR905700A (en) * 1944-07-06 1945-12-11 Improvement in propulsion or propelled helical wheels
JPH08189497A (en) * 1994-11-08 1996-07-23 Mitsubishi Heavy Ind Ltd Propeller fan
JP2000087898A (en) * 1998-09-08 2000-03-28 Matsushita Refrig Co Ltd Axial flow blower
JP2010203409A (en) * 2009-03-05 2010-09-16 Mitsubishi Heavy Ind Ltd Blade body for fluid machine
WO2012039092A1 (en) * 2010-09-21 2012-03-29 三菱電機株式会社 Axial flow blower

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1773280A (en) * 1928-09-12 1930-08-19 Rossiter S Scott Aircraft
US3012709A (en) * 1955-05-18 1961-12-12 Daimler Benz Ag Blade for axial compressors
JPS5740693U (en) * 1980-08-19 1982-03-04
DE3137554A1 (en) * 1981-09-22 1983-03-31 Wilhelm Gebhardt Gmbh, 7112 Waldenburg "RADIAL FAN"
JP4035237B2 (en) * 1998-09-30 2008-01-16 東芝キヤリア株式会社 Axial blower
DE102010023017A1 (en) * 2010-06-08 2011-12-08 Georg Emanuel Koppenwallner Humpback whale blower, method for locally improving the flow in turbomachinery and vehicles
US9249666B2 (en) * 2011-12-22 2016-02-02 General Electric Company Airfoils for wake desensitization and method for fabricating same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR905700A (en) * 1944-07-06 1945-12-11 Improvement in propulsion or propelled helical wheels
JPH08189497A (en) * 1994-11-08 1996-07-23 Mitsubishi Heavy Ind Ltd Propeller fan
JP2000087898A (en) * 1998-09-08 2000-03-28 Matsushita Refrig Co Ltd Axial flow blower
JP2010203409A (en) * 2009-03-05 2010-09-16 Mitsubishi Heavy Ind Ltd Blade body for fluid machine
WO2012039092A1 (en) * 2010-09-21 2012-03-29 三菱電機株式会社 Axial flow blower

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170261000A1 (en) * 2014-09-18 2017-09-14 Denso Corporation Blower
JP2017031944A (en) * 2015-08-05 2017-02-09 株式会社日本自動車部品総合研究所 Axial flow blower
WO2017026150A1 (en) * 2015-08-10 2017-02-16 三菱電機株式会社 Air blower and air conditioning device equipped with air blower
JP6129431B1 (en) * 2015-08-10 2017-05-17 三菱電機株式会社 Blower and air conditioner equipped with this blower
WO2018092262A1 (en) 2016-11-18 2018-05-24 三菱電機株式会社 Propeller fan and refrigeration cycle device
US11002292B2 (en) 2016-11-18 2021-05-11 Mitsubishi Electric Corporation Propeller fan and refrigeration cycle device
US11959488B2 (en) 2019-12-09 2024-04-16 Lg Electronics Inc. Blower
KR20210147610A (en) * 2020-05-29 2021-12-07 엘지전자 주식회사 Fan for Air conditoner
KR102630058B1 (en) * 2020-05-29 2024-01-25 엘지전자 주식회사 Fan for Air conditoner

Also Published As

Publication number Publication date
US20130323098A1 (en) 2013-12-05
JP5929522B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5929522B2 (en) Axial blower
JP5880288B2 (en) Blower
JP6428833B2 (en) Propeller fan
JP5430754B2 (en) Axial blower
WO2015092924A1 (en) Axial flow fan
JP2006291735A (en) Blower impeller
WO2018123519A1 (en) Propeller fan
JP5978886B2 (en) Blower
JP2010090835A (en) Multi-blade centrifugal fan and air conditioner using the same
JP4910534B2 (en) Blower impeller
JP2006090178A (en) Blower impeller
JP5862541B2 (en) Low noise blower
JP6544463B2 (en) Propeller fan
JP6060370B2 (en) Blower
JP2007247494A (en) Diagonal flow blower impeller
JP2006200457A (en) Blower
JP4802694B2 (en) Blower impeller and air conditioner
JP6064487B2 (en) Blower
JP2006214371A (en) Blower
JP2009275696A (en) Propeller fan, and air conditioner using it
JP4631563B2 (en) Blower
JP2012012942A (en) Propeller fan
JP5120299B2 (en) Blower impeller
JP2006077632A (en) Blower impeller for air conditioning
JP4967883B2 (en) Mixed flow blower impeller and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R151 Written notification of patent or utility model registration

Ref document number: 5929522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250